
N
etscape Communications Corp. was
established in April 1994 by Jim Clark,
the founder of Silicon Graphics, Inc.,
and Marc Andreessen, a recent gradu-
ate of the University of Illinois where

he had led the team of hacker programmers that
built Mosaic, the first mass-market browser for the
Web. Together they founded Netscape to create a
simple, universal interface that would allow users
with almost any type of communications device to
access the Web. Their initial focus was on two prod-

ucts: a commercial-grade browser that would take
up where the buggy Mosaic left off, and a Web
server, the software that allows individuals and com-
panies to create Web sites [1].

Navigator 1.0, released in December 1994 as
Netscape’s first product, was a spectacular success,
quickly becoming the browser of choice for Internet
users. By December 1995, the company was worth
more than $7 billion in terms of market capitaliza-
tion. It soon introduced a series of browser and server
products that used Internet protocols as the basis for
intranets, extranets, and other business applications.

Netscape thus evolved from a browser company
into an enterprise software company,

distinguished by its ability

to write Internet software
for all major personal computer platforms, as well as

for Unix. By 1998, after deciding to give away the
browser for free, most of Netscape’s revenues

were from servers, about 60% of which
was from customers running various

versions of Unix. The other 40% of
its server revenues was from cus-

Its development strategy produced unexpected costs, a
wrong turn with Java, performance compromises, and questions
about future ties to Sun Microsystems.

WHAT NETSCAPE
LEARNED FROM CR O
SOFTWARE DEVELO P

72 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

R
A

N
D

A
LL

 E
N

O
S

tomers running Microsoft’s Windows NT.
In 1997, Netscape encountered serious business

problems. After peaking at close to 90% in early
1996, Netscape’s browser share began to erode after
Microsoft bundled its Internet Explorer browser in
Windows 95. By late 1997, Netscape’s browser, then
with no more than 50% of the market, was falling
steadily. In November 1998, Netscape management
agreed reluctantly to a $4.3 billion takeover by
America Online, Inc., which also simultaneously
entered into a $1.25 billion agreement with Sun
Microsystems, Inc., to help market Netscape’s soft-
ware and manage its software divisions. The three-
way deal was approved by the U.S. Department of
Justice in March 1999.

As we look back, Netscape’s most significant

source of leverage against Microsoft probably
came from its investment in cross-platform design
and programming techniques (see the sidebar
“Netscape Design Techniques”). Cross-platform
development was central to Netscape’s strategy
to become the premier producer of Internet
software. The Internet now made it possi-
ble for different types of computers to
talk to each other, regardless of their

operating system platforms. In July 1997, Aleks Totic,
a programmer on Netscape’s client product division’s
original development team, summarized his compa-
ny’s position, saying, “The advantage is that your
product truly works cross-platform without rewriting.
We are able to release on all platforms, and it pretty
much works the same.”1

R OSS-PLATFORM
O PMENT

� Michael A. Cusumano

and David B. Yoffie

1This, and subsequent citations and quoted material, are derived from interviews
the authors conducted with Totic and other Netscape managers and employees in
1997 and 1998.

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 73

In reality, Netscape struggled to make cross-plat-
form development work as advertised. Engineers
had to write more platform-specific code over time
to remain competitive with Windows products,
once Microsoft released versions of its browser for
the Macintosh, Unix, and older Windows plat-
forms. Microsoft rewrote and optimized most of its
code for these products from scratch, rather than
using cross-platform programming techniques.
Netscape’s commitment to releasing its products for
all platforms quickly—by using cross-platform
development techniques as much as possible and
focusing increasingly on servers for the Unix mar-
ket—were the key elements differentiating Netscape
from Microsoft in Internet software. Nonetheless,
the decision to rely on cross-platform code posed
technical challenges, including unanticipated time
required for development and testing and poten-
tially weak product performance compared to plat-
form-specific products. We detail here how
Netscape tackled the challenges of cross-platform
development, struggling with the various trade-offs
along the way.

