2018 Sustainability

Presented by:

Meghan Wright Lee Stroman Nicolas Favier Ivy Willyams

May 17, 2018

Contents

- Problem Statement
- Executive Summary
- Methodology
- Analysis
 - Production
 - CO2 Recovery
 - CO2 Offset
- Recommendations
- References
- Appendix

Problem Statement

Allagash produces CO2 during the beer fermentation process and would like to reduce these emissions to <u>zero.</u>

- Allagash currently purchases approximately 300 tonnes or 600,000 lbs of CO2 per year mainly for beer carbonation from an ethanol plant in NY
- CO2 recovery has typically been performed by larger breweries and is rarely implemented by craft breweries
- Our analysis will help Allagash better understand feasible pathways for CO2 recovery from the fermentation process to be used for carbonation.

Company Sustainability

"From our beginning as a oneperson operation in 1995, Allagash has focused on being an environmentally and socially responsible member of the community." ¹⁵

Reducing CO2 emissions feeds into their overall goals of reducing waste and using less resources.

Executive Summary

Under current conditions, a recovery system is not financially feasible. At present, Allagash consumes 50% more CO2 than it is able to recover through its beer fermentation process. If Allagash were to install a CO2 recovery system under current conditions, they would need to continue purchasing CO2 from their supplier at a cost of \$0.22/lb in order to supplement their recovered CO2, yielding negative financial results. The ratio of recovered CO2 to consumed CO2 must increase to at least 85% in order to make the project financially feasible.

If a CO2 recovery system were installed, Allagash would only reduce the CO2 emissions generated by transportation of purchased CO2, which at present produces ~29 tonnes of CO2 per year. Allagash will not reduce overall emissions through CO2 recovery because (1) their supplier produces CO2 as a byproduct and would either find a new buyer for Allagash's non-purchased CO2 or emit it into the atmosphere and (2) Allagash's recovered CO2 will still be released into the atmosphere during the beer consumption stage.

Key Insights

- Allagash needs to hit 85% production/consumption CO2 ratio to be financially feasible
- CO2 offsets are a short term solution
- CO2 production monitoring will help Allagash to better understand their production and consumption of CO2

Methodology

ing	 Identify information sources and potential case studies Adjust project plan as peeded
	 Adjust project plan as needed
	 Current State Analysis – Allagash Manufacturing process
	 Case Studies (Maui Brewing, Pentair Haffmans, Lolo Peak Brewing etc.)
nfo	 Recovery technology and benchmarking
ring	 CO2 Research (Market Analysis, regulations/standards)
	 CO2 lifecycle map and casual loop diagram
	 Financial Analysis (DCF)
sis	Carbon Footprint analysis
е	• Feasibility study
	 Financial and production model to assess feasibility and track CO2 consumption and production in the future
ables	 Alternative CO2 reduction strategies assessment
	 Final model and presentation

Analysis Frameworks

Framework / Analysis	Description / Purpose	Limitations
Incremental Cash Flow Analysis	Analyzes difference between current state and future state with CO2 recovery system. Determines NPV.	Reliability and availability of financial assumptions (quotes provided by technology suppliers)
Causal Loop Diagram	Maps broader CO2 network and potential feedback loops resulting from CO2 recovery.	Simplified model and therefore for informational purposes only. Dependent on system boundary chosen.
Production Analysis Tool	Develops understanding of current CO2 production / consumption rates and enables future predictions.	Data is limited and currently collected manually.
Carbon Offset Calculations	Develops understanding of how Allagash donations reduce / offset CO2 emissions.	Based on averages and estimated potential CO2 reduction. Limited data on actual reduction.
Simplified Lifecycle Assessment	Develops better understanding of CO2 footprint from Allagash beer production (scope 1, 2 and 3)	Limited data available and based on New Belgium Brewing LCA assumptions.

Understanding the craft beer CO2 recovery landscape

Brewing Company	Location	Annual Beer Production (Barrels)	CO2 Purchased (tonnes/y)	CO2 Recovery Potential	Technology Partner	Installation Date
Allagash Brewing Company	Portland, Maine	100,000	300	150 tonnes/y	TBD	TBD
Maui Brewing Company	Honolulu, Hawaii	53,000 ¹ (capacity to produce 100,000 in future ²)	Not available	Up to 600,000 lb/y³ (300 tonnes/y)	Vendor 1	Installation in progress
Alaskan Brewing Company	Juneau, Alaska	150,000 (2013) ⁴	Not available	783,000 lb/y (2009)⁵ (500 tonnes/y)	The Wittemann Company (acquired by Union in 2013)	1998 ⁵
Widmer Brothers Brewery	Portland, Oregon	450,000 ⁶	Not available	Not available	Vendor 2	Sep 2017 ⁷
Matt Brewing Company (Saranac and other brands)	Utica, New York	500,000 (2014) ⁸	Not available	545kg/h system ⁹ ~3500-4000 metric tonnes/y (estimate)	Pentair Haffmans through ICC Engineering	Q4 2016 ⁹
Brewery Vivant	Grand Rapids, Michigan	5,105 ¹⁰	19.6 ¹⁰	6.2 tonnes/y ¹⁰	CASEQ ¹¹	Installation in progress
Lolo Peak Brewing Company	Lolo, Montana	1,200 Barrels ¹²	Not available	70,000 ft ³ /y (3.6 metric tonnes/y) ¹²	COBrew ¹²	Q4 2017

ALLAGASH INSTACT ON PARTY Notes: Less recent data is marked with the appropriate year. ICC Engineering provides turnkey project management and installation (not a technology supplier). 6

CO2 Production

Allagash produces and consumes CO2

CO2 that is used for carbonation will eventually be exhausted at the consumer level.

