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Recommending Products When Consumers Learn  
Their Preference Weights 

Abstract  

 

 
Consumers often learn the weights they ascribe to product attributes (“preference weights”) as 

they search. For example, after test driving cars, a consumer might find he or she undervalued trunk 

space and overvalued sunroofs. Preference-weight learning makes optimal search complex because, 

each time a product is searched, updated preference weights affect the expected utility of all products 

and the value of subsequent optimal search. Product recommendations, that take preference-weight 

learning into account, help consumers search. We motivate a model in which consumers learn (update) 

their preference weights. When consumers learn preference weights, it may not be optimal to recom-

mend the product with the highest option value, as in most search models, or the product most likely to 

be chosen, as in traditional recommendation systems. Recommendations are improved if consumers are 

encouraged to search products with diverse attribute levels, products that are undervalued, or products 

where recommendation system priors differ from consumers’ priors. Synthetic data experiments 

demonstrate that proposed recommendation systems outperform benchmark recommendation sys-

tems, especially when consumers are novices and when recommendation systems have good priors. We 

demonstrate empirically that consumers learn preference weights during search, that recommendation 

systems can predict changes, and that a proposed recommendation system encourages learning. 
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1. Introduction 

 Our basic premises are that (1) in some product categories consumers learn their preference 

weights by searching products and (2) many recommendation systems can anticipate a consumer’s 

(true) preference weights better than novice consumers. (By preference weights, we refer to the 

weights that a consumer places on an attribute level in an additive multiattribute utility function.) We 

argue that premise #1 changes a consumer’s optimal search path and that premises #1 and #2 change 

the recommendation that a recommendation system should make. 

1.1. Motivation of Premise #1: Preference-Weight Learning 

Consider Candace and Dave who were moving to a new city. They wanted a condominium with 

two bedrooms, two bathrooms, a good school district, hardwood floors, an island kitchen, adequate 

lighting, proximity to work, and a full-service concierge. They had full access to MLS listings and could 

search attributes of condominiums easily, but sought a realtor’s recommendations. Based on a realtor’s 

recommendation, they visited one condominium that had a playground across the street. Seeing the 

playground, Candace and Dave realized how convenient this feature would be for them. Although they 

always valued playgrounds, they had not previously considered proximity to playgrounds to be an im-

portant decision criterion for a home. Their preference weight for playgrounds was substantially larger 

after seeing the condominium near a playground than before. As they decided what to search further, 

playground proximity was weighted more heavily. Playground proximity influenced their selection of 

condominiums to search and their choice of which condominium to buy. 

Preference-weight learning applies broadly, for example, to a high school student learning about 

what to value in undergraduate research programs during college search, consumers learning about 

new features as they search for new automobiles, first-time parents learning how nannies affect their 

lifestyle, and even many singles dating and searching for partners. See Cook (2012), Finkel, et al. (2012), 

and Sheehy (2013) for further examples. The common thread in all examples is that novice consumers, 

the kind most likely to seek recommendations, revised their preference weights after carefully evaluat-

ing products, services, or people during costly search. Consumers updated prior beliefs about preference 

weights after search and used the updated preference weights for subsequent search, and for choice at 

the end of search. Preference-weight learning appears common even in information-rich environments 

where consumers have easy access to attribute levels for most products in the market.  

Premise #1 is different from the vast literature in marketing on search with Bayesian learning 

because consumers learn their preference weights during search, rather than simply learning the utility 

of products, services, or people. This difference is important because learned (or updated) preference 
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weights affect the relative utility of every product that has (or doesn’t have) the corresponding attribute 

level. In contrast, in most analytical models, when consumers learn product utilities by searching, the 

learning affects primarily the utility of the product that is searched. 

1.2. Motivation for Premise #2: Recommendation System Knowledge 

 In our vignette, Candice and Dave received a recommendation from a realtor. The realtor was 

sufficiently experienced to know that a young couple with small children would value playground prox-

imity, and observed that Candice and Dave were not putting sufficient weight on it. The realtor had a 

better understanding of Candice and Dave’s true preferences than did Candice and Dave at the start of 

the search. The phenomenon is common. For example, Rogers (2013, page F4) suggests: “Often people 

don’t know what they want. […] You may think you want X, but if you’re shown Y, you may love Y better 

than you ever loved X. […] Even (or especially) in these days of consumer online access, some of an 

agent’s value lies in her being able to offer a buyer a choice different from his preconception.” College 

counselors help high school students learn what to value in colleges, childcare agencies help new par-

ents learn what to value in nannies, and automotive websites help consumers learn what to value in 

new automobile purchases. A recommender often has knowledge of the attribute levels of products on 

the market, but also knowledge of how attribute levels influenced consumers' purchases in the past. 

This knowledge translates to insight on the tradeoffs consumers make among attribute levels. Good 

recommenders use this knowledge to guide future consumers’ search.  

Depending on the availability of information on product attributes, a recommender’s value lies 

in helping the consumer learn product attributes and/or helping the consumer learn preference weights, 

or both. Attribute-level search is well-studied. We focus on preference-weight learning recognizing that 

many recommenders do both. 

 Existing automated recommendation systems value the ability to accurately predict preferred 

products. Machine learning methods such as collaborative filters, content-based filters, and Bayesian-

update systems learn preference weights from past users and apply them to new users (review in §2). 

When preference weights are relatively homogeneous or when preference weights can be tied to ob-

servable characteristics, recommendation systems can efficiently learn consumers’ true preference 

weights. While automated recommendation systems use the knowledge of consumers' preference 

weights to make recommendations, we know of no automated recommendation system that recom-

mends products that help consumers learn their own preferences. 

1.3. Product Categories for which Preference Weight Learning is Likely to be Relevant 

 We expect preference-weight learning to be relevant in product or service categories in which 
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the product or service is multiattributed, infrequently purchased, costly to experience without purchase 

or extensive search, and sufficiently valuable to justify extensive and costly search. The set of categories 

includes real estate, colleges, automobiles, childcare, mates, vacations, furniture, sailboats, or even 

high-cost industrial equipment. Henceforth, we use “product” to refer to all relevant categories. In these 

categories, consumers routinely seek advice from human recommenders and/or automated recommen-

dation systems. Anecdotes abound to suggest that human recommenders take preference-weight learn-

ing into account in these categories. We hope to extend that capability to automated recommendation 

systems.  

1.4. Overview of Model and Results  

We assume the consumer learns (updates) his or her beliefs about the preference weights for 

attribute levels after searching a product with the corresponding attribute levels. Search is costly and a 

purchase, if any, occurs at the end of search. The benefit the consumer derives from purchase, if any, is 

based on the consumer’s true utility which he or she experiences from purchase and consumption. In 

searching optimally, the consumer weighs his or her vision of this anticipated utility (possibly discount-

ed) against anticipated search cost. To focus on preference-weight learning, we assume that the infor-

mation about attribute levels of all products is available at low cost from sources such as multiple-listing 

services (real estate), Kelly Blue Book (automobiles), or popular press ratings (colleges).  

We demonstrate that existing search-theory solutions may not be optimal when preference 

weights are learned, even when the consumer searches without a recommendation. For example, it is 

not always best to search products with high option values. We next introduce a recommendation sys-

tem and argue that the typical criterion used to evaluate recommendation systems, highest predicted 

utility, does not always identify recommendations that maximize a consumer’s net utility when prefer-

ence-weights are learned. Instead, a knowledgeable recommendation system should recommend prod-

ucts with diverse attributes (thus providing a theoretical explanation for recent trends) and/or recom-

mend products that are undervalued by the consumer. Such products are effective recommendations 

even if the products have a low probability of being the chosen product, because the recommendations 

make the consumer’s subsequent search more efficient. We use numerical examples to illustrate how 

benevolent recommendation systems can direct the consumer to the optimal-net-utility choice. We also 

illustrate non-benevolent recommendation systems which lead consumers to profitable products that 

may not be best for the consumer. Our arguments and examples suggest practical preference-weight-

learning recommendation systems. We test the proposed recommendation systems (and a standard 

benchmark) with synthetic data, and explore when each system is most advantageous. We close the 
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paper with an empirical test to demonstrate that our premises are reasonable and that a proposed rec-

ommendation system helps consumers learn preference weights better than either the standard 

benchmark recommendation system or allowing consumers to choose without a recommendation. 

2. Related Literatures 
We build on two related literatures: the recommendation-system literature, mostly from com-

puter science, and the sequential-search literature, mostly from economics and marketing. 

2.1 Literature on Recommendation Systems  

Traditionally, the primary goal of a (Top-𝑁) recommendation system is to recommend 𝑁 items 

that maximize a user’s utility (Adomavičius and Tuzhilin 2005). Typically, the recommendation system 

observes a utility surrogate, a rating or a rank, for some users and some items and attempts to extrapo-

late the surrogate to all users and items. As a result, most recommendation systems are evaluated on 

the accuracy of that extrapolation (Herlocker, et al. 2004; Liu, Zhao, Xiang, and Yang 2010; McNee and 

Konstan 2006; Vargas and Castells 2011; Zhang and Hurley 2008). This focus was most notable in the 

$1M Netflix Challenge that began in 2006 and finished in 2009. The Netflix Challenge sought the rec-

ommendation system algorithm that best predicted held-out user ratings. Successful recommendation 

systems focus on similarities among users (collaborative filters), similarities among items (content-based 

filters), attribute-based utility models or hybrids to recommend products with high expected utility (Ad-

omavičius and Tuzhilin 2005; Jacobs, Donkers, and Fok 2016; Moon and Russel 2008; Urban and Hauser 

2004). Although some recommendation systems attempt to match attribute-based utility, attributes are 

typically defined with taxonomies such as genre (Ansari, Essegaier, and Kohli 2000). A related literature 

in marketing uses attribute-level preferences to predict whether consumers will choose a recommended 

product (Chung and Rao 2012; De Bruyn, et al. 2008; Ghose, Ipeirotis, and Li 2012; Häubl and Trifts 

2000; Lu, Xiao, and Ding 2016; Ying, Feinberg, and Wedel 2006). Although both the recommendation-

system literature and the marketing literature demonstrate that recommendation systems can learn 

consumer preference weights well, many authors have criticized the focus on predictive accuracy as, in 

practice, providing recommendations that are too similar to previously purchased items, for example, 

recommending the same author after a book is purchased (Fleder and Hosanagar 2009; McNee and 

Konstan 2006; Zhang and Hurley 2008), or too obvious, for example recommending bread, milk, eggs, 

and bananas to all grocery store shoppers (Herlocker et al 2004). 

In response, researchers have proposed algorithms, and metrics to evaluate those algorithms, 

that include goals that complement predictive accuracy (Bodapati 2008; Herlocker et al. 2004). New al-

gorithms avoid recommending items that the consumer would have bought without a recommendation. 
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They augment predictive accuracy with diversity, novelty, and serendipity (Adamopoulos and Tuzhilin 

2014; Celma and Herrera 2008; Castells, Vargas, and Wang 2011; Ge, Delgado-Battenfeld, and Jannach 

2010; Vargas and Castells 2011; Zhou, et al. 2010; Ziegler, et al. 2005). Diverse items are items that are 

not similar to one another; novel items are items the consumer would not have chosen without a rec-

ommendation; serendipitous items are items that are unexpected, relevant, and useful. To achieve 

these goals, recommendation systems penalize recommendations that are similar to “accurate” recom-

mendations or recommend products from the “long tail.” Product attributes, when used, are used to 

define product similarity metrics. Diversity, novelty, and serendipity are based on products, not the lev-

els of attributes of the products. We augment this literature by studying how a recommendation system 

might incorporate preference-weight learning when making recommendations. Our results challenge 

the traditional recommendation-system focus on products that are likely to be chosen or likely to have 

high utility. On the other hand, our analyses provide a theoretical explanation for why diversity, novelty, 

and serendipity work better in practice than pure predictive accuracy. We suggest modifications to rec-

ommendation systems that are based on a reinterpretation of these concepts and highlight when such 

modifications benefit consumers. 

2.2. Literature on Sequential Search  

Papers in marketing and economics recognize the importance of the consumer’s search for in-

formation, and have studied it empirically and theoretically. For example, Kim, Albuquerque, and 

Bronnenberg (2010) use Amazon’s view-rank data to infer consumer preferences for observed attributes 

of camcorders. Consumers know these attribute levels without search, but consumers search to resolve 

the unobserved utility of the products (error term). Bronnenberg, Kim, and Mela (2016) study observed 

online search and find that search is over a relatively small region of attribute space that declines with 

subsequent search. The final choice is rarely the first item searched. Chen and Yao (2016), Hong and 

Shum (2006), Honka (2014), and Seiler (2013) analyze search-path data to infer price distributions 

and/or search costs. Although a few authors consider non-sequential search, Bronnenberg, Kim, and 

Mela (2016) report strong evidence to support sequential search.  

Much of this literature is based on theory derived by Weitzman (1979), who studied search over 

products whose utilities are independently distributed. Weitzman derives the optimal search strategy 

for this model, which is based on an option value index—the upper tail of the utility distribution. The 

optimal strategy is to search the products with the highest indices as long as they are above the reserva-

tion value. See extensions by Adam (2001) and Bikhchandani and Sharma (1996). Branco, Sun, and Vil-

las-Boas (2012) focus on the optimal search for multiple attributes of a single product. The optimal 



6 
 

strategy in this setting is also index-based: the consumer searches as long as utility is bounded between 

purchase and not-purchase thresholds. Ke, Shen, and Villas-Boas (2016) extend the model to derive ap-

propriate bounds for two products. 

Our analyses are consistent with this literature in the sense that the consumer’s optimal search 

path is the solution to a dynamic program (a Bellman Equation). However, we modify the recursion to 

allow consumers to update their preference weights for attributes as they search. Because products 

share attribute levels, the optimal search strategy is no longer indexable (e.g., Weitzman’s solution). 

High option value or high variance in product utility matters less; strategies to learn preference weights 

efficiently matter more. 

Finally, our model of preference-weight learning is consistent with examples of preference-

weight learning in the marketing science literature. Greenleaf and Lehmann (1995) demonstrate that 

consumers delay purchases to learn preference weights, and She and MacDonald (2013) show that 

“trigger features” cause consumers to update preference weights. Hauser, Dong, and Ding (2014) show 

that, as consumers become more expert, their preference weights stabilize. Predictions, even one-to-

three weeks later, improve. Dzyabura, Jagabathula, and Muller (2017), and Dzyabura and Jagabathula 

(2017) demonstrate that preference weights change when consumers evaluate physical products rather 

than their online descriptions. Most of these changes persist if consumers go back to the online channel 

after evaluating physical products, which is consistent with learning preference weights.  

3. Model of Consumer Search with Preference-Weight Learning 
 To model preference-weight learning, we decompose product utilities into components corre-

sponding to product attribute levels and allow consumers to learn their preference weights for attribute 

levels as they search products. We start by defining the utility of a product and then present the model 

of search.  

3.1. Consumer Utility is Defined on Attributes Levels  

Let 𝑗 = 1, … , 𝐽 index products and 𝑖 = 1, … , 𝐼 index attributes. For ease of exposition, we begin 

with binary attributes such that a product either has or does not have an attribute. When it is clear in 

context, we refer to binary attributes simply as attributes. Later in §4.1.2, when we discuss multilevel 

attributes, we introduce terminology to distinguish attribute levels from attributes. Let 𝑥௜௝ = 1 if prod-

uct 𝑗 has binary attribute 𝑖 and let 𝑥௜௝ = 0 otherwise. Let �⃗�௝  be the binary vector that describes product 𝑗.  
Let 𝑢௝  be the utility of product 𝑗 and let 𝑤௜ be the relative preference weight that the consumer 
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places on attribute 𝑖 such that: 

(1) 𝑢௝ = 𝑢൫�⃗�௝൯ = ෍𝑤௜𝑥௜௝ூ
௜ୀଵ . 

