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 The life cycle of new products is becoming shorter and shorter in all markets. For 
electronic products, life cycles are measured in units of months, with six to twelve-month life 
cycles being common. Given these short product life-cycles, product demand is increasingly 
difficult to forecast. Furthermore, demand is never really stationary as the demand rate evolves 
over the life of the product. In this paper we consider the problem of where in a supply chain to 
place strategic safety stocks to provide a high level of service to the final customer with 
minimum cost. We extend a model that we have developed for stationary demand to the case of 
non-stationary demand, as might occur for products with short life cycles. Key assumptions are 
that we can model the supply chain as a network, that each stage in the supply chain operates 
with a periodic–review base-stock policy, that demand is bounded and that there is a guaranteed 
service time between every stage and its customers. To model the non-stationary demand, we 
divide the product life cycle into time phases, where we assume that the demand process is 
stationary within each time phase. However, the parameters for the demand process will vary 
from phase to phase. We first establish conditions for which the placement of safety stocks is the 
same within each phase. As a consequence, the optimization algorithm for the case of stationary 
demand extends directly to determining the safety stocks within each phase. We then examine 
what happens to the optimal safety stock policy in the transition from one phase to the next. We 
provide empirical evidence, as well as a heuristic argument, for a policy that maintains the same 
safety stock locations through the transition between time phases. We conclude with an 
illustrative example that demonstrates the proposed solution and how it would be deployed. 
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1.  Introduction 

 Manufacturing firms are introducing new products at a higher frequency, and these 

products are on the market for increasingly shorter amounts of time. For each new product 

introduction, a firm must determine its supply chain and the associated operating policies in 

order to match the product supply to the product demand to achieve the most revenue and incur 

the least cost. Major challenges in addressing this design task are the facts that product demand 

is uncertain and difficult to forecast, and that the demand process evolves over the product life 

cycle and is never stationary.  

 The primary intent of this research is to examine the problem of locating safety stocks in 

a supply chain, in a way that accounts for both uncertain and non-stationary demand processes. 

Given the inherent complexity of modeling non-stationary demand processes, we seek a 

pragmatic approach that requires approximations and compromises in order to get results that 

might apply in practice. We use the modeling framework from Graves and Willems (2000), and 

propose a demand model that permits consideration of non-stationary demand. Our key result is 

to show that the optimization from Graves and Willems (2000) for finding the safety-stock 

placement in a supply chain applies to this case of non-stationary demand.  

 In the remainder of this section we briefly discuss related literature. In section 2, we 

present the key assumptions for our framework for modeling a supply chain. In section 3, we 

review the multi-stage inventory model from Graves and Willems (2000). In section 4, we 

specify a non-stationary demand process as a sequence of stationary phases. We then show that 

for a single end-item, the location of the safety stocks within a phase does not depend on the 

demand parameters. When there are multiple end-items, we provide conditions on the demand 

process for which this result also applies. In section 5, we examine how to use this result during 
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the transition from one phase to another phase as the demand process changes. In section 6, we 

present an example to illustrate how the proposed policy might apply in practice. 

Related Literature: In comparison to the inventory models for stationary demand, there has been 

much less work for the case of non-stationary demand. The work that has been done on non-

stationary demand can be characterized by how the non-stationary demand is specified and 

whether the work focuses on optimization versus performance evaluation. 

 Morton and Pentico (1995) and Bollapragada and Morton (1999) focus on setting 

inventory policies for a single stage facing a general non-stationary demand process with 

proportional holding and backorder costs. When the order cost is zero, a time-varying base-stock 

policy is optimal; for a non-zero order cost, then a time-varying (s, S) policy is optimal. The 

optimal policies can be found by dynamic programming. This research focuses on developing 

computationally efficient upper and lower bounds on the optimal policy.  

 Ettl et al. (2000) minimize the total expected inventory capital in a multi-stage inventory 

system, where the key challenge is to approximate the replenishment lead-times within the 

supply chain. To model non-stationary demand, they assume the horizon can be broken into a set 

of stationary phases and adopt a rolling-horizon approach where the optimization is performed 

for each demand phase. 

 Non-stationary demand has also been modeled as a Markov-modulated Poisson demand 

process where the demand process is governed by a discrete time Markov chain; for example, a 

two-state chain corresponding to a high and low period. Chen and Song (2001) and Abhyankar 

and Graves (2001) are indicative of this approach. Chen and Song (2001) show that echelon 

base-stock policies with state-dependent order-up-to levels are optimal for serial networks.  

Abhyankar and Graves (2001) develop an optimization model to determine where best to place 
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an inventory hedge in a two-stage serial supply chain that faces Markov-modulated demand with 

two states.   

 There is a large stream of research that focuses on the bullwhip effect in supply chains. 