Allagash consumes more CO2 than it produces

- Exhaust measures the CO2 production from fermentation on the 75% of tanks connected to the central exhaust line
- All other tanks vent to atmosphere via a hose and bucket
- The adjusted exhaust estimates CO2 production if all exhaust was captured
 65% of consumption is produced

6 Weeks of Commulative CO2 Consumption and Exhaust

Allagash currently consumes CO2 at a rate double the exhaust rate

Monthly Production Analysis

Week	# Batches	CO2 Estimated (lbs)	CO2 Exhaust	CO2 Exhaust/Estimate Ratio	CO2 Use	Exhaust/Consumption Ratio
1	. 24	6,224.1	5,017.9	0.81	10,434	0.48
2	. 24	6,224.1	6,114.1	0.98	14,479	0.42
3	24	6,224.1	4,193.8	0.67	5,547	0.76
4	- 24	6,224.1	4,406.3	0.71	12,818	0.34

*the exact CO2 estimate formula is still being defined

This analysis template can be used to:

- Monitor trends associated with the weekly production schedule
- Identify how changes in process changes to production impact the exhaust and consumption of CO2
- Track progress on improving the estimate/exhaust yield and the ratio of exhaust to CO2 consumption

CO2 Estimate in Production Planning

	bd	p			-++	s		Lay E	Base Water						CO2
Tank	Inspected	Sanitized	Style	Yeast Notes	Brew #	Batches	Weight	Projected	Actual		End Chill	Brewer Initials	QC Notes	Other Note	Production
	Ë	S			ш	B		Date/Time	Date/Time	Delay	Date/Time				Estimate (lbs)
B13	df	df	White		14664	1	3475	1/29/2018 5:00	1/29/2018 5:00	0:00	1/29/2018 11:40				809.6
					14665	2	3475	1/29/2018 7:20	1/29/2018 7:30	0:10	1/29/2018 14:03				0
					14666	3	3475	1/29/2018 9:40	1/29/2018 10:00	0:20	1/29/2018 16:35				0
					14667	4	3475	1/29/2018 12:00	1/29/2018 12:35	0:35	1/29/2018 19:04				0
					14668	5	3475	1/29/2018 14:20	1/29/2018 15:10	0:50	1/29/2018 21:37				0
					14669	6	3475	1/29/2018 16:40	1/29/2018 17:40	1:00	1/30/2018 0:10				0
					14670	7	3475	1/29/2018 19:00	1/29/2018 20:05	1:05	1/30/2018 2:36				0
					14671	8	3475	1/29/2018 21:20	1/29/2018 22:35	1:15	1/30/2018 4:58				0
B8	hg	hg	white		14672	9	3475	1/30/2018 0:00	1/30/2018 1:20	1:20	1/30/2018 8:18				809.6
					14673	10	3475	1/30/2018 2:20	1/30/2018 3:45	1:25	1/30/2018 10:31				0
					14674	11	3475	1/30/2018 4:40	1/30/2018 6:10	1:30	1/30/2018 12:56				0

- This analysis estimates the CO2 production from fermentation and helps estimate how the CO2 exhaust volume can change with production rate.
- Tool is easily integrated into the existing production planning sheet (shown above) by adding the right column

The production planning tool will help to evaluate how much CO2 will be produced

Fermentation Production vs. CO2 in Final Product

Theoretical CO2 Exhaust Production	$\frac{368 kg - CO_2}{70 bbl} \cdot \frac{1 bbl}{117 L} = 0.045 kg/L$
	2
Average Carbonation Level of Final Product	2.5 volumes $-CO_2 \cdot \frac{1.92 \frac{g}{L}}{1 \text{ volume}} \cdot \frac{1 \text{ kg}}{1000 \text{ g}}$ = 0.0048 kg/L

 Reduction in CO2 used in non-final product applications can help Allagash attain a exhaust/consumption ratio that makes a recovery system financially feasible

Fermentation produces ~10% of the CO2 required for final product carbonation

CO2 Recovery

ANALYSIS

CO2 emissions on a broader level

Causal Loop Diagram:

SLOAN SCHOOL

- Allagash and its current CO2 supplier contribute to the total CO2e emissions.
- By implementing a CO2 recovery system Allagash will eliminate or reduce CO2 purchases reducing the CO2e emissions due to transportation. However, due to the nature of the supplier process, CO2 not purchased will still be vented to the atmosphere or sold elsewhere.
- Recovered CO2 will still be vented to the atmosphere either during beer consumption or during bottling and cleaning processes.
- Allagash is helping to reduce CO2e emissions by some of its philanthropy initiatives (e.g. Window Dressers).