Let 𝑤ሬሬ⃗ = [𝑤ଵ, …𝑤ூ] be the vector of preference weights for all the attributes. The consumer has 

a prior belief about the values of 𝑤௜. The prior probability density for the consumer’s prior beliefs is de-

noted by 𝑓௜଴(𝑤௜) for each attribute 𝑖. This belief can be updated when the consumer observes a product 

with attribute 𝑖. We assume the prior distributions (and any updated distributions) are independent 

over 𝑖.  
To focus on preference-weight learning, we assume consumers know, or can search at negligible 

cost, whether or not a product has an attribute. That is, we assume they know �⃗�௝. This simplification is 

not unrealistic. Zillow, Trulia, or multiple-listing services (MLS) provide attribute levels of new homes; 

U.S. News & World Reports and Business Week provide attribute levels for colleges; Autotrader, Ed-

munds, and Kelly Blue Book provide attribute levels for automobiles; and travel websites, dating web-

sites, and Amazon provide attribute levels for other products. We focus on situations where attribute 

levels are easy to observe, but more-costly search is necessary for consumers to experience attributes 

and learn their preference weights. We revisit this assumption and the assumption of discrete attribute 

levels in §9.2. 

3.2. Consumers Learn Preference Weights during Search 

Consumers engage in sequential search, searching one product at a time. Searching represents 

sufficient effort by a consumer to examine and evaluate product 𝑗, for example, by test driving a car, 

visiting a condominium for sale, visiting a college, or interviewing a caregiver. The cost of searching a 

product is 𝑐 > 0. There is a true value of 𝑤௜, which we label 𝑤௜௥. (𝑟 for revealed.) During search, the con-

sumer updates his or her beliefs about 𝑤௜ toward 𝑤௜௥. For infrequently-purchased products (as in §1.3), 

the consumer fully learns his or her preference weights when consuming the chosen product, thus the 

utility the consumer ultimately gets is computed according to 𝑤௜௥, that is, ∑ 𝑤௜௥𝑥௜௝ூ௜ୀଵ . 

Let 𝑡 index sequential searches and let 𝑠௧ be the 𝑡௧௛ product search. Whenever 𝑥௜௝௧ = 1, the con-

sumer receives a signal about the true value of his or her preference weight. This signal takes the form 

of a probability density function, 𝑔(𝑤௜௥|𝑤௜ , 𝑠௧ = 𝑗), for the true value, 𝑤௜௥. Using Bayes Theorem, the 

consumer’s evaluation during search of product 𝑗 enables the consumer to update beliefs about 𝑤௜. If 𝑥௜௝௧ = 0, the consumer cannot update beliefs about 𝑤௜. Let 𝐹௧(𝑗 = 𝑠௧) = {𝑖: 𝑥௜௝௧ = 1}, then the consum-

er’s belief distribution about preference weight 𝑖 after the 𝑡௧௛ search is: 
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(2) 𝑓௜௧ାଵ(𝑤௜) ≡ 𝑓௜௧ାଵ(𝑤௜|𝑤௥ , 𝑠௧ = 𝑗) = ⎩⎪⎨
⎪⎧       𝑓௜௧(𝑤௜)                                            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∉ 𝐹௧(𝑗) 𝑔(𝑤௜௥|𝑤௜ , 𝑠௧ = 𝑗)𝑓௜௧(𝑤௜)׬𝑔൫𝑤௜௥|𝑤௜ , 𝑠௧ = 𝑗൯𝑓௜௧(𝑤௜)𝑑𝑤௜       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐹௧(𝑗).  

We refer to 𝑓௜௧(𝑤௜) as the prior beliefs before the 𝑡௧௛ search and 𝑓௜௧ାଵ(𝑤௜) as the posterior beliefs after 

the 𝑡௧௛ search. Equation 2 allows the Bayesian updating to remain general. For the numeric examples 

and synthetic data experiments we make a functional assumption—we use normally-distributed priors 

leading to normally-distributed posteriors. Appendix 2 summarizes the formulae. 

 As 𝑡 increases, we expect the mean of 𝑓௜௧(𝑤௜) to approach 𝑤௜௥  and the variance to approach ze-

ro. The rate at which the posterior beliefs converge can vary. For example, one of our colleagues was 

dead set against swimming pools while searching for vacation homes in a beach community, but when 

she saw the perfect swimming pool layout for her children she immediately updated her preference 

weights and bought the house. Another colleague searched three homes in a community before he fully 

updated his preference weight for a neighborhood-owned swimming pool. We explore differences in 

the rate at which preferences are updated in our numerical examples and synthetic data experiments. 

3.3. Optimal Search 

If no recommendations are made, the consumer searches sequentially and optimally. If recom-

mendations are made, the consumer searches all recommended products, updates his or her prefer-

ences, and searches optimally thereafter. The consumer is forward looking; therefore, the consumer 

solves a dynamic programming recursion to select the next product to search, or to stop and purchase. 

The state is the set of products already searched, 𝑆௧, and the beliefs prior to search, 𝑓௧(𝑤ሬሬ⃗ ). When prior 

distributions are independent over 𝑖, and when an observation of an attribute only updates preference 

weights for that attribute, posterior beliefs are independent over attributes. Probabilistic independence 

implies: 𝑓௧(𝑤ሬሬ⃗ ) = ∏ 𝑓௜௧(𝑤௜)௜ୀଵ ௧௢ ூ . 

If 𝐽(𝑆௧ ,𝑓௧) is the continuation value, the Bellman Equation for search without recommendations 

recognizes that this value is the maximum over choosing the outside option, denoted by 𝑈∗, choosing 

the maximum utility product without searching based on 𝑓௧, or continuing to search. The value of con-

tinuing to search is the maximum over all unsearched products taking into account that preferences will 

be updated through further search (if further search is optimal). Expectations are based on 𝑓௧, which is 

the consumer’s belief about his or her preference weights when the search decision is made. The result-

ing Bellman Equation is: 
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(3) 𝐽(𝑆௧ ,𝑓௧) = max ൜𝑈∗, max௝ୀଵ ௧௢ ௃ 𝐸ൣΣ௜ୀଵ ௧௢ ூ𝑤௜𝑥௜௝ห𝑓௧൧ ,  max  ௞∉ௌ೟ {−𝑐 + 𝛽𝐸[𝐽(𝑆௧ ∪ {𝑘}, 𝑓௧ାଵ|𝑓௧)]} ൠ, 
where 𝛽 ≤ 1 represents the discount factor. A key part of this optimization problem, relative to the 

search-theory literature, is that the belief distribution, 𝑓௧, is part of the state space and is defined over 

product attributes (rather than products). Naturally, Equation 3 could be extended to include uncertain-

ty over the �⃗�௝’s for research to marry preference-weight learning to attribute-level search. 

3.4. Recommendations 

 We model product recommendations as follows. A recommendation is a single product, which is 

recommended to the consumer at a given time. We assume that the consumer follows that recommen-

dation and searches the recommended product. A human recommender might be a real estate agent 

offering to show the home buyer a particular property, or a childcare agency scheduling interviews for 

parents with potential caregivers. We are particularly interested in automated recommendation sys-

tems. After searching the recommended product, the consumer continues to search optimally given his 

or her beliefs, according to Equation 3.  

For simplicity, we prefer to make the assumption that the consumer searches the recommended 

product, but the assumption also can be motivated with an assumed utility bonus (𝑈௕௢௡௨௦ > 0) to rep-

resent a belief by the consumer that the recommender knows something about the recommended 

product (not known to the consumer). The consumer trusts that, for some reason to be revealed during 

search, consumption utility is increased by the utility bonus. In other words, the consumer believes that 

the expected utility of recommended product ℓ is 𝐸[Σ௜ୀଵ ௧௢ ூ𝑤௜𝑥௜௟|𝑓௧] + 𝑈௕௢௡௨௦. If the bonus is suffi-

cient, but not so large that the consumer purchases product ℓ without searching, then it is optimal for 

the consumer to search the recommended product. At the end of search, knowledge gained by search-

ing overwhelms any ephemeral utility bonus. The consumer's consumption utility is based on 𝑤ሬሬ⃗ ௥. 

3.5. Preference-Weight Learning versus Attribute-Level Learning 

 Equation 3 is reminiscent of the Bellman equations used in classical models of optimal sequen-

tial search, but with key differences. For example, Equation 3 shares Weitzman’s (1979, p. 643) assump-

tion that “the sum of search costs is paid during search, whereas the maximum reward is collected after 

search has been terminated.” However, unlike in Weitzman’s model, the updates in Equation 3 do not 

necessarily reveal the value of the searched product with a single observation. Slower learning is as-

sumed in learning models such as in Chick and Frazier 2012, when each time the consumer searches, the 

consumer observes a random draw from a distribution, rather than the true parameter value. More crit-
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ically, in search models, such as Weitzman, and search with learning models, such as Chick and Frazier 

2012, product utilities are independent. Independence is often assumed in search models because inde-

pendence enables relatively simple search policies called index policies. With an index policy for search, 

the optimal search strategy continues until the revealed product (or attribute) exceeds an index deter-

mined by a simpler Bellman equation. Index strategies break the curse of dimensionality. When inde-

pendence during search is lost due to preference-weight learning, we know of no optimal or near-

optimal index strategies. 

Index strategies are also important for a different, but related, set of dynamic programs: multi-

armed bandit problems. Multiarmed bandit problems share the property of search with learning prob-

lems that multiple alternatives are each described by reward distributions, but multiarmed bandit prob-

lems differ because rewards can be obtained in each period rather than only at the end of search. The 

consumer decides which alternative (“arm”) to try by balancing immediate rewards versus the long-term 

benefits from learning about the reward distribution in order to choose better in the future. The con-

sumer sequentially tries alternatives, but unlike search problems, the consumer receives a potential 

payoff every time an arm is pulled, rather than only receiving the reward from the chosen product (or 

outside option) at the end of search. When the alternatives are independent, Gittins (1979) demon-

strated that the optimal policy is to choose the alternative with the largest index. Whittle (1988) ex-

tended index policies to restless bandits where the value of the non-chosen alternatives can change in-

dependently. Many bandit problems have been shown to be indexable (Gittins, Glazebrook, and Weber 

2011), including the partially-observable Markov processes in website and banner morphing (Hauser, et 

al. 2009). When there is a switching cost between arms, the bandit is said to have memory, and multiple 

indices might be required (Jun 2004). In some cases, structured interdependence is allowed and greedy 

policies perform near optimally (Mersereau, Rusmevichientong, and Tsitsiklis 2009). In the marketing 

literature, multi-armed bandit models have been used to model consumer purchases in CPG categories 

(Lin, Hauser and Zhang 2014), to optimize advertising creative (Schwartz, Bradlow and Fader 2017), and 

in revenue management for optimal pricing (Schwartz, Misra, and Abernethy 2017). Research on multi-

armed bandits is extensive and ongoing. In time, concepts from this literature might provide new in-

sights to search models with preference-weight learning. 

The very nature of preference-weight learning induces interdependence among product utilities 

—every time a preference weight is updated the utilities of all products with the corresponding attribute 

level, including those already searched, can change. Index policies are unlikely to be optimal. We know 

of no simplifying policy that provides an optimal solution for Equation 3, nor for recommendations that 
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influence a consumer who bases his or her optimal search on Equation 3. Even in simple two-products-

two-attribute markets, relationships to determine the optimal policy are complex. The curse of dimen-

sionality applies. (See Appendix 1, which illustrates Equation 3 with and without a recommendation sys-

tem.)  

Interdependence and the curse of dimensionality require that realistic recommendation systems 

rely on heuristic policies. For example, if all attribute combinations were feasible in a product space with 

ten attributes at six levels each, a single recommendation would require that we evaluate almost 60 mil-

lion candidate recommendations. This number would grow to over three quadrillion pairwise recom-

mendations for a Top-2 recommendation system (which recommends two products sequentially). With-

out any special structure, the memory requirement of the dynamic program in Equation 3 grows expo-

nentially with the size of the problem. It is no surprise that applied recommendation systems rely on 

heuristics. To be consistent with applications and with the recommendation systems literature, we ex-

plore recommendation system modifications that are likely to be feasible in applied situations. These 

modifications are necessarily heuristic. We develop potential heuristics by examining the structure of 

consumer search and the implied recommendation policies.  

4. Insights About Search and Recommendation  
Equation 3 implies that the consumer must make tradeoffs among search costs and the reward 

to purchasing without search versus the knowledge gained from further search and improved rewards 

that come from a later purchase. Equation 3 becomes even more challenging when a recommendation 

system is introduced. The complexities, due to the interdependence imposed by preference-weight 

learning, requires that we seek qualitative insights toward potential heuristic modifications to recom-

mendation systems. This section provides insights; §7 develops and tests recommendation systems 

which implement modifications based on the insights. 

4.1. Recommendation System Beliefs 

 A key component of the Candice-and-Dave condominium vignette was that the realtor had be-

liefs about Candice and Dave’s preference weights and that these beliefs were better (closer to the true 

preferences) than Candice and Dave’s initial beliefs. Let 𝑓௥௘௖(𝑤௜) be the recommendation system’s be-

liefs about the consumers’ preference weights. For some attributes, the recommendation system’s pri-

ors may match the consumer’s priors (𝑓௜௥௘௖ = 𝑓௜௧), but for other attributes the recommendation system 

may believe that the consumer beliefs are not accurate (𝑓௜௥௘௖ ≠ 𝑓௜௧). In this notation, we do not require 

that the recommendation system know the consumer’s true beliefs, 𝑤௜௥, perfectly. The recommendation 

system’s beliefs may be a probability distribution. However, if the recommendation system is to be val-
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uable, 𝑓௥௘௖(𝑤ሬሬ⃗ ) should, in some sense, be closer to 𝑤ሬሬ⃗ ௥ than is 𝑓௧(𝑤ሬሬ⃗ ). We quantify “closer” below. (We 

assume the recommendation system cannot credibly inform the consumer of its beliefs about the con-

sumer’s preference weights; it must do so implicitly by recommending products to the consumer.)  

By assumption, if the recommendation system recommends product 𝑗 at time t, then 𝑠௧ = 𝑗. The 

key difference between the recommendation system and the consumer is that the recommendation 

system expects the first (or first few) updates to be based on 𝑓௥௘௖. When the number of potential rec-

ommendations is small, as in the example in Appendix 1, the optimal recommendation can be found by 

exhaustive enumeration. When the number of products is more typical, we must rely on heuristic poli-

cies.  

4.2. Aspect Diversity 

4.2.1. Consumer Search in a Full-Factorial Product Space 

 Consider first a full-factorial product space in which, for 𝐼 binary attributes, all 2ூ possible com-

binations of attribute levels are available as products. In Equation 3, the search costs are product-based, 

not attribute based, thus searching a product 𝑗 with 𝑥௜௝ = 1 for 𝐼 attributes is no more costly than 

searching products with 𝑥௜௝ = 1 for only one attribute. On the other hand, if the consumer were to 

search the product with 𝐼 attributes present, the consumer would gain more information than he or she 

would by searching a product with one attribute present. (The consumer can still decide to purchase the 

one-attribute-present product. Unlike bandit problems, there is no immediate reward during search. 

Search produces knowledge to improve net consumption utility after a product or the outside option is 

chosen.) If the optimal solution at 𝑡 = 1 were for the consumer to search a product, then the best prod-

uct to search is the product 𝑗 with all 𝐼 attributes present, 𝑥௜௝ = 1 for all 𝑖. The insight has intuitive ap-

peal. Realtors often recommend that consumers search homes outside of their price range in order to 

experience and learn about as many attributes as possible, such as proximity to playgrounds, swimming 

pools, full-service concierge, island kitchens, and media rooms. Automobile dealers often maintain test-

drive cars with many “options.” (For interested readers, a formal proof in a two-product-two-attribute 

product space is available from the authors.) 

4.2.2. Full-Factorial Product Spaces are Rare, Especially with Multilevel Attributes 

The value of searching a fully-attributed product to learn (update) preference weights raises a 

conundrum. It seems obvious that the consumer should always begin by searching the product with all 𝐼 
attributes present—no recommendations are needed. But recommendation systems are popular and 

highly researched. The answer to the conundrum is simple. In most realistic cases, full-factorial product 
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spaces are not available. Highly featured cars are priced high, and may be outside the consumer’s price 

range, leading to “sticker shock.” Many possible attributes describe homes—a fully-attributed property 

is exceedingly rare. The same can be said for caregivers, colleges, jobs, furniture, and dating opportuni-

ties.  

