
 
 
 

COLLABORATING 
 
 

By 
 

ALESSANDRO BONATTI AND JOHANNES HÖRNER 
 
 
 

April 2009 
Revised November 2009 

 
 
 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 1695 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
 http://cowles.econ.yale.edu/  



Collaborating∗

Alessandro Bonatti and Johannes Hörner

November 29, 2009

Abstract

This paper examines moral hazard in teams over time. Agents are collectively engaged

in an uncertain project, and their individual efforts are unobserved. Free-riding leads not

only to a reduction in effort, but also to procrastination. The collaboration dwindles over

time, but never ceases as long as the project has not succeeded. In fact, the delay until

the project succeeds, if it ever does, increases with the number of agents. We show why

deadlines, but not necessarily better monitoring, help to mitigate moral hazard.

1 Introduction

Cooperation evolves over time. A lack of tangible results often breeds mistrust, and mistrust

leads to lower levels of commitment. Agents grow suspicious that other team members are not

pulling their weight in the common enterprise and scale back their own involvement in response.

Is this bleak scenario the fate of every team project? What can be done to avert such a scenario?

This paper develops a formal framework to address these questions.

∗We would like to thank Dirk Bergemann, Martin Cripps, Glenn Ellison, Meg Meyer, David Miller, Motty
Perry, Sven Rady, Larry Samuelson, Roland Strausz and Xavier Vives for useful discussions, and Nicolas Klein
for excellent comments. We thank Glenn Ellison for providing us with the data that was used in Ellison (2002).
Finally, we thank Alessandro Lizzeri and three anonymous referees whose suggestions have led to numerous
improvements to the paper. In particular, their suggestions led to Sections 2, 6.5., and a large part of 5.1.
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In modern times, collaborations have proven crucial in the production of knowledge at the

level of individual researchers and institutions.1 Teamwork is a special case of private provision

of public goods: when it is hard to quantify the contribution of each member on the advancement

of a project, free-riding arises. What sets teamwork apart from most existing models of provision

of public goods, though, is the uncertainty regarding the intrinsic feasibility of the project. As of

today, and despite the best efforts of minds as brilliant as Newton’s, the legendary “philosopher’s

stone” that would convert base metals into gold has not been found. Applications of the private

provision of public goods under uncertainty can be found not only in the direct production of

knowledge, but also in its financing. Consider, for instance, a public good of unknown value,

such as voluntary contributions (donations) to medical research. Other applications include

donations to charity, and investment in research and development (R&D) by firms engaged in a

joint venture.

With very few exceptions, most of the work on public goods deals with situations that are

either static or involve complete information. This work has provided invaluable insights into the

underprovision of the public good in quantity terms. In contrast, given the scope for learning,

our interest lies with the dynamics of this provision.

The key features of our model are the following: (i) Benefits are public, costs are private: the

profit, or value, from completing the project is common to all agents. All it takes to complete

the project is one breakthrough, but making a breakthrough requires costly effort. (ii) Success is

uncertain: some projects are doomed to failure, no matter how much effort is put into them. As

for the other projects, the flow probability of a breakthrough increases as the combined effort of

the agents increases. Achieving a breakthrough is the only way to ascertain the project’s type.

(iii) Effort is hidden: the choice of effort exerted by an agent is unobserved by the other agents.

1Although Dasgupta (1988) credits Klein and Lie with the first collaborative research in academia resulting
in joint publication, for their article on group theory in 1870, collaborative papers can be traced back to 1665
and the joint paper by Hooke, Oldenburg, Cassini and Boyle. This is not to say that collaborations did not take
place throughout scientific history, as the well-known collaborations of Kepler and Brahe, Lavoisier and Laplace,
or Gauss and Weber illustrate.
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As long as there is no breakthrough, agents receive no hard evidence whatsoever; they simply

become (weakly) more pessimistic about the prospects of the project as time goes on. This

captures the idea that output is observable, but effort is not. We shall contrast our findings with

the case in which effort is observable. At the end of the paper, we also discuss the intermediate

case in which a project involves several observable steps.

Our main findings are the following:

- Agents procrastinate: as is to be expected, agents slack off, i.e., there is underprovision

of effort overall. Agents do not only exert too little effort, but they also do so too late.

In the hope that the effort of others will suffice, they work less than they should early

on, postponing effort to later dates. Nevertheless, due to growing pessimism, the effort

expended dwindles over time, but the plug on the project is never pulled. Although the

overall effort expended is independent of the size of the team, the more agents are involved

in the project, the later the project gets completed on average, if ever.

- Deadlines are beneficial: if agents have enough resolve to fix themselves a deadline, it is

optimal to do so. This is the case despite the fact that agents pace themselves so that,

if the deadline is hit, the project is abandoned at a point at which the project is still

worthwhile. If agents could re-negotiate at this time, they would. But the deadline gives

agents incentives to exert effort once it looms close enough. The deadline is desirable,

because the reduction in wasteful delay more than offsets the value that is forfeited if the

deadline is reached. In this sense, the delay is more costly than the underprovision of effort.

- Better monitoring need not reduce delay: when effort is observed, there are multiple equi-

libria. Depending on the equilibrium, delay might be greater or smaller than under non-

observability. In the unique symmetric Markovian equilibrium, delay is actually greater.

This is because individual efforts are strategic substitutes. The prospects of the team

improve if it is found that an agent has slacked off, because this mitigates the growing pes-
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simism in the team. Therefore, an observable reduction in current effort encourages later

effort by other members, and this depresses equilibrium effort. Hence, better monitoring

need not alleviate moral hazard. Nevertheless, there are also non-Markovian, “grim-trigger”

equilibria for which delay is smaller.

Some insights into the relevance of these findings can be gleaned from the data collected by

Ellison (2002). For papers that get eventually published, Ellison (2002) shows that the number

of coauthors has a positive effect on the time lag between the submission and acceptance of the

paper. This agrees with our finding that increasing the team size increases the expected delay.

However, a closer look at the data used by Ellison (2002) reveals that the time lag between

submission and acceptance is decreasing in the number of coauthors when these coauthors are

located in the same department, which presumably facilitates monitoring. This is evidence

suggesting that the Markovian equilibrium outcome in the observable case does not describe

actual behavior.

The value of deadline raises the issue of mechanism design. We derive the optimal dynamic

(budget-balanced) compensation scheme, as well as the optimal wage scheme for a principal who

owns the project’s returns.

We then investigate the role of synergies. As Alchian and Demsetz (1972) have already

pointed out, it is likely that an important factor in the formation of teams is the team members’

potential to work synergistically. That is, total output might not be separable in the agents’

efforts. To account for this phenomenon, we examine two extensions of the baseline model. In the

first extension, workers may have similar skills, but their efforts get combined in a non-separable

way. For concreteness, we consider the case in which the arrival rate of success in case the project

is good is a constant elasticity function of their individual efforts. In the second extension, we

focus on two agents and consider the case in which agents possess different skills, so that one

worker might be able to succeed where another could not.

These two kinds of synergy lead to different kinds of behavior. In the first case, there are
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multiple equilibria that are all inefficient. In all equilibria, all agents put in some effort. These

equilibria illustrate the distinction between the amount and the allocation of effort: the symmetric

equilibrium is characterized by free-riding and significant delay, but it also is the one in which

the probability of a breakthrough is greatest. In the second case, the agent that is viewed as

most likely to succeed starts by exerting effort by himself, at a level that is socially efficient. As

time passes by and no breakthrough occurs, the difference in the likelihoods of success across

agents levels off. When both agents are equally likely to succeed, they both start to exert effort,

but these effort levels are low because of free-riding. Unless a breakthrough occurs, both agents

keep on exerting effort forever, albeit at rapidly declining levels.