Allagash will not reduce overall emissions through CO2 recovery but it can reduce CO2e emissions from the transportation of purchased CO2

CO2 emissions on a broader level

Allagash will not reduce overall emissions through CO2 recovery but it can reduce CO2e emissions from the transportation of purchased CO2

- Allagash's CO2 supplier is an ethanol plant.
- CO2 is a byproduct from ethanol production
- If Allagash stops buying the CO2 from that plant, the CO2 will still be released into the atmosphere as the plant still needs to produce ethanol

Unsold CO2 gets vented into the atmosphere with other byproducts such as steam

Allagash can reduce CO2e from transportation through CO2 recovery

recovered CO2 and Allagash's CO2 consumption requirement

CO2 recovery projects yield negative financial results

Summary

- Incremental cash flow analysis was performed to determine incremental NPV of a CO2 recovery project (difference between current state and potential future state)
- Two quotes were provided to Allagash from Vendor 2 and Vendor 1 for CO2 recovery systems
- Recovery system pay back of 2-3 years is required; similar to other capital projects undertaken by Allagash
- Allagash would need to purchase the CO2 cryotank it currently leases from its current CO2 supplier in order to be able to store their own recovered CO2 in the tank

Quote	Contract Type	Payment Terms	Incremental NPV after 5 years	Cost of CO2 Emissions Reduction	Pay Back Met?
Vendor 2	Lease with ownership of system after 7 years	\$0.19/lb CO2 captured or minimum \$9k/month No installation cost	-\$151k	\$2,100/tonne	×
Vendor 1	Purchase	Upfront capital investment of \$473.1k not incl. freight, installation	-\$242k	\$3,400/tonne	×

Both projects result in negative NPV for Allagash and a high cost of CO2 emissions reduction

Key Financial Assumptions

The following assumptions are common in both projects:

- Cash flow analysis is performed over 5 years (difficult to plan for growth beyond even 3 years)
- NPV is calculated for the first 5 years without a terminal value, to enable Allagash to assess whether project pays back in the required 2-3 years
- A lifetime NPV with terminal value is also calculated separately but carries greater uncertainty
- CO2 requirement grows 5% per year for the first 5 years, followed by 2% for the purpose of terminal value calculation
- The discount rate recommended by Allagash is 5%
- Cryotank lease payment remains constant in scenario where Allagash continues to purchase CO2/lease cryotank from current supplier
- Recovery project is on line in 2019
- Cryotank is purchased from current supplier at \$40k for recovery project
- Operating costs (electricity, water, glycol) are 10% of CO2 purchase cost in current state (suggested by Stan at CASEQ)
- Additional 24 man hours of recovery system maintenance labor required per year at \$20/h
- CO2 production (recovery) is 50% of what is required by Allagash
- CO2 requirement deficit is filled by continuing to purchase some CO2 from current supplier
- The CO2 purchase cost with current supplier is unchanged despite the reduced purchase amount

The Vendor 2 Lease to Ownership Model

Incremental Cash Flow Analysis

Quote: Vendor 2

	Current State	Actual				F	Projected					Extend	edl	Projection (Red	overy System	n Or	/ned)
		2017	2018			2019	2020	2020 2021		2022		2023		2024		2025		2026
CF in		\$ -	\$	-	\$	-	\$ -	\$	-	\$ -	\$	-	\$	-	\$	-	\$	-
CF out	CO2 purchase <i>CO2 purchase growth (%)</i>	\$ 133,228	\$	139,889 <i>5%</i>	\$	146,884 <i>5%</i>	\$ 154,228 <i>5%</i>	\$	161,939 <i>5%</i>	\$ 170,036 <i>5%</i>	\$	173,437 <i>2%</i>	\$	176,906 2%	\$	180,444 2%	\$	184,053 2%
	Cryotank lease <i>Cryotank lease growth (%)</i> Total	\$ 10,877	\$	10,877	\$	10,877	\$ 10,877	\$	10,877	\$ 10,877	\$	10,877	\$	10,877	\$	10,877	\$	10,877
		\$ 144,105	\$	<i>0%</i> 150,766	\$	<i>0%</i> 157,761	<i>0%</i> \$ 165,105	\$	<i>0%</i> 172,816	<i>0%</i> \$ 180,913	\$	<i>0%</i> 184,314	\$	<i>0%</i> 187,783	\$	<i>0%</i> 191,321	\$	<i>0%</i> 194,930
	ter 5 years) er recovery system would be owned)	\$ (144,105)	\$ \$	(150,766) (150,766) (748,892) (1,301,337)	•	1	\$ (165,105) \$(149,755)		1					(187,783) (140,126)		(191,321) (135,968)	\$ \$	(194,930) (131,936)

CO2 Recovery Project	Actual		F	Projected			Extende	ed Projection (Re	ecovery System C	Owned)
COD 2019	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
CO2 Requirement (lb)	601,470	631,544	663,121	696,277	731,091	767,645	782,998	798,658	814,631	830,924
Average CO2 Required (lb/h)		72	76	79	83	88	89	91	93	95
CD2 Requirement Growth (%)		5%	5%	5%	5%	5%	2%	24	24	2%
CO2 Produced (Ib)		315,772	331,560.34	348,138	365,545	383,823	391,499	399,329	407,316	415,462
Average CO2 Produced (lb/h)		36	38	40	42	44	45	46	46	47
CO2 Produced Growth (%)		5%	5%	5%	5%	5%	2%	27.	27.	2%
Difference		(315,772)	(331,560)	(348,138)	(365,545)	(383,823)	(391,499)	(399,329)	(407,316)	(415,462)
CF in CO2 Sale Price (\$/lb)			\$0.22	\$ 0.22	\$ 0.22	\$ 0.22	\$ 0.22	\$ 0.22 \$	\$ 0.22 \$	_
CD2 Sale Price Growth (%)			+0.22	¥ 0.22	¥ 0.22	¥ 0.22	* 0.22		x - x	
CO2 sales		\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	- \$	-
Total		\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ - \$	\$ - \$	-
CF out CO2 cost from ICC			\$ 0.19	\$ 0.19	\$ 0.19	\$ 0.19	\$ 0.19	\$ 0.19 \$	\$ 0.19 \$	-
Recapture system capital investm	ent	\$ -						4	▶ 1	
Cryotank purchase		\$ 40,000								
CO2 purchase (through recovery)		\$ 139,889	\$ 108,000	\$ 108,000	\$ 108,000	\$ 108,000		\$ 108,000 \$		-
CO2 purchase (Matheson)			\$ 73,442		\$ 80,970	\$ 85,018		\$ 88,453 \$,	92,026
Maintenance Labor (24hrs per yea			\$ 480	\$ 480	\$ 480	\$ 480		\$ 480 \$		480
Recovery System Electricity, Wate	r, Glycol Use		\$ 14,688	\$ 15,423	\$ 16,194	\$ 17,004	\$ 17,344	\$ 17,691 \$	\$ 18,044 \$	18,405
Total		\$ 179,889	\$ 196,610	\$ 201,017	\$205,644	\$ 210,502	\$ 212,542	\$ 214,623 \$	\$216,747 \$	110,912
Net CF		\$ (179.889)	\$ (196,610)	\$ (201.017)	#######	\$(210.502)	\$(212,542)	\$ (214,623) \$	\$ (216,747) \$	(110,912)
PV CF		\$ (179,889)		\$(182,328)	\$(177,643)		\$(166,532)			(75,069)
NPV (after 5 years)		\$ (900,288)								
NPV (after recovery system is owned)		\$(1,456,084)								