The bullwhip papers that focus on non-stationary demand generally assume each stage follows 

an adaptive base-stock policy. The papers then analyze the effect that different forecasting 

techniques and demand distributions have on the inventory requirements at each stage. Lee et al. 

( 1997), Graves (1999) and Chen et al. (2000) are indicative of the work in this area. Lee et al. 

(1997) demonstrate that the adjustment of order-up-to levels at the retailer amplifies the variance 

of the order signal the retailer provides the manufacturer. Graves (1999) shows that the 

relationship between safety stock required and net replenishment lead-time becomes convex 

when the demand process is an integrated moving average process of order (0, 1, 1).  Chen et al. 

(2000) demonstrate that the bullwhip effect is due, in part, to the demand stage’s need to forecast 

its own mean and standard deviation of demand over the net replenishment lead-time.   

 Finally, there is a growing body of work focusing on designing supply chains to handle 

non-stationary demand. Beyer and Ward (2000) use simulation to accurately model the inventory 

requirements in a two-echelon supply chain that utilizes two modes of distribution. Their model 

captures the impacts of non-stationary demand and the resulting competition for inventory 

between stages in the supply chain. Johnson and Anderson (2000) investigate the benefits of 

postponement in supply chains that introduce multiple products where demands face a product 

life-cycle pattern. For products with short life cycles, the authors show that implementing 

postponement can reduce costs while simultaneously increasing service levels. 
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2.  Assumptions 

In order to develop our results, we need first to introduce the modeling framework from Graves 

and Willems (2000), hereafter referenced as G-W, for stationary demand. For completeness, we 

state the key assumptions, but refer the reader to G-W for discussion and justification of these 

assumptions.  

Multi-Stage Network: We model a supply chain as a network where nodes are stages in the 

supply chain and a directed arc denotes that an upstream stage supplies a downstream stage. A 

stage represents a major processing function such as the procurement of a raw material, or the 

production of a component, or the manufacture of a subassembly, or the assembly and test of a 

finished good, or the transportation of a finished product from a central distribution center to a 

regional warehouse. Each stage is a potential location for holding a safety-stock inventory of the 

item processed at the stage. 

 We associate with each arc a scalar φij to indicate how many units of the upstream 

component i are required per downstream unit j. If a stage is connected to several upstream 

stages, then its production activity is an assembly requiring inputs from each of the upstream 

stages. A stage that is connected to multiple downstream stages is either a distribution node or a 

production activity that produces a common component for multiple internal customers.  

Production Lead-Times: For each stage, we assume a known deterministic production lead-time, 

call it Ti. When a stage reorders, the production lead-time is the time from when all of the inputs 

are available until production is completed and available to serve demand. The production lead-

time includes the waiting and processing time at the stage, plus any transportation time to put the 

item into inventory. For instance, suppose stage k requires inputs from stage i and j; then for a 
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production request made at time t, stage k completes the production at time t+ Tk, provided that 

there are adequate supplies of i and j at time t. 

 We assume that there are no capacity constraints that limit production at a stage.  Thus, 

the production lead-time is invariant to the work-in-process.  

Periodic-Review Base-Stock Replenishment Policy: We assume that all stages operate with a 

periodic-review base-stock replenishment policy with a common review period. Each period, 

each stage observes demand either from an external customer or from its downstream stages, and 

places orders on its suppliers so as to replenish the observed demand. There is no time delay in 

ordering, so each period each stage sees its customer demand. 

Demand Process: We assume that external demand occurs only at nodes that have no successors, 

which we term demand nodes or stages. For each demand node j, G-W assume that the end-item 

demand comes from a stationary process for which the average demand per period is µj. 

 An internal stage has only internal customers or successors. Since each stage orders 

according to a base-stock policy, the demand at internal stage i is: 

 
(i, j)  A

i ij jd (t) =  d (t) 
∈

φ∑  

where dj(t) denotes the realized demand at stage j in period t and A is the arc set for the network 

representation of the supply chain. The average demand rate for stage i is: 

 
(i, j)  A

i ij j =  
∈

µ φ µ∑ . 
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 G-W assume that demand at each stage j is bounded by the function Dj(τ), for τ = 1, 2, 3, 

... Mj, where Mj is the maximum replenishment time for the stage1. That is, for any period t and 

for τ = 1, 2, 3, ... Mj, we have 

 Dj(τ) ≥ dj(t-τ+1) + dj(t-τ+2) + ... + dj(t) . 

We define Dj(0) = 0 and assume that Dj(τ) is increasing and concave on τ = 1, 2, 3, ... Mj. 

Guaranteed Service Times: G-W assume that each demand node j promises a guaranteed service 

time Sj by which the stage j will satisfy customer demand. That is, the customer demand at time 

t, dj(t), must be filled by time t + Sj. Furthermore, we assume that stage j provides 100% service 

for the specified service time: stage j delivers exactly dj(t) to the customer at time t + Sj.  