Recommendations are particularly valuable in product spaces with multilevel attributes in 

which, by definition, a fully-attributed alternative is not available: a vehicle cannot simultaneously be a 

sedan, a coupe, a station wagon, a cross-over, a minivan, an SUV, and a truck. Henceforth, to avoid con-

fusion, we follow Tversky (1972) and refer to a binary attribute level as an aspect. A multilevel attribute 

is then a collection of aspects with the constraint that exactly one of the aspects in an attribute has 𝑥௜௝ = 1.  
4.2.3. Aspect Diversity 

Despite the sparsity of full-factorial product spaces, the insights about fully-attributed products 

are useful. When consumers learn preference weights, it is valuable to search a product that has a di-

verse set of aspects. This insight is related to recent recommendation-system trends toward diverse, 

novel, or serendipitous products, and may provide a partial theoretical explanation for those trends. 

However, aspect diversity is subtly different because it focuses on learning about preferences for as-

pects rather than for the products themselves. 

Recommendation systems provide value by recommending products that improve the consum-

er’s search, resulting in a higher terminal utility net of search costs, relative to what the consumer would 

have searched on his or her own. Thus, it is valuable to recommend products with aspects that have a 

high true preference weight but which the consumer would not otherwise have searched. This value 

comes into Equation 3 primarily in the continuation value, 𝐽(𝑆௧ ∪ {𝑘}, 𝑓௧ାଵ|𝑓௥௘௖)]. If product 𝑘 has as-

pects the consumer would not have otherwise searched, the recommendation helps the consumer to 

make better subsequent search decisions and, ultimately, identify a higher utility product (net of search 

costs) to purchase and consume. We call a recommendation system modification that implements this 

modification, “Aspect Diversity.” There are many ways to implement an aspect diversity heuristic. We 

have found that it is effective to modify the standard recommendation-system criterion (maximize ex-

pected utility based on 𝑓௥௘௖) to include a penalty for recommending aspects the consumer would oth-

erwise have searched. If 𝑠௧∗ indicates the product the consumer would have searched without a recom-

mendation, then the aspect diversity criterion becomes: 

(4) �⃗�௥௘௖ = arg max௝ୀଵ ௧௢ ௃𝐸ൣΣ௜ୀଵ ௧௢ ூ𝑤௜𝑥௜௝ห𝑓௥௘௖൧ − 𝜆 ∙ Σ௜ୀଵ ௧௢ ூ𝑥௜௦೟∗ ∙ 𝑥௜௝ . 
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The parameter, 𝜆, determines how much emphasis the recommendation system places on diverse as-

pects. When 𝜆 = 0, the recommendation system recommends the maximum-expected-utility product; 

when 𝜆 → ∞, the recommendation focuses primarily on diversity. As is typical in recommender systems 

applications, 𝜆 is a tuning parameter that is best chosen by experience or experimentation. 

4.3. Recommendation Systems that Use Information about Expected Preference Weights 

Equations 2 and 3 rely on the consumer’s priors, 𝑓௧ , the recommendation system’s priors 𝑓௥௘௖, 

and the signal distribution, 𝑔(𝑤௜௥|𝑤௜ , 𝑠௧ = 𝑗). In theory, recommendations might depend upon the full 

distributions. For example, recommendations may vary depending upon the rate at which the consumer 

learns preference weights. However, full distributions (𝑓௧, 𝑓௥௘௖, and 𝑔) might be hard for the recom-

mendation system to observe—the recommendation system might be much better at observing or pre-

dicting the mean of the distributions. For such cases, we begin with recommendation system modifica-

tions that rely only on the expected values of the preference weights and later consider recommenda-

tion system modifications based on the full distributions. 

4.3.1. Conceptual Example  

Consider three condominiums that are similar on all attributes except playground proximity, 

type of kitchen (traditional, open-concept, island), and type of service (live-in superintendent, full-

service concierge). Suppose Candice and Dave’s prior beliefs are such that they do not value playground 

proximity, and prefer an island kitchen in a building with a full-service concierge. Suppose the recom-

mendation system believes that Candice and Dave undervalue playground proximity and correctly value 

an island kitchen, but overvalue a full-service concierge. Finally, suppose that the condominium stock in 

Candice and Dave’s target market is limited—not all combinations of playground proximity, kitchens, 

and service are available. Intuitively, the recommendation that would lead to the largest shift in Candice 

and Dave’s beliefs about their preference weights is a condominium, if available, that has playground 

proximity, but a live-in superintendent. By improving Candice and Dave’s understanding of their prefer-

ence weights, the recommendation may lead them to purchase and consume a condominium with play-

ground proximity. Candice and Dave may learn to forego a full-service concierge and allocate their lim-

ited budget to other high-valued aspects. (If nothing else, condo fees are less with a live-in superinten-

dent than a full-service concierge.) 

4.3.2. Undervalued Products 

 The intuitive recommendation in the condominium example is based on both components of 

the Equation 3, 𝐸ൣΣ௜ୀଵ ௧௢ ூ𝑤௜𝑥௜௝ห𝑓௥௘௖൧ and 𝐽(𝑆௧ ∪ {𝑘}, 𝑓௧ାଵ|𝑓௥௘௖). By recommending a condominium 

near a playground, the recommendation system improves the expected reward because 
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𝐸ൣ𝑤௣௣𝑥௣௣,௝ห𝑓௥௘௖൧ > 𝐸[𝑤௣௣𝑥௣௣,௝|𝑓௧] for playground proximity (𝑝𝑝). It does so by shifting the priors to-

wards a high valued attribute level that the consumer currently undervalues. If the mean of 𝑓௥௘௖  is clos-

er to 𝑤ሬሬ⃗ ௥ than the mean of 𝑓௧, then the expected purchase and consumption utility is also improved. The 

continuation value comes into play because Candice and Dave can search more effectively for the next 

condominium when further search is optimal. They can do so because their objective function better 

matches their true utility (𝐽(𝑆௧ ∪ {𝑘}, 𝑓௧ାଵ|𝑓௥௘௖) increases). The recommendation is a good recommen-

dation if these gains are greater than the search cost, 𝑐.  

The suggested modification to a recommendation system is to recommend undervalued prod-

ucts, where “undervalued” implies that the expected utility based on the recommendation system’s be-

liefs is higher than the expected utility based on the consumer’s priors, that is, 𝐸ൣΣ௜ୀଵ ௧௢ ூ𝑤௜𝑥௜௝ห𝑓௥௘௖൧ >𝐸ൣΣ௜ୀଵ ௧௢ ூ𝑤௜𝑥௜௝ห𝑓௧൧. We implement the heuristic by identifying those products for which the difference 

between recommendations system’s beliefs about the consumer’s expected utility and the consumer’s 

beliefs about the expected utility is maximized: 

(5) �⃗�௥௘௖ = arg max௝ୀଵ ௧௢ ௃𝐸ൣΣ௜ୀଵ ௧௢ ூ𝑤௜𝑥௜௝ห𝑓௥௘௖൧ − 𝐸ൣΣ௜ୀଵ ௧௢ ூ𝑤௜𝑥௜௝ห𝑓௧൧. 
 We call a recommendation system that implements this modification “Undervalued Products.” 

4.4. Differences in the Distributions of 𝒇𝒓𝒆𝒄 and 𝒇𝒕 
 In some cases, the recommendation system might be able to measure the variance (or the full 

distributions) of 𝑓௥௘௖  and 𝑓௧. If so, we might improve recommendations by allowing the recommenda-

tion system to use its knowledge of the preference-weight belief distributions and the signal, not just 

the means of the distributions. For example, a recommendation system might favor recommending 

products with aspects for which preference weights are updated more rapidly (less posterior variance) 

or products with aspects for which the recommendation system has tighter beliefs. We propose two 

such recommendation-system heuristics. 

Option Value Discrepancy. We draw insight from search theory and focus on the option values 

for the attribute levels of a searched product. However, unlike in optimal search models, we take both 𝑓௥௘௖  and 𝑓௧ into account. Because option values are easiest to understand for multilevel attributes, we 

temporarily modify our notation to accommodate multilevel attributes. In particular, let 𝑥௜ℓ௝ = 1 if 

product 𝑗 has attribute 𝑖 at level ℓ. We define 𝑤௜ℓ similarly. Then we implement the heuristic as follows: 

(6) �⃗�௥௘௖ = arg max௝ୀଵ ௧௢ ௃෍෍ ቈන 𝑤௜ℓ𝑑𝑓௥௘௖(𝑤௜ℓ)ஶ
௪೔∗ − න 𝑤௜ℓ𝑑𝑓௧(𝑤௜ℓ)ஶ

௪೔∗ ቉ℓ:௫೔ℓೕୀଵ
ூ

௜ୀଵ , 



16 
 

where 𝑤௜∗ is the highest expected value over ℓ of 𝑤௜ℓ. (To make Equation 6 feasible, we use the ex-

pected value for 𝑤௜∗ rather than integrate over all possible outcomes.) We call a recommendation sys-

tem that implements this modification, “Option Value Discrepancy.” 

Kullback-Liebler. We might also attempt to quantify the difference between the two distribu-

tions, 𝑓௥௘௖  and 𝑓௧, and use the quantified difference. A formal measure of distance between two distri-

butions is the Kullback-Liebler divergence from 𝑓௧ to 𝑓௥௘௖, 𝐷௄௅(𝑓௧  ∥ 𝑓௥௘௖). Kullback-Liebler divergence 

measures the non-symmetric difference between two probability distributions. If a larger divergence 

between the two distributions leads to the most learning, then, returning to the 𝑥௜௝  notation, a heuristic 

based on this concept is the following where 𝐷௄௅,௝  is the Kullback-Liebler divergence for product 𝑗.  
(7) �⃗�௥௘௖ = arg max௝ୀଵ ௧௢ ௃෍ 𝐷௄௅,௝(𝑓௜௧  ∥ 𝑓௜௥௘௖)௜:௫೔ೕୀଵ . 
We call a recommendation system that implements this modification, “Kullback-Liebler.” We provide 

more specific formulae in §7, when we make distributional assumptions about 𝑓௥௘௖  and 𝑓௧. 
5. Preference-Weight Learning Criteria 

 Preference-weight learning introduces new twists to existing literatures in recommendation sys-

tems and search theory. In particular, the modifications in §4 are based on criteria that differ from the 

typical criteria in the recommendation systems literature and in the search theory literature. In this sec-

tion, we explore those differences. 

5.1. Compared to Typical Recommendation System Criteria 

 In the recommendation systems literature and in the marketing science literature, most recom-

mendation systems are evaluated on their ability to predict the products that consumers will choose. 

This is a reasonable criterion when the consumer knows his or her preference weights because, in such 

cases, the goal is to recommend the product that will deliver maximum purchase and consumption utili-

ty. This criterion will not maximize purchase and consumption utility when consumers learn preference 

weights. 

 Consider the condominium example. If the recommendation system were to recommend the 

condominium that maximizes expected utility based on 𝑓௧, the Candice and Dave would choose a con-

dominium without playground proximity in a full-service building. Candice and Dave would never know 

what they missed. Our example in §4.3.1 also implies that the best recommendation may not be the 

product Candice and Dave are most likely to choose. Instead, the best recommendation might be a con-

dominium that the recommendation system believes Candice and Dave will never buy. Searching a con-
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dominium with a less-desired kitchen, but with playground proximity and their true preferred level of 

service, might be the most efficient way for Candice and Dave to learn their preference weights for play-

ground proximity and level of service. After updating their preference weights, the Candice and Dave are 

more likely to search the product that maximizes purchase and consumption utility net of search costs. 

The trends of product diversity, product novelty, and product serendipity can be interpreted as improv-

ing the continuation value in Equation 3 because consumers learn their preference weights. 

5.2. Compared to Typical Search Theory Criteria 

 Because most search-theory analyses assume independence among products, efficient optimal 

policies are based on indices (e.g., Weitzman 1979; Branco, Sun, and Villas-Boas 2012). Although the 

details vary, the indices tend to favor the upper tail of the probability distribution of product utility ra-

ther than the expected value of the product utility or the expected value of a level of the attribute. Up-

per-tail criteria (indices) represent the option value from the searched product (choose it, continue to 

search, or choose an already searched product). The option value represents the expected gain in utility 

if the product turns out to have higher utility than the current best option. If the expected utilities of 

two products are equal, these criteria favor products with high variance in utility distributions (if the dis-

tributions are from the same distributional family). 

 These criteria do not necessarily apply when consumers learn their preference weights, in part, 

because of the interdependence in Equation 3. Assume that Candice and Dave are now sure that their 

preference weight for playground proximity, 𝑤௣௟௔௬௚௥௢௨௡ௗ, is high, but they don’t know how high. They 

have decided on an open-concept kitchen and a live-in superintendent, but are now considering wheth-

er they want a condominium with an eat-in kitchen, a media room, or both. (Attribute level weights are 

net of added price.) There are three types of condominiums left to search:  

(a) {playground proximity = good, media room = yes, kitchen = not eat-in} 

(b) {playground proximity = good, media room = no, kitchen = eat-in}, and  

(c) {playground proximity = bad, media room = yes, kitchen = eat-in}.  

Candice and Dave do not know whether they prefer a media room or an eat-in kitchen, but they 

know that having both has less preference weight than playground proximity, 𝑤௣௟௔௬௚௥௢௨௡ௗ > 𝑤௠௘ௗ௜௔ +𝑤௘௔௧ି௜௡ ௞௜௧௖௛௘௡. Candice and Dave may choose to search condominiums in type (c) to resolve their pref-

erence weights for media rooms and eat-in kitchens, even though the option values of both the type (a) 

and type (b) condominiums are higher. After resolving the uncertainty by evaluating type (c) condomini-

ums, they can then choose a condominium in either type (a) or type (b). Their actual decision, and the 
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decision on whether to continue to search, depends upon the preference-weight distributions, the 

search costs, and the discount rate. We argue in §5.3 that prior preference-weight distributions exist 

such that the best strategy is to search type (c) condominiums and that such distributions are reasona-

ble. 

The Candice-and-Dave example provides a counterexample to maximizing the option value of 

the searched products. The optimal product to search, a condominium of type (c), has no option value if Pr൫𝑤௣௟௔௬௚௥௢௨௡ௗ > 𝑤௠௘ௗ௜௔ + 𝑤௘௔௧ି௜௡ ௞௜௧௖௛௘௡൯ = 1, because a condominium of type (c) would never 

have the highest utility. It also provides a counterexample to maximizing the option value of preference-

weight distributions. The option value of the weight on playground proximity can be higher than the op-

tion value for the weights on the other attributes, but resolving playground-proximity uncertainty does 

not change Candice and Dave’s decision. The key mathematical insight is that, for preference-weight 

learning, the continuation value in Equation 3 is not separable in either products (𝑗) or attributes (𝑖) if 
the product space is not full-factorial (if all 2ூ products are not available). Resolving uncertainty by up-

dating 𝑓௧ to 𝑓௧ାଵoccurs for all aspects in the searched products which, in turn, affects the option values 

of all products searched and to be searched.  

The Candice-and-Dave vignette illustrates search without a recommendation. It is easy to em-

bellish the vignette for recommendations. If 𝑓௥௘௖ = 𝑓௧, the best recommendation remains type (c) con-

dominiums. But suppose that 𝑓௥௘௖  is such that the recommendation system believes that Candice and 

Dave undervalue eat-in kitchens, then the motivation for recommending a search of type (c) condomini-

ums is even stronger.  

5.3. Formal Demonstration of Intuition 

 §5.1 and §5.2 provide intuitive examples to illustrate that neither the consumer’s optimal search 

nor the best recommendations are based on the traditional criteria. It remains to demonstrate that we 

can actually choose 𝑓௧ and/or 𝑓௥௘௖  such that traditional criteria do not apply. Appendix 1 contains two 

formal proofs for a product space with three aspects. The first formalization addresses optimal search 

when there is no recommendation system. The second formalization adds a recommendation system. 

Together the two results formalize the intuition from §5.1 and §5.2. Because we need only establish the 

existence of consumer search and recommendation systems for which standard criteria do not apply, the 

formalizations allow the consumer to update beliefs fully with a single observation of an aspect. 

 Specifically, Appendix 1 establishes that the criteria for the optimal search without a recommen-

dation and for the optimal recommendation under preference-weight learning: 

• Differ from typical criteria in recommendation systems. 
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o the best recommendation may not be the product with the highest expected utility. 

o the best recommendation may be a product that the consumer is unlikely to choose. 

• Differ from typical criteria in optimal search 

o the best product to search (recommend) may not be the product with the highest option 

value. 

o the best product to search (recommend) may not have the largest variance in utility. 

