
Learning to Disagree in a Game of Experimentation

Supplementary Material

Proof of Theorem 2

As mentioned in the paper, the proof of this theorem is rather tedious, and the interested

reader might want to consult a mathematica file with some of the omitted algebraic opera-

tions, available on the authors’ websites (theorem2proof.nb).

The logic of the argument is as follows. Suppose another equilibrium exists. Because

on any interval over which a player’s opponent does not switch with positive probability,

a player’s cost is convex, there is at most one time during such an interval at which he is

willing to switch. Because of Lemma 6, we know that each player’s equilibrium strategy

must include in its support at least two switching times. If the support of a player’s strategy

is a dense subset of some interval, then so must be his opponent’s (because of convexity, as

explained), and continuity of the cost function then implies that this support is precisely

[0, τ̄ ], as defined in Theorem 1, and the equilibrium is the one described there. Hence, we

might assume that there exists at least two times t1, t3, with 0 < t1 < t3, such that, say,

player 1’s strategy assigns positive probability of switching at times t1 and t3, and at no

time in between. This however implies (convexity again) that there is some time t2 ∈ (t1, t3)

and some time t0 < t1 such that player 2 is willing to switch at time t0 and t2, but no

time in between (and 1 does not switch at any time in (t0, t1) either).1 We then derive

a contradiction, showing that independently of how players behave at times not in [t0, t4],

the necessary (first- and second-order) conditions cannot hold simultaneously at those four

dates.

As before, we work exclusively with log-likelihood ratios ℓ rather than belief p. As

mentioned (see (5) in section 3) on any interval [t1, t2] over which F̄ j is a nonzero constant,

we may write

νj
t =

etF̄ j
t

1 +
∫ t

0
esF̄ j

s ds

=
F̄ j
t

F̄ j
t +

(

F j
0 +

∫ t

0
esdF j

s

)

e−t
=

(
1 + Cje−t

)
−1

,

1More precisely, either there is such a t0 < t1, or a t4 > t3 in the support of 2’s strategy, but relabelling

the players if necessary, we may as well assume it is t0 < t1.
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for the constant Cj :=
(

F j
0 +

∫ t

0
esdF j

s

)

/F̄ j
t , which implies that, over such an interval,

∫

νj
t dt = ln(Cj + et).

Note that, by definition of the constant Cj , if F̄ j is constant (and nonzero) over [t1, t2] and

[t3, t4], with t2 < t3, then the constant associated with the interval [t3, t4] is higher than the

constant associated with the interval [t1, t2].

This gives
∫ t̄

t

e
∫ s

t
(ν−i

τ −µ−I)dτds = −
e−φ(s−t)

Cj + et

(
es

φ− 1
+

Cj

φ

)∣
∣
∣
∣

t̄

s=t

.

If F̄ j = 0 over this interval, we have

∫ t̄

t

e
∫ s
t
(ν−i

τ −µ−I)dτds = −

∫ t̄

t

e−φ(s−t)ds = −
e−φ(s−t)

φ

∣
∣
∣
∣

t̄

s=t

,

which we can view with some abuse as a some special case of the previous formula with

Cj = +∞. Note that this reduces to φ−1 for t̄ = +∞.

We may ignore payoff-irrelevant constants and rewrite the cost of stopping at time t as

Ci
t :=

e−µt

µ

(

µγeℓt
∫

∞

t

e
∫ s

t
(ν−i

τ −φ)dτds− 1

)

.

We need to show that, given any value of ℓ = ℓt1 , there exists no positive real numbers C1,

C2 and D2 ≥ C2 (corresponding to the constant for the formula for ν1 on (t1, t3), and the

two constants for the formulas for ν2 on (t1, t2) and (t2, t3) respectively) such that

C1
t1
= C1

t3
,

dC1
t1

dt

∣
∣
∣
∣
t=t1

=
dC1

t3

dt

∣
∣
∣
∣
t=t3

=
dC2

t2

dt

∣
∣
∣
∣
t=t2

= 0,

yet

d2C1
t1

dt2

∣
∣
∣
∣
∣
t=t1

≥ 0,
d2C1

t3

dt2

∣
∣
∣
∣
∣
t=t3

≥ 0,
d2C2

t2

dt2

∣
∣
∣
∣
∣
t=t2

≥ 0,

where derivatives at t1 and t3 are right- and left-hand derivatives, respectively. We first

develop explicit formulas for these quantities. Note that, for t ∈ {t1, t3} and i = 1,

Ci′

t =γeℓt−µt

(

(µ+ 1)

∫
∞

t

e
∫ s

t
(ν−i

τ −φ)dτds− 1

)

− µCi
t = Ci

t + e−µt

(
µ+ 1

µ
− γeℓt

)

=

(

1− γeℓt + γeℓt
∫

∞

t

e
∫ s

t
(ν−i

τ −φ)dτds

)

e−µt,
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and

Ci′′

t = Ci′

t − (µ+ 1)e−µt − γ(ν−i
t + 1− I − µ)eℓt−µt.