Cross-Platform Challenge
Ideally, there are two main ways to create cross-plat-
form products: develop separate platform-specific
versions of the product for each operating system,
writing most of the code from scratch each time, and
develop the bulk of the product in generic, cross-
platform code, with little or no code tailored to dif-
ferent incompatible platforms. Netscape preferred
the second approach—writing cross-platform
code—although over time, it adopted a strategy
combining both approaches.

Netscape engineers found that doing cross-plat-
form development well requires minimizing several
costs, or “penalties.” One is the additional time and
human effort needed to create abstracted, cross-plat-
form code. A second involves tailoring at least some
code for different platforms—which is almost always
necessary. And a third comes from testing and debug-
ging, as engineers spend extra time making sure fea-
tures work properly on different platforms.

Tailoring even small amounts of code to specific
platforms can create a logistics nightmare, because
the different teams and code bases have to be syn-

74 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

• Avoid platform-specific APIs as

much as possible.

• Create and maintain a set of APIs

representing an acceptable lowest-com-

mon-denominator interface across differ-

ent platforms. That is, create a layer of

programming interface abstractions, such

as the NSPR layer, discussed in the main

text, then write application code that

connects to this layer and not to individ-

ual operating systems. Another option is

to create a layer of conditional state-

ments or instructions that tell the system

what to do if the operating system is,

say, X, instead of Y.

• Create a set of cross-platform com-

ponents connecting to this common-

denominator layer so different product

groups can share them. This sharing

enables Netscape’s various development

groups to leverage the company’s invest-

ment in successful cross-platform code.

• Use as much as possible cross-plat-

form programming languages, such as

standard versions of C and C++, as well

as inherently cross-platform Internet pro-

gramming languages, such as HTML, Java,

and JavaScript. Using cross-platform lan-

guages means avoiding such platform-spe-

cific languages as Assembler and tailored

versions of such languages as C and C++.

• Keep different platform code ver-

sions synchronized by compiling, or

“building,” the code components daily on

multiple platforms, rather than by “port-

ing” code in the traditional sense. This

synchronization minimizes different code

bases, as well as the porting of code,

which usually requires time for rewriting

and debugging.

• Keep feature sets common across

the different platform versions. Ensuring

a common design minimizes creation of

different code bases and tailoring work,

while supporting the appearance of a

common look and feel for the user.

• Tailor to particular platforms the

components essential to achieving com-

petitive performance levels on the most

commercially important platforms. That

is, allow teams to make at least some

changes so products do not perform

poorly relative to the competition.

• Do not try to write cross-platform

components that developers cannot

abstract easily and that might adversely

affect users. Try to shift the design of

these components gradually over to

cross-platform approaches. An example

is user-interface components unique to

particular platforms, such as Macintosh

toolbars, which often differ noticeably

from their Windows counterparts. Over

time, however, engineers can try to

introduce more generic user interface

components across different products,

writing them in a cross-platform Internet

language, such as JavaScript and even

HTML. c

Despite Netscape’s decision to write increasing amounts of platform-specific code, it did succeed in
refining cross-platform design techniques to a considerable degree. After interviewing several Netscape
programmers, we created the following summary of their most important techniques:

Netscape Design Techniques

chronized. Keeping track of all the variations, while
making sure engineers test all versions and changes
properly, is no simple task. However, minimizing
platform-specific code through cross-platform tech-
niques involves its own problems. Designing prod-
ucts to be truly cross-platform means developers
have to write code that does not incorporate any
interfaces or programming “tricks” specific to a par-
ticular operating system or hardware platform. They
must use relatively simple or low-level programming
conventions and interfaces that are common across
the different platforms. But many existing platform-
specific application programming interfaces (APIs)
and programming conventions enable programmers
to write code that runs faster or handles graphics and
memory better than code that uses lowest-common-
denominator interfaces. As a result, cross-platform
products can take more time, as well as result in
weaker functional performance.