The formal demonstrations tell us what the recommendation should not do. In §4 we proposed 

three criteria for new recommendation systems: 

• Modification 1. Recommend products with diverse aspects. 

• Modification 2. Recommend products with undervalued expectations (𝐸[𝑓௥௘௖] vs. 𝐸[𝑓௧]). 
• Modification 3. Recommend products to move the consumer’s priors closer to the recommenda-

tion system’s priors. 

The suggested modifications are consistent with, and provide a marketing-science explanation 

for, recent trends in the recommendation system literature (diversity, novelty, and serendipity). Howev-

er, preference-weight-learning suggests that diversity should be with respect to aspects, novelty should 

be based on not-yet-searched aspects, and serendipity should focus on products with aspects that are 

undervalued. 

6. Recommendations When Consumers Learn Preference Weights 
 Before we test the proposed recommendation system modifications, we gain insight by explor-

ing how recommendations influence the consumer’s search path.  

6.1. Structure of the Synthetic Data  

We examine a product space defined by three six-level attributes. The eighteen (18 = 3 ×  6) 

aspects in our product space are sufficient to illustrate interesting phenomena, but not so complex as to 

make calculating post-recommendation search infeasible. With three six-level attributes, 6 ×  6 ×  6 =216 feasible products exist in the product space. Let 𝐿௞  denote the set of aspects that correspond to 

levels of attribute 𝑘. 

The consumer’s prior beliefs, 𝑓௜଴, for all aspects, 𝑖, are normally distributed and independent 

over aspects. We denote the means and standard deviations of the aspect-based normal distributions by 𝑤ഥ௜ and 𝜎௜  such that 𝑓௜଴ = 𝒩(𝑤ഥ௜଴,𝜎௜଴). The signal obtained about the preference weight by searching a 

product with the corresponding aspect is also normally distributed, 𝑔 = 𝒩(𝑤௜௥ ,𝜎௜௦). These assumptions 

imply that the posterior distributions, updated from product search, are normally distributed, 𝑓௜௧ =
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𝒩(𝑤ഥ௜௧ ,𝜎௜௧). The formulae for the posterior distributions are standard and given in Appendix 2. The pos-

terior mean is a convex combination of the prior mean and the true mean. For ease of notation, we as-

sume both the consumer and the recommender system know the preference weight for a base level 

(aspect) of each attribute. We set the preference weight of the base level to 0. (For example, such as-

sumptions are necessary for identification in choice-based conjoint analysis.) The specific values of 𝑤ഥሬሬ⃗ ଴, �⃗�଴, and 𝑤ሬሬ⃗ ௥ are given in Appendix 2. Patterns similar to those discussed in this section emerge for a wide 

range of parameter values and numbers of attributes. 

To simplify the search problem, we assume all 216 products are available. We call such product 

spaces “fully-crossed” to distinguish them from the much larger full-factorial aspect spaces. In a fully-

crossed product space, the maximum-utility product is the product with the maximum-preference-

weight level for each attribute. In a fully-crossed product space, the search problem can be broken 

down by attribute. Returning to the multilevel attribute notation introduced in §4.4, for each attribute 𝑖, 
the consumer searches the product that maximizes (over levels) the option value of searching level ℓ in 

each attribute 𝑖, ׬ 𝑤௜ℓ𝑑𝑓௧(𝑤௜ℓ)ஶ௪೔∗ , where 𝑤௜∗ was defined in §4.4. Because the product space is fully-

crossed, there exists a product that has attributes at the maximizing levels. (Note that these option val-

ues apply attribute-by-attribute and only in a full-crossed product space. This does not contradict the 

option-value result in §5.3.) 

The attribute-level-maximization policy is heuristic rather than optimal because the lower limit 

of the integral is based on expected values rather than a full (infeasible) solution to the Bellman equa-

tion. The attribute-level-maximization heuristic approaches optimality as the signal variances, (𝜎௜௦)ଶ, 

approach zero. The attribute-level-maximization heuristic outperforms other known heuristics, such as 

that by Chick and Frazier (2012), which is optimized for search with attribute-level learning among inde-

pendent products. (Details available from the authors.)  

In this section, we evaluate the impact of a single recommendation for each consumer. A single 

recommendation is sufficient to affect the consumer’s search path and illustrate the phenomena made 

possible by preference-weight learning. We allow multiple recommendations when we test the pro-

posed recommendation-system modifications in §7. 

6.2. Comparison of Recommended and Chosen Products  

We evaluate recommendations of each of the 216 possible products. We assume 𝑈௕௢௡௨௦ is such 

that the consumer searches the recommended product and then continues searching (near) optimally. 

At the (endogenous) end of search, the consumer either chooses a product or the outside option. We 

summarize the results in Figures 1 and 2. 
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The vertical axis of Figure 1 plots the consumer’s net pay off—the utility of the chosen product, 

minus the incurred search costs. The horizontal axis of Figure 1 represents the true utility of the recom-

mended product (based on 𝑤ሬሬ⃗ ௥). The consumer learns (updates) 𝑓ଵ after he or she searches the recom-

mended product and, perhaps, continues to search. In Figure 1, all recommendations lead the consumer 

to purchase one of three products as indicated by the horizontal clusters. The net utility of the chosen 

product differs slightly because search costs differ. (“Three products” is not a general result. Different 

parameter values give different numbers of post-search products.) 

Figure 1. Net Utility of Product Chosen After Search vs. Utility of Recommended Products 

 

We first examine the product recommendation in Figure 1 that is represented by the diamond 

(). In this case, the recommendation system recommended the highest-utility product and the con-

sumer chose that product, but ultimately did so after incurring more search costs than would have been 

incurred for other recommendations. This suggests that even if a recommender system has perfect 

knowledge of consumer utility, the highest utility product may not be the best recommendation if the 

consumer has to learn his or her own preferences. The recommendation indicated by a triangle () also 

leads the consumer to the highest-utility product, but does so by recommending a much lower-utility 

product. After receiving this recommendation (), the consumer learns efficiently that some attributes 

are more important and some are less important than previously thought. 

The recommendation indicated by a square () is interesting. For such recommendations, the 

consumer is satisfied with the recommended product and has no incentive to search further. Such rec-
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ommendations by non-benevolent recommenders (or poorly-designed recommendation systems) ex-

ploit the consumer’s naïveté and lead the consumer to purchase a product that is not the highest true 

utility. The consumer would not update his or her priors sufficiently, never learn of better-than-

expected-utility products, but would be satisfied with the chosen product at the time of purchase. The 

consumer might even thank the recommendation system for a recommendation. For example, a non-

benevolent realtor might have incentives to recommend his or her own listing to obtain both seller and 

buyer commissions (Ansari, Essegaier, and Kohli 2000). Similarly, and with similar concerns, short-term 

gains might be tempting if paid advertising supported a recommendation system. The other interesting 

feature about the recommendation denoted by a square () is that other recommendations () exist, 

with lower initial utility, that lead to higher post-search utility. 

Recommendations, such as indicated by a circle (), lead the consumer to choose low-utility 

products. After following such recommendations, the consumer, acting optimally based on his or her 

priors, updates some of his or her preference weights, but never updates preference weights sufficiently 

to find the highest-utility product. Post search, the consumer believes falsely that he or she has found 

the product that has the highest utility. Despite the opportunity loss, the consumer might be satisfied. 

Without a recommendation and without search, the consumer in this example would have chosen the 

product the consumer believes would maximize utility. The consumer would have expected to receive 

utility of 11.4 from this purchase, but, upon consumption, would only have received utility of 9.4. Had 

the consumer searched without a recommendation, and chosen optimally after searching this product, 

the consumer would have received utility of 10.7, basically in the middle tier of products that could have 

been recommended.  

 Figure 2 provides a different perspective based on the same set of candidate recommendations. 

Figure 2 compares net post-search utility to recommendation system beliefs. In this illustration, the 

mean of the recommendation system beliefs, 𝑓௥௘௖, is a convex function of the mean of the consumer’s 

prior beliefs, 𝑓଴, and the consumer’s true beliefs, 𝑓(𝑤ሬሬ⃗ ௥). As anticipated by §5 and as represented by a 

hexagon (), a recommended product, thought by the recommendation system to be the highest-utility 

product, does not lead the consumer to the highest-utility product. After receiving that recommenda-

tion (), the consumer, acting optimally based on priors, would not search sufficiently to find the true 

highest-net-utility product. A recommendation system would have served the consumer better had it 

recommended the product indicated by a diamond (), or even the product indicated by a triangle (). 

In the latter case (), the recommendation itself would not have been a high-utility product, but the 

recommendation would have caused the consumer to update his or her beliefs and continue searching 
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until the highest-net-utility product was found. 

In Figures 1 and 2, the utilities of the recommended products and the net utilities of the chosen 

products are correlated (𝜌 = 0.43,𝜌 = 0.28, respectively), but the relationship is well below 1.0. Pref-

erence-weight learning drives the lack of perfect correlation. Detailed examination of the search path 

reinforces the insights obtained from §4—the best recommendations are those that encourage the con-

sumer to search products that reveal diverse aspects and undervalued aspects. Figure 2 reinforces the 

insight that good recommendations provide valuable information. Figures 1 and 2 allow the consumer to 

be surprised either positively (preference weight higher than priors) or negatively (preference weight 

lower than priors). Both forms of preference-weight learning are valuable to consumers. 

Figure 2. Net Utility of Product Chosen after Search vs. Recommendation System’s Beliefs  
about the Utility of the Recommended Product  

 

7. Preference-Weight-Learning Recommendation Systems Evaluations 
To explore whether the modifications suggested in §4 improve recommendation system per-

formance, we expand the analyses of §6 to 5,000 consumers in multiple experimental conditions. Be-

cause the value of preference-weight learning depends upon differences in 𝑓௥௘௖  and 𝑓௧, our experi-

mental conditions vary with respect to the quality of consumers’ priors (naïveté), the quality of the rec-

ommendation system’s priors (recommendation system knowledge), and the rate at which consumers 

update their preference weights. By design, consumers learn their preference weights as they search 

products. Our synthetic-data experiments are proof-of-concept experiments: we examine whether the 
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recommendation system modifications improve recommendation system performance when consumers 

learn their preferences. We complement these synthetic-data experiments with an empirical demon-

stration in §8.  

We expect preference-weight learning to be particularly relevant for naïve consumers who are 

new to a product category. Naïveté is more likely for infrequent purchases such as automobiles, hous-

ing, college choice, and nannies. Naïveté is also more likely for consumers who feel they need recom-

mendations. Because the preference-weight-learning modifications use more-complete knowledge 

about 𝑓௥௘௖  and 𝑓௧ than do typical recommendation system benchmarks, we expect the incremental val-

ue of the preference-weight-learning modifications to generally increase with recommendation system 

knowledge. The exception is low recommendation-system knowledge where we expect that no recom-

mendation system does well. We expect that faster updating should favor the preference-weight-

learning modifications. 

7.1. Product Space and True Consumer Utilities 

 We simulate a product space of three six-level attributes using the same structure that we used 

in §6. We consider recommendation systems that recommend two products sequentially. For each ex-

perimental condition and for each of 5,000 consumers in that experimental condition, we draw true as-

pect preference weights from a mixture of two normal distributions: one with a low mean to represent 

unimportant aspects and one with a high mean to represent important aspects. The consumer’s prior 

beliefs are normally distributed and independent over aspects and depend on naïveté as described in 

§7.2. The variances of the consumers’ priors (𝑣௜ in Appendix 2) are drawn i.i.d. from an exponential dis-

tribution. The specific values of the parameters of the preference-weight distributions are given in Ap-

pendix 2. For readers wishing to explore other parameter values, other recommendation system modifi-

cations, or other combinations of naïveté, recommendation system knowledge, or the rate of updating, 

the software is available from the authors.  

7.2. Characteristics Varied in the Synthetic Data Experiments 

 Consumer Naïveté. For each consumer, we set the prior means equal to the true means for a 

fraction of the aspects. For the remaining aspects, we redraw the prior means randomly. A consumer is 

more naïve (less expert) if a larger fraction of the consumer’s prior beliefs are redrawn randomly. We 

vary this fraction (𝜂 in Appendix 2). An expert has naïveté equal to zero and a novice has naïveté equal 

to 1. 

Recommendation System Knowledge. For some aspects we set the recommend system’s priors 

to the consumer’s priors (probability 𝑃௖). For the remaining aspects we set the mean of the recommen-
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dation system’s priors to the true partworths with probability 𝑃௥௘௖ and we set the recommendation sys-

tem's priors randomly with probability 1 − 𝑃௥௘௖. Larger 𝑃௥௘௖  implies greater recommendation system 

knowledge. We maintain the 𝑃௖  parameter to recognize that, even with 𝑃௥௘௖ = 1, recommendation sys-

tems are unlikely to ever know the true preference weights perfectly. The variances of the recommen-

dation system priors are constant for all consumers. (In theory, we can manipulate recommendation 

system knowledge by manipulating the means, the variances, or both. Exploratory simulations suggest it 

is sufficient to manipulate the means.) 

There are a variety of well-established methods by which recommendation systems learn con-

sumers’ priors and consumers’ true preferences. Collaborative filters, content-based filters, and statisti-

cal model-based systems, as reviewed in §2, are just a few examples. Methods for such firm-side learn-

ing are well-established in theory and in practice, but research on improvements continues. In a related 

context, Hauser, Liberali, and Urban (2014) illustrate that, in automated systems, firm-side learning 

about the best “morph” can be decoupled from learning about consumers’ cognitive styles. (The analogy 

is recommendation policy  morph and consumer beliefs  cognitive style. The mathematical struc-

ture, while related, is not identical.) Recommendation system knowledge is likely to be greater if con-

sumers are more homogeneous, if consumer's priors can be measured directly, if true preferences can 

be estimated as a function of observable characteristics of the consumer, or if the recommender system 

has access to more data. (Manipulating the heterogeneity of the environment provides an alternative 

method to manipulate recommendation system knowledge. Results are similar.) 

Rate of Updating. The rate at which the consumer converges to the true utility parameters de-

pends on the variance of the signal, (𝜎௜௦)ଶ in Appendix 2. We vary this parameter in our experiments. In 

some experimental conditions, consumers update their priors rapidly (low signal variance) and in other 

experimental conditions consumers update their priors slowly (high signal variance). 

7.3. Preference-Weight Learning Recommendation Systems and Benchmark 

We test four recommendation system modifications that implement the insights and equations 

from §4. We compare these modifications to the typical benchmark recommendation system. The basic 

concepts are reviewed here. Recommendation system priors are 𝑓௜௥௘௖ = 𝒩(𝑤ഥ௜௥௘௖ , 𝜎௜௥௘௖). 

  Maximum Expected Utility Benchmark. The maximum-expected-utility recommendation sys-

tem recommends products that it expects will give the consumer the highest utility (based on 𝑓௥௘௖). 

 Aspect Diversity. The “Aspect Diversity” modification modifies the benchmark recommendation 

system by subtracting a penalty proportional to the number of aspects in common with the product the 

consumer would have searched without a recommendation, Equation 4.  
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 Undervalued Products. The “Undervalued Products” modification compares the consumer’s 

mean prior beliefs (𝑓௧) to the recommendation system’s mean beliefs (𝑓௥௘௖) and maximizes the differ-

ence in expect utility, Equation 5. Preliminary experiments suggest that we improve recommendations 

for this modification when make the recommendation less sensitive to small variations. When the varia-

tion is below a threshold, it is likely the consumer has learned his or her preferences—we revert to the 

benchmark. 

 Option Value Discrepancy. The “Option Value Discrepancy” modification recommends products 

for which the attribute-based option values, as calculated by the recommendation system are larger 

than the attribute-based option values as calculated by the consumer, Equation 6. Preliminary experi-

ments suggest a threshold does not improve this modification. 