Hence, because Ci′

t

∣
∣
t=t1

= Ci′

t

∣
∣
t=t3

= 0, yet Ci
t |t=t1

= Ci
t |t=t3

, we must have

e−µt1

(
µ+ 1

µ
− γeℓt1

)

= e−µt3

(
µ+ 1

µ
− γeℓt3

)

,

or, writing ℓk for ℓtk ,

e−µ(t3−t1) =
µ+ 1− γµeℓ1

µ+ 1− γµeℓ3
.

Let

K3 :=

∫
∞

t3

e
∫ s
t3
(ν2τ−φ)dτ

ds.

Note that K3 ≥
∫

∞

t3
e
−

∫ s

t3
φdτ

ds = φ−1.

The conditions Ci′

t

∣
∣
t=t1

= Ci′

t

∣
∣
t=t3

= 0 are equivalent to

1−
1

γ
e−ℓ3 = K3 ≥

1

φ
,

and

1−
1

γ
e−ℓ1 =

∫ t2

t1

e
∫ s
t1
(ν−i

τ −φ)dτ
ds+ e

∫ t2
t1

(ν−i
τ −φ)dτ

∫ t3

t2

e
∫ s
t2
(ν−i

τ −φ)dτ
ds+ e

∫ t3
t1

(ν−i
τ −φ)dτK3,

so that

1−
1

γ
e−ℓ1 =

∫ t2

t1

e
∫ s

t1
(ν−i

τ −φ)dτ
ds+e

∫ t2
t1

(ν−i
τ −φ)dτ

∫ t3

t2

e
∫ s

t2
(ν−i

τ −φ)dτ
ds+e

∫ t3
t1

(ν−i
τ −φ)dτ

(

1−
1

γ
e−ℓ3

)

.

Equivalently, we must have

1 ≥
1

γ
e−ℓ3 +

1

φ
,

and

1−
1

γ
e−ℓ1 =

∫ t2

t1

e
∫ s
t1
(ν−i

τ −φ)dτ
ds + e

∫ t2
t1

(ν−i
τ −φ)dτ

∫ t3

t2

e
∫ s
t2
(ν−i

τ −φ)dτ
ds+ e

∫ t3
t1

(ν−i
τ −φ)dτ

(

1−
1

γ
e−ℓ3

)

=
1

C2 + et1

((
C2

φ
+

et1

φ− 1

)

− e−φ(t2−t1)

(
C2

φ
+

et2

φ− 1

)

+e−φ(t2−t1)
C2 + et2

D2 + et2

((
D2

φ
+

et2

φ− 1

)

− e−φ(t3−t2)

(
D2

φ
+

et3

φ− 1

))

+e−φ(t3−t1)
C2 + et2

D2 + et2
(D2 + et3)

(

1−
1

γ
e−ℓ3

))

.
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Rearranging,

(

1−
1

γ
e−ℓ1 −

1

φ

)

(1 + C2e−t1) =
1

φ(φ− 1)
−

(D2 − C2)e(1−φ)(t2−t1)

(D2 + et2)φ(φ− 1)
−

C2 + et2

D2 + et2
e(1−φ)(t3−t1)

φ(φ− 1)

+ e(1−φ)(t3−t1)
C2 + et2

D2 + et2
(1 +D2e−t3)

(

1−
1

γ
e−ℓ3 −

1

φ

)

.

Finally, the second-order conditions read (from above, given the foc’s), for t = t1, t3:

φ− 1− ν−i
t ≥

µ+ 1

γ
e−ℓt ,

or

φ− 1 ≥
µ+ 1

γ
e−ℓ1 +

1

1 + C2e−t1
,

and

φ− 1 ≥
µ+ 1

γ
e−ℓ3 +

1

1 +D2e−t3
.

Finally, we might want to use that

eℓ3−ℓ1 = e(1−I)(t3−t1)
C2 + et2

C2 + et1
D2 + et3

D2 + et2
.