Finally, we consider the case in which completing a project involves several tasks. Tasks

are independent. We are particularly interested in understanding how the type of the tasks

affects the structure and efficiency of equilibria. Following the literature on social psychology, we

distinguish between (i) additive tasks, in which payoffs are additively separable in the tasks, (ii)

conjunctive tasks, in which both tasks must be completed, and (iii) disjunctive tasks, in which

the project is completed as soon as there is a breakthrough in one task. Efficiency requires tasks

to be worked on simultaneously when they are additive, but sequentially if they are conjunctive.

However, there are equilibria in which agents specialize and work simultaneously on different

tasks when they are conjunctive.

This paper is related to several strands of literature. First, our model can be viewed as a

model of experimentation. There is a growing literature in economics on experimentation in

teams. For instance, Bolton and Harris (1999) and Keller, Rady and Cripps (2005) study a two-

armed bandit problem in which different agents may choose different arms. While free-riding

plays an important role in these papers as well, effort is always observable. Rosenberg, Solan

and Vieille (2007), Hopenhayn and Squintani (2008) and Murto and Välimäki (2008) consider

the case in which the outcome of each agent’s action is unobservable, while their actions are

observable. This is precisely the opposite of what is assumed in this paper; here, actions are not

observed, but outcomes are. Bergemann and Hege (2005) study a principal-agent relationship
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with an information structure similar to the one considered here. All these models provide

valuable insights into how much total experimentation is socially desirable, and how much can

be expected in equilibrium. As will be clear, these questions admit trivial answers in our model,

which is therefore not well-suited to address those.

Mason and Välimäki (2008) consider a dynamic moral hazard problem in which effort by

a single agent is unobservable. Although there is no learning, the optimal wage declines over

time, to provide incentives for effort. Their model shares with ours some common features. In

particular, the strategic substitutability between current and later efforts plays an important

role in both models, so that, in both cases, deadlines have beneficial effects. See also Toxvaerd

(2007) on deadlines, and Lewis and Ottaviani (2008) on similar effects in the optimal provision

of incentives in sequential search.

Second, our model ties into the literature on free-riding in groups, starting with Olson (1965)

and Alchian and Demsetz (1972), and further studied in Holmström (1982), Legros and Matthews

(1993), and Winter (2004). In a sequential setting, Strausz (1999) describes an optimal sharing

rule. More precisely, ours is a dynamic version of moral hazard in teams with uncertain output.

The static version was introduced by Williams and Radner (1988) and also studied by Ma, Moore

and Turnbull (1988). The inefficiency of equilibria of repeated partnership games with imperfect

monitoring has been first demonstrated by Radner, Myerson and Maskin (1986).

Third, our paper is related to the literature on dynamic contributions to public goods. Games

with observable contributions are examined in Admati and Perry (1991), Compte and Jehiel

(2004), Fershtman and Nitzan (1991), Lockwood and Thomas (2002), and Marx and Matthews

(2000). Fershtman and Nitzan (1991) compare open- and closed-loop equilibria in a set-up

with complete information and find that observability exacerbates free-riding. In Bag and Roy

(2008), Bliss and Nalebuff (1984), and Gradstein (1992), agents have independently drawn and

privately known values for the public good. This type of private information is briefly discussed

in the conclusion. Applications to partnerships include Levin and Tadelis (2005), and Hamilton,

Nickerson and Owan (2003). Also related is the literature in management on alliances, including,
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for instance, Doz (1996), Gulati (1995) and Gulati and Singh (1998).

There is a vast literature on free-riding, also known as social loafing, in social psychology.

See, for instance, Latané, Williams and Harkins (1979), or Karau and Williams (1993). Levi

(2007) provides a survey of group dynamics and team theory. The stage theory, developed by

Tuckman and Jensen (1977) and the theory by McGrath (1991) are two of the better known

theories regarding the development of project teams – the patterning of change and continuity

in team structure and behavior over time.

2 A Simple Example

Consider the following two-period game. Agent i = 1, 2 may exert effort in two periods

t = 1, 2, in order to achieve a breakthrough. Whether a breakthrough is possible or not depends

on the quality of the project. If the project is good, the probability of a breakthrough in period

t (assuming that there was no breakthrough before) is given by the sum of the effort levels ui,t

that the two agents choose in that period. However, the project might be bad, in which case a

breakthrough is impossible. Agents share a common prior belief p̄ < 1 that the project is good.

The project ends if a breakthrough occurs. A breakthrough is worth a payoff of 1 to both

agents, independently of who is actually responsible for this breakthrough. Effort, on the other

hand, entails a private cost given by c(ui,t) in each period. Payoffs from the second period are

discounted at a common factor δ ≤ 1.

Agents do not observe their partner’s effort choice. All they observe is whether a breakthrough

occurs or not. Therefore, if there is no breakthrough at the end of the first period, agents update

their belief about the quality of the project based only on their own effort choice, and their

expectation about the other agent’s effort choice. Thus, if an agent chooses an effort level ui,t in
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each period, and expects his opponent to exert effort û−i,t, his expected payoff is given by

p̄ · (ui,1 + û−i,1) − c(ui,1)
︸ ︷︷ ︸

First period payoff

+ δ(1 − p̄ · (ui,1 + û−i,1))[ρ(ui,1, û−i,1) · (ui,2 + ûi,2) − c(ui,2)
︸ ︷︷ ︸

Second period payoff

], (1)

where ρ(ui,1, û−i,1) is his posterior belief that the project is good. To understand (1), note that

the probability of a breakthrough in the first period is the product of the prior belief assigned

to the project being good (p̄), and the sum of effort levels exerted (ui,1 + û−i,1). The payoff of

such a breakthrough is 1. The cost of effort in the first period, c(ui,1), is paid in any event. If a

breakthrough does not occur, agent i updates his belief to ρ(ui,1, û−i,1), and the structure of the

payoff in the second period is as in the first period.

By Bayes’ rule, the posterior belief of agent i is given by

ρ(ui,1, û−i,1) =
p̄ · (1 − ui,1 − û−i,1)

1 − p̄ · (ui,1 + û−i,1)
≤ p̄. (2)

Note that this is based on agent i’s expectation of agent −i’s effort choice. That is, agents’ beliefs

are private, and they only coincide on the equilibrium path. If, for instance, agent i decides to

exert more effort than he is expected to by agent −i, yet no breakthrough occurs, agent i will

become more pessimistic than agent −i, unbeknownst to him. Off-path, beliefs are no longer

common knowledge.

In a perfect Bayesian equilibrium, agent i’s effort levels (ui,1, ui,2) are optimal given (û−i,1, û−i,2),

and expectations are correct: û−i,t = u−i,t. Letting Vi denote the agent’s payoff, it must be that

∂Vi

∂ui,1

= p̄ − c′(ui,1) − δp̄ · (ui,2 + û−i,2 − c(ui,2)) = 0,

and
∂Vi

∂ui,2
∝ ρ(ui,1, û−i,1) − c′(ui,2) = 0,

so that, in particular, c′(ui,2) < 1. It follows that (i) the two agents’ first-period effort choices are
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neither strategic complements nor substitutes, but (ii) an agent’s effort choices across periods

are strategic substitutes, as are (iii) an agent’s current effort choice and the other agent’s future

effort choices.