Microsoft engineers experienced these trade-offs
years before Netscape even existed, generally choosing
not to create cross-platform designs. In the 1980s,
Microsoft developed Word and some other applica-
tions in a neutral pseudo-code (“p-code”) format,
then compiled it for Windows and Macintosh plat-
forms. This programming method saved time in
development, but the code tended to be slow. For the
user, Word for Macintosh also appeared different
from native Macintosh applications, since Microsoft
tended to favor the Windows user-interface format.
For Internet Explorer, which Microsoft initially built
only for Windows 95, the company chose to create
mostly separate code bases for the Macintosh and
Unix versions and share only some portions of the
code between the Windows 3.1 and the Windows
95/NT/98 versions.

Components and Processes
Netscape invested in components and processes to
ease cross-platform development. Components
included the Netscape Portable Runtime (NSPR)
layer, which was used by both Netscape’s client and
server development groups. The server teams also
shared some HTML, Java, and JavaScript compo-
nents, some of the core Web server and Directory
server and security code, and other common libraries
for handling protocols used in more than one type of
server.

A Netscape product development manager, Bill
Turpin, who was vice president for server product
development in August 1997, estimated that about
20% of the code in Netscape’s nine server offerings at
the time consisted of these packaged cross-platform
components shared among the different products. He

outlined the structure of the shared code in the servers,
saying, “Down at the bottom level, there are things
called the Netscape Portable Runtime [layer] … Those
are just like operating system abstractions for file, print,
socket I/O, threading … And above that, about half the
servers are based on the Web server code base … One
of the things we are doing to make them all common is
we have a thing called the Admin server, which is a cut-
back Web server [that handles setup for the different
servers] … And so all Netscape servers … use our
Admin servers, so they can present a common look and
feel … So we’re doing more and more to make them
look the same and operate the same, even though they
have different code underneath them.”

The philosophy behind the NSPR layer was to cre-
ate a set of low-level programming interface abstrac-
tions for such tasks as memory management and
threading (handling different tasks within the same
application or on the same processor) that would
work on all the platforms for which Netscape built
products. The layer did what it was supposed to do—
save developers’ time.

But NSPR, by definition, was a lowest-common-
denominator interface, entailing certain disadvantages
in performance; it also had its own additional devel-
opment costs. Netscape had to create and maintain a
separate team of six developers to manage the NSPR
layer, and they had a difficult job. First, they were sup-
posed to serve the entire company, but the related
technical demands were somewhat different in the
client and the server divisions. Second, after Netscape
began giving away the client code to outside develop-
ers in March 1998 in the so-called Mozilla release
(Navigator/Communicator 5.0), the NSPR team
took on the additional responsibility of keeping the
layer current and available for outside developers.
However, “available” did not necessarily mean “sta-

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 75

In rea l i ty, Netscape
struggled to make
cross-plat form
development work
as adver t i sed.

ble,” or relatively bug-free. The team faced a contin-
ual problem in that operating system APIs and pro-
gramming languages, such as Java and JavaScript,
continued to evolve rapidly. At the same time, fre-
quent changes in the NSPR abstractions led Netscape
engineers to complain that the NSPR layer was an
unstable foundation for creating new features.

On the server side, Netscape developers put even
more emphasis on cross-platform techniques. The
ability to run on multiple platforms—different Unix
versions, as well as Windows NT—was the core of
Netscape’s sales pitch to customers. Its engineers man-
aged to keep the different Unix versions pretty much
the same, though they clearly optimized the design
for the top two or three Unix versions in terms of
Netscape sales (those from Sun, Hewlett-Packard,
and Silicon Graphics). The company allowed some
differences with the server versions for Windows NT
to optimize performance, though basic features
remained fairly common across platforms.