 Similarly, an internal stage i quotes and guarantees a service time Sij for each downstream 

stage j, (i, j) ∈ A. Given a base-stock policy, stage j places an order equal to φij dj(t) on stage i at 

time t; then stage i delivers exactly this amount to stage j at time t + Sij. 

 G-W assume that stage i quotes the same service time to all of its downstream customers, 

namely Sij = Si for each downstream stage j, (i, j) ∈ A. We describe in Graves and Willems 

(1998) how to extend the model to permit customer-specific service times. 

 The service times for both the end items and the internal stages are decision variables for 

the optimization model, as will be seen in section 3. However, as a model input, we may impose 

bounds on the service times for each stage. In particular, for each demand node we are given a 

maximum service time, presumably set by the market place.  

                                                 

1 The maximum replenishment time for node j is defined as Mj = Tj + max {Mi | i:(i,j)∈A}. 
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3.  Supply Chain Model 

In this section we present the multi-stage model of a supply chain, and the optimization problem 

for determining safety stocks.  

Inventory Model: [see Kimball 1988 or Simpson 1958] The single-stage inventory model serves 

as the building block for modeling a multi-stage supply chain. We assume the inventory systems 

starts at time 0 with initial inventory Ij(0). Under the stated assumptions, we can express the 

inventory at stage j at the end of period t as 

 Ij(t) = Bj - dj(t - SIj - Tj, t - Sj)   (1) 

where Bj = Ij(0) ≥ 0 denotes the base stock, dj(a, b) denotes the demand at stage j over the time 

interval (a, b], and SIj is the inbound service time for stage j. For the discrete-time demand 

process, we understand dj(a, b) to be 

 dj(a, b) = dj(a+1) + dj(a+2) + …. + dj(b) 

for a < b, where dj(t)=0 for t ≤ 0. When a ≥ b, we define dj(a, b) = 0. 

 The inbound service time SIj is the time for stage j to get supplies from its immediate 

suppliers. In period t, stage j places an order equal to φij dj(t) on each upstream stage i for which 

φij >0. The inbound service time is the time for all of these orders to be delivered to stage j, so 

that stage j can commence production to replenish dj(t). Thus we have { }
( i , j) A

j iSI max S
∈

= .  

Determination of Base Stock: In order for stage j to provide 100% service to its customers, we 

require that Ij(t) ≥ 0; we see from (1) that this requirement equates to  

 Bj ≥ dj(t - SIj - Tj, t - Sj) . 

Since demand is bounded, we can satisfy the above requirement with the least inventory by 

setting the base stock as: 

 Bj = Dj(τ)      where τ = max [0, SIj + Tj - Sj] = [SIj + Tj - Sj]+. (2) 
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Thus, the base stock is the maximum possible demand over the net replenishment time for the 

stage, equal to its replenishment time (SIj + Tj) minus its quoted service time (Sj). 

Safety Stock Model: We use (1) and (2) to find the expected inventory level E[Ij]: 

 E[Ij] = Bj – E[dj(t - SIj - Tj, t - Sj)] = Dj(SIj + Tj - Sj ) – [SIj + Tj - Sj ]+ µj. (3) 

The expected inventory represents the safety stock held at stage j, and depends on the net 

replenishment time and the demand bound.  

 The expected work-in-process depends only on the lead-time at stage j and is not a 

function of the service times. Hence, in posing an optimization problem, we ignore the pipeline 

inventory and only model the safety stock.  

Multi-Stage Model: To model the multi-stage system, we use (3) for every stage, but where the 

inbound service time is a function of the outbound service times for the upstream stages; to wit, 

the model for stage j is 

 E[Ij] = Dj(SIj + Tj - Sj ) – (SIj + Tj - Sj ) µj (4) 

 SIj + Tj - Sj ≥ 0  (5) 

 SIj - Si  ≥ 0             for all (i, j) ∈ A  (6) 

where (5) assures, without loss of generality, that the net replenishment time is nonnegative, and 

(6) constrains the inbound service time to equal or exceed the service times for the upstream 

stages.  
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 This suggests the following optimization problem P for finding the optimal service times:  

P ( ) ( ){ }
N

j j j j j j j j j
j 1

min h D SI +T -S SI +T -S
=

− µ∑  

 s. t. Sj - SIj  ≤ Tj for j= 1, 2 …. N 

  SIj - Si  ≥ 0 for all (i, j) ∈ A 

  Sj ≤ sj for all demand nodes j 

  Sj, SIj  ≥ 0 and integer for j = 1, 2 ….N 

where hj denotes the per-unit holding cost for inventory at stage j and sj is the maximum service 

time for demand node j. The objective of problem P is to minimize the holding cost for the safety 

stock in the supply chain. The constraints assure that the net replenishment times are 

nonnegative, the inbound service times are the maximum supplier service time, and the end-item 

stages satisfy their service guarantee. The decision variables are the service times. Graves and 

Willems (2000) present a dynamic programming algorithm for solving P for supply chains that 

are modeled as spanning trees. 
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4. Non-Stationary Demand  

 In this section we provide a specification for non-stationary demand. We then show 

conditions on the demand process for which the solution to P is invariant. We then discuss the 

reasonableness of the demand process assumptions. 