It is evident from (ii) that the option to delay reduces effort in the first period. Comparing

the one- and two-period models is equivalent to comparing the first-period effort choice for

ui,2 = ûi,2 = 0 on the one hand, and a higher value on the other. This is what we refer to

as procrastination: some of the work that would otherwise be carried out by some date gets

postponed when agents get further opportunities to work afterwards.2 In our example, imposing

a deadline of one period heightens incentives in the initial period.

Further, it is also clear from (iii) that observability of the first period’s action will lead to

a decline in effort provision. With observability, a small decrease in the first-period effort level

increases the other agent’s effort tomorrow. Therefore, relative to the case in which effort choices

are unobservable, each agent has an incentive to lower his first-period effort level in order to

induce his partner to work harder in the second period, when his choice is observable.

As we shall see, these findings carry through with longer horizons: deadlines are desirable,

while observability, or better monitoring, is not. However, this two-period model is ill-suited

to describe the dynamics of effort over time when there is no last period. To address this and

related issues, it is best to consider a baseline model in which the horizon is infinite. This model

is described next.

3 The Set-up

There are n agents engaged in a common project. The project has a probability p < 1 of

being a good project, and this is commonly known by the agents. It is a bad project otherwise.

Agents continuously choose at which level to exert effort over the infinite horizon R+. Effort

is costly, and the instantaneous cost to agent i = 1, . . . , n of exerting effort ui ∈ R+ is ci(ui),

2To procrastinate is to “delay or postpone action,” as defined by the Oxford English Dictionary.
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for some function ci(·) that is differentiable and strictly increasing. In most of the paper, we

assume that ci(ui) = ci ·ui, for some constant ci > 0, and that the choice is restricted to the unit

interval, i.e. ui ∈ [0, 1]. The effort choice is, and remains, unobserved.

Effort is necessary for a breakthrough to occur. More precisely, a breakthrough occurs with

instantaneous probability equal to f(u1, . . . , un), if the project is good, and to zero if the project

is bad. That is, if agents were to exert a constant effort ui over some interval of time, then the

delay until they found out that the project is successful would be distributed exponentially over

that time interval with parameter f(u1, . . . , un). The function f is differentiable and strictly

increasing in each of its arguments. In the baseline model, we assume that f is additively

separable and linear in effort choices, so that f(u1, . . . , un) =
∑

i=1,...,n λiui, for some λi > 0,

i = 1, . . . , n.

The game ends if a breakthrough occurs. Let τ ∈ R+ ∪ {+∞} denote the random time at

which the breakthrough occurs (τ = +∞ if it never does). We interpret such a breakthrough

as the successful completion of the project. A successful project is worth a net present value of

1 to each of the agents.3 As long as no breakthrough occurs, agents reap no benefits from the

project. Agents are impatient, and discount future benefits and costs at a common discount rate

r.

If agents exert effort (u1, . . . , un), and a breakthrough arrives at time t < ∞, the average

discounted payoff to agent i is thus

r

(

e−rt −
∫ t

0

e−rsci(ui,s)ds

)

,

while if a breakthrough never arrives (t = ∞), his payoff is simply −r
∫∞

0
e−rsci(ui,s)ds. The

agent’s objective is to choose his effort so as to maximize his expected payoff.

To be more precise, a (pure) strategy for agent i is a measurable function ui : R+ → [0, 1], with

the interpretation that ui,t is the instantaneous effort exerted by agent i at time t, conditional

3We discuss this assumption further in Section 4.2.

10



on no breakthrough having occurred. Given a strategy profile u := (u1, . . . , un), it follows from

Bayes’ rule that the belief held in common by the agents that the project is good (hereafter, the

common belief), p, is given by the solution to the familiar differential equation

ṗt = −pt(1 − pt)f(ut),

with p0 = p.4 Given that the probability that the project is good at time t is pt, and that the

instantaneous probability of a breakthrough conditional on this event is f(ut), the instantaneous

probability assigned by the agent to a breakthrough occurring is ptf(ut). It follows that the

expected instantaneous reward to agent i at time t is given by ptf(ut) − ci(ui,t). Given that the

probability that a breakthrough has not occurred by time t is given by exp{−
∫ t

0
psf(us)ds}, it

follows that the average (expected) payoff that agent i seeks to maximize is given by

r

∫ ∞

0

(ptf(ut) − ci(ui,t)) e−
R t
0 (psf(us)+r)dsdt.

Given that there is a positive probability that the game lasts forever, and that agent i’s informa-

tion set at any time t is trivial, strategies that are part of a Nash equilibrium are also sequentially

rational on the equilibrium path; hence, our objective is to identify the symmetric Nash equilibria

of this game. (We shall nevertheless briefly describe off-the-equilibrium-path behavior as well.)

4To see this, note that, given pt, the belief at time t + dt is

pt+dt =
pte

−f(ut)dt

1 − pt + pte−f(ut)dt
,

by Bayes’ rule. Subtracting pt on both sides, dividing by dt and taking limits gives the result.
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4 The Benchmark Model

We begin the analysis with the special case in which agents are symmetric, and both the

instantaneous probability and the cost functions are linear in effort:

f(u1, . . . , un) =

n∑

i=1

λiui, ci(ui) = ciui, ui ∈ [0, 1], λi = λ, ci = c, for all i.

Equivalently, we may define the normalized cost α := c/λ, and redefine ui, so that each agent

chooses the control variable ui : R+ → [0, λ] so as to maximize

Vi(p) := r

∫ ∞

0

(

pt

∑

i

ui,t − αui,t

)

e−
R t
0 (ps

P

i ui,s+r)dsdt, (3)

subject to

ṗt = −pt(1 − pt)
∑

i

ui,t, p0 = p.

Observe that the parameter α is the Marshallian threshold: it is equal to the belief at which

a myopic agent would stop working, because at this point the instantaneous marginal revenue

from effort, pt, equals the marginal cost, α.

4.1 The Team Problem

If agents behaved cooperatively, they would choose efforts so as to maximize the sum of their

individual payoffs, that is,

W (p) :=

n∑

i=1

Vi(p) = r

∫ ∞

0

(npt − α) ute
−

R t
0 (psus+r)dsdt,

where, with some abuse of notation, ut :=
∑

i ui,t ∈ [0, nλ]. The integrand being positive as long

as pt ≥ α/n, it is clear that it is optimal to set ut equal to nλ as long as pt ≥ α/n, and to zero
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otherwise. The belief pt is then given by

pt =
p̄

p̄ + (1 − p̄)enλt
,

as long as the right-hand side exceeds α/n. In short, the team solution specifies that each agent

sets his effort as follows:

ui,t = λ if t ≤ Tn := (nλ)−1 ln
p̄(1 − α/n)

(1 − p̄)α/n
, and ui,t = 0 for t > Tn.

Not surprisingly, the resulting payoff is decreasing in the discount rate r and the normalized cost

α, and increasing in the prior p̄, the upper bound λ and the number of agents, n.

Observe that the instantaneous marginal benefit from effort to an agent is equal to pt, which

decreases over time, while the marginal cost is constant and equal to α. Therefore, it will not be

possible to provide incentives for selfish agents to exert effort beyond the Marshallian threshold.

The wedge between this threshold and the efficient one, α/n, captures the well-known free-riding

effect in teams, which is described eloquently by Alchian and Demsetz (1972), and has since been

studied extensively. In a non-cooperative equilibrium, the amount of effort is too low.5 Here

instead, our focus is on how free-riding affects when effort is exerted.