To keep the code synchronized across the different
platforms, Netscape developers often tested the soft-
ware simultaneously on two or more different
machines, such as one running Windows and another
running Unix. When checking-in their code to the
project build teams, they were supposed to make sure
it would “build” on both machines. Netscape develop-
ers also created and shared a series of conditional pro-
gramming statements for handling differences in basic
operations (though not server-specific features) among
the Unix versions. In addition, to deal with variations,
Netscape’s server developers tried to keep the Windows
NT version synchronized with the most popular Unix
version—Solaris, from Sun—although developers had
to keep the NT and Unix versions on separate code

branches to keep from mixing them up. Later on, the
developers made the adaptations needed to run the
code on the different Unix versions.

Java Optimism, then Disappointment
By early 1997, Netscape executives and engineers
had also become enthusiastic about Java. As a pro-
gramming language, Java was inherently cross-plat-
form. If Netscape could just write an entire product
in Java, it would be eliminating many of the produc-
tivity penalties that came from designing and testing
cross-platform code. Sun’s promise with Java was
“write once, run everywhere.” This slogan worked in
theory because developers do not write Java code to
run on the APIs of a particular operating system.
They write in a platform-neutral language called
“byte code” and to a platform-neutral layer called a
“virtual machine” (VM). Internet browsers and some
other Internet software include the VM program,
which translates or interprets the byte code so it can
run on any operating system. It does not matter
whether the machine is a Windows PC, a Macintosh,
a Unix workstation, or a network computer.

One problem with Java is that it has to go through
the extra step of being translated, or interpreted, so it
usually runs or loads more slowly than code written
directly for a particular operating system. But Java
had other advantages that excited Netscape engineers.
For example, it helped minimize certain program-
ming errors and made it difficult for programmers to
break certain useful rules, such as those needed to cre-
ate object abstractions while not overtaxing available
memory.

This enthusiasm for Java led Netscape to develop a
Java VM in-house, because Sun’s VM in 1997 still
had many limitations. Netscape then planned to use
its own Java tools and VM to rewrite the Navigator
browser and possibly other components in the client.
As Java, HTML, Dynamic HTML, and JavaScript
evolved, Netscape engineers had hoped to use these
inherently cross-platform Web languages more exten-
sively to develop new components. In particular, they
experimented with HTML and JavaScript for such
multiplatform user interfaces as generic windows, dia-
log boxes, and features, such as the security manager
module. After Andreessen talked publicly about the
idea of a Java browser, the media began referring to
this component as “Javagator,” or a Java version of
Navigator.

But serious frustration with Java began to spread in
Netscape’s engineering organization during late 1997
and early 1998. The immaturity of Java, JavaScript,
and components being built with the Java language
limited how much Netscape could use the new tech-

76 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

Testing for the seven or
so different versions of
Unix took at least
double the amount of
resources than testing
for one platform.

nology. For one thing, Java still lacked graphical tools
to design good user interfaces. For these reasons in
1998, Netscape abandoned Java for building user
interfaces in favor of C and C++.

In 1997, Netscape also attempted to re-architect
the browser part of the client in what became the
aborted Communicator 6.0 project. The project actu-
ally involved two objectives: rewrite the code in
cleaner modules (to make product teams faster and
more flexible by decoupling such major components
as the mail client) and perform this re-architecting
while rewriting the browser and other parts of Com-
municator in Java (to simplify cross-platform devel-
opment). But Java did not work as well as Netscape
engineers had expected. In early 1998, Netscape can-
celled the 6.0 project and shifted the modularization
work to a more incremental schedule for Communi-
cator 4.5 (released September 1998) and the 5.0
project (final release expected by the end of 1999).