Note that t2 enters via the ratio ρ2 := (C2 + et2)/(D2 + et2) (up to one instance). Hence we

may rewrite the three equations as

(

1−
1

γ
e−ℓ1 −

1

φ

)

(1 + C2e−t1) =

1

φ(φ− 1)
− (1− ρ2)

e(1−φ)(t2−t1)

φ(φ− 1)
− ρ2

e(1−φ)(t3−t1)

φ(φ− 1)
+ e(1−φ)(t3−t1)ρ2(1 +D2e−t3)

(

1−
1

γ
e−ℓ3 −

1

φ

)

,

eℓ3−ℓ1(1 + C2e−t1) = e(2−I)(t3−t1)ρ2(1 +D2e−t3).

and

e−µ(t3−t1) =
µ+ 1− γµeℓ1

µ+ 1− γµeℓ3
.

Combining the first and second,

φ(φ− 1)

(

1−
1

γ
e−ℓ1 −

1

φ
− e−(1+µ)(t3−t1)eℓ3−ℓ1

(

1−
1

γ
e−ℓ3 −

1

φ

))

(1 + C2e−t1) =

1− (1− ρ2)e
(1−φ)(t2−t1) − ρ2e

(1−φ)(t3−t1),

4



Finally, from the other player’s point of view, we have as a first-order condition

1−
e−ℓ2

γ
=: K2 ≥ φ−1,

where

K2 :=

∫
∞

t2

e
∫ s
t2
(ν−i

τ −φ)dτ
ds.

We may improve this bound as follows. Set t1 = 0 wlog henceforth. Consider the definition

of K2; break the corresponding integral into the intervals [t2, t3] and [t3,∞); and use the fact

that ν1
t ≥ 0 for all t ≥ t3. We then get:

(1 + C1e−t2)

(

1−
1

φ
−

e−ℓ2

γ

)

≥
1− e−(φ−1)(t3−t2)

φ(φ− 1)
.

Note also that 1− 1/φ = e−ℓ∗/γ. The second-order condition at t2 gives

φ− 1 ≥
µ+ 1

γ
e−ℓ2 +

1

1 + C1e−t2
.

Combining, we have

1−
e−ℓ2

γ
≥ φ−1, and 1 ≥ φ− 1−

µ+ 1

γ
e−ℓ2 ≥ 0.

Note that the first inequality gives

e−ℓ2

γ
≤

φ− 1

φ
,

which implies, given that φ ≥ µ+ 1,

e−ℓ2

γ
≤

φ− 1

µ+ 1
,

which is simply the inequality φ− 1− µ+1
γ
e−ℓ2 ≥ 0. So we only have

φ− 2

µ+ 1
≤

e−ℓ2

γ
≤

φ− 1

φ
.

In addition, we have that

eℓ2−ℓ1 =
1 + C1e−t2

1 + C1e−t1
.

All this can be summarized as follows. Can we have simultaneously:

(1 + C1e−t2)
e−ℓ∗ − e−ℓ1e−δ2

γ
≥

1− e−(φ−1)(t3−t2)

φ(φ− 1)
,
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and (“foc at t1 combined with foc at t3”)

(1 + C2e−t1)
e−ℓ∗ − e−ℓ1

γ
= 1

φ(φ−1)

(

1− D2
−C2

D2+et2
e−(φ−1)(t2−t1) − C2+et2

D2+et2
e−(φ−1)(t3−t1)

)

+e−(φ−1)(t3−t1) C
2+et2

D2+et2
(1 +D2e−t3) e

−ℓ∗
−e−ℓ1e−δ3

γ
, (1)

for some t3 ≥ t2 ≥ t1 := 0, D2 ≥ C2 ≥ 0, C1 ≥ C2, where ℓ1, δ2 := ℓ2−ℓ1 ≤ 0, δ3 := ℓ3−ℓ1 ≤

0 solve and (“learning gives ℓ3”)

C2 + et2

D2 + et2
(1 +D2e−t3)e−δ3 = e(I−2)(t3−t1)(1 + C2e−t1), (2)

(“learning gives ℓ2”)

(1 + C1e−t2)e−δ2 = 1 + C1e−t1 , (3)

and finally (“payoff equality between t1 and t3” slightly rearranged)

e−ℓ1

γ
=

µ

µ+ 1

1− eδ3e−µ(t3−t1)

1− e−µ(t3−t1)
. (4)

Note that C′′

t2
≥ 0 is implied by C′

t2
= 0 and C2

t3
≥ C2

t2
. This is because, given that player 1

does not quit on (t1, t3), if C2 is convex at some t in the interval, it is convex at all lower t

in this interval.