4.2 The Non-Cooperative Solution

As mentioned above, once the common belief drops below the Marshallian threshold, agents

do not provide any effort. Therefore, if p ≤ α, there is a unique equilibrium, in which no agent

ever works, and we might as well assume throughout that p > α. Further, we assume throughout

5There is neither an “encouragement effect” in our set-up, unlike in some papers on experimentation (see, for
instance, Bolton and Harris (1999)), nor any effect of patience on the threshold. This is because a breakthrough
yields a unique lump sum to all agents, rather than conditionally independent sequences of lump sum payoffs.
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this section that agents are sufficiently patient. More precisely, the discount rate satisfies

λ

r
≥ α−1 − p−1 > 0. (4)

This assumption ensures that the upper bound on the effort level does not affect the analysis.

The proof of the main result of this section relies on Pontryagin’s principle, but the gist of it is

perhaps best understood by the following heuristic argument from dynamic programming.

What is the trade-off between exerting effort at some instant and exerting it at the next? Fix

some date t, and assume that players have followed the equilibrium strategies up to that date.

Fix also some small dt > 0, and consider the gain or loss from shifting some small effort ε from

the time interval [t, t+dt] (“today”) to the time interval [t+dt, t+2dt] (“tomorrow”). Write ui, p

for ui,t, pt, and u′
i, p

′ for ui,t+dt, pt+dt, and let Vi,t, or Vi, denote the unnormalized continuation

payoff of agent i at time t. The payoff Vi,t must satisfy the recursion

Vi,t = (p(ui + u−i) − αui)dt + (1 − rdt)(1 − p(ui + u−i)dt)Vi,t+dt.

Because we are interested in the trade-off between effort today and tomorrow, we apply the same

expansion to Vi,t+dt, to obtain

Vi,t = (p(ui + u−i) − αui)dt+

(1 − rdt)(1 − p(ui + u−i)dt)
[
(p′(u′

i + u′
−i) − αu′

i)dt + (1 − rdt)(1 − p′(u′
i + u′

−i)dt)Vi,t+2dt

]
, (5)

where p′ = p− p(1− p)(ui + u−i)dt.6 Consider then decreasing ui by ε and increasing u′
i by that

amount. Note that, conditional on reaching t + 2dt without a breakthrough, the resulting belief

is unchanged, and therefore, so is the continuation payoff. That is, Vi,t+2dt is independent of ε.

6More precisely, for later purposes, e−p(ui+u
−i)dt = 1 − p(ui + u−i)dt + p2

2 (ui + u−i)
2(dt)2 + o(dt3).
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Therefore, to the second order,

dVi,t/dε

dt
= −((p − α) − pVi,t

︸ ︷︷ ︸
dVi,t/dui

dt
·
dui
dε

) + (p − α) − pVi,t
︸ ︷︷ ︸

dVi,t/du′

i
dt

·
du′

i
dε

= 0.

To interpret this, note that increased effort affects the payoff in three ways: it increases the

probability of a breakthrough, yielding a payoff of 1, at a rate pt; it causes the loss of the

continuation value Vi,t at the same rate; lastly, increasing effort increases cost, at a rate α.

The upshot of this result is that the trade-off between effort today and tomorrow can only

be understood by considering an expansion to the third-order. Here we must recall that the

probability of a breakthrough given effort level u is, to the third order, pudt − (pu)2(dt)2/2 (see

footnote 6); similarly, the continuation payoff is discounted by a factor e−rdt ≈ 1−rdt+r2(dt)2/2.

Let us first expand terms in (5), which gives

Vi,t = (pu − αui)dt − (pu)2dt2/2 + (1 − (r + pu)dt + (r + pu)2dt2/2)·
[
(pu′ − αu′

i)dt − ((1 − p)u + pu′/2)pu′dt2 + [1 − (r + pu′)dt + ((r + pu′)2/2 + p(1 − p)uu′)dt2]Vi,t+2dt

]
,

where, for this equation and the next, u := ui + u−i, u′ := u′
i + u′

−i. We then obtain, ignoring

the second-order terms that, as shown, cancel out,

dVi,t/dε

dt2
=

−
dVi,t/dui

dt2
·
dui
dε

︷ ︸︸ ︷

p2u + p(pu′(1 − Vi) − αu′
i − rVi) − (r + pu)pVi + p(1 − p)u′(1 − Vi)

+ p(r + pu′)Vi − p(1 − p)u(1 − Vi) − p2u′ − (r + pu)(p(1 − Vi) − α)
︸ ︷︷ ︸

dVi,t/du′

i
dt2

·
du′

i
dε

.

Assuming that ui and u−i are continuous, almost all terms vanish. We are left with

dVi,t/dε

dt2
= αp(ui + u−i) − r(p − α) − αpui.
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This means that postponing effort to tomorrow is unprofitable if and only if

αpui ≥ αp(ui + u−i) − r(p − α). (6)

Equation (6) admits a simple interpretation. What is the benefit of working a bit more today,

relative to tomorrow? At a rate p (the current belief), working today increases the probability

of an immediate breakthrough, in which event the agent will not have to pay the cost of the

planned effort tomorrow (αui). This is the left-hand side. What is the cost? If the agent waited

until tomorrow before working a bit harder, there is a chance that this extra effort will not have

to be carried out. The probability of this event is p · (ui + u−i), and the cost saved is α per unit

of extra effort. This gives the first term on the right-hand side. Of course, there is also a cost of

postponing, given that agents are impatient. This cost is proportional to the mark-up of effort,

p − α, and gets subtracted on the right-hand side.

First, observe that, as p → α, the right-hand side of (6) exceeds the left-hand side if u−i is

bounded away from zero. Effort tends to zero as p tends to α. Similarly, effort must tend to zero

as r → 0.

Second, assume for the sake of contradiction that agents stop working at some finite time.

Then, considering the penultimate instant, it must be that, up to the second order, p − α =

p(1 − p)(ui + u−i)dt, and so we may divide both sides of (6) by ui + u−i = nui, yielding

p(1 − p)rdt ≥ n − 1

n
αp,

which is impossible, as dt is arbitrarily small. Therefore, not only does effort go to zero as p

tends to α, but it does so sufficiently fast that the belief never reaches the threshold α, and

agents keep on working on the project forever, albeit at negligible rates.

It is now easy to guess what the equilibrium value of ui must be. Given that agent i must be
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indifferent between exerting effort or not, and also exerting it at different instants, we must have

αpui = αp(ui + u−i) − r(p − α), or ui(p) =
r(α−1 − p−1)

n − 1
.

Hence, the common belief tends to the Marshallian threshold asymptotically, and total effort,

as a function of the belief, is actually decreasing in the number of agents. To understand this

last result, observe that the equilibrium reflects the logic of mixed strategies. Because efforts are

perfect substitutes, the indifference condition of each agent requires that the total effort by all

agents but him be a constant that depends on the belief, but not on the number of agents. Thus,

each agent’s level of effort must be decreasing in the number of agents. In turn, this implies

that the total effort by all agents for a given belief is the sum of a constant function and of a

decreasing function of the number of agents. Therefore, it is decreasing in the number of agents.

This simple logic relies on two substitutability assumptions: efforts of different agents are

perfect substitutes, and the cost function is linear. Both assumptions will be relaxed later.

We emphasize that, because effort is not observed, players only share a common belief on the

equilibrium path. For an arbitrary history, an agent’s best-reply depends both on the public and

on his private belief. Using dynamic programming is difficult, because the optimality equation is

then a partial differential equation. Pontryagin’s principle, on the other hand, is ideally suited,

because the other agents’ strategies can be viewed as fixed, given the absence of feedback.