Specification of Non-Stationary Demand: We assume that we can divide the planning horizon 

for a product into K phases. We assume that the demand within each phase is from a stationary 

demand process. For instance, if the product is subject to seasonal demand, there might be three 

or four phases, corresponding to the different seasons. For each phase, we have a relatively 

stationary demand process. But the demand process changes from phase to phase.  

 As another example, consider a new product for which the product life cycle might 

consist of four phases:  

• a start-up or product-launch phase in which the product is introduced to the market;  

• a growth or demand-ramp phase over which the demand rate grows rapidly;  

• a peak-demand phase during which the product sells at its maximum rate;  

• and an end-of-life phase during which the product demand declines as it is removed from the 

market, replaced by the next generation of products. 

Then we assume that we can approximate the demand as being stationary within each phase. 

Coughlin (1998) describes an application in which he used this modeling approach to partition 

the demand for high-tech products into several stationary intervals for the purposes of 

determining the placement of strategic inventory across a supply chain. 

 For a new product, the assumption of stationarity within a phase is a strong assumption, 

as by definition the demand is growing (declining) through the growth (end-of-life) phase and 

thus not stationary. Nevertheless, for the purpose of setting safety stocks and service times, we 
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propose this assumption as an approximation. We will see soon why this assumption may be 

helpful in developing safety stock polices for non-stationary demand. 

 For each phase, we assume that we can specify the demand bound as follows: 

 Djk(τ) = µjkτ + νk σj τβ  (7) 

where Djk(τ) is the maximum demand for stage j over a time interval of length τ that is totally 

within phase k. Thus, we interpret µjk as the mean demand rate, per time unit, for stage j in phase 

k. We can view σj as the nominal standard deviation of demand per time unit for stage j. Then νk 

is a multiplier that depends on the phase of the planning horizon or life cycle for the product, 

analogous to a multiplicative seasonal index. The final term τβ captures how demand variability 

grows with the length of the interval, where 0 < β < 1; for instance, β=0.5 would reflect the 

standard assumption of adding variances when demand is independent across time periods. 

 We will first examine the significance of (7) in solving P. We will then discuss the 

reasonableness of the form assumed in (7). 

Invariance Property 

 Consider problem P for a single phase with demand bounds given by (7); we term this to 

be the intra-phase problem. We equate µj = µjk in Problem P, and then use (7) to restate the 

objective function of P for phase k as: 

  

( ) ( ){ }

( ){ }
( ){ }

N

j jk j j j j j j jk
j 1

N

j k j j j j
j 1

N

k j j j j j
j 1

h D SI +T -S SI +T -S

     h SI +T -S

     h SI +T -S

=

β

=

β

=

− µ

= ν σ

= ν σ

∑

∑

∑

 

We make the following observation: 
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Proposition 1: For the demand bound given by (7), the optimal solution to the intra-phase 

problem P does not depend on the phase. That is, the optimal service times do not depend on the 

phase multiplier νk and are the same for all phases. 

Discussion: The significance of this observation is that the optimal policy within each phase is 

invariant. We choose the same stages to place safety stock, independent of the phase. The actual 

size of the safety stock, though, does depend on the phase. From (2), we set the base stock within 

each phase as  

 Bjk = Djk(τ) where τ = max [0, SIj + Tj - Sj].  

where SIj , Sj are the optimal service times from P. Thus, the base stock and the resulting 

expected safety stock (from (4)) do change from phase to phase. 

 We will investigate later what happens when we transition from phase to phase. But first 

we explore the reasonableness of the demand bound (7). 

Justification for Demand Bound: Single End-Item 

 Consider a supply chain with a single end-item, such as a serial network or assembly 

network. We assume that stage N is the end-item and suppose that the end-item demand is 

normally distributed in each phase k with mean mNk and standard deviation sNk per time unit. 

Then, for the purposes of setting safety stocks, we might define the demand bound in phase k as  

 DNk(τ) = mNkτ + zNk sNk τβ  (8) 

where zNk is set to assure that the safety stock covers the demand variation some percentage of 

time. The choice of zNk indicates how frequently management is willing to resort to other tactics 

to cover demand variability in phase k. For instance during a growth or ramp phase of a product, 

we might set this factor very high so as to assure that the safety stock provides very good service 
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during this critical phase. Conversely, during the end-of-life phase, we expect this factor would 

be smaller, due to the high cost of obsolescence relative to the stock-out cost. 