Inputs

Discount Rate Sell CO2 (0 for no or 1 for yes) CO2 Production/Consumption CO2 Transportation Savings (tonnes/y) CO2 Cost

<u>Outputs</u>

Incremental Net Present Value (NPV) after 5 years Incremental NPV + Terminal Value ROI (NPV - Capital Investment / Capital Investment) Estimated CO2 Transportation Savings (tonnes/y) Cost of CO2 Reduction (\$/tonne) \$ (151,000) \$ 1,779,000 -478% 14.3 \$ 2,100

The lease agreement with Vendor 2 results in a negative NPV of -\$151k in the first 5 years and the estimated cost of CO2 reduction is \$2,100/tonne.

Terminal Value (Projecting After Recovery System is Owned)

Long term growth rate	2%
Incremental CF in 2027	\$ 85,698
Terminal Value	\$ 2,856,610
Discounted Terminal Value	\$ 1.933.466

The Vendor 1 Purchase Model

Incremental Cash Flow Analysis

Quote: Vendor 1

	Current State	Actual 2017	2018	2019	F	rojected 2020	2021	2022
CF in		\$ -	\$ -	\$ -	\$	-	\$ -	\$ -
CF out	CO2 purchase <i>CO2 purchase growth (%)</i>	\$ 133,228	\$ 139,889 <i>5%</i>	\$ 146,884 <i>5</i> %	\$	154,228 <i>5%</i>	\$ 161,939 <i>5%</i>	\$ 170,036 <i>5%</i>
	Cryotank lease Cryotank lease	\$ 10,877	\$ 10,877 <i>0%</i>	\$ 10,877 <i>0%</i>	\$		\$ 	\$ 10,877 <i>0%</i>
	Total	\$ 144,105	\$ 150,766	\$ 157,761	\$	165,105	\$ 172,816	\$ 180,913
Net CF PV CF NPV		\$ (144,105)	\$			(165,105) (149,755)		

	CO2 Recovery Project	Actual			Pr	rojected				
	COD 2019	2017	2018	2019		2020		2021		2022
	CO2 Requirement (lb)	601,470	631,544	663,121		696,277		731,091		767,645
	Average CO2 Required (lb/h)		72	76		79		83		88
	CD2 Requirement Growth (%)					5%		5%		5%
	CO2 Produced (lb)		315,772	331,560		348,138		365,545		383,823
	Average CO2 Produced (lb/h)		36	38		40		42		44
	CO2 Produced Growth (%)			5%		- 5%		- 5%		5%
	Difference		(315,772)	(331,560)	((348,138)	(365,545)	(383,823)
CF in	CO2 Sale Price (\$/Ib)			\$0.22	\$	0.22	\$	0.22	\$	0.22
	CD2 Sale Price Growth (%)					0%		0%		0%
	CO2 sales		\$ -	\$ -	\$	-	\$	-	\$	-
	Total		\$ -	\$ -	\$	-	\$	-	\$	-
CF out	Recapture system capital investmer Freight Union Engineer Transport/Lodging Installation, foundation etc. Cryotank purchase CO2 purchase (Matheson) Maintenance Labor (24hrs per year, Recovery System Electricity, Water,)	\$ 473,100 \$ - \$ - \$ 40,000 \$ 139,889	\$ 73,442 \$ 480 \$ 14,688	\$ \$ \$	77,114 480 15,423	\$ \$ \$	80,970 480 16,194	\$ \$ \$	85,018 480 17,004
	Total		\$ 652,989	\$ 88,610	\$	93,017	\$	97,644	\$	102,502
Net CF PV CF NPV			\$(652,989) \$(652,989) \$(990,426)	· • • • • • • • • • •				(97,644) (84,348)		(102,502) (84,328)

Terminal Value (Projecting Beyond 5 Years)

Long term growth rate	2%
Incremental CF 2023	\$ 79,980
Terminal Value	\$ 2,665,986
Discounted Terminal Value	\$ 2,193,313

Inputs Discount Rate Sell CO2 (0 for no or 1 for yes) CO2 Production/Consumption CO2 Transportation Savings (tonnes/y) CO2 Cost		5% 0 0.5 28.5 \$0.22
Dutputs Incremental Net Present Value (NPV) after 5 years Incremental NPV + Terminal Value ROI (NPV - Capital Investment / Capital Investment) Estimated CO2 Transportation Savings (tonnes/y) Cost of CO2 Reduction (\$/tonne)	\$ \$ \$	(242,000) 1,951,000 -147% 14.3 3,400

The purchase agreement with Vendor 1 results in a negative NPV of -\$242k in the first 5 years and the estimated cost of CO2 reduction is \$3,400/tonne. This is still an optimistic result because other capital investments are not known (freight, installation etc.)