 Kullback-Liebler. The “Kullback-Liebler” modification compares the Kullback-Liebler divergence 

for every aspect in product 𝑗 and recommends the product for which the divergence is largest, Equation 

7. When the consumer’s prior beliefs and the recommendation system’s beliefs are normally distribut-

ed, the Kullback-Liebler Divergence, 𝐷௄௅,௝, for each product, 𝑗, is given by Equation 8: 

(8) 𝐷௄௅,௝(𝑓௧ ∥ 𝑓௥௘௖) = 12 ൝෍ ൥ቆ 𝜎௜௧𝜎௜௥௘௖ቇଶ + ൫𝑤ഥ௜௥௘௖ − 𝑤ഥ௜௧൯ଶ൫𝜎௜௥௘௖൯ଶ + 2ln𝜎௜௥௘௖𝜎௜௧ − 1൩௜: ௫೔ೕୀଵ ൡ. 
7.4. Results of the Synthetic Data Experiments 

 We vary consumer naïveté and recommendation system knowledge in 10 equal steps each from 

0.1 to 1.0 for each level of signal variance and for each of five recommendation systems. In each of the 

experimental conditions, each of 10,000 consumers receives two sequential recommendations. The 

consumer searches the first recommended product and updates his or her preference weights. The con-

sumer then searches the second recommended product. The consumer either purchases a product or 

continues to search (near) optimally until the optimal stopping rule is reached. Performance is the dif-

ference between net utility achieved by a consumer who searches the product recommended by the 

recommendation-system modification and the net utility the consumer would have achieved without a 

recommendation. Net utility is the true utility of the chosen product, if any, minus the incurred search 

costs. 

 To visualize the patterns that emerge from the synthetic data experiments, we plot performance 

of the system while varying one parameter, and holding two other experimental variables constant. Be-

cause consumer preference weights are redrawn for each of the 10,000 consumers, we subtract from 

net utility, the utility of the product the consumer would have chosen without a recommendation. Be-
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cause we are interested in performance relative to the benchmark (maximum expected value recom-

mendations), we subtract benchmark performance from the performance of each recommendation sys-

tem in our plots. (The performance of the benchmark, relative to no recommendation, is plotted in Ap-

pendix 2. As expected, the benchmark performance increases for both consumer naïveté and recom-

mendation system knowledge.)  

Figure 3 plots relative performance versus consumer naïveté holding recommendation system 

knowledge constant; Figure 4 plots relative performance versus recommendation system knowledge 

holding consumer naïveté constant. Each figure contains a plot for slow consumer updating (high signal 

variance) and for fast consumer updating (low signal variance). We chose intermediate values for the 

experimental variable that is held constant: naïveté = 0.6 and recommendation system knowledge = 0.6. 

Figures 3 and 4 illustrate how naiveté and recommendation system knowledge affect relative perfor-

mance as a function of consumer naïveté, recommendation system knowledge, and the rate of updat-

ing. 

Figure 3. Improvement in Net Utility as a Function of the Consumer’s Naïveté 

 

(a) Slow Updating of Consumer Priors 

 
(b) Fast Updating of Consumer Priors 
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Figure 4. Improvement in Net Utility as a Function of Recommendation System Knowledge 

 

(a) Slow Updating of Consumer Priors 

  

(b) Fast Updating of Consumer Priors 

Figures 3 and 4 suggest that “Aspect Diversity”, “Undervalued Products”, and “Option Value Dis-

crepancy” improve recommendations relative to the improvement achieved by the recommendation 

system benchmark. We did not plot the performance of “Kullback-Liebler” to keep Figures 3 and 4 read-

able. Although “Kullback-Liebler” takes the full distributions of 𝑓௥௘௖  and 𝑓௧ into account, rather than just 

their means, its complexity appears to be handicap. It does not perform as well as the simpler recom-

mendation systems. The performance of the Kullback-Liebler recommendation system is available from 

the authors. 

 “Diverse Aspects” does better than the recommendation system benchmark over the entire 

range of naiveté. “Undervalued Products” and “Option Value Discrepancy” do extremely well for highly 

naïve consumers, but are slightly counterproductive relative to the benchmark for expert consumers. 

The latter is not surprising. There is little value to exploration of preference weights when consumers 
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already know their preference weights. Furthermore, when consumers know their preference weights, 

they are more likely than the tested recommendation system to choose the best product to search. 

Overall, the best recommendation system for naïve consumers is “Undervalued Products.” The best rec-

ommendation for expert consumers is “Diverse Aspects,” although it does not do much better than the 

benchmark. The proposed recommendation systems do slightly better when consumers update their 

preference weights rapidly, however the relative improvement is slight and the pattern is similar to that 

of the slow updating case.  

 When we vary recommendation system knowledge holding consumer naïveté constant at an 

intermediate value (0.6), all of the proposed recommendation systems beat the benchmark. “Underval-

ued Products” tends to be best except for very high recommendation system knowledge. Once again, 

the algorithms do slightly better when consumers update their preference weights rapidly. 

7.5. Summary of Synthetic Data Experiments 

 Figures 3 and 4 demonstrate that situations exist in which recommendation system modifica-

tions based on preference-weight learning improve the consumer’s net utility more than the typical rec-

ommendation-system benchmark. (Improvement is relative to no recommendation.) All three proposed 

modifications do well over most of the ranges and the performance appears to be robust with respect to 

the rate of updating. With refinement and tuning, we expect the relative performances of all of the 

modifications to improve further. For example, we might test a heuristic that combines the best features 

of the Undervalued-Product and the Aspect-Diversity modifications, or we might tune either or both 

modifications. We might modify “Kullback-Liebler” to be more robust. For readers wishing to explore 

refinements, software is available from the authors. 

8. Empirical Demonstration 
 We began §1 with premises that (1) consumers learn preference weights while searching prod-

ucts and (2) recommendation systems can anticipate consumers’ (true) preference weights. Based on 

these premises we proposed recommendation systems that take preference-weight learning into ac-

count. Synthetic data suggest that “Undervalued Products” shows promise relative to a benchmark rec-

ommendation system, “Maximum Expected Utility,” and relative to allowing consumers to choose with-

out a recommendation. (For the remainder of this section, for simplicity, we call the three methods to 

search products Undervalued, Max Expected, and Choice, respectively.) In this section we describe an 

empirical study in which we demonstrate that the two premises are reasonable and that Undervalued 

helps consumers learn preference weights better than either Max Expected or Choice. 
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8.1. Context of the Empirical Demonstration 

 We consider a product space of five bicycles and six attributes. We created rich realistic descrip-

tions of the five bicycles which, when studied by consumers, simulate product search. The bicycles vary 

on five of the six attributes of gel seat, folding ability, hydraulic brakes, nighttime visibility, and a low bar 

for step-through access. These attributes were chosen based on discussions with potential bicycle cus-

tomers and a review of the bicycles available on the market. If a bicycle had the attribute, the rich realis-

tic descriptions highlighted the attribute and its benefits in text and pictures. By design, none of the rich 

realistic descriptions mentioned the sixth attribute, variety of colors. With only five bicycles, the product 

space was not full factorial. There was no obviously dominant search strategy. 

 To encourage respondents to search and evaluate the bicycles seriously, respondents were 

asked to provide ratings and qualitative comments about any bicycles that they evaluated. Following 

standard procedures, before any analyses, we eliminated respondents who answered too fast, an-

swered the same for all questions, or provided nonsense qualitative answers (13 respondents were 

eliminated). The sample was drawn from Amazon Mechanical Turk. Respondents received the standard 

honorarium for completing the tasks. 

8.2. Basic Design 

 Figure 5 summarizes the study design. In the first stage, prior to providing recommendations or 

allowing the respondent to choose which bicycle to search, we collected data and trained a model by 

which the recommendation system can predict consumers’ true preference weight distribution, 𝑓௥௘௖(𝑤ሬሬ⃗ ) 

– left side of Figure 5. Next, respondents were assigned randomly to one of three experimental cells: 

Choice (92 respondents), Undervalued (110 respondents), or Max Expected (106 respondents)—right 

side of Figure 5. The Choice cell acts as a control: if assigned to Choice, respondents chose which bicycle 

to search based on attribute-level summaries. If a respondent was assigned to Undervalued or Max Ex-

pected, the recommendation system chose the bicycle for the respondent to search based on the algo-

rithms in §7.3. Respondents, who received a recommendation, then searched the recommended bicy-

cle. In all three cells, respondents first stated their prior preference weights (𝑤ሬሬ⃗ ଴), searched a bicycle 

(viewed a rich realistic description), rated their likelihood of purchase, then stated their preference 

weights (𝑤ሬሬ⃗ ଵ) again. Preference weights were measured with a ten-point scale where the most im-

portant attribute is given a ten. Likelihood of purchase was measured with a three-point scale. The study 

was pretested with 37 respondents to assure the respondent tasks were clear and relevant. 
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Figure 5. Basic Design of the Empirical Demonstration 

 

8.3. Training a Predictive Model for 𝒇𝒓𝒆𝒄(𝒘ሬሬሬ⃗ ) 

 To train 𝑓௥௘௖(𝑤ሬሬ⃗ ) we measure respondents’ preference weights after they have searched all 

available bicycles (training data). We also measure consumer characteristics such as age, gender, where 

they live (urban, suburban, rural, other), and how they plan to use the bicycle. Using linear regression, 

we predict 𝑤ሬሬ⃗ ௥ = 𝐸[𝑤ሬሬ⃗ |𝑓௥௘௖] as a function of these variables and the respondents’ prior preference 

weights (𝑤ሬሬ⃗ ଴). The last variable accounts for heterogeneity in preference weights that is not tied to the 

observed characteristics. The predictive model is trained on 93 respondents. These respondents did not 

participate in the consumer search on the right side of Figure 5. In practice, a recommendation-system’s 

underlying predictive model would be based on tens of thousands of respondents (or more), hence our 

empirical demonstration is conservative. 

8.4. Results of the Empirical Demonstration 

 Manipulation checks. We first check whether the recommendation systems recommended bi-

cycles that were different between recommendation systems and different from bicycles that respond-

ents chose to search on their own. The distributions of bicycles differ among the three experimental 

cells (𝜒ଶ = 117.8,𝑑. 𝑓. = 8,𝑝 < 0.01), Undervalued differs from Max Expected (𝜒ଶ = 24.0,𝑑. 𝑓. =4,𝑝 < 0.01) and from Choice (𝜒ଶ = 77.9,𝑑. 𝑓. = 4, 𝑝 < 0.01). The attribute, variety of colors, serves as 

a control attribute—we do not anticipate that its preference weight would change after search. It did 

not: 𝑤௜ଵ − 𝑤௜଴ = 0.12, 0.12, and 0.07 for Undervalued, Max Expected, and Choice, respectively—no dif-

ferences were statistically significant from zero, nor statistically different between pairs of experimental 

cells. Finally, we expect Undervalued to sacrifice the overall expected consumption utility of the recom-

mended bicycle relative to Max Expected (and relative to Choice), but hope the sacrifice is not substan-
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tial. Our surrogate for expected consumption utility is the stated likelihood of purchase. The average 

values were 2.2, 2.3, and 2.3 for Undervalued, Max Expected, and Choice, respectively—no differences 

were statistically significant between pairs of experimental cells. The data pass the manipulation 

checks—respondents in each of the three experimental cells chose or were recommended different bi-

cycles, the preference weights for the control attribute did not change, and the surrogate for expected 

consumption utility behaved as anticipated. 

 Change in preference weights. We test the first premise by comparing preference weights be-

fore and after search using root-mean-square-change (RMSC) and the sum over all attributes. Addition-

ally, we test whether Undervalued is better at helping consumers to learn preference weights. Specifi-

cally, we test whether preference weights change more for Undervalued than for the other two experi-

mental cells. Changes are as predicted. RMSC = 0.81, 0.39, and 0.46 and the sum over attributes is 1.69, 

0.20, and 0.53, respectively for Undervalued, Max Expected, and Choice. Sums are significantly different 

from zero for Undervalued and Choice (𝑝ᇱ𝑠 < 0.05). The change in the Undervalued experimental cell is 

significantly larger than the change in either Max Expected or Choice for both RMSC and for the sum of 

changes (𝑝ᇱ𝑠 < 0.05), but the change in Max Expected is not significantly different than that in Choice 

(𝑝 = 0.34). On an attribute-by-attribute basis, the average preference weights (other than for the con-

trol attribute) increase significantly or marginally significantly when respondents search bicycles rec-

ommended by Undervalued (𝑝ᇱ𝑠 < 0.05 for gel seat, folding ability, and a low bar, 𝑝ᇱ𝑠 < 0.10 for hy-

draulic brakes and nighttime visibility). These changes are larger than for those in the other two experi-

mental cells. No attribute-level preference weights change significantly for Max Expected and only hy-

draulic brakes increase significantly for Choice (𝑝 = 0.03). Qualitative comments were consistent, e.g., “I 

changed the folding ability up to ten. I think I really want that in my next bike.”  

Thus, the data demonstrate that (1) product search can cause preference weights to change (at 

least for Undervalued) and (2) searching Undervalued recommendations causes preference weights to 

change more than searching benchmark recommendations (Max Expected) or searching without a rec-

ommendation (Choice). 

 Moving preference weights toward their true values. Empirically, we cannot observe 𝑤ሬሬ⃗ ௥, but 

we can observe 𝐸[𝑤ሬሬ⃗ |𝑓௥௘௖]. To evaluate preference weight learning, we compare the observed prefer-

ence-weight change, 𝑤ሬሬ⃗ ଵ − 𝑤ሬሬ⃗ ଴, to the predicted preference-weight change, 𝐸[𝑤ሬሬ⃗ |𝑓௥௘௖] − 𝑤ሬሬ⃗ ଴. (We com-

pare differences to control for heterogeneity in the 𝑤ሬሬ⃗ ଴.) We expect the two differences to move in the 

same direction if (1) the search changes preference weights and (2) the predictive model is reasonable. 

We test the movement with regressions (for each attribute and each experiment cell) in which the ob-
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served change is a function of the predicted change. We focus on directional movement recognizing that 

the predictive models are based on simple regressions using training data for four variables from 93 re-

spondents. Typical commercial recommendation systems might be based on hundreds of variables, 10s 

of thousands of respondents, and state-of-the-art machine learning methods. Users of commercial rec-

ommendation systems would likely search more products than the one recommended product in our 

tests. 

For the Undervalued experimental cell, the regression coefficient is significant for gel seat, fold-

ing ability, and hydraulic brakes (𝑝ᇱ𝑠 < 0.05) and marginally significant for low bar (𝑝 < 0.10). All coef-

ficients are positive. For the Max Expected experimental cell, all coefficients are positive, but none are 

significant. For the Choice experimental cell, the gel seat coefficient is positive and significant (𝑝 <0.05), and the low bar coefficient is positive and marginally significant (p < 0.10). The coefficients is neg-

ative, but not  significant for visibility. Thus, when respondents search bicycles recommended by Under-

valued, their preference weights move in the direction that is predicted for the true preference weights. 

This movement is greater than the movement when respondents search benchmark recommendations 

(Max Expected) or when respondents search on their own (Choice). 

 To summarize, the empirical demonstration is consistent with both premises (consumers can 

learn preference weights and a recommendation system can predict that learning). The empirical 

demonstration also suggests that a proposed recommendation system leads to greater preference-

weight learning than either a benchmark recommendation system or search without recommendations. 

We consider this empirical demonstration a proof of concept that we hope will be refined in subsequent 

tests. 

9. Summary and Discussion 

9.1. Summary 

 When consumers update their preference weights as they search, the optimal search strategy  

becomes more complex because interdependence among products is introduced by preference-weight 

learning. Whenever a preference weight is updated, the update changes the utilities of all searched 

products and the expected utilities of all products yet to be searched. Optimal policies in classic search 

models, such as the policy derived in Weitzman (1979), are no longer optimal. When we introduce a 

recommendation system, the policies by which the optimal recommendations should be chosen are 

even more complex. In contrast to traditional recommendation systems literature, but consistent with 

recent developments with respect to diversity, novelty, and serendipity, preference-weight learning 

suggests that recommendation systems should not be evaluated solely on accuracy (probability of 
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choice or expected utility of the recommended product). 

 Despite the complexity, we gain insight about effective recommendation systems for consumers 

who learn their preference weights by using intuition and examining the Bellman equation. These in-

sights suggest modifications to recommendation systems—recommend products with diverse aspects, 

recommend products that the consumer undervalues, and recommend products most likely to update 

the consumer’s prior beliefs. Recommendation systems based on these modifications perform well in 

synthetic data experiments, especially for naïve consumers and when recommendation systems can 

predict consumers’ preference weights. The proposed recommendation systems perform well as long as 

they are not too complex. 

 We demonstrate empirically that consumers update their preference weights from searching 

even a single rich realistic description of a bicycle. Preference-weight learning is greater when consum-

ers search a bicycle recommended by one of the proposed recommendation systems—greater than 

search based on a benchmark recommendation system or search without a recommendation. Further-

more, the actual change in preference weights moves as predicted, especially when consumers search 

products recommended by the proposed recommendation system.  