The next theorem, proved in the appendix, describes the strategy on the equilibrium path.7

Theorem 1 There exists a unique symmetric equilibrium, in which, on the equilibrium path, the

level of effort of any agent is given by

u∗
i,t =

r

n − 1

α−1 − 1

1 + (1−p)α
p−α

e
n

n−1
r(α−1−1)t

, for all t ≥ 0. (7)

7In the case p = 1 that was ruled out earlier, the game reduces essentially to the static game. The effort level

is constant and, because of free-riding, inefficiently low (ui,t = r(α−1−1)
n−1 ).
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If an agent deviated, what would his continuation strategy be? Suppose that this deviation

is such that, at time t, the aggregate effort of agent i alone over the interval [0, t] is lower than it

would have been on the equilibrium path. This means that agent i is more optimistic than the

other agents, and his private belief exceeds their common belief. Given that agent i would be

indifferent between exerting effort or not if he shared the common belief, his optimism leads him

to exert maximal effort until the time at which his private belief catches up with the other agents’

common belief, at which point he will revert to the common, symmetric strategy. If instead his

realized aggregate effort up to t is greater than in equilibrium, then he is more pessimistic than

the other agents, and he will provide no effort until the common belief catches up with his

private belief, if ever. This completes the description of the equilibrium strategy. In section 6,

we characterize asymmetric equilibria of the baseline model, and allow for asymmetries in the

players’ characteristics.

From (7), it is immediate to derive the following comparative statics. To avoid confusion, we

refer to total effort at time t as the sum of instantaneous, individual effort levels at that time,

and to aggregate effort at t as the sum (i.e. the integral) of total effort over all times up to t.

Lemma 1 In the symmetric equilibrium:

1. Effort decreases over time, and increases in r and p.

2. Aggregate effort decreases in α. It also decreases in, but is asymptotically independent of,

n: the probability of an eventual breakthrough is independent of the number of agents, but

the distribution of the time of the breakthrough with more agents first-order stochastically

dominates this distribution with fewer agents.

3. The agent’s payoff Vi(p) is increasing in n and p, decreasing in α, and independent of r.

Total effort is decreasing in n for a given belief p, so that total effort is also decreasing in n

for small enough t. However, this implies that the belief decreases more slowly with more agents.

Because effort is increasing in the belief, it must then be that total effort is eventually higher in

larger teams. Because the asymptotic belief is α, independently of n, aggregate effort must be

18



independent of n as well. Ultimately, then, larger teams must catch up in terms of effort, but

this also means that larger teams are slower to succeed.8
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Figure 1: Individual and total effort

In particular, for teams of different size, the distributions of the random time τ of a break-

through, conditional on a breakthrough occurring eventually, are ranked by first order stochastic

dominance. We define the expected cost of delay as 1−E[e−rτ |τ < ∞]. It follows from Lemma 1

that the cost of delay is increasing in n. However, it is independent of r, because more impatient

agents work harder, but discount the future more. As mentioned above, the agents’ payoffs are

also increasing in n. This is obvious for one vs. two agents, because an agent may always act as

if he were by himself, securing the payoff from a single-agent team. It is less obvious that larger,

slower teams achieve higher payoffs. Our result shows that, for larger teams, the reduction in

individual effort more than offsets the increased cost of delay. Figure 1 and the left panel of

Figure 2 illustrate these results.

Note that the comparative statics with respect to the number of agents hinge upon our

assumption that the project’s returns per agent were independent of n. If instead the total value

of the project is fixed independently of n, so that each agent’s share decreases linearly in n,

8As a referee observed, this is reminiscent of the bystander effect, as in the Kitty Genovese case: because more
agents are involved, each agent optimally scales down his involvement, resulting in an outcome that worsens with
the number of agents.
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Figure 2: Payoffs and cost of delay. Left: value per agent = 1; right: value per agent = 1/n.

aggregate effort decreases with the team’s size, and tedious calculations show that each agent’s

payoff decreases as well. See the right panel of Figure 2 for an illustration.

While the symmetric equilibrium is unique, there exist other, asymmetric, equilibria. Con-

sider, for instance, the case of two agents only (n = 2). If an agent were by himself, he would

behave as he would in the cooperative set-up. That is, he would exert maximal effort up to time

T1, at which his belief reaches the level α. Faced with such behavior, the best reply of another

(sufficiently patient) agent would be to exert no effort whatsoever; indeed, the value of effort

identified in the symmetric equilibrium is precisely the threshold such that, if an agent expected

his partner to put in more effort than this, he would find it optimal to put in none himself. So

there is an asymmetric equilibrium in which one agent behaves as if he were by himself, and in

which the other agent puts no effort whatsoever. It is not difficult, then, to see that there is

actually an entire continuum of equilibria, of which we have identified the two extreme points.

Each equilibrium is indexed by an agent i = 1, 2, and some time t1 ≤ T1, such that, up to time t1,

agent i chooses maximum effort, while agent −i exerts no effort at all, and from time t1 onward,

given the resulting belief at time t1, the two agents behave as in the symmetric equilibrium.

In the appendix, we prove that, as long as, as assumed, λ/r ≥ α−1 − p−1, every equilibrium

is indexed by a collection of nested subsets of agents, {i} ⊂ {i, j} ⊂ {i, j, k} ⊂ · · · ⊂ {1, . . . , n},
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and (not necessarily distinct) times t1 ≤ t2 ≤ · · · ≤ tn, with t1 ∈ [0, T1], tk ∈ R+ ∪ {∞} for

k ≥ 2 (with t1 = T1 ⇒ t2 = · · · = tn = T1, while t1 < T1 ⇒ tn = ∞), such that agent i exerts

maximal effort by himself up to t1, agents i, j exert effort as in the symmetric equilibrium (i.e.,

ui = uj = r(α−1 − p−1) given the resulting p) over the interval (t1, t2], etc.9 The symmetric

equilibrium obtains for t1 = · · · = tn−1 = 0.

Clearly, if agents are sufficiently patient (so that ui,t < λ for all t), the overall payoff of the

team is maximized by the asymmetric equilibrium in which one agent works by himself. So,

according to the utilitarian rule, this asymmetric equilibrium is the best equilibrium and the

symmetric equilibrium is the worst. However, according to the maximin rule, the ranking is

reversed, because the agent who works alone is worse off than in the symmetric equilibrium.

The existence of such an asymmetric equilibrium relies on the strong substitutability condi-

tions that have been assumed so far. As we shall see, if the agents’ efforts display complemen-

tarities, such an extreme outcome can no longer occur in equilibrium. Nevertheless, the trade-off

between efficiency and fairness will persist.

The assumption regarding the discount rate was necessary to ensure that the agent’s in-

dividual effort characterized in Theorem 1 was less than the maximum effort level λ. If this

assumption is not satisfied, it is possible that both agents exert maximal effort simultaneously,

at least initially. That is, the unique symmetric equilibrium then has the feature that all agents

exert maximal effort up to time t at which, given the resulting belief, the level of effort ui(p), as

defined above the theorem, is equal to λ (since ui(p) → 0 as p → α, this always occurs at some

time t < Tn). From that point on, agents exert effort at level ui(p), and the qualitative features

of the equilibrium are as before.

So far, agents have been assumed to be identical. If the normalized cost α is the same across

agents, but not necessarily the capacity λi, there is little change in the analysis. In particular,

the symmetric equilibrium remains an equilibrium provided that λi/r ≥ α−1 − p−1 for all agents

i. Similarly, if agents have different discount rates, there is an equilibrium in which all agents

9Conversely, for any such collection of subsets of agents and switching times, there exists an equilibrium.
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exert interior effort levels, so that the more patient agent i is, the smaller u−i is.