Maui Brewing Company Case Study

Maui Brewing Company, Hawaii

- Currently installing a CO2 recovery system from Vendor 1 and estimated to produce roughly half the number of barrels of beer as Allagash
- An interview was conducted with the brewery to gain insights into estimated project cost and other assumptions
- Its recovery system from Vendor 1 is approximately twice the size of the Vendor 1 system quoted to Allagash, but it will be the first Vendor 1 system installed in the US and therefore has a reduced capital cost
- Its CO2 purchase cost is 3x higher than Allagash due to the high cost of transporting CO2 to Hawaii
- Maui does not produce enough CO2 to cover all CO2 consumption in the brewery
- Maui has a roadmap to reduce CO2 consumption to be in line with CO2 production (recovery)
- Remaining assumptions were based on similar financial analysis for Allagash

Quote	Contract Type	Payment Terms	Estimated Incremental NPV after 5 years	Estimated Pay Back
Vendor 1	Purchase	Upfront capital investment of ~\$500k inclusive	\$276k	3.5 years

A positive NPV is estimated for Maui Brewing Company since it displaces higher CO2 purchasing costs and their recovery system has a lower capital investment

CO2 recovery can be financially feasible under conditions

Sensitivity Analysis

- Sensitivity analysis demonstrates how projects could be potentially feasible for Allagash from a financial standpoint
- The goal was to create realistic scenarios by adjustment of 1-2 variables in combination
- Meeting 85% of CO2 requirement (as opposed to 50%), was set as a goal so that the adjustment to other variables would be less extreme; this would also reduce CO2 purchasing requirements
- These scenarios achieved approximately \$17-19k incremental NPV thus demonstrating a minimum feasible case

Quote	Contract Type	Sensitivity Performed
Vendor 2	Lease with ownership of system after 7 years	CO2 production is now 85% of what is required for consumption (instead of 50%)
Vendor 1	Purchase	CO2 production / consumption is 85% Total capital investment reduces to \$410k
Vendor 1	Purchase	CO2 production / consumption is 85% CO2 purchase cost increases by 15% (\$0.22/lb to \$0.25/lb)

Increasing the ratio of CO2 recovered to CO2 required for consumption will assist in making projects financially feasible

CO2 Offset

ANALYSIS

Window Dressers

- Non-profit organization that brings volunteers together to improve the comfort of homes, lower heating costs, and reduce CO2 emissions by producing low-cost insulating window inserts¹⁴
- After placing an order, trained volunteers will measure the windows. The customer will then need to participate in a local Window Dressers Community Workshop where the inserts are made taking them back home at the end of the workshop¹⁴
- Window Dressers provide up to 10 pine inserts per year at no charge to low-income families only asking them in exchange participation in the Community Workshop¹⁴

Corporate Social Responsibility (CSR) Initiatives

Window Dressers Community Workshop¹⁴

¹⁴ Source: http://windowdressers.org/

Window Insulators¹⁴

CSR Initiatives

Allagash and Window Dressers

- Allagash has partnered with Window Dressers as part of its initiative: "Give where you live"
- They help by providing space for the Community Workshops and by donating each year to the organization
- Donations help low-income families to access to insulations for their houses
- Allagash is looking to have fewer but closer NGO partnerships over the next few years to be able to increase their impact
- CO2 offset for window dressers is based on Allagash providing donations which allows more free inserts to go out that otherwise would not go out

CSR Initiatives

Allagash's partnership with Window Dressers reduces the release of up to 25 tonnes of CO2e per year

28

Window Dressers reduces CO2 and saves money

- An average house has 10 windows^{*14}
- The average life of an insert is 5 to 10 years¹⁴
- The fuel consumption for heating an insulated house decreases by 105 gallons per year^{*14}
- This translates to an energy bill cost reduction of \$270 per year on average^{*14}
- The average cost for a window insert is between \$20-\$45¹⁴
- The investment in window inserts is a NPV positive project (considering Allagash donations and potential users' savings), creating between \$277 and \$317 of value per year

Allagash donations help to reduce CO2e emissions and allow low-income families to save money

(357)

(317)

(357) \$

(277) \$

Window Dressers reduces CO2 and saves money

Window Insultations Cost per Tonne

Unit of analysis: 1 Window insulator

				Windo	ow E	Duration (<i>Y</i> ear	s)	
		Total	1	2		3		4	5
Allagash	Window Insulator Cost (CAPEX) (\$)	\$ 30	\$ 6	\$ 6	\$	6	\$	6	\$ 6
	Energy Savings (\$)	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
	Net Income	\$ (30)	\$ (6)	\$ (6)	\$	(6)	\$	(6)	\$ (6)
Insulator Receive Investment (\$)		\$ -	\$ -	\$ -	\$	-	\$	-	\$ -
	Energy Savings (\$)	\$ 135	\$ 27	\$ 27	\$	27	\$	27	\$ 27
	Net Income	\$ 135	\$ 27	\$ 27	\$	27	\$	27	\$ 27
	CO2 Savings (kg CO2e)	377.68	75.54	75.54		75.54		75.54	75.54
	CO2 Savings (Tonnes CO2e)	0.38	0.08	0.08		0.08		0.08	0.08
Allagash Cos	st per Tonne CO2		\$ 81	\$ 81	\$	81	\$	81	\$ 81
	ceiver Cost per Tonne of CO2		\$ (357)	\$ (357)	\$	(357)	\$	(357)	\$ (357)
Combined Co	ost per Tonne of CO2		\$ (277)	\$ (277)	\$	(277)	\$	(277)	\$ (277)