9.2. Generality 

 We expect the insights from the numerical examples, the synthetic data experiments, and the 

empirical demonstration to scale to larger product spaces. The proposed modifications are stylized 

proof-of-concept recommendation systems; we expect more-sophisticated modifications to achieve 

even greater improvements, especially when tuned to specific settings. Our formal model assumes that 

consumers know attribute levels. Relaxing this abstraction greatly complicates the model, but does not 

change the insight that preference-weight learning affects search. Preference-weight learning and at-

tribute-level learning are complementary phenomena. 

 We assumed that attributes are described by discrete levels (aspects). We did not restrict the 

attributes to be horizontal (type of kitchen) or vertical (live-in superintendent versus full-service conci-

erge), although we did assume that learning about one aspect does not affect the priors with respect to 

another aspect. Continuous attributes, such as the square footage in a condominium or the proximity to 

a playground, can be handled in one of two ways—both are common for typical preference-weight 

measurement methods such as conjoint analysis. Either we discretize the continuous attribute or as-

sume a parametric form (linear, quadratic, logarithmic) for the preference function. Discretized attrib-

utes are handled with no modification. For parametric preferences, we need to specify updating rules. 

For example, the consumer’s preferences might be linearly increasing in square footage. The consumer 
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updates that linear weight in a matter analogous to the updating rules in Equation 2. 

9.3. Future Research 

 The analyses in this paper demonstrate that preference-weight learning can have a major im-

pact on the study of consumer search and on the design of recommendation systems. Further avenues 

of research are promising. Researchers might explore interdependence among preference weights for 

aspects and model how learning about one aspect informs preference weights about another aspect. 

Interdependence is especially interesting for discretized vertical attributes. Recommendation systems 

might be developed that identify the consumer’s relative naïveté and change algorithms depending up-

on that naïveté. Ensembles of recommendation systems might do well. We focused on situations in 

which consumers have ready access to attribute-level information. Combining preference-weight learn-

ing and attribute-level search is a complex and interesting challenge. 

In §6, non-benevolent recommendation systems influenced outcomes to the benefit of the rec-

ommendation system, yet left the consumer satisfied. Such recommendation systems could prove inter-

esting. We assumed that forward-looking consumers solve Equation 3. An alternative interpretation is 

that heuristic solutions to Equation 3 approximate consumer search. For example, Lin, Zhang, and 

Hauser (2015) illustrate situations in which consumers use a cognitively simple learning strategy that 

approximates a complex dynamic program. 

 We focused on benevolent recommendation systems that maximize consumers’ net purchase 

and consumption utility. One justification for an assumption that the consumer searched recommended 

products, is the utility bonus. It is possible that the utility bonus is not sufficient—the consumer might 

decline searching further if the expected utility of the recommended product is too low. This phenome-

non might hamper the recommendation system’s reputation and provide incentives to the recommen-

dation system to avoid low-expected-utility recommendations even when such recommendations are in 

the best interests of the consumer. Such situations are worth studying. 

 Our examples and references from the marketing-science literature motivate preference-weight 

learning. Research on the underlying mechanism could improve insight. There are rich literatures in both 

recommendation systems and in marketing about firm-side learning of preference weights. When such 

algorithms are coupled with the modifications suggested in this paper, we expect that recommendations 

to consumers will improve. 

 Finally, our empirical demonstrate was a proof-of-concept. Experiments might explore recom-

mendations in other product categories with more attributes, in situations where commercial prediction 

algorithms are used, for more extensive search, with endogenous stopping rules.  



36 
 

References 
Adam K (2001) Learning while searching for the best alternative. Journal of Economic Theory, 

101(1):252-280. 

Adamopoulos P, Tuzhilin A (2014) On unexpectedness in recommender systems: or how to better expect 

the unexpected. ACM Transactions on Intelligent Systems and Technology 5(4):54:1-32. 

Adomavičius G, A Tuzhilin (2005) Towards the next generation of recommender systems: a survey of the 

state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 

17(6):734-749. 

Ansari A, S Essegaier, R Kohli (2000) Internet recommendation systems, Journal of Marketing Research, 

37(August):363-376. 

Bikhchandani S, Shama S (1996) Optimal search with learning. Journal of Economic Dynamics and Control 

20(1):333-359. 

Branco F, Sun M, Villas-Boas, JM (2012) Optimal search for product information. Management Sci-

ence 58(11):2037-2056. 

Bodapati A (2008) Recommendation systems with purchase data. J. of Marketing Research, 16:77–93. 

Bronnenberg BJ, Kim J, Mela CF (2015) Zooming in on choice: How do consumers search for cameras 

online? Forthcoming Marketing Science. 

Castells P, Vargas S, Wang J (2011) Novelty and diversity metrics for recommender systems: choice, dis-

covery and relevance. International Workshop on Diversity in Document Retrieval (DDR 2011) at 

the 33rd European Conference on Information Retrieval (ECIR 2011). Dublin, Ireland, April. 

Celma Ò, Herrera P (2008) A new approach to evaluating novel recommendations. RecSys ’08, Proceed-

ings of the 2008 ACM Conference on Recommender Systems. Lausanne, Switzerland. 

Chick SE, Frazier P (2012) Sequential sampling with economics of selection procedures. Management 

Science 58(3):550-569. 

Chen Y, Yao S (2016) Sequential search with refinement: model and application with clickstream data, 

Management Science forthcoming, pubsonline.informs.org/doi/10.1287/mnsc.2016.2557. 

Chung J, Rao VR (2012) A general consumer preference model for experience products: Application to 

Internet recommendation services. Journal of Marketing Research 49(3):289-305. 

Cook J (2014) MiniDates schedules real-life (legitimately) blind dates for you. TechCrunch, May 30, 2012. 

De Bruyn A, Liechty JC, Huizingh EKRE, Lilien GL (2008) Offering online recommendations with minimum 

customer input through conjoint-based decision aids. Marketing Science 27:3, 443-460. 

Dzyabura D, Jagabathula S (2017) Offline assortment optimization in the presence of an online chan-



37 
 

nel. Management Science. http://pubsonline.informs.org/doi/pdf/10.1287/mnsc.2016.2708 

Dzyabura D, Jagabathula S, Muller E (2018) Using online preference measurement to infer offline pur-

chase behavior. NYU Stern working paper. Forthcoming, Marketing Science. 

Erdem T, Keane MP (1996) Decision-making under uncertainty: Capturing dynamic brand choice pro-

cesses in turbulent consumer goods markets. Marketing Science 15(1):1–20. 

Finkel EJ, PW Eastwick, BR Karney, HT Reis, S Sprecher (2012) Online dating: a critical analysis from the 

perspective of psychological science. Psychological Science in the Public Interest, 13:3-66. 

Fleder D, Hosanagar K (2009) Blockbuster culture’s next rise or fall: the impact of recommender systems 

on sales diversity. Management Science 55(5):697-712. 

Ge M, Delgado-Battenfeld C, Jannach D (2010) Beyond accuracy: Evaluating recommender systems by 

coverage and serendipity. RecSys ’10. Proceedings of the 2008 ACM Conference on Recommend-

er Systems, Barcelona, Spain. 257–260. 

Ghose A, Ipeirotis PG, Li, B (2012) Designing ranking systems for hotels on travel search engines by min-

ing user-generated and crowdsourced content. Marketing Science 31(3):493-520. 

Gittins, JC (1979) Bandit processes and dynamic allocation indices. Journal of the Royal Statistical Socie-

ty, Series B (Methodological) 41(2):148-177, plus commentary.  

Gittins, JC, Glazebrook K, Weber R (2011) Multi-armed bandit allocation indices. John Wiley & Sons, Lon-

don. 

Greenleaf EA, DR Lehmann (1995) Reasons for substantial delay in consumer decision making. Journal of 

Consumer Research 22(2):186-199. 

Häubl G, Trifts V (2000) Consumer decision making in online shopping environments: The effects of in-

teractive decision aids. Marketing Science 19(1):4-21. 

Hauser JR, S Dong, M Ding (2014) Self-reflection and articulated consumer preferences. Journal of Prod-

uct Innovation Management 31(1):17-32. 

Hauser JR, GL Urban, G Liberali, M Braun (2009) Website morphing. Marketing Science 28(2):202-224. 

Hauser JR, G Liberali, GL Urban (2014) Website morphing 2.0: Switching costs, partial exposure, random 

exit, and when to morph. Management Science 60(6):1594–1616. 

Herlocker J, Konstan J, Terveen L, Riedl J (2004) Evaluating collaborative filtering recommender systems. 

ACM Transactions on Information Systems 22(1):5–53. 

Hong H, Shum M (2006) Using price distributions to estimate search costs. RAND Journal of Economics 

37(2):257–275. 

Honka E (2014) Quantifying search and switching costs in the US auto insurance industry. The RAND 



38 
 

Journal of Economics 45(4):847-884. 

Jacobs BJD, Donkers B, Fok D (2016) Model-based purchase predictions for large assortments. Marketing 

Science 35(3):389-404. 

Jun T (2004) A survey on the bandit problem with switching costs. De Economist 152(4):513-541. 

Ke TT, Shen Z-JM, Villas-Boas, JM (2016) Search for information on multiple products. Forthcoming 

Management Science. 

Kim JB, Albuquerque P, Bronnenberg BJ (2010) Online demand under limited consumer 

search. Marketing Science 29(6):1001-1023. 

Lin S, J Zhang, JR Hauser (2014) Learning from experience, simply. Marketing Science 34(1):1-19. 

Liu NN, Zhao M, Xiang E, Yang Q (2010) Online evolutionary collaborative filtering. RecSys2010, Barcelo-

na Spain, 95-102. 

Lu S, Xiao L, Ding M (2016) A video-based automated recommender (VAR) system for garments. Market-

ing Science 35(3):484-510. 

McNee S, Riedl J, Konstan J (2006) Accurate is not always good: how accuracy metrics have hurt recom-

mender systems. CHI EA 2006, Extended Abstracts on ACM Human Factors in Computing Sys-

tems, Quebec, Canada, 1097-1101. 

Mersereau AJ, Rusmevichientong P, Tsitsiklis JN (2009) A structured multiarmed bandit problem and the 

greedy policy. IEEE Transactions on Automatic Control 54(12):2787-2802. 

Moon S, Russell GL (2008) Predicting product purchase from inferred customer similarity: An autologistic 

model approach. Management Science 54(1):71-82. 

Rogers A (2013) After you read the listings, your agent reads you. New York Times March 26, 2013: F4. 

Schlaifer R (1959) Probability and statistics for business decisions. (New York, NY: McGraw-Hill). 

Schwartz EM, ET Bradlow, PS Fader (2017) Customer acquisition via display advertising using multi-

armed bandit experiments. Marketing Science April 20, 2017. 

Schwartz EM, K Misra, J Abernethy (2017) dynamic online pricing with incomplete information using 

multi-armed bandit experiments. University of Michigan working paper. 

Seiler S (2013) The impact of search costs on consumer behavior: A dynamic approach. Quantitative 

Marketing and Economics 11(2):155-203. 

She J, EF MacDonald (2013) Trigger features on prototypes increase preference for sustainability. Pro-

ceedings of the 25th ASME International Conference on Design Theory and Methodology, Port-

land, OR. August 04, 2013. 

Sheehy K (2013) Study: High school grads choosing wrong college majors. U.S. News & World Report No-



39 
 

vember 11. At http://www.usnews.com/education/blogs/high-school-notes/2013/11/11/study-

high-school-grads-choosing-wrong-college-majors. 

Tversky A (1972) Elimination by aspects: a theory of choice. Psychological Review 79 (4):281-99. 

Urban GL, Hauser JR (2004) ’Listening-in’ to find and explore new combinations of customer needs. 

Journal of Marketing 68:72-87. 

Vargas S, P Castells (2011) Rank and relevance in novelty and diversity metrics for recommender sys-

tems. RecSys ’11. Proceedings of the Fifth ACM Conference on Recommender systems Chicago, 

IL. 

Weitzman ML (1979) Optimal search for the best alternative. Econometrica 47(3):641-654. 

Whittle P (1988) Restless bandits: activity allocation in a changing world. Journal of Applied Probability 

25:287–298. 

Ying Y, Feinberg F, Wedel M (2006) Leveraging missing ratings to improve online recommendation sys-

tems. Journal of Marketing Research 43(3):355-365. 

Zhang M, Hurley N (2008) Avoiding monotony: improving the diversity of recommendation lists. RecSys 

’08. Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland, 

123-130.  

Zhou T, Z Kuscsik, J-G Liu, M Medo, JR Wakeling, Y-C Zhang (2010) Solving the apparent diversity-

accuracy dilemma of recommender systems. PNAS 107(10):451-4515. 

Ziegler C-N, McNee, SM, Konstan JA, Lausen G (2005) Improving recommendation lists through topic 

diversification. WWW '05. ACM Proceedings of the 14th International Conference on World Wide 

Web, Chiba, Japan, 22-32. 



A1 
 

Appendix 1: Formal Demonstrations 

Consumer Search Criteria. When consumers learn their preference weights, there exist product spaces in 

which the consumer, searching optimally without a recommendation may use search criteria that differ 

from the typical criteria in either search theory or recommendation systems. In particular, unlike typical 

criteria in search theory, the consumer may choose to search a product that does not have the highest 

option value (highest variance). Unlike typical recommendation systems criteria, the consumer may 

choose to search a product that does not have the highest expected utility. The product may even have a 

low or zero probability of being chosen.  

 Proof. The formal analysis is based on binary attributes. However, to show the result we need at 

least three binary attributes and not a full-factorial product space. Thus, we consider a product space of �⃗�ଵ = (0, 0, 0), �⃗�ଶ = (1, 0, 0), �⃗�ଷ = (0, 1, 0), �⃗�ସ = (0, 0, 1), �⃗�ହ = (1, 1, 0), �⃗�଺ = (1, 0, 1), and �⃗�଻ =(0, 1, 1). In a proof available from the authors, and as illustrated in §4, we demonstrate that the con-

sumer will prefer searching those products that reveal two attributes, �⃗�ହ, �⃗�଺ , or �⃗�଻, rather than those 

products that reveal only one attribute.  

Because this result is an existence proof, we need only show an example. (We actually show a 

class of examples.) For our example, we assume zero signal variance such that the posterior distribu-

tions are 𝛿(𝑤௜௥) when the consumer searches a product with 𝑥௜௝ = 1. We consider distributions for the 

consumer’s prior beliefs in which the consumer prior beliefs assure that 𝑤ଵ௥ ,𝑤ଶ௥ ,𝑤ଷ௥ ≥ 0 and min{𝑤ଷ௥} ≥max {𝑤ଵ௥ ,𝑤ଶ௥}. Our result is not limited to such distributions, but such distributions suffice. There are 

many distributions that satisfy these properties. For example, the conditions hold for uniformly distrib-

uted beliefs, 𝑤௜~𝒰[𝑎௜ ,𝑏௜], with parameters 𝑎ଵ,𝑎ଶ ≥ 0 and 𝑎ଷ ≥ max [𝑏ଵ, 𝑏ଶ]. The assumption of non-

negative true importances simplifies the tree of conditions in the dynamic program and assures that the 

consumer weakly prefers �⃗�ହ to �⃗�ଵ, �⃗�ଶ, and �⃗�ଷ, weakly prefers �⃗�଺ to �⃗�ଵ, �⃗�ଶ, and �⃗�ସ, and weakly prefers �⃗�଻ 

to �⃗�ଵ, �⃗�ଷ, and �⃗�ସ. We need only consider a product space of �⃗�ହ, �⃗�଺, and �⃗�଻. These are really the most in-

teresting products for our purposes. The outside option is 𝑈∗ = 𝑢(�⃗�ଵ) = 0. 