However, the outcome changes dramatically if the normalized cost differs across agents. In-

deed, if αi < minj 6=i αj (and λi/r ≥ α−1 − p−1 for all i), then, in the unique equilibrium of the

game, agent i behaves as if he were on his own, by exerting maximal effort up to the point at

which the belief p reaches αi. The proof for the case n = 2 is in the appendix. The intuition is

straightforward. Given that agent i has incentives to exert effort for any belief p > αi, but no

other agent has an incentive to exert any effort as soon as p < minj 6=i αj , agent i must be the last

agent to exert effort.10 At that point, he might as well exert maximum effort. However, consider

the last agent other than i, say j, to exert any effort, and let t be the time at which he is supposed

to stop exerting effort. At time t − dt, agent j has a strict preference for procrastinating. After

all, that last bit of effort could always be exerted later, and given that agent i will be starting

to exert maximum effort in an instant, the probability that he might be able to avoid exerting

this effort altogether is high enough for him to defer. This implies that t = 0; hence, agent i is

always the only one to exert effort.

The same reasoning applies if agents have different prior beliefs p̄i, or if one agent has a

higher value for success. Then the most optimistic, or the most productive agent (say, agent i)

must exert effort all by himself. In particular, if entering the collaboration involved any type of

additional cost for each agent, agent i would never join the team.

Again, this extreme outcome is partly driven by the perfect substitutability in the productivity

of the agents’ efforts. As we shall see, when efforts are imperfect substitutes, both agents work

even when their productivities differ. Nevertheless, it is suggestive that teams involving agents

with skills of a similar kind, but dissimilar levels, are unlikely to be successful.

10More precisely, it cannot be that limt→∞ pt > αi, because, when the combined efforts of all agents j 6= i
become negligible, agent i has a strict incentive to exert maximum effort. Hence, limt pt = αi, so that, if t is the
smallest solution to pt = minj 6=i αj, agent i must be the only agent exerting effort after t.
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4.3 A Comparison with the Observable Case

We now contrast the previous findings with the corresponding results for the case in which

effort is perfectly observable. That is, we assume here that all agents’ efforts are observable,

and that agent i’s choice as to how much effort to exert at time t (hereafter, his effort choice)

may depend on the entire history of effort choices up to time t. Note that the “cooperative,” or

socially optimal solution is the same whether effort choices are observed or not: delay is costly,

so that all work should be carried out as fast as possible; the threshold belief beyond which such

work is unprofitable must be, as before, p = α/n, which is the point at which marginal benefits

of effort to the team are equal to its marginal cost.

Such a continuous-time game involves well-known nontrivial modeling choices. A standard

way to sidestep these choices is to focus on Markov strategies. Here, the obvious state variable is

the belief p. Unlike in the unobservable case, this belief is always commonly held among agents,

even after histories off the equilibrium path.

A strategy for agent i, then, is a map ui : [0, 1] → [0, λ] from possible beliefs p into an

effort choice ui(p), such that (i) ui is left-continuous; and (ii) there is a finite partition of [0, 1]

into intervals of strictly positive length on each of which ui is Lipschitz-continuous. By standard

results, a profile of Markov strategies u(·) uniquely defines a law of motion for the agents’ common

belief p, from which the (expected) payoff given any initial belief p can be computed (cf. Presman

(1990) or Presman and Sonin (1990)). A Markov equilibrium is a profile of Markov strategies

such that, for each agent i, and each belief p, the function ui maximizes i’s payoff given initial

belief p. See, for instance, Keller, Rady and Cripps (2005) for details. Following standard steps,

agent i’s continuation payoff given p, Vi(p), must satisfy the optimality equation given by, for all

p, and dt > 0, to the second order,

Vi (p) = max
ui

{((ui + u−i) pt − uiα) dt + (1 − (r + (ui + u−i)pt) dt)Vi (pt+dt)}

= max
ui

{((ui + u−i) pt − uiα) dt + (1 − (r + (ui + u−i)pt) dt) (Vi (p) − (ui + u−i) p (1 − p)V ′
i (p) dt)} .
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Taking limits as dt → 0 yields

0 = max
ui

{(ui + u−i) p − uiα − (r + (ui + u−i)p)Vi (p) − (ui + u−i) p (1 − p)V ′
i (p)} ,

assuming, as will be verified, that V is differentiable. We focus here on a symmetric equilibrium

in which the effort choice is interior. Given that the maximand is linear in ui, its coefficient must

be zero. That is, dropping the agent’s subscript,

p − α − pV (p) − p (1 − p) V ′ (p) = 0,

and since V (α) = 0, the value function is given by

V (p) = p − α + α(1 − p) ln
(1 − p) α

(1 − α) p
.

Plugging back into the optimality equation, and solving for u := ui, all i, we get

u(p) =
r

α(n − 1)
V (p) =

r

α(n − 1)

(

p − α + α(1 − p) ln
(1 − p) α

(1 − α) p

)

.

It is standard to verify that the resulting u is the unique equilibrium strategy profile provided

that p is such that u ≤ λ for all p < p. In particular, this is satisfied when, as assumed in

the unobservable case, λ/r ≥ α−1 − p−1, which we maintain henceforth. In the model without

observability, recall that, in terms of the belief p, the effort is given by u(p) = r
n−1

(α−1 − p−1).

As is clear from these formulas, the eventual belief is the same whether effort is observed or not,

and so aggregate effort over time is the same in both models. However, delay is not.

Theorem 2 In the symmetric Markov equilibrium with observable effort, the equilibrium level

of effort is strictly lower, for all beliefs, than that in the unobservable case.

Thus, fixing a belief, the instantaneous equilibrium level of effort is lower when previous
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choices are observable, and so is the welfare. This means that delay is greater under observability.

While this may be a little surprising, it is an immediate consequence of the fact that effort

choices are strategic substitutes. Because effort is increasing in the common belief, and because

a reduction in one agent’s effort choice leads to a lower rate of decrease in the common belief,

such a reduction leads to a greater level of effort by other agents. That is, to some extent, the

other agents take up the slack. This depresses the incentives to exert effort and leads to lower

equilibrium levels. This cannot happen when effort is unobservable, because an agent cannot

induce the other agents into exerting the effort for him. Figure 3 illustrates this relationship. As

can be seen from the right panel, a lower level of effort for every value of the belief p does not

imply a lower level of effort for every time t: given that the total effort over the infinite horizon

is the same in both models, levels of effort are eventually higher in the observable case.

The individual payoff is independent of the number of agents n ≥ 2 in the team in the

observable case. This is a familiar rent-dissipation result: when the size of the team increases,

agents waste in additional delay what they save in individual cost. This can be seen directly

from the formula for the level of effort, in that the total effort of all agents but i is independent

of n. It is worth pointing out that this is not true in the unobservable case. This is one example

in which the formula that gives the effort as a function of the common belief is misleading in

the unobservable case: given p, the total instantaneous effort of all agents but i is independent

of n here as well. Yet the value of p is not a function of the player’s information only: it is the

common belief about the unobserved past total efforts, including i’s effort; hence, it depends on

the number of agents. As we have seen, welfare is actually increasing in the number of agents in

the unobservable case. The comparison is illustrated in the left panel of Figure 3.

In the observable case, there also exist asymmetric Markov equilibria, similar to those de-

scribed in Keller, Rady and Cripps (2005), in which agents “take turns” at exerting effort. In

these Markovian equilibria, the “switching points” are defined in terms of the common belief.

Because effort is observable, if agent i procrastinates, this “freezes” the common belief and

therefore postpones the time of switching until agent i makes up for the wasted time. So, the
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Figure 3: Welfare and effort in the observable vs. non-observable case

punishment for procrastination is automatic. Taking turns is impossible without observability.