 For notational convenience let the scalar fjN denote the number of units of item j per unit 

of end-item N, where fNN  = 1. Then it is reasonable to assume that every stage j has a 

proportional demand bound, namely  

 Djk(τ) = fjN DNk(τ)       for all k.  (9) 

 Then we see that these assumptions are consistent with the demand-bound model (7). 

Namely we can set the parameters for (7) as follows: 

 µjk =  fjN mNk  for all j, k 

 νk = zNksNk for all k, 

 σj = fjN  for all j. 

We can now make the following observation: 

Proposition 2: For a supply chain with a single end-item, if the demand bounds in each phase are 

given by (8) and (9), then the optimal solution of P for each phase does not depend on the 

demand parameters mNk, sNk and zNk. 

Discussion: This observation establishes the robustness of the optimal solution of P to the 

specification of the demand-bound function. If the demand bound is of the functional form given 

in (8), then we do not need to know the values for the parameters mNk, sNk or zNk in order to 

determine the optimal service times. We do need to know the value of β, which signifies how 

variability accrues over time. In addition to β, the solution to P depends on the holding costs hj, 

the production lead times Tj, and the network topology. Furthermore, Proposition 1 assures that 

the optimal service times for each phase are the same. 
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Justification for Demand Bound: Multiple End-Items 

 Consider a supply chain with multiple end-items. Let J denote the index set for the end-

item nodes. We assume that for each j ∈ J, the end-item demand is normally distributed in each 

phase k with mean mjk and standard deviation sjk per time unit. Then, for the purposes of setting 

safety stocks, we might again define the demand bound in phase k for end-item j as  

 Djk(τ) = mjkτ + zjk sjk τβ  (10) 

where zjk is a safety factor. 

 Now we suppose that for all j ∈ J and all k:  

 zjksjk = νkσj.   (11) 

That is, for each end-item j, we have a nominal standard deviation of demand, σj, for all phases. 

For each phase k, we have a multiplier that applies to all end-items. For instance, if the phases 

correspond to seasons, then we assume that the seasonal impact on demand variability is the 

same for all end-items. If the phases correspond to the life cycle of a product, then we assume 

that the end-items have concurrent life cycles. For instance, the end-items might be from a 

product family, and are complementary products that use the same generation of technology. 

Another context in which (10) and (11) might hold is when the end-items represent different 

distribution channels for the same product. Then one might expect the relative variability to be 

the same across the different phases for the different distribution channels. 

 Thus, by assumption, the demand bound for the end-items, as given by (10) and (11), 

satisfies (7).  



 

 Page 16 of 29 

 Furthermore, for each component stage i, let fij denote the number of units required from 

stage i per unit of end-item j for j ∈ J. Then we might construct the demand bound for stage i as 

follows: 

 Dik(τ) = mikτ + zik sik τβ  (12) 

where ik ij jk
j J

m f m
∈

= ∑  and ( ) ( )ik ik ij jk jk
j J

z s f z s
αα

∈

= ∑  for some positive α. For instance, we might 

assume that the demands for the end items are independent of each other, so that the demand 

variance at stage i is the sum of the induced variances from the demand for each end-item; then 

we would set α = 2 . For the general case we substitute (11) to find 

 ( ) ( )ik ik ij k j k ij j k i
j J j J

z s f f ,
α α

α α
∈ ∈

= ν σ = ν σ = ν σ∑ ∑  (13) 

where ( )i ij j
j J

f
αα

∈

σ = σ∑ . Thus, from (12) and (13), we see that all component stages satisfy (7). 

Hence, for supply chains with multiple end items, we contend that (7) is reasonable if the 

demand bounds for each end-item satisfy (7), and if we can construct the demand bound for the 

internal stages as prescribed above. In particular, if the end-item demands were independent, 

then we might develop demand bounds for the component stages by adding their variances. 
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5.  Inter-Phase Example 

 The purpose of this section is to examine what happens in our supply chain model when 

we transition from one phase to another phase. We define an intra-phase policy as an inventory 

policy that applies to a specific phase and an inter-phase policy as a policy that applies to the 

time window for transitioning from one phase to the next phase. In the prior section we have 

shown that the optimal intra-phase safety stock policy is invariant to the phase, whereby we use 

the same set of service times within each phase.  

 Having discovered this property, we ask whether the intra-phase service times are also 

optimal when we transition from one phase to another phase. If this were true, then we would 

have a very strong and pragmatic result: namely, if demand is non-stationary as specified, then 

the optimal service times are stationary for the entire planning horizon, and are given by the 

solution to P. The optimal safety stocks will vary, but can be found from the service times and 

the demand bound. 

 Unfortunately, we can show by example that the intra-phase service times need not be 

optimal for the inter-phase transition window. In spite of this negative result, we will argue that 

the intra-phase policy is near optimal and is also much easier to implement. We develop these 

arguments by means of an example. 