It follows that the relevant inequality is C2
t3
≥ C2

t2
. Rewriting it implies that we have, for

some L3,

L3 ≥
1

φ
, L3 ≥

1 + C1e−t2

1 + C1e−t3
e−(2−φ)(t3−t2)

(

1−
e−ℓ2

γ

)

,

and

(1 + C1e−t2)
e−ℓ∗ − e−ℓ2

γ
=

1− e−(φ−1)(t3−t2)

φ(φ− 1)
+ e−(φ−1)(t3−t2)(1 + C1e−t3)

(

L3 −
1

φ

)

.

(Here, L3 is the unknown
∫
∞

t3
e
∫ s
t3
(ν1τ−φ)dτ

ds.) To summarize, having set t1 = 0; we must show

that there exists no T2 = e−t2 , T3 = e−t3 , C1, C2 such that, given that ℓ1 solves (4), δ2 solves

(3), δ3 solves (2), D2 solves (1), and we have

1. 1 > T2 > T3 > 0;

2. ℓ3 ≥ ℓ∗;

3. D2 ≥ C2 ≥ 0, C1 ≥ C2 (these two inequalities follow from the definition of ν−i);
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4. (soc at t3) it holds that

φ− 1 ≥
µ+ 1

γ
e−ℓ3 +

1

1 +D2e−t3
; (5)

5. (“soc” at t3 vs. t2) Both inequalities

(1 + C1e−t2)
e−ℓ∗ − e−ℓ2

γ
≥

1− e−(φ−1)(t3−t2)

φ(φ− 1)
, (6)

and

(1 + C1e−t2)
e−ℓ∗ − e−ℓ2

γ
≥

1− e−(φ−1)(t3−t2)

φ(φ− 1)
+ (7)

e−(φ−1)(t3−t2)(1 + C1e−t3)

(
1 + C1e−t2

1 + C1e−t3
e−(2−φ)(t3−t2)

(

1−
e−ℓ2

γ

)

−
1

φ

)

.

As mentioned, the details showing that these inequalities cannot hold simultaneously are

contained in the mathematica file theorem2proof.nb.

Correlation through the FGM Copula

We introduce correlation in the normal form through recommendations over switching times.

Specifically, for the case of two players, let F (t1, t2) denote the joint distribution of switching-

time recommendations. More details and specific calculations are in the annotated Mathe-

matica file correlated.nb available on the authors’ websites.

Throughout, we assume symmetry of this distribution; we introduce an (arbitrarily small

amount of) background learning, i.e.,

ℓ̇t = −ū+ u1
t + u2

t ,

with ū > 2; we also normalize

ℓ0 = ℓ∗∗ := ln

(
µ+ 1

γ(φ− 2)

)

;

and we define φ := 2 + µ.

Using the expression derived in the proof of Lemma 2, the expected cost of switching to

the risky arm at time t, when given recommendation t′, is given by

C (t, t′) =
e−µt

µ

(

µγeℓt
∫

∞

t

e−φ(s−t)e
∫ s

t
ντdτds− 1

)

,
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where

ℓt = ℓ0 + (1− u) t+

∫ t

0

ντdτ,

e
∫ s
t
ντdτ =

1 +
∫ s

0
eτ F̄ (τ | t′) dτ

1 +
∫ t

0
eτ F̄ (τ | t′)dτ

,

and F̄ (τ | t′) denotes the complementary distribution function conditional on receiving

recommendation t′.

The cost can be written in terms of the distribution as follows:

C (t, t′) = γeℓ
0 e(2−φ)t

φ− 1
−

e−µt

µ
︸ ︷︷ ︸

K(t)

−
γeℓ

0

φ

(∫ t

0

e(1−φ)tesF (s | t) ds+

∫
∞

t

ete(1−φ)sF (s | t) ds

)

= K (t)−
γeℓ

0

φ

(∫ t

0

e(1−φ)tesF (s | t) ds+

∫
∞

t

ete(1−φ)sF (s | t) ds

)

.

Now we can write the IC constraint as

∂C(t, t′)

∂t′

∣
∣
∣
∣
t′=t

= 0.

Therefore, we obtain

0 = K ′ (t)−
γeℓ

0

φ

(

(1− φ)

∫ t

0

e(1−φ)tesF (s | t) ds+

∫
∞

t

ete(1−φ)sF (s | t) ds

)

= K ′ (t)−K (t) + C (t) + γeℓ
0

∫ t

0

e(1−φ)tesF (s | t) ds,

where C(t) := C(t, t). We then express everything in terms of probability densities. The

objective becomes

C (t, t) = K (t)−γeℓ
0 e(2−φ)tF (t | t)

φ− 1
+
γeℓ

0

φ

(∫ t

0

e(1−φ)tesf (s | t) ds−
1

φ− 1

∫
∞

t

ete(1−φ)sf (s | t) ds

)

.