Inputs		
Average Cost of a Window Insulation	30.43	\$/window
Average Energy Savings per House	105.00	Gallons/House/Year
Average GHG emissions per unit of fuel	10.16	kg CO2e/gallon
Fuel Type	Home Heating	and Diesel Fuel (Distillate)
Average Windows per House	10	Windows/House
Average \$ Savings Per House	270	\$/House/Year
CO2e emissions for the Construction of the insulator	25.70	kg CO2e/window
Insulator Transportations emissions	5.45	kg CO2e/window
	Window	Duration
Outputs	5 Years	10 Years
Allagash Cost per Tonne CO2	\$ 81	\$ 40

Insulator Receiver Cost per Tonne of CO2

Combined Cost per Tonne of CO2

				. , .			. ,					
						Wi	indow Duration	(Years)				
			1	2	3	4	5	6	7	8	9	10
Allagash	Window Insulator Cost (CAPEX) (\$)	\$ 30 \$	3 \$	3 \$	3 \$	3 \$	3 \$	3 \$	3 \$	3 \$	3 \$	3
	Energy Savings (\$)	\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
	Net Income	\$ (30) \$	(3) \$	(3) \$	(3) \$	(3) \$	(3) \$	(3) \$	(3) \$	(3) \$	(3) \$	(3)
Insulator Rece	eive Investment (\$)	\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
	Energy Savings (\$)	\$ 135 \$	27 \$	27 \$	27 \$	27 \$	27 \$	27 \$	27 \$	27 \$	27 \$	27
	Net Income	\$ 135 \$	27 \$	27 \$	27 \$	27 \$	27 \$	27 \$	27 \$	27 \$	27 \$	27
	CO2 Savings (kg CO2e)	377.68	75.54	75.54	75.54	75.54	75.54	75.54	75.54	75.54	75.54	75.54
	CO2 Savings (Tonnes CO2e)	0.38	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Allagash Cost	per Tonne CO2	\$	40 \$	40 \$	40 \$	40 \$	40 \$	40 \$	40 \$	40 \$	40 \$	40
Insulator Rece	eiver Cost per Tonne of CO2	\$	(357) \$	(357) \$	(357) \$	(357) \$	(357) \$	(357) \$	(357) \$	(357) \$	(357) \$	(357)
Combined Co	st per Tonne of CO2	\$	(317) \$	(317) \$	(317) \$	(317) \$	(317) \$	(317) \$	(317) \$	(317) \$	(317) \$	(317)

Allagash cost per tonne is greater than the average but only because Allagash is not perceiving any of the benefits of the investment done with that donation. When combining Allagash donation with the benefits of the donation the combined cost per tonne is negative, which means that investing in the insulators is actually creating value rather than being a cost.

Other Alternatives for CO2e Offsets

Other potential initiatives for CO2e emissions offsetting	Potential CO2e savings per \$ of capital investment*
Solar Energy	0.33 kg CO2e savings per \$ invested**
Microalgae Production	0.30 kg CO2e savings per \$ invested**

These projects require more capital investment and space than Allagash has available

* Calculations do not include neither operational costs nor potential earnings from the operation. Only based on capital investment for an average facility.

** Rough estimations of potential CO2e savings of the mentioned initiatives. Further research should be done to get more precise results

CO2 Lifecycle Assessment of Allagash Beer

- A lifecycle assessment (LCA) analysis can identify the environmental impact of a product from its raw material production to its consumption
- A simplified LCA was done to visualize the CO2e emissions associated with Allagash beer
- This analysis is based on a similar analysis done by New Belgium Brewery¹⁵
- Some of the emissions were calculated based on Allagash information while others were just extrapolated based on Allagash's yearly production using New Belgium Analysis as reference

Simple CO2 Lifecycle Assessment of Allagash Beer

Most of the CO2e emissions generated by beer are Scope 3 and associated with the beer supplies

BREWING

SLOAN SCHOOL

- Natural Gas 7.86 Tonnes CO2e per year
- Fugitive 525.71 Tonnes CO2e per year
- Vehicle Fleet 165.96 Tonnes CO2e per year*
 - Electricity 1,131.57 Tonnes CO2e per year*
- Corporate Transportation 45.26 Tonnes CO2e per year*
- CO2 Purchases 301.36 Tonnes CO2e per year
- Customer Use 56.33 Tonnes CO2e per year
- Malt 875.08 Tonnes CO2e per year*
- Retail 1,101.39 Tonnes CO2e per year*
- Distribution 1,885.95 Tonnes CO2e per year*
 - Barley 2,549.80 Tonnes CO2e per year*
 - Glass 6,291.52 Tonnes CO2e per year*

RECOMMENDATIONS & ROADMAP

Recommendations

Future Analysis

- Complete exhaust vs. consumption analysis following any major production, forecast or capital improvement changes
 - Identify the any change in the gap between consumption and exhaust rates
 - Forecasted exhaust can help assess future emissions for capture
- Temporary monitoring of CO2 consumption processes where feasible will help identify feasible areas for reduction in consumption and provide insights into where CO2 is used most in the production process.
- CO2 recovery becomes financially feasible based on current analysis if it can cover 85% of CO2 consumption with exhaust from fermentation
- Continuous monitoring assists with assessing the impact of potential offsets on net CO2 emissions