 Consider a two-stage system, with stage 1 being the upstream stage serving stage 2 and 

f12  = 1. The cost and time parameters for the example are given in Table 1: 

 Stage 1 Stage 2 
Holding cost 0.5 1.0 
Production lead time 10 5 

   Table 1: Cost and Time Parameters for Example 

There are two phases and the demand bound for the end item is given by (7), with σ = 2, β = 0.5, 

and phase parameters given in Table 2: 
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 Mean demand rate (µ) Phase multiplier (ν) 
Phase 1 100 30 
Phase 2 150 50 

    Table 2: Phase Parameters for Example 

Thus, the demand bounds for the two phases are: 

 D21(τ) = 100 τ + 60 τ     D22(τ) = 150 τ + 100 τ  

 We first determine the optimal service times for the intra-phase problem, given by P, 

when the maximum service time for the end-item (stage 2) is zero (s2 = 0). For this problem, 

there is a single decision variable, namely the outbound service time at stage 1 (S1) equal to the 

inbound service time for stage 2 (SI2). For either phase, the solution to P sets S1 = SI2 = 0. Thus, 

we hold a safety stock of intermediate product between stage 1 and stage 2, as well as an end-

item safety stock at stage 2 to serve external demand. The resulting objective function value, 

equal to the holding cost for the safety stock, is $229.03 in phase 1 and $381.72 in phase 2. The 

base stocks are B11 = 1189 and B21 = 634 for phase 1, and B12 = 1816 and B22 = 974 for phase 2. 

 Now we examine what happens during the transition from phase 1 to phase 2. Suppose 

we specify time t = 0 to be the end of phase 1. We define the inter-phase time window to be the 

time interval over which the inventory at one or more stages of the supply chain depends on the 

demand from both phases. We note from the base stock model (1) that the inventory at stage j at 

time t depends on demand from both phases when  

 t - SIj - Tj ≤ 0  and  t - Sj > 0. 

For this example the inter-phase time window can range from 0 to T1+T2 = 15, depending on the 

service times. 

 To model the inventory during this inter-phase time window, we need to characterize the 

maximum demand function. To construct the maximum demand for a time interval that spans the 

two phases, we assume that we can combine the maximum demands over the two phases as if 
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they were independent random variables. Then we set the maximum demand over the interval (a, 

b] to be D(a, b), given as follows: 

 1 1D(a, b) = (b-a)   + 2 b-a µ ν     for b ≤ 0  (14a) 

 2 2
1 2 1 2D(a, b) = (-a  + b ) + 2 -a  + bµ µ ν ν    for a < 0 < b  (14b) 

 2 2D(a, b) = (b-a)   + 2 b-a µ ν     for a ≥ 0  (14c) 

where µ1=100, µ2=150, ν1=30 and ν2=50.  

 We assume that during the inter-phase time window we adapt the base stocks for each 

stage so as to continue to assure 100% service. That is, for a given specification of the service 

times, we set the base stock at stage j at time t as: 

 Bj(t) = D(t - SIj - Tj, t - Sj),  (15) 

for D(a, b) given by (14). We can then substitute (14) and (15) into (3) to obtain the expected 

inventory at stage j at time t, as a function of the service times. 

 To find the best service times, we solve P, modified to account for (14) and (15), for 

every value of t ∈ (0, 15). We find that the optimal service times are S1 = SI2 = 10 for every t ∈ 

(0, 15). That is, during the inter-phase time window, the optimal safety-stock policy is to 

eliminate the intermediate inventory between stages 1 and 2, and enlarge the base stock of the 

end-item to cover the total lead-time of 15 time periods. The intra-phase optimal policy is not 

optimal during the inter-phase time window.  
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Time Intra-phase policy  Inter-phase policy 

t Holding 
cost for 
S1 = 0 

Stage 1  
base stock 
for S1 = 0 

Stage 2 
base stock 
for S1 = 0 

 Holding 
cost for 
S1 = 10 

Stage 1  
base stock 
for S1 = 10 

Stage 2 
base stock 
for S1 = 10 

0 $229 1189 634  $232 0 1732 
1 $259 1256 706  $246 0 1796 
2 $286 1321 775  $258 0 1858 
3 $310 1385 843  $271 0 1921 
4 $333 1448 909  $282 0 1982 
5 $354 1511 974  $293 0 2043 
6 $360 1573 974  $304 0 2104 
7 $366 1634 974  $314 0 2164 
8 $371 1695 974  $324 0 2224 
9 $377 1756 974  $334 0 2284 
10 $382 1816 974  $344 0 2344 
11 $382 1816 974  $353 0 2403 
12 $382 1816 974  $362 0 2462 
13 $382 1816 974  $370 0 2520 
14 $382 1816 974  $379 0 2579 
15 $382 1826 974  $387 0 2637 

Table 3: Comparison of Policies for Two-Stage Example, with optimal policy in Bold 
 

 We report in Table 3 the holding cost for the safety stock for the two policies S1 = 0 and 

S1 = 10 for t ∈ [0, 15], as well as the base stocks. We see that the cost difference can be as much 

as 20% in a single period. The cost penalty for deviating from the optimal policy in periods t = 1, 

2, … 14 is 11%.  