Suppose that agent i is expected to exert effort alone up to time t, while another agent j ex-

erts effort alone during some time interval starting at time t. Any agent working alone must

be exerting maximal effort, if at all, because of discounting. Because any deviation by agent i

is not observable, agent j will start exerting effort at time t no matter what. It follows that,

at a time earlier than but close enough to t, agent i can procrastinate, wait for the time t′ at

which agent j will stop, and only then, if necessary, make up for this foregone effort (t′ is finite

because j exerts maximal effort). This alternative strategy is a profitable deviation for i if he

is patient enough, because the induced probability that the postponed effort will not be exerted

more than offsets the loss in value due to discounting. Therefore, such switching is impossible

without observability, independently of the agents’ discount rate.

In the observable case, there exist other, non-Markovian symmetric equilibria. As mentioned

above, appropriate concepts of equilibrium have been defined carefully elsewhere (see, for in-

stance, Bergin and McLeod (1993)). It is not difficult to see how one can define formally a

“grim-trigger” equilibrium, for low enough discount rates, in which all agents exert effort at a

maximal rate until time T1 at which p = α, and if there is a unilateral deviation by agent i, all
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other agents stop exerting effort, leaving agent i with no choice but to exert effort at a maximal

rate from this point on until the common belief reaches α. While this equilibrium is not first-

best, it clearly does better than the Markovian equilibrium in the observable case, and than the

symmetric equilibrium in the unobservable case.11

Which equilibrium is more likely to emerge? As a simple application, we reconsider the data

that was used by Ellison (2002). This data, as mentioned above, corroborates one of our main

findings: as the number of coauthors increases, the time lag between submission and acceptance

of the paper increases. As a rudimentary measure of observability, we consider, for each paper,

the number of coauthors affiliated with the same department. The underlying assumption is that

it is easier to monitor effort when coauthors are physically close; hence, we view papers written

by several authors from the same department as being projects with observable levels of effort,

and papers written by distant coauthors as projects with unobservable levels of effort. As Table

1 illustrates, the difference between these two kinds of papers is striking: an additional coauthor

increases the time lag by a month on average; however, it actually increases it by one month

and a half if the coauthors are geographically distant, while it reduces the time lag by two weeks

when they are neighbors. Both results are statistically significant. On one hand, this reinforces

the main conclusion of the unobservable case. On the other hand, this is suggestive evidence that

coauthors in the same department do not follow the prescription of the Markovian equilibrium.

The grim-trigger equilibrium, for instance, is consistent with the data. Delay is decreasing in the

number of coauthors, because coauthors exert effort at a maximal rate. Therefore, increasing

the number of authors increases the total amount of effort exerted at any instant.

It would be interesting to examine whether the quality of monitoring affects the amount of

effort that is exerted, in addition to the delay. The acceptance rate could be used as a proxy

variable. Unfortunately, the data is not suited for such an analysis, because it is restricted to

papers that were accepted eventually.

11It is tempting to consider grim-trigger strategy profiles in which agents exert effort for beliefs below α. We
ignore them here, because such strategy profiles cannot be limits of equilibria of discretized versions of the game.
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Table 1: Submit-Accept Time Regressions

(1) (2)
Submit-accept time Submit-accept time

Total number of 28.970** 46.430***
authors [14.232] [15.511]

Number of coauthors -61.156**
in the same department [26.032]

Journal dummies Yes Yes

Journal trends Yes Yes

Field dummies Yes Yes
Observations 1393 1393

Note: The dependent variable is the length of time between submission of a paper to

a journal and its acceptance in days. The sample is a subset of the set of papers pub-

lished in the top five or six general-interest economics journals between 1990 and 1998.

The total number of authors ranges from 1 to 3. All regressions include journal dum-

mies, journal-specific linear time trends, dummies for 17 fields of economics, and all

the control variables used by Ellison (2002) in Table 6. Robust standard errors are

reported in brackets (∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01).
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5 Deadlines and Other Mechanisms

In the absence of any kind of commitment, the equilibrium outcome described above seems

inevitable. Pleas and appeals to cooperate are given no heed and deadlines are disregarded. In

this section, we examine what can be done to improve upon this outcome. Three mechanisms

are considered.

The first mechanism is a self-imposed time-limit. We assume that agents can commit to a

deadline and that they choose the optimal deadline such that, if no breakthrough has occurred

by this time, all agents stop exerting effort and the project is abandoned. Effectively, this is

equivalent to considering the game with a finite horizon. We examine which is the optimal

horizon.

A deadline is an extreme version of a symmetric reward scheme, in which the entire surplus is

shared evenly if a breakthrough obtains before the deadline expires, but is completely destroyed

afterwards. In the second mechanism, agents can commit to any symmetric reward scheme (as

a function of time) they wish to, but the scheme has to be ex ante budget-balanced. Clearly,

this must at least weakly improve on a deadline, and we show that, in fact, a deadline is not the

optimal mechanism satisfying ex ante budget balance; it is the optimal mechanism satisfying ex

post budget balance.

Finally, we contrast this “team” reward scheme with the one that a principal who reaps the

benefits of the project would wish to implement. Here as well, because the identity of the actual

agent responsible for the breakthrough is not observed, attention is restricted to symmetric

schemes in which the principal promises the same reward to all agents, but this reward is allowed

to depend on time.

In this section, we normalize the capacity λ to 1.
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5.1 Deadlines

For some possibly infinite deadline T ∈ R+ ∪ {∞}, and some strategy profile (u1, . . . , un) :

[0, T ] → [0, 1]n, agent i’s (expected) payoff over the horizon [0, T ] is now defined as

r

∫ T

0

(pt(ui,t + u−i,t) − αui,t) e−
R t
0
(ps(ui,s+u−i,s)+r)dsdt.

That is, if time T arrives and no breakthrough has occurred, the continuation payoff of the agents

is nil. The baseline model of Section 4 is the special case in which T = ∞. The next lemma,

which we prove in the appendix, describes the symmetric equilibrium for T < ∞. Throughout

this subsection, we maintain the restriction on the discount rate r, given by (4), that we imposed

in Section 4.2.

Lemma 2 Given T < ∞, there exists a unique symmetric equilibrium, characterized by T̃ ∈
[0, T ), in which the level of effort is given by

ui,t = u∗
i,t for t < T̃ , and ui,t = 1 for t ∈ [T̃ , T ],

where u∗
i is as in Theorem 1. The time T̃ is non-decreasing in the parameter T and strictly

increasing for T large enough. Moreover, the belief at time T strictly exceeds α.

See Figure 4. According to Lemma 2, effort is first decreasing over time, and over this time

interval, it is equal to its value when the deadline is infinite. At that point, the deadline is far

enough in the future not to affect the agents’ incentives. However, at some point, the deadline

looms large above the agents. Agents recognize that the deadline is near and exert maximal

effort from then on. But it is then too late to catch up with the aggregate effort exerted in

the infinite-horizon case, and pT > α. By waiting until time T̃ , agents take a chance. It is

not difficult to see that the eventual belief pT must strictly exceed α: if the deadline were not

binding, each agent would prefer to procrastinate at instant T̃ , given that all agents then exert
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Figure 4: Optimal strategies given a deadline of T = 3

maximal effort until the end.

Figure 4 also shows the effort level in the symmetric Markov equilibrium with observable effort

in the presence of a deadline (a Markov strategy is now a function of the remaining time and

the public belief). The analysis of this case can be found in the appendix. With a long enough

deadline, equilibrium effort in the observable case can be divided into three phases. Initially,

effort is low and declining. Then, at some point, effort stops altogether. Finally, effort jumps

back up to the maximal level. The last phase can be understood as in the unobservable case; the

penultimate one is a stark manifestation of the incentives to procrastinate under observability.