We first consider searching on �⃗�ହ. With min{𝑤ଷ௥} ≥ max {𝑤ଵ௥ ,𝑤ଶ௥}, the consumer would never 

choose �⃗�ହ, but may consider searching �⃗�ହ to learn 𝑤ଵ௥  and 𝑤ଶ௥  efficiently. We assume 𝛽 ≤ 1 is sufficient-

ly large to justify search. After searching �⃗�ହ, the consumer will either choose the outside option, one of �⃗�ହ, �⃗�଺, and �⃗�଻, or search �⃗�଺ or �⃗�଻, and, perhaps, if the consumer searches, the consumer will continue 

thereafter. Using Equation 3 in the text we obtain: 
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(A7) 𝐽({5}, 𝑓଴) = max ቄ0, max{𝑤ଵ௥ +  𝑤ଶ௥ ,𝑤ଵ௥ + 𝑤ഥଷ,𝑤ଶ௥ + 𝑤ഥଷ} , max௞ୀ଺,଻൛−𝑐 + 𝛽𝐸௪య[𝐽({5, 𝑘}, 𝑓ଵ|𝑓଴)]ൟቅ 
With min{𝑤ଷ௥} ≥ max {𝑤ଵ௥ ,𝑤ଶ௥}, there is no value to searching to reveal 𝑤ଷ௥, because knowing 𝑤ଷ௥  does not change the consumer’s decision. Using 𝑤ଵ௥ ,𝑤ଶ௥ ,𝑤ଷ௥ ≥ 0, we eliminate the outside option as 

a choice. Using min{𝑤ଷ௥} ≥ max {𝑤ଵ௥ ,𝑤ଶ௥}, we eliminate �⃗�ହ as a choice. Hence, we obtain the cost of 

searching �⃗�ହ as: 

(A8) 
−𝑐 + 𝛽𝐸௪భ,௪మ[𝐽({5}, 𝑓଴)] = −𝑐 + 𝛽𝐸୵భ,୵మ[max{max{ 𝑤ଵ௥ + 𝑤ഥଷ,𝑤ଶ௥ + 𝑤ഥଷ} ,−𝑐 + 0}]= −𝑐 + 𝛽𝐸௪భ,௪మ[max{𝑤ଵ,𝑤ଶ}] + 𝑤ഥଷ 

The last step uses the consumer’s prior beliefs to compute expected values for the 𝑤௜௥’s that are 

revealed by search.  

We now consider searching on �⃗�଺. Using similar reasoning to Equation A7 we obtain:  

(A9) 𝐽({6}, 𝑓଴) = max ቄ0, max{𝑤ଵ௥ +  𝑤ഥଶ,𝑤ଵ௥ + 𝑤ଷ௥ ,𝑤ഥଶ + 𝑤ଷ௥} , max௞ୀହ,଻{−𝑐 + 𝛽𝐸[𝐽({6, 𝑘}, 𝑓ଵ|𝑓଴)]}ቅ 
We first examine the value of further search. Searching either �⃗�ହ or �⃗�଻ reveals 𝑤ଶ௥, so the con-

sumer is indifferent between searching �⃗�ହ or �⃗�଻. We replace the value of further search by the value of 

searching one of the two products. As in the case of searching �⃗�ହ, further search beyond �⃗�଺ and �⃗�ହ or �⃗�଺ 

and �⃗�଻ has no value. Thus, we have, if the consumer were to choose to search: 

(A10) 
−𝑐 + 𝛽𝐸௪మ[𝐽({5,6}, 𝑓ଵ)] = −𝑐 + 𝛽𝐸௪మ[𝐽({6,7}, 𝑓ଵ)] = −𝑐 + 𝛽𝐸௪మ[max{ 𝑤ଵ௥ + 𝑤ଷ௥ ,𝑤ଶ + 𝑤ଷ௥}]= −𝑐 + 𝛽𝐸௪మ[max{𝑤ଵ௥ ,𝑤ଶ}] + 𝑤ଷ௥  

If, after searching only �⃗�଺, the consumer were to choose without search, then 𝑤ଵ௥  and 𝑤ଷ௥  are 

revealed, but the consumer expects 𝑤ഥଶ if �⃗�ହ or �⃗�଻ are chosen. Recall that the outside option and �⃗�ହ are 

dominated if consumer beliefs follow the example class of distributions. Thus, the value of choosing 

without search, that is, the second internal max in Equation A9, is given by the following.  

(A11) max{𝑤ଵ௥ +  𝑤ഥଶ,𝑤ଵ௥ + 𝑤ଷ௥ ,𝑤ഥଶ + 𝑤ଷ௥} = max{𝑤ଵ௥ ,𝑤ഥଶ} + 𝑤ଷ௥  

Putting it all together and factoring out 𝑤ଷ௥, we obtain: 

(A12) 𝐽({6}, 𝑓଴) = max൛max{𝑤ଵ௥ ,𝑤ഥଶ} ,−𝑐 + 𝛽𝐸௪మ[max{𝑤ଵ௥ ,𝑤ଶ}]ൟ + 𝑤ଷ௥  

And the value of searching �⃗�଺ is: 
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(A13) 
−𝑐 + 𝛽𝐸௪భ,௪య[𝐽({6}, 𝑓଴)] = −𝑐 + 𝛽𝐸௪భൣmax൛max{𝑤ଵ௥ ,𝑤ഥଶ} ,−𝑐 + 𝛽𝐸௪మ[max{𝑤ଵ௥ ,𝑤ଶ}]ൟ൧ + 𝑤ഥଷ= −𝑐 + 𝛽𝐸௪భൣmax൛𝑤ଵ௥ ,𝑤ഥଶ,−𝑐 + 𝛽𝐸௪మ[max{𝑤ଵ௥ ,𝑤ଶ}]ൟ൧ + 𝑤ഥଷ 

Suppose 𝑤ଵ௥ ≥ 𝑤ഥଶ, then, for all 𝑤ଵ௥, max൛𝑤ଵ௥ ,𝑤ഥଶ,−𝑐 + 𝛽𝐸௪మ[max{𝑤ଵ௥ ,𝑤ଶ}]ൟ ≤ 𝛽𝐸௪మ[max{𝑤ଵ௥ ,𝑤ଶ}] for 

sufficiently large 𝛽 ≤ 1. This is true because, for the last internal max, max{𝑤ଵ௥ ,𝑤ଶ} ≥ 𝑤ଵ௥. (It is certainly 

true for 𝛽 = 1.) Hence 𝛽𝐸௪భൣmax൛𝑤ଵ௥ ,𝑤ഥଶ,−𝑐 + 𝛽𝐸௪మ[max{𝑤ଵ௥ ,𝑤ଶ}]ൟ |𝑤ଵ௥ ≥ 𝑤ഥଶ൧ ≤𝛽𝐸௪భ,௪మ[max{𝑤ଵ,𝑤ଶ}|𝑤ଵ௥ ≥ 𝑤ഥଶ] . Suppose 𝑤ଵ௥ < 𝑤ഥଶ, then, for all 𝑤ଵ௥, max൛𝑤ଵ௥ ,𝑤ഥଶ,−𝑐 +𝛽𝐸௪మ[max{𝑤ଵ௥ ,𝑤ଶ}]ൟ ≤ 𝛽𝐸௪మ[max{𝑤ଵ௥ ,𝑤ଶ}]. This is true because 𝑤ഥଶ ≤ 𝛽𝐸௪మ[max{𝑤ଵ௥ ,𝑤ଶ}] for suffi-

ciently large 𝛽 ≤ 1. Thus, 𝛽𝐸௪భൣmax൛𝑤ଵ௥ ,𝑤ഥଶ,−𝑐 + 𝛽𝐸௪మ[max{𝑤ଵ௥ ,𝑤ଶ}]ൟ |𝑤ଵ௥ < 𝑤ഥଶ൧ ≤𝛽𝐸௪భ,௪మ[max{𝑤ଵ,𝑤ଶ}|𝑤ଵ௥ < 𝑤ഥଶ] for sufficiently large 𝛽 ≤ 1. Putting these expressions together, estab-

lishes that 𝐸௪భൣmax൛𝑤ଵ௥ ,𝑤ഥଶ,−𝑐 + 𝛽𝐸௪మ[max{𝑤ଵ௥ ,𝑤ଶ}]ൟ൧ ≤ 𝛽𝐸௪భ,௪మ[max {𝑤ଵ,𝑤ଶ}]. Comparing Equa-

tions A13 to A8, we have the result that −𝑐 + 𝛽𝐸௪భ,௪య[𝐽({6}, 𝑓଴)] ≤ −𝑐 + 𝛽𝐸௪భ,௪మ[𝐽({5}, 𝑓଴)].  

 We have demonstrated that the consumer prefers to search �⃗�ହ rather then �⃗�଺. The consumer’s 

preference for searching �⃗�ହ rather than �⃗�଻ follows by symmetry. We have also demonstrated that, after 

the first product is searched, the consumer does not search further. Finally, we can easily show that the 

consumer will choose to search whenever −𝑐 + 𝛽𝐸௪భ,௪మ[max{𝑤ଵ,𝑤ଶ}] ≥ max{𝑤ഥଵ,𝑤ഥଶ}. This must hold 

for some 𝑐 and for sufficiently large 𝛽 ≤ 1. By design, all possible realized values of 𝑤ଷ are greater than 

any possible realized value of either 𝑤ଵ or 𝑤ଶ, hence both the expected utility and the option value of 𝑢(�⃗�଺) and 𝑢(�⃗�଻) dominate the expected utility and option value of 𝑢(�⃗�ହ). By option value we mean that 𝐸[𝑢(�⃗�ହ)|𝑢(�⃗�ହ) ≥ 𝑈∗] < 𝐸[𝑢(�⃗�଺)|𝑢(�⃗�଺) ≥ 𝑈∗] =  𝐸[𝑢(�⃗�଻)|𝑢(�⃗�଻) ≥ 𝑈∗]. We have nowhere restricted 

the variances of prior beliefs. The result holds even if the variance of 𝑤ଷ is greater than the variance of 𝑤ଵ and the variance of 𝑤ଶ. Finally, all possible realized values of 𝑤ଷ are greater than any possible real-

ized value of either 𝑤ଵ or 𝑤ଶ, the consumer will never choose �⃗�ହ after searching �⃗�ହ. This completes the 

proof.  

Recommendation System Criteria. For recommendation systems that take preference-weight learning 

into account, the optimal product to recommend may not satisfy the typical criterion that it be the high-

est expected utility (most likely to be chosen). The product might even have a low or zero probability of 

being chosen. Furthermore, the product may not have the largest option value as might be expected 

from optimal search theory.  

Proof. This result is also based on binary attributes. We consider a three-product product space: �⃗�ଵ = (0, 0), �⃗�ଶ = (1, 0), �⃗�ଷ = (0, 1). Because this result is an existence proof, we need only show an 
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example. We begin by deriving general conditions and then show that there exists a class of examples 

that satisfy the general conditions. 

 We first examine the consumer’s optimal search path in the absence of a recommendation. The 

consumer makes decisions based on the consumer’s prior beliefs and revealed values. We are particu-

larly interested in the case where one of the attributes is undervalued by the consumer, but not by the 

recommendation system: 𝛽 ׬ 𝑤ଶ𝑑𝑓ଶ଴(𝑤ଶ)ஶ଴ < 𝑐, but 𝛽 ׬ 𝑤ଶ𝑑𝑓ଶ௥௘௖(𝑤ଶ)ஶ଴ > 𝑐. The other attribute is not 

undervalued: 𝑓ଵ௥௘௖(𝑤ଵ) = 𝑓ଵ଴(𝑤ଵ) and 𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ଴ = 𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ௥௘௖(𝑤ଵ)ஶ଴ > 𝑐. We are interested in 

the case where the consumer searches (at least) �⃗�ଶ, so we further assume that 𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ଴ − 𝑐 >𝑤ഥଵ. For simplicity we set the utility of the outside option to the utility of choosing �⃗�ଵ = (0, 0) such that 𝑈∗ = 𝑢(�⃗�ଵ) = 0. 

We evaluate whether the consumer searches �⃗�ଶ. The expected value of searching �⃗�ଶ is: 

(A14) 𝐸[𝐽({�⃗�ଶ}, 𝑓ଵ)] = max ቊ0,𝑤ഥଵ,−𝑐 + 𝛽න 𝑤ଶ𝑑𝑓ଶ଴(𝑤ଶ)ஶ
୫ୟ୶ {଴,௪భೝ} ቋ 

Recognizing that 𝛽 ׬ 𝑤ଶ𝑑𝑓ଶ଴(𝑤ଶ)ஶ୫ୟ୶ {଴,௪భೝ} ≤ 𝛽 ׬ 𝑤ଶ𝑑𝑓ଶ଴(𝑤ଶ)ஶ଴ < 𝑐 for 𝛽 ≤ 1, the consumer will not 

search �⃗�ଷ after �⃗�ଶ, hence 𝐸[𝐽({�⃗�ଶ}, 𝑓ଵ)] = max {0,𝑤ഥଵ}. Furthermore, because 𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ଴ − 𝑐 >𝑤ഥଵ, 𝛽𝐸[𝐽({�⃗�ଶ}, 𝑓ଵ)] − 𝑐 > 𝑤ഥଵ, hence the consumer prefers to search �⃗�ଶ rather than simply choose �⃗�ଶ.  

The expected value of searching �⃗�ଷ is: 

(A15) 𝐸[𝐽({�⃗�ଷ}, 𝑓ଵ)] = max ቊ0,𝑤ഥଶ,−𝑐 + 𝛽න 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ
୫ୟ୶{଴,௪ഥమ} ቋ ≤ max{0,𝑤ഥଶ} =  න 𝑤ଶ𝑑𝑓ଶ଴(𝑤ଶ)ஶ

଴ < 𝑐 

which implies the consumer will not choose to search �⃗�ଷ (without a recommendations). Putting these 

together, if no recommendations are make, the consumer would search �⃗�ଶ and then either purchase �⃗�ଶ 

if 𝑤ଵ௥ ≥ 0 or accept the outside option, 𝑈∗ = 0, if 𝑤ଵ௥ < 0. The expected payoff based on the consum-

er’s beliefs is given in Equation A16. Because 𝑓ଵ௥௘௖(𝑤ଵ) = 𝑓ଵ଴(𝑤ଵ), this is also the recommendation sys-

tem’s beliefs about what the consumer will achieve without any recommendation. 

(A16) 𝐸[𝐽(∅, 𝑓଴)|𝑓௥௘௖] = −𝑐 + 𝛽න 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ
଴ = −𝑐 + 𝛽න 𝑤ଵ𝑑𝑓ଵ௥௘௖(𝑤ଵ)ஶ

଴ . 
 We now analyze the cases where the recommendation system recommends a product, �⃗�ଶ or �⃗�ଷ, 

and the consumer follows that recommendation. We assume the consumer acts optimally after the rec-

ommendation. (We will later consider what would happen if the recommendation system could recom-

mend both products.) We seek to establish a case where the recommendation system recommends �⃗�ଷ 

even though ׬ 𝑤ଶ𝑑𝑓ଵ௥௘௖(𝑤ଶ)ஶ଴ < ׬ 𝑤ଵ𝑑𝑓ଵ௥௘௖(𝑤ଵ)ஶ଴ . 
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 We first consider the expected payoff if the recommendation system recommends �⃗�ଶ only. If �⃗�ଶ 

is the recommendation, then the consumer does not deviate from the optimal path that the consumer 

would have chosen without a recommendation. Define 𝐽({�⃗�ଶ}௥௘௖ , 𝑓ଵ) as the continuation value given 

that the consumer searched �⃗�ଶ due to a recommendation. Then:  

(A17) 𝐸[𝐽({�⃗�ଶ}௥௘௖ , 𝑓ଵ)| 𝑓௥௘௖  ] = −𝑐 + 𝛽න 𝑤ଵ𝑑𝑓ଵ௥௘௖(𝑤ଵ)ஶ
଴ . 

 We now consider the expected payoff if the recommendation system recommends �⃗�ଷ. After 

searching the recommended product, the consumer may either stop and purchase �⃗�ଷ, take the outside 

option (𝑈∗ = 0), or search the remaining product,�⃗�ଶ. (Our condition that 𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ଴ − 𝑐 > 𝑤ഥଵ 

assures that the consumer will not purchase �⃗�ଶ without searching. It’s easy to show that Equation A18 

does not change that.) From the consumer’s perspective: 

(A18) 𝐸[𝐽({�⃗�ଷ}௥௘௖ , 𝑓ଵ|𝑓଴)] = max ቊ0,𝑤ഥଶ,−𝑐 + 𝛽න 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ
୫ୟ୶{଴,௪ഥమ} ቋ 

The consumer will search �⃗�ଶ if 𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ଴ஶ୫ୟ୶ {଴,௪ഥమ} > 𝑐 + 𝑤ഥଶ. We are interested in the recom-

mendation system’s expectation of this payoff, or 𝐸(𝐽({�⃗�ଷ}௥௘௖ , 𝑓ଵ)|𝑓௥௘௖). This value depends on wheth-

er or not the consumer would choose to search �⃗�ଶ after searching �⃗�ଷ. Define 𝑤෥ଶ to be the maximum 

observed value of 𝑤ଶ௥  for which it would be optimal for the consumer to search �⃗�ଶ after �⃗�ଷ. This value is 

defined implicitly by𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ଴ஶ ௪෥మ = 𝑐 + 𝑤෥ଶ. If 𝑤ଶ௥ > 𝑤෥ଶ, the consumer purchases �⃗�ଷ and does not 

search �⃗�ଶ, because 𝑤ଶ௥ > −𝑐 + 𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ௪෥మ .  