References

- Murar, K., "Maui Brewing Co.: paving the way for Hawaii brewers since 2005", Pacific Business News, 2018, <u>https://www.bizjournals.com/pacific/news/2018/02/22/maui-brewing-co-paving-the-way-for-hawaii-brewers.html</u>
- 2. Bohlool, K., "Behind the Beer at Maui Brewing Co.", Maui Now, 2016, http://mauinow.com/2016/07/22/behind-the-beer-at-maui-brewing-co/
- 3. "First CO2mpact Brew Sold to Innovative Maui", Union Engineering, 2017, https://union.dk/news-pr/all-news/first-co2mpactbrew-sold-to-maui/
- 4. Berlinger, J. "Beer-Powered Brewery Saves \$450,000 A Year", Associated Press, 2013, http://www.businessinsider.com/beer-powered-brewery-saves-450000-a-year-2013-2
- 5. Becker, D., "Alaskan Brewing A New Release and Brewhouse Innovation", The Full Pint Craft Beer News, 2009, <u>https://thefullpint.com/beer-news/alaskan-brewing-a-new-release-and-brewhouse-innovation/</u>
- 6. "The Brewery", Widmer Brothers Brewing, 2018, https://widmerbrothers.com/brewery/info
- 7. D.J., "Widmer Brothers Brewing Installs CO2 Recovery System", BrewPublic, 2017, https://brewpublic.com/beer-news/widmer-brothers-brewing-installs-co2-recovery-system/
- 8. Eisenberg, D., "F.X. Matt to Expand in Utica", BevNET, 2014, https://www.brewbound.com/news/f-x-matt-to-expand-in-utica
- 9. George, M., "Matt Brewing Company to replace and upgrade CO2 recovery system", CraftBeer, 2016, <u>https://www.craftbeer.com/news/brewery-news/matt-brewing-company-replace-upgrade-co2-recovery-system</u>
- 10. "Brewery Vivant's 2017 Sustainability Report", Brewery Vivant, 2017, <u>https://www.breweryvivant.com/reports/2017%20Beer%20The%20Change%20Report.pdf</u>

References

- 11. Kent, S., "Raising a glass to greener beer: Former GR Current director helps craft brewers cut carbon emissions", Rapid Growth, 2015, <u>http://www.rapidgrowthmedia.com/features/111915grcurrentbeercarbonemissions.aspx</u>
- 12. "Sustainability", Lolo Peak Brewing Company, 2018, <u>http://lolopeakbrewery.com/sustainability/</u>
- 13. Pass my exams Chemistry, 2018, <u>http://www.passmyexams.co.uk/GCSE/chemistry/producing-ethanol-by-fermentation.html</u>
- 14. Window Dressers, 2018, <u>http://windowdressers.org/</u>
- 15. "Sustainability Brochure", New Belgium Brewing Company, 2017, <u>https://www.newbelgium.com/docs/default-</u> <u>source/sustainability/2017sustainabilitybrochure.pdf?pdf=sustainabilityreport</u>
- 16. U.S. Departmen of Energy, National Energy Technology Department, Carbon Dioxide Enhanced Oil Recovery, 2010, <u>https://www.netl.doe.gov/file%20library/research/oil-gas/CO2_EOR_Primer.pdf</u>
- 17. Wilson, M. H., Groppo, J., Placido, A., Graham, S., Morton III, S. A., Santillan-Jimenez, E., Shea, A., Crocker, M., Crofcheck, C., Andrews, R., CO2 recycling using microalgae for the production of fuels, 2014, <u>https://link.springer.com/content/pdf/10.1007%2Fs13203-014-0052-3.pdf</u>
- 18. Global CCS institute, CO2 reuse technologies, 2018, <u>https://hub.globalccsinstitute.com/publications/accelerating-uptake-ccs-industrial-use-captured-carbon-dioxide/1-co2-reuse-technologies</u>
- 19. American Fire Technologies, Fire Suppression Systems, 2018, <u>https://www.aft.net/products/fire-suppression/c02</u>

APPENDIX

CO2 Recovery Technology Overview

Technology Review

Vendor	Proven Technology	Craft Breweries Using the Technology
	\checkmark	BREWING CO
	×	
CASEQ TECHNOLOGIES life.upcycled.	×	Solution
CO B R E W		Mountains. Rivers. Beer.

Potential Markets for CO2

Reuse Technology	Reduce Net CO2 Generation	Reason
Enhanced oil recovery	×	CO2 allow tertiary recovery of wells increasing well productivity ¹⁶ . This promotes the use of non-renewable resources making them more affordable increasing net CO2 generation
Microalgae production	\checkmark	Microalgae production allow the recapture of CO2 ¹⁷ . Then algae can be used to generate oil that can be used to develop biodiesel, creating a renewable source of energy
Wine making	×	CO is used as a seal gas to prevent oxidation of the wine during maturation ¹⁸ . That gas is then vented into the atmosphere either through the bottling process or once the bottle is opened.
Food processing, preservation and packaging	×	CO is used for various applications in the food industry, including cooling while grinding powders such as spices and as an inert atmosphere to prevent food spoilage ¹⁸ . This CO2 is also eventually released into the atmosphere