The IC constraint becomes

−K ′ (t) = γeℓ
0 φ− 2

φ− 1
e(2−φ)tF (t | t)+

γeℓ
0

φ

(

(1− φ)

∫ t

0

e(1−φ)tesf (s | t)ds−
1

φ− 1

∫
∞

t

ete(1−φ)sf (s | t) ds

)

.

Writing the conditional distribution in terms of the joint and marginal distributions yields

the following expression for the IC constraint:

0 =
(µ+ 1)et(2−φ)

∫ t

0
f(t, s) ds

φ− 1
+ f(t)

(
(µ+ 1)(2− φ)et(2−φ)

(φ− 2)(φ− 1)
+ e−µt

)

+
(µ+ 1)

(

(1− φ)
∫ t

0
es+t(1−φ)f(t, s) ds−

∫ τ̄
t
es(1−φ)+tf(s,t)ds

φ−1

)

(φ− 2)φ
,
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where τ̄ is the upper bound on the support of the equilibrium strategy.

We now consider the marginal distribution over switching times in our symmetric equi-

librium, which is given by

F (t) = 1 +
et(−µ+φ−2) ((φ− 2)(µ− φ+ 1) + (φ− 1)(−µ+ φ− 2)eµt)

µ
.

We construct a new distribution by slightly perturbing the independent randomization

according to a bivariate FGM copula. Thus, for a given marginal, the joint is given by

F (t1, t2) = F (t1)F (t2)(1 + ρ(1− F (t1))(1− F (t2))),

with parameter ρ ∈ [−1, 1].

Under a FGM copula with parameter ρ, the incentive-compatibility constraint for obeying

the recommendation to switch at time t is a functional equation that is linear in the marginal

distribution F . In particular, the IC constraint can be written as the combination of two

linear operators K0 and K1 as follows:

K0(F ) + ρK1(F ) = 0,

where

K0(F ) =
(µ+ 1)

(∫ τ̄

t
F (s)es(−φ)+s+t ds+ (φ− 1)

(

−
∫ t

0
F (s)es−tφ+t ds

)

− 1−(φ−1)2

φ−1
F (t)et(2−φ)

)

(φ− 2)(φ− 1)φ

+ e−µt −
(µ+ 1)(1− F (t))e−t(φ−2)

φ− 1
,

and

K1(F ) =
(µ+ 1)(1− 2F (t))

(

(φ− 1)
∫ t

0
(F (s)− 1)F (s)

(
−es−tφ+t

)
ds+

∫ τ̄

t
(F (s)− 1)F (s)es(1−φ)+t ds

)

(φ− 2)φ
.

Because our original distribution F0(t) satisfies K0(F0) = 0, we look for a distribution

F1(ρ) = F0 + ρF̃ that satisfies

K0(F0 + ρF̃ ) + ρK1(F0 + ρF̃ ) = 0.

Simplifying using linearity, and letting ρ → 0 we obtain the following condition:

K1(F0) +K0(F̃ ) = 0.
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This condition captures the restriction that incentives (under a small amount of correla-

tion) impose on the marginal. It identifies a distribution F̃ we can use to (locally) modify our

equilibrium distribution and preserve incentives. In the file correlated.nb, we differentiate

total costs under the distribution F1(ρ) around ρ = 0.

Clearly, no matter the degree of correlation ρ, no player can start experimenting before

p∗∗ or after p∗. The design variable is the degree of correlation, but requires adjusting the

support of the marginal distribution to match p∗ of the most pessimistic type. In particular,

the mass point at time τ̄ is now a function of ρ.

To then evaluate how the upper bound of the support and the mass point vary with ρ, we

impose that the most pessimistic type (the one who receives recommendation t = τ̄ ) must

hold belief pτ̄ = p∗. The mass point is then given by the difference 1 − F1(τ̄ ). Adding up

terms, the derivative of the total cost with respect to ρ is given by

dC

dρ
=

∫ τ̄

0

(

C(t)f1(t) +

(
dC(t)

dρ
+

dC(t)

dτ̄

dτ̄

dρ

))

dt+ (1− F0(τ̄ ))
dC(τ̄)

dτ̄

dτ̄

dρ
.

For any value of the remaining parameters (µ, φ), the file correlated.nb shows that the

derivative of the cost is negative, i.e., positive correlation is beneficial.
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