 To explain why the optimal policy switches, we must consider the structure of the two 

policies. In Figure 1 we plot the stage and system expected safety stock costs for both policies 

for t = 0, 1, …, 15.  
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Figure 1:  Expected Safety Stock as a Function of Time 

During the transition window, t ∈ [1, 14], the intra-phase policy increases the safety stock at 

both stages to protect against the increased variability in phase 2. In contrast, the inter-phase 

policy with S1 = 10 maintains only an end-item safety stock; when we transition to phase 2, the 

end-item safety stock increases but less dramatically than that for the intra-phase policy. The 

inter-phase policy benefits from being better able to pool the increased demand variability from 

phase 2 with the lower demand variability of phase 1, due to having only a single safety stock. 

 Although not optimal, an open question is how well does the intra-phase optimal policy 

perform in the transient inter-phase time window, relative to the inter-phase optimal policy.  

 In Table 4 we report the percentage cost penalty for using the intra-phase policy during 

the time periods t = 1, 2, … 14 relative to the optimal policy for various values of the component 

holding cost (or equivalently the ratio h1/ h2). We see that there is only a cost penalty when 0.26 
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< h1 < 0.52, as otherwise the intra-phase policy is also optimal in the transient time window. We 

also see that the maximum cost penalty is 12.0 % and occurs when h1 = 0. 51. 

Component holding cost h1 ≤ 0.26 0.3 0.4 0.5 0.51 ≥ 0.52 
Cost penalty 0 % 0.3 % 4.0 % 11.1 % 12.0 % 0 % 

 Table 4:  Cost penalty for intra-phase optimal policy during transient time window 

 In Table 5 we report the percentage cost penalty for using the intra-phase policy during 

the time periods t = 1, 2, … 14 relative to the optimal policy for various values of the phase 

multiplier ν2 with h1 = 0.5. The cost penalty grows with the demand variability in phase 2, albeit 

at a declining rate. And we see that if the phase multipliers are the same in both phases, then the 

intra-phase policy is optimal for the inter-phase time window; indeed, from (14) we can show 

this invariance property when ν1 = ν2.   

Phase multiplier ν2 30 40 50 60 70 
Cost penalty 0 % 6.1% 11.1 % 14.4% 16.8% 

 Table 5:  Cost penalty for intra-phase optimal policy during transient time window 

 To assess the significance of the cost penalty in this example, we make three comments. 

First, from Table 4, we see that there is a non-negligible cost penalty for a fairly limited range of 

choices for the cost parameter h1.  Second, from Table 5, we see that doubling the phase 

multiplier, as we transition from phase 1 to 2, results in only a 14.4% cost penalty.  Third, we 

need to consider the cost penalty relative to the total length of the supply-chain planning horizon. 

If the intra-phase time window (0, 15) is a fraction f of the overall planning horizon, then the cost 

penalty for following the intra-phase optimal policy is about (0.11)f for the base case in Table 3.  

 We also comment on the practicality of switching policies when transitioning from one 

phase to another. Indeed, the optimal policy described in Table 3 would be quite difficult to 

implement. It requires the supply chain to consolidate the component inventory into the end-item 

inventory at the start of the transition time window, and then to reverse this consolidation when 
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the transition ends; and it requires the supply chain to change the internal service times during 

the transition time window. It would be much easier to follow the intra-phase policy by which 

the base stocks are gradually increased over the course of the transition time window, and there 

is no change to the internal service times.  
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6.  Example – Consumer Packaged Goods Manufacturer 

In this section, we illustrate the impact of non-stationary demand and validate the modeling 

approach presented in this paper by presenting a real-world example from a consumer packaged 

goods company2. Figure 2 graphically represents the supply chain for a product family: 

 
Figure 2:  Supply chain map for consumer packaged goods company 

The product is created through an injection molding and stamping process. Logos are then 

printed onto the plastic part. After the product goes through two packing operations, it is sent to 

one of three regional distribution centers where it serves the region’s demand. The (disguised) 

costs and production lead-times, in days, are: 

Stage Name Production Lead-Time Cost Added
Mold and Stamp 15 $0.85
Print 3 $0.60
Initial Pack 3 $0.15
Final Pack 3 $0.10
Eastern DC 25 $0.05
Midwest DC 20 $0.05
Western DC 15 $0.05  

Table 6:  Supply Chain Information 

The actual demand data for the three DCs are: 

                                                 

2 The data in this section has been disguised to protect company-confidential data. The insights drawn from the 
disguised data are identical to the conclusions based on the actual data. 
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i mi1 si1 mi2 si2 mi3 si3

Eastern DC 1068.5 161.2 1402.0 195.9 2275.5 318.9
Midwest DC 670.5 87.7 1035.0 105.4 1532.0 186.9
Western DC 322.0 54.8 577.5 80.9 938.0 133.2

Phase One Phase Two Phase Three

 
Table 7:  Demand Parameters (in thousands) 

 Each phase covers four months of the product’s life cycle. The data in Table 7 represents 

the monthly averages for each phase. The company seeks to maintain a 95% service level in all 

phases for all products.  