On the server side, programming remained more
traditional, and there was little debate in 1997–1998
about Java, which was not ready for the heavy-duty
requirements of the enterprise-server world. Tim
Howes, Netscape’s chief server architect and chief
technical adviser in its Server Products Division,
explained in August 1997, saying, “We have much
stricter availability requirements. For us to use Java, it
needs to be lightning fast. It needs to be incredibly sta-
ble. Our servers stay up for weeks or months at a time.
Handling a directory server, for example, is hundreds,
if not thousands, of operations every second. So per-
formance is very important too.”

By mid-1998, Netscape was not only deemphasiz-
ing Java, it even planned to replace existing Java
implementations with C and C++. In November
1997, Andreessen, then with the title of executive vice
president for products and marketing, reflected on
Netscape’s efforts to work with Java internally, the
engineering problems that remained to make Java a
heavy-duty cross-platform programming language,
and where Java might still be useful, saying, “When
you look at Java and the implications of Java, it
depends on what you’re trying to deliver. The ultimate
point behind Java for most people is going to what I
call ‘dynamic on-demand Net-based applications,’
where you’re going to a Web page, not installing some-
thing off the CD-ROM. If developers want to create
network-centric applications that can be run on any
platform and downloaded over the Net, then Java will
be successful—if it can be made to work, which is a
large-scale engineering problem. But if developers
don’t want that, then Java is not right. But the theory
is right. Are applications being built in a network-cen-
tric world? Absolutely. Do they need different levels of

security? Yes. Will there be a wider array of devices on
the Net? Sure. But the basic engineering work still
needs to be done … Java is not yet at the performance,
stability, or compatibility level that it needs to be to
realize its promise of ‘write once, run anywhere.’ ”

Penalties
Beyond Java, the cross-platform strategy had other
costs. Several Netscape engineers estimated there was
at least a 15%–20% human effort and time penalty
in design and coding (excluding integration and sys-
tem testing), based on the extra human and com-
puting resources needed to develop cross-platform
code, rather than, say, just a Windows or just a Unix
version of the product. That is, developers working
on multiplatform components might finish basic
programming tasks at the same time as a team work-
ing on only one platform, but they might need 20%
more people or time to do the same job. Still, a
15%–20% penalty probably represented a savings
over having several separate programming teams for
each platform, as long as the products found accep-
tance in the marketplace.

Moreover, Netscape managers had to worry about
staffing the company’s different version teams. At one
point, for example, only one developer was the expert
on the Hewlett-Packard version of Unix for the com-
pany’s entire server division; this person became a real
bottleneck. Another example was the Communicator
4.0 project, which shipped in June 1997, while the
company was having trouble staffing its Macintosh
and Unix teams. This lack of staff caused the Com-
municator team to fall behind and later put out a
“point release” for the non-Windows versions.

An even greater penalty appeared to be associated
with testing the different versions. A veteran Netscape
engineer, Desmond Chan, who in 1995–1997 was
the quality assurance manager in the proxy server
group, estimated that integration and system testing
for the seven or so different versions of Unix took at
least double the amount of resources than that needed
for testing only one platform. Testing for NT required
even more human and computing resources. Overall,
he felt that Netscape should have employed at least
twice as many testers as it did to thoroughly test all the
versions of its software.

Product Performance and
Windows Dominance
By 1998, Netscape engineers had decided to opti-
mize increasing amounts of code for the company’s
client and server products. It had become increas-
ingly difficult to keep adding cross-platform code to
the growing code bases and still ensure Netscape’s

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 77

cross-platform products worked as well as
Microsoft’s Windows-specific products. To handle
the demand of writing good code for the Windows
environment, Netscape hired more Windows devel-
opers, who were not accustomed to thinking cross-
platform nor particularly good at it, according to
Rick Schell, the former senior vice president of
Netscape’s client product division.