To compute the expected value we consider three regions for the outcome of the �⃗�ଷ search. 

Each outcome corresponds to a different action by the consumer after searching �⃗�ଷ. These regions are: 𝑤ଶ௥ ≤ 0, 0 < 𝑤ଶ௥ ≤ 𝑤෥ଶ, and 𝑤ଶ௥ > 𝑤෥ଶ. Note that 𝑤෥ଶ is defined by 𝑓଴, but we will compute expectations 

based on the recommendation system's beliefs, 𝑓௥௘௖. 

Case 1: 𝑤ଶ௥ ≤ 0. In this region, the consumer expects to search �⃗�ଶ after �⃗�ଷ because 𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ଴ > 𝑐. After searching �⃗�ଶ, there are no products left to search; the consumer purchases �⃗�ଶ if 𝑤ଵ௥ > 0 and takes the outside good if 𝑤ଵ௥ ≤ 0. In this region, the recommendation believes: 

(A19) −𝑐 + 𝛽𝐸[𝐽({�⃗�ଷ}௥௘௖ , 𝑓ଵ)|𝑤ଶ௥ ≤ 0, 𝑓௥௘௖  ] = −(1 + 𝛽)𝑐 + 𝛽න 𝑤ଵ𝑑𝑓ଵ௥௘௖(𝑤ଵ)ஶ
଴  

Case 2: 0 < 𝑤ଶ௥ ≤ 𝑤෥ଶ. In this region, by the definition of 𝑤෥ଶ, the consumer expects to search �⃗�ଶ 

after �⃗�ଷ, after which there are no products left to search. The net expected payoff to the consumer is −(1 + 𝛽)𝑐 + 𝛽max{0,𝑤ଵ௥ ,𝑤ଶ௥} according to the recommendation system’s beliefs. 
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Case 3: 𝑤෥ଶ < 𝑤ଶ௥. In this region, by the definition of 𝑤෥ଶ, the consumer chooses �⃗�ଷ and does not 

search �⃗�ଶ. But because 𝑤ଶ௥ > −𝑐 + 𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ௪෥మ ≥ −𝑐 + 𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ௪మೝ  and 𝑤ଶ௥ > 0, we know:  

(A20) 𝐸[𝐽({�⃗�ଷ}௥௘௖ , 𝑓ଵ|𝑓௥௘௖)] = max ቊ0,𝑤ଶ௥ ,−𝑐 + 𝛽න 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ
୫ୟ୶{଴,௪మೝ} ቋ

≥ −𝑐 + 𝛽න 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ
୫ୟ୶{଴,௪మೝ}  

Thus, the net payoff in Case 3 is at least as large as that which the consumer would obtain by searching �⃗�ଶ after �⃗�ଷ, thus the next payoff is at least as large as −(1 + 𝛽)𝑐 + 𝛽max{0,𝑤ଵ௥ ,𝑤ଶ௥}. By combining Cas-

es 2 and 3, which occur according to the recommendation system’s beliefs with probability, Pr(𝑤ଶ >0) = ׬ 𝑤ଶ𝑑𝑓ଶ௥௘௖(𝑤ଶ)ஶ଴ , we obtain a lower bound on the recommendation system’s beliefs for Cases 1, 

2, and 3 as −(1 + 𝛽)𝑐 + 𝛽max{0,𝑤ଵ௥ ,𝑤ଶ௥}: 

(A21) 

−𝑐 + 𝛽𝐸[𝐽({�⃗�ଷ}௥௘௖ , 𝑓ଵ)|𝑓௥௘௖  ]≥ −(1 + 𝛽)𝑐 + 𝛽න න 𝑤ଵ𝑑𝑓ଵ௥௘௖(𝑤ଵ)𝑑𝑓ଶ௥௘௖(𝑤ଶ)ஶ
௪భୀ଴

଴
௪మୀିஶ+ 𝛽න න 𝑤ଶ𝑑𝑓ଵ௥௘௖(𝑤ଵ)𝑑𝑓ଶ௥௘௖(𝑤ଶ)଴

௪భୀିஶ
ஶ
௪మୀ଴ + 𝛽න න 𝑤ଵ𝑑𝑓ଵ௥௘௖(𝑤ଵ)𝑑𝑓ଶ௥௘௖(𝑤ଶ)ஶ

௪భୀ௪మ
ஶ
௪మୀ଴+ 𝛽න න 𝑤ଶ𝑑𝑓ଵ௥௘௖(𝑤ଵ)𝑑𝑓ଶ௥௘௖(𝑤ଶ)௪మ௪భୀ଴

ஶ
௪మୀ଴  

Note that we would also obtain the right-hand side of Equation A21 if the recommendation sys-

tem were to recommend both �⃗�ଶ and �⃗�ଷ. Thus, we have shown that recommending �⃗�ଷ alone weakly 

dominates recommending both products for sufficiently large 𝛽 ≤ 1. We now rearrange the limits of 

integration to obtain.  
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(A22) 

−𝑐 + 𝛽𝐸[𝐽({�⃗�ଷ}௥௘௖ , 𝑓ଵ)|𝑓௥௘௖  ]≥ −(1 + 𝛽)𝑐 + 𝛽න න 𝑤ଵ𝑑𝑓ଵ௥௘௖(𝑤ଵ)𝑑𝑓ଶ௥௘௖(𝑤ଶ)ஶ
௪భୀ଴

ஶ
௪మୀିஶ+ 𝛽න න 𝑤ଶ𝑑𝑓ଵ௥௘௖(𝑤ଵ)𝑑𝑓ଶ௥௘௖(𝑤ଶ)଴

௪భୀିஶ
ஶ
௪మୀ଴+ 𝛽න න (𝑤ଶ − 𝑤ଵ)𝑑𝑓ଵ௥௘௖(𝑤ଵ)𝑑𝑓ଶ௥௘௖(𝑤ଶ)௪మ௪భୀ଴
ஶ
௪మୀ଴≥  𝛽𝐸[𝐽(∅, 𝑓଴)|𝑓௥௘௖] − 𝑐 + 𝛽න න 𝑤ଶ𝑑𝑓ଵ௥௘௖(𝑤ଵ)𝑑𝑓ଶ௥௘௖(𝑤ଶ)଴

௪భୀିஶ
ஶ
௪మୀ଴+ 𝛽න න (𝑤ଶ − 𝑤ଵ)𝑑𝑓ଵ௥௘௖(𝑤ଵ)𝑑𝑓ଶ௥௘௖(𝑤ଶ)௪మ௪భୀ଴

ஶ
௪మୀ଴  

 Equation A22 is a general condition for when the recommendation system will recommend �⃗�ଷ 

to the consumer. All that remains to complete the proof is to establish at least one example where the 

last two integrals in Equation A2 exceed 𝑐. We can do this for many distributions. We do it for at least 

one. 

We consider uniform distributions, all of which have the zero mean: 𝑓ଵ଴(𝑤ଵ) = 𝑓ଵ௥௘௖(𝑤ଵ) =𝒰[−𝑏ଵ, 𝑏ଵ], 𝑓ଶ௥௘௖(𝑤ଶ) = 𝒰[−𝛼𝑏ଵ,𝛼𝑏ଵ], and 𝑓ଶ଴(𝑤ଶ) = 𝒰[−𝑏ଶ, 𝑏ଶ], where 𝛼 < 1 assures the option val-

ue of �⃗�ଷ is less than the option value of �⃗�ଶ and the variance of 𝑢(�⃗�ଷ) is less than the variance of 𝑢(�⃗�ଶ). If 𝛽 = 1, we assure 𝛽 ׬ 𝑤ଶ𝑑𝑓ଶ଴(𝑤ଶ)ஶ଴ < 𝑐 with 𝑏ଶ < 4𝑐/𝛽. We assure 𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ଴(𝑤ଵ)ஶ଴ =𝛽 ׬ 𝑤ଵ𝑑𝑓ଵ௥௘௖(𝑤ଵ)ஶ଴ > 𝑐 and 𝛽 ׬ 𝑤ଶ𝑑𝑓ଶ௥௘௖(𝑤ଶ)ஶ଴ > 𝑐 with 𝛼𝑏ଵ > 4𝑐/𝛽. The value of the next-to-last in-

tegral is 𝛽𝛼𝑏ଵ/8 and the value of the last integral is 𝛽𝛼ଶ𝑏ଵ/24. Thus, for any positive 𝛼 < 1, the result 

holds as long as 𝛼ଶ𝑏ଵ/24 +𝛼𝑏ଵ/8 > 𝑐/𝛽. Because 𝛼 < 1, we have that 𝛼ଶ < 𝛼. Thus, we require only 

that 𝛼ଶ𝑏ଵ > 6𝑐/𝛽. This condition, and the condition 𝛼𝑏ଵ > 4𝑐/ 𝛽, are satisfied for many values of 𝛼 and 𝑏ଵ. For example, if 𝛼 = 1/2, then it is sufficient that 𝑏ଵ > 24𝑐/𝛽. 𝑃𝑟𝑜𝑏{𝑐ℎ𝑜𝑜𝑠𝑒 𝑥ଷ} = ଵସ + ఈ଼ < ଵଶ − ఈ଼ =𝑃𝑟𝑜𝑏{𝑐ℎ𝑜𝑜𝑠𝑒 𝑥ଶ} for all 𝛼 < 1. Finally, replacing the support of 𝑤ଶ with 𝑓௥௘௖(𝑤ଶ) = 𝒰[−𝛼𝑏ଵ −𝜖,𝛼𝑏ଵ − 𝜖], condition A22 becomes −𝑐/𝛽 + (ఈ௕భିఢ)మ଼ఈ௕భ + (ఈ௕భିఢ)యଶସఈ௕భమ > 0. We choose 𝜖 > 0 so that 𝐸௥௘௖[𝑢(�⃗�ଷ)] < 𝐸௥௘௖[𝑢(�⃗�ଶ)]. With = 1/2 , 𝑏ଵ = 3, and 𝑐/𝛽 = 0.1, setting 𝜖 = 0.05 suffices. This com-

pletes the proof.  
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Appendix 2: Details of Synthetic Data Experiments 

 Formulae for Bayesian updating. We assume the priors are normally distributed, 𝑓௜଴ =𝒩(𝑤ഥ௜଴,𝜎௜଴), and the signal from searching product 𝑗 is 𝑔(𝑤௜௥|𝑤௜ , 𝑠௧ = 𝑗) = 𝒩(𝑤௜௥ ,𝜎௜௦) when 𝑥௜௝ = 1, 

where 𝜎௜௦ is the standard deviation of the signal. Then, 𝑓௜ଵ(𝑤௜) ≡ 𝑓௜ଵ(𝑤௜|𝑤௥ , 𝑠௧ = 𝑗) = 𝒩(𝑤ഥ௜ଵ,𝜎௜ଵ) with 𝑤ഥ௜ଵ = [(𝜎௜௦)ଶ𝑤ഥ௜଴ + ൫𝜎௜଴൯ଶ𝑤௜௥]/[(𝜎௜௦)ଶ + ൫𝜎௜଴൯ଶ] and 𝜎௜ଵ =  ට൫𝜎௜௦൯ଶ൫𝜎௜଴൯ଶ/[൫𝜎௜௦൯ଶ + ൫𝜎௜଴൯ଶ]. Subsequent 

updates follow similar formulae. All posteriors remain normally distributed. See Schlaifer (1959, p. 441). 

 Figures 1 and 2. Figures 1 and 2 are based on a product space with three six-level attributes. All 6 𝑥 6 𝑥 6 = 216 products are available. The consumer’s prior beliefs are normally distributed, inde-

pendently over aspects, with 𝑓௜଴ = 𝒩൫𝑤ഥ௜଴,𝜎௜଴൯ ∀ 𝑖. The specific values are given in Table A1. 

Table A1. Generating Parameters for the Synthetic Data in Figures 1 and 2 

Attribute Level Prior mean, 𝑤ഥ௜଴ Prior variance, ൫𝜎௜଴൯ଶ True weight, 𝑤௜௥  
1 1 3.362 0.216 2.405 
1 2 1.011 0.002 2.293 
1 3 1.632 0.046 -1.957 
1 4 1.743 0.143 2.412 
1 5 3.783 0.204 3.276 
1 6 0.437 0.097 3.833 
2 1 3.288 0.042 2.833 
2 2 3.937 0.297 2.632 
2 3 0.049 0.485 3.654 
2 4 2.688 0.267 2.681 
2 5 3.346 0.082 2.946 
2 6 2.746 0.054 3.058 
3 1 0.204 0.232 -0.836 
3 2 1.441 0.314 2.529 
3 3 5.140 0.311 3.610 
3 4 -0.709 0.616 -0.176 
3 5 0.294 0.275 3.314 
3 6 0.106 0.002 4.419 

One of the 216 products is recommended to the consumer, after which the consumer searches 

optimally. The vertical axis in both figures is the utility of the product, net of search costs, chosen by the 

consumer after optimal search. The horizontal axis in Figure 1 is the true utility of the recommended 

product. The horizontal axis in Figure 2 is the recommendation system’s beliefs about the utility of the 

recommended product. Each point in Figure 2 represents one of the 216 feasible recommended prod-

ucts. 
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 Figure 3. Consumers in Recommendation-System Synthetic-Data Experiments. Consumer be-

liefs are normally distributed and independent over aspects. For each consumer we draw the true as-

pect importances, 𝑤ሬሬ⃗ ௥, from a mixture of two normal distributions, one with mean 0.0 and variance 0.5; 

the other with mean 4.0 and variance 0.2. The mixing parameter, 0.7, favors the second normal distribu-

tion to illustrate a case where most of the aspects are important. We draw the variances, 𝑣௜, of the con-

sumer’s prior beliefs i.i.d. from an exponential distribution, 𝜆𝑒ିఒ௩, with parameter, 𝜆 = 10. This gives 𝐸[𝑣] = 0.1 and 𝐸ൣ𝜎௜଴൧ = 0.32. In Figure 3, we vary naïveté with a parameter, 𝜂. We set the mean of the 

consumer’s priors to a “naïve” value with probability, 𝜂, and equal to 𝑤௜௥  with probability, 1 − 𝜂. The 

naïve value is redrawn randomly from the same generating distribution—a mixture of two normal distri-

butions. For Figure 4, we hold consumer naïveté constant at 𝜂 = 0.6. 

 Figure 4. Recommendation System Knowledge. We vary recommendation system knowledge 

with two parameters, 𝑃௖  and 𝑃௥௘௖. For some aspects we set the recommend system’s priors to the con-

sumer’s priors (probability 𝑃௖). For the remaining aspects we set the mean of the recommendation sys-

tem’s priors to the true partworths with probability 𝑃௥௘௖  and randomly with probability 1 − 𝑃௥௘௖. For 

the synthetic data experiments we set 𝑃௖ = 0.3. For Figure 3, we hold recommendation system 

knowledge constant at 𝑃௥௘௖ = 0.6. 

 Figure A1. Benchmark Performance as a Function of the Experimental Variables. 

  
 Benchmark Performance. In Figure A1, as expected, the value of a the benchmark recommen-

dation system (maximize expected utility) increases when consumers are more naïve and when recom-

mendation system knowledge increases. The vertical axes in Figures 3 and 4 are relative to this bench-

mark. The improvement in performance due to the benchmark is larger when consumers update their 

preferences more slowly. The explanation is simple; the vertical axis in Figure A1 is the net utility 

achieved using the benchmark recommendation system, minus the utility achieved without a recom-

mendation. The rate of updating has a larger impact on the net utility achieved without a recommenda-

tion than it does on the net utility achieved by following the benchmark recommendations. 
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