 We first want to verify whether or not the actual demand data corresponds to the demand 

bounds presented in (10). If so, there will be three scalars corresponding to the phases and three 

nominal standard deviations of demand corresponding to each of the FGI stages. We solve a 

nonlinear program to estimate the nominal standard deviations and the phase multipliers that 

provide the best fit to (11). Namely, we find estimates for νk and  σj that minimize the squared 

difference of the estimate errors: 

 ( )2

,
jk jk k j

k j

z s − ν σ∑ . 

For the demand parameters in Table 7, the estimated phase-scale multipliers are ν1 = 2.58 , ν2 = 

3.27 , ν3 = 5.44 and the estimated standard deviations are σ1 = 59.48 , σ2 = 33.83 , σ3 = 23.20.  

This results in the following estimated parameters for the three DCs: 

i  est. si1 % error est. si2 % error est. si3 % error
Eastern DC 153.3 -4.89% 194.7 -0.62% 323.4 1.40%
Midwest DC 87.2 -0.58% 110.7 5.05% 183.9 -1.59%
Western DC 59.8 9.12% 75.9 -6.18% 126.1 -5.36%

Phase One Phase Two Phase Three

 
Table 8:  Estimated Demand Parameters 
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The phase-scale multipliers increase over time because the magnitude of demand uncertainty is 

increasing as volumes increase over the product life cycle. The estimated standard deviations of 

demand reflect the relative volumes of the respective regions.  

 The optimal intra-phase policy using the demand bound estimates is: 

Stage Name
Safety stock 

(units)
Safety stock 

(cost)
Safety stock 

(units)
Safety stock 

(cost)
Safety stock 

(units)
Safety stock 

(cost)
Mold and Stamp 1186 $353 1507 $448 2503 $745
Print 0 $0 0 $0 0 $0
Initial Pack 0 $0 0 $0 0 $0
Final Pack 0 $0 0 $0 0 $0
Eastern DC 1470 $901 1867 $1,144 3102 $1,900
Midwest DC 772 $473 981 $601 1629 $998
Western DC 482 $295 612 $375 1016 $622

Phase One Phase Two Phase Three

 
Table 10:  Optimal Inventory Results for  Estimated Demand Parameters (in thousands) 

The optimal intra-phase policy is identical for both the actual and estimated demand parameters. 

The total annual safety stock cost for actual demand is $2,972 versus $2,951 for the estimated 

demand. This is a difference of less than 0.7%. 

 The optimal inter-phase inventory policy is different from the optimal intra-phase policy. 

Between phases 1 and 2 and between phases 2 and 3, the optimal inventory policy eliminates the 

safety stock at Mold and Stamp and increases the safety stock at the three distribution centers. 

For a given period (day), the cost difference can be as much as 12% but over the product life-

time of 365 days, maintaining the intra-phase inventory policy increases safety stock costs by 

less than 1.5% when compared to implementing the optimal inter-phase inventory policy.  
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7.  Conclusion 

 In this paper we introduce and develop a model for positioning safety stock in a supply 

chain subject to non-stationary demand. We assume that time can be broken into phases where 

demand is stationary within each phase, and show how to extend the model from Graves 

Willems (2000) to find the optimal placement of safety stocks. In particular we show that if the 

demand bound can be factored into two components, a phase-specific multiplier and a stage-

specific scalar, then the optimal inventory locations remain constant within each phase. We also 

show that the inter-phase optimal policy need not be the same as the intra-phase optimal policy.  

Nevertheless, we argue and provide limited evidence that applying the intra-phase policy during 

the transition between phases is near optimal and has obvious implementation advantages. 

 We test the model with an application at a consumer-packaged goods company. We 

validate the reasonableness of the assumed form for the demand bound by estimating its 

parameters with data from the application, and show that the intra-phase policy is near optimal 

when applied over the entire planning horizon for the supply chain.  

 There are several interesting areas to extend this research. First, one might explore more 

the effectiveness of using the intra-phase policy during the transition time windows so as to 

understand better when it works well and when not.  Second, we would hope to do more work to 

assess the validity and utility of the assumed form for the demand bound, as given by (7). In 

particular, we would like to understand how well it models real demand processes. Finally, we 

want to investigate what happens when the phase intervals are so short that the transition time 

window spans multiple phases.  
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