Potential Markets for CO2

Reuse Technology	Reduce Net CO2 Generation	Reason
Fire suppression technology	\checkmark	CO2 extinguishes a fire by removing the oxygen from the surrounding area, and for local application type systems, breaks the fire triangle by removing the heat ¹⁹ . By avoiding a fire to spread out CO2 used as extinguisher reduce net CO2 emissions into the atmosphere.
Refrigerant gas	×	CO is used as the working fluid in refrigeration plant, particularly for larger industrial air conditioning and refrigeration systems ¹⁸ . That CO2 is contained in the cooling equipment however, it will eventually be released into the atmosphere. Moreover, cooling equipment use considerably amount of energy which depending on the source might create more CO2 emissions.
Beverage carbonation	×	Carbonation of beverages with high-purity CO ¹⁸ . However, this CO2 gets released into the atmosphere during and after consumption
Greenhouse	~	CO is provided to greenhouses to maintain optimal CO concentration and maximize plant growth rate ¹⁸ . This creates a net reduction of CO2 in the atmosphere that would potentially be released but many years in the future when plants die.

Interviews - Allagash

Role	Takeaways
Head of Marketing In-Person Interview on 4/6/2018	 "Sustainability is embedded into the company culture." "Sustainability adds to the Allagash brand, but is not there for the brand."
Director of HR Phone Interview on 4/6/2018	 "Employees are motivated to come up with sustainability-related projects rather than just implement them from the top-down." "Part of the hiring process is looking for people who like beer, the outdoors, and protecting the environment."
Philanthropy Program Manager Phone Interview on 4/25/2018	 "Allagash provides community grants during Spring and Fall for Maine non-profits." "We are looking to partner with fewer organizations and make those relationships deeper and more impactful." "We are also open to exploring customer engagement opportunities."

Interviews - Allagash

Role	Takeaways
Brewmaster In-Person Interview on 4/6/2018	 "The amount of CO2 produced in the fermentation process depends on sugar content in recipe. Our White recipe will be different than our Triple recipe." "The bulk of our fermentation goes through bunker tanks (70-80%) which are connected to the central CO2 exhaust line." "We use CO2 primarily to move beer, purge conditioning tanks, and maintain the O2 free environment in the keg and bottling lines."
Finance Director In-Person Interview on 4/6/2018	 "Capital projects are split into essential projects and dream projects. CO2 recapture is considered a dream project, meaning it is not critical." "Lease with CO2 supplier could be a challenge to break."
Quality Manager In-Person Interview on 4/6/2018	 "Quality of recaptured CO2 would need to be monitored."

Interviews - Allagash

Role	Takeaways
Founder, CEO Phone Interview on 4/9/2018	 "If a system is purchased, we would want to purchase from a well-known, reliable company." "Given the climate of decreasing growth in craft brewing industry, we must take economic benefits into account when assessing sustainability projects."
Head of Sales Phone Interview on 4/9/2018	 "Sustainability projects do not necessarily need to have an impact on Sales, as long as it is not hurting sales."

Interviews – CASEQ Technologies

Role	Takeaways
Founder, CEO Phone Interview on 3/12/2018	 "CO2 recovery is not a revenue generator, it is a cost savings technology." "There are several risks small brewers face in installing CO2 recovery systems. First, cost. Brewers need to producing more than 500k gallons a year in order for the systems to be cost effective. Second, it is a large capital investment. Third, there is a possibility of growing out of the recovery system. To ease these risks, CASEQ provides 5-year leasing terms. The lease payment is a 30% discount on what a brewer paid for CO2 purchase the previous year." "CASEQ provides maintenance on installed systems." "Increases in electricity costs for running the recovery system are not large enough to offset cost savings from CO2 purchasing."

Interviews – Maui Brewing Co.

Role	Takeaways
Founder Phone Interview on 4/17/2018	 "We plan to install a Pentair Union recovery system in May 2018. The system can handle 200 lb of CO2/hr." "The primary motivator for installing recovery system is the price of CO2 in Hawaii (\$0.60/lb) which is much higher than Allagash's price of CO2 (\$0.22/lb)" "We received a low cost for their recovery system (including freight, installation) because we are early adopters." "We are producing less CO2 (80 lbs/hr) than we are consuming (100 lb/hr) so will continue to purchase CO2 in the interim while they bring on the other 15 percent of their capacity." "We are working on a plan to reduce our production to consumption ratio."

Interviews – Window Dressers

Role	Takeaways
Allen Armstrong (Mechanical Engineer, member of the Portland Climate Action Team and Window Dresser's volunteer) Phone Interview on 4/20/2018	 "Most houses in Portland, Maine do not have modern windows on them." "Window inserts gives better results over single windows." "Inserts can help owners to save 105 gallons of fuel per year due to building heating loss prevention, which represents a reduction on their bills of \$270 per year." "A study done over 50 buildings allow to get the above results, where: A total of 420 house windows + 80 windows for institutional building where considered in the calculations 50% building heating was gas (90% efficiency). 25% of building heating was old oil burners (75% efficiency) and 25% was new oil burners (85% efficiency). 80% of the windows were single pane and 20% were double pane. 54 Million BTU saved in double pane case and 767 million BTU saved in single pane case Total savings on CO2 70tons of CO2. (for all the houses in the calculation) The cost of energy used was 1.89 cents per 100 ft3 of gas".

Production CO2 Calculation Assumption

- 368 kg/70 bbl tank is from Allagash and based on recipe
- Bunker tanks only produce the White beer in the near future
- The exhaust is measured in cubic feet, so use standard atmospheric conditions for conversion to weight
 - 8.741 ft³/lb CO2
 - Temperature swings experienced within the facility won't impact the density of the gas enough to make a difference in weight
- The production week is defined by Monday AM to the following Monday AM