For servers, much more so than for the client,
cross-platform design posed a big risk to the operat-
ing speed of a product. Servers are supposed to be fast,
and Netscape could not afford to have products that
were noticeably slower than the competition. The
company’s engineers estimated that, when perform-
ing the same function, platform-specific server code
written for Windows NT ran at least twice as fast as
cross-platform code. Howes, the chief server architect,
commented in August 1997, saying, “[Platform-spe-
cific code is] certainly in the range of twice as fast.
Probably significantly more than that when you com-
bine it with other things we’re doing. And that is not
to say that NT is twice as fast as Unix. That’s to say
that using the native Unix-oriented abstractions on
NT slows you down vs. using the native NT stuff …
I’m sure if we didn’t have to worry about cross-plat-
form at all, we’d get to go a little faster. But that’s
really the key to our business model. One of our basic
strategies is we’re cross-platform, and that’s one of the
big advantages that we have in the marketplace. And
I want to point out that cross-platform for us is not
strictly NT and Unix. There are Macs in there, but it’s
also NT 3.5, NT 4, NT 5, Windows 3.1, so
we’re cross-platform even within the Microsoft envi-
ronment.”

These problems forced Netscape to alter its design
strategy. Through Navigator 3.0 (released in August
1996) and SuiteSpot 3.5 (released in February 1998),
Netscape engineers tailored a relatively small part of
the code to particular platforms—probably no more
than 20%. The public source-code release of Com-
municator 5.0 (Mozilla), on the other hand, had
roughly 40% platform-specific code, designed largely
to optimize performance for Windows. Despite an
espoused strategy of “cross-everything,” Netscape
developers focused their efforts on the most popular
Unix version—Sun’s Solaris—and no longer made all
Netscape products available on every Unix platform.

Conclusion
Cross-platform development posed far more chal-
lenges than anyone in Netscape initially anticipated.
Minimizing performance penalties with cross-plat-
form designs after products had become rich in fea-
tures was only the first problem. The company

handled this difficulty through a set of design tech-
niques, shared components, and platform-specific
code whenever product performance demanded it.
A more serious challenge was to recover from the
decision to rewrite the browser part of the client in
Java, which led to cancellation of the Communica-
tor 6.0 project in early 1998.

In the future, we expect America Online’s alliance
with Sun will put even more pressure on Netscape’s
cross-platform strategy. First, Sun expects Netscape
to cooperate in building a Java browser that runs on
a variety of devices. This cross-platform Java browser
will work only if Java—as a stable programming lan-
guage—progresses beyond where it was in 1997 and
1998. Second, Sun is likely to pressure Netscape to
tailor its servers to run best on Solaris, Sun’s version
of Unix. This pressure may backfire, however,
because Netscape has made a success of being “neu-
tral,” that is, designing its server software to run on
all major versions of Unix, as well as on Windows
NT. Moreover, Netscape engineers have fine-tuned
their code to make sure their servers perform com-
petitively on Windows NT. This strategy made sense
and still makes sense today because Netscape has had
less competition for Unix servers, but it may have to
change if Sun exerts pressure to optimize Netscape
servers for Solaris.

Whatever happens, we have learned much from
Netscape about the strengths and limitations of cross-
platform development, at least for Internet software.
Most important in this case, it seems that Netscape’s
successful business strategy still required compromises
in design, such as mixing cross-platform code with
tailored code to ensure its products could keep deliv-
ering competitive performance.

References
1. Cusumano, M., and Yoffie, D. Competing on Internet Time: Lessons from

Netscape and Its Battle with Microsoft. Free Press/Simon & Schuster, New
York, 1998.

The authors thank Andrew von Nordenflycht of MIT for his help prepar-
ing this article.

Michael A. Cusumano (cusumano@mit.edu) is the Sloan
Distinguished Professor of Management at the Massachusetts Institute
of Technology Sloan School of Management in Cambridge, Mass.
David B. Yoffie (dyoffie@hbs.edu) is the Max and Doris Starr Pro-
fessor of International Business Administration at the Harvard Business
School in Boston, Mass.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1999 ACM 0002-0782/99/1000 $5.00

c

78 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