Note, however, that the time at which effort jumps back up to the maximal level is a function

of the remaining time and the belief, and the latter depends on the history of effort so far. As

a result, this occurs earlier under observability than non-observability. Therefore, effort levels

between the two scenarios cannot be compared pointwise, although the belief as the deadline

expires is higher in the observable case (i.e., aggregate effort exerted is lower).

The next theorem establishes that it is in the agents’ best interest to fix such a deadline. That

is, agents gain from restricting the set of strategies that they can choose from. Furthermore, the

deadline is set precisely in order that agents will have strong incentives throughout.
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Theorem 3 The optimal deadline T is finite and is given by

T =
1

n + r
ln

(n − α)p

α(n − p) − r(p − α)
.

It is the longest time for which it is optimal for all agents to exert effort at a maximal rate

throughout.

Note that the deadline is decreasing in n, because it is the product of two positive and

decreasing functions of n. That is, tighter deadlines need to be set when teams are larger. This

is a consequence of the stronger incentives to shirk in larger teams. Furthermore nT decreases

in n as well. That is, the total amount of experimentation is lower in larger teams. However, it

is easy to verify that the agent’s payoff is increasing in the team size. Larger teams are bad in

terms of overall efficiency, but good in terms of individual payoffs.

In the appendix, it is also shown that T is increasing in r: the more impatient the agents, the

longer the optimal deadline. This should not come as a surprise, because it is easier to induce

agents who have a greater level of impatience to work longer.

One might suspect that the extreme features of the equilibrium effort pattern in presence of

a deadline is driven by the linearity in the cost function. Indeed, as was reported in the last

section, the path of equilibrium effort appears to be continuous over time when the cost function

is quadratic. Nevertheless, a deadline provides additional incentives to exert effort when time is

running short, and the graph of the level of effort is U-shaped in a variety of circumstances.12

5.2 The Optimal Budget-Balanced Mechanism

The setting of a deadline is a rather extreme way in which the team can affect incentives. We

now consider a more general class of mechanisms. Agents can commit to a common wage that is

12Readers have pointed out to us that this effort pattern in the presence of a deadline reminds them of their
own behavior as a single author. Sadly, it appears that such behavior is hopelessly suboptimal for n = 1. We
refer to O’Donoghue and Rabin (1999) for a behavioral model with which they might identify.
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an arbitrary function of time. In the case of a breakthrough, each agent collects this wage. The

budget is required to be balanced on average, given that the project is worth v = n to the team

(because success is a public good that yields a benefit of 1 to each of the n agents, its value v

equals n).

Therefore the agents choose w : R+ → R+, which is measurable, so as to maximize

r

∫ ∞

0

nptut (nwt − nα) e−
R t
0 (npsus+r)dsdt,

subject to there being an ex ante budget balance, namely,

r

∫ ∞

0

nptut (v − nwt) e−
R t
0 (npsus+r)dsdt = 0.

The function u := ui : R+ → [0, 1], which is measurable, must maximize

r

∫ ∞

0

(pt(ui,t + u−i,t)wt − αui,t) e−
R t
0 (ps(ui,t+u−i,t)+r)dsdt,

where u−i := (n− 1)u, because agents choose the level of effort that they will exert noncoopera-

tively. We find that fixing a constant wage is not optimal, and neither is fixing a deadline, in the

sense described above (i.e. fixing a constant wage up to some time-limit, after which the wage is

set to zero). To state the next theorem, it is necessary to introduce some notation. Let

δ :=
p

2n(1 − p)

(√

(n − 1)2 + 4n
1 − p

p
(v/α − 1) − (n − 1)

)

,

and

w(δ) :=
α

pr (n − r)

(

p (r + n (n − 1)) − r2 + (nr (1 − p) δ − (n − 1) p (n − r)) δ−r/n
)

.
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Finally, let

w∗
t = w(δ)ert + α

n − 1 + r

r
(1 − ert) − α

r(1 − p)

(n − r)p
(ent − ert).

Theorem 4 The optimal wage scheme w is given by

wt = w∗
t for t ≤ T̂ , and wt = 0 for t > T̂ ,

for some T̂ , such that ut = 1 until time T̂ , and ut = 0 thereafter.13

The final time T̂ cannot be solved in closed-form, and is the unique strictly positive solution

to
r

n + r
(
v

α
− 1)(e(n+r)T̂ − 1) − (n − 1)enT̂ (erT̂ − 1) − nr

n − r

1 − p̄

p̄
enT̂ (enT̂ − erT̂ ) = 0.

This theorem is proved in the appendix, where it is further shown that, at least for small enough

discount rates, the belief at the final time T̂ is above the asymptotic belief in the baseline

model. Thus, if agents are patient enough, the optimal mechanism helps to alleviate the free-

rider problem, but does not bring the total effort back to its efficient level. As is the case with

a deadline, it is optimal to have agents exert maximal effort until effort stops completely. For

low discount rates, the wage is decreasing over time: frontloading payments allows to incentivize

agents, because the shrinking wage counteracts the incentive to procrastinate. Frontloading

cannot be achieved with a deadline; hence, maximal effort is sustained here over a longer horizon,

as T̂ > T .

This analysis supports the relevance of staggered prizes in the design of scientific competitions.

Such degressive rewards are implemented, among others, by the X Prize foundation (in, for

example, the design of the Google Lunar X Prize).

13Clearly, the choice of wt for t > T ∗ is to a large extent arbitrary.
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5.3 The Principal Agent Problem

Up to this point, attention has been on what the team could do to help itself. Now, we

consider the problem from the perspective of a principal who designs the payment that the agent

or agents receive (the analysis that follows holds for all n ≥ 1). As mentioned, we restrict

attention to symmetric schemes. Given that it is clear that the principal cannot benefit from

paying wages to unsuccessful agents, such a scheme can be summarized by a wage schedule wt,

with the interpretation that each agent receives wt if the project gets completed at time t (as will

be clear, agents do not gain by delaying the announcement of a breakthrough). The principal

can commit to any wage path he would like to.

The project is worth v to the principal, who chooses w : R+ → R+, which is measurable, so

as to maximize

r

∫ ∞

0

nptut (v − nwt) e−
R t
0
(npsus+r)dsdt.

The function u := ui : R+ → [0, 1], which is measurable, maximizes

r

∫ ∞

0

(pt(ui,t + u−i,t)wt − αui,t) e−
R t
0 (ps(ui,t+u−i,t)+r)dsdt.

Indeed, observe that a breakthrough arrives at rate ui + u−i = nu, and that the total wage bill

is nwt. Given that an agent can only be provided with a sufficient incentive to exert effort if

the marginal benefit, pw, covers the marginal cost, α, and given that the principal’s mark-up

in case of a breakthrough is v − nw, there is no scope for a profitable scheme if v ≤ nα/p.

Conversely, whenever v > nα/p, the principal may always design some wage scheme that is

profitable, because fixing a constant wage that is equal to the average of v/n and α/p is feasible.

Theorem 5 The optimal wage scheme w is given by

wt = w∗
t for t ≤ T ∗, and wt = 0 for t > T ∗,
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which is such that ut = 1 until time T ∗ := 1
n

ln δ < T̂ , and ut = 0 thereafter.14

Observe that the principal’s wage scheme follows the same dynamics as the wage scheme that

is optimal for the team. For both problems, it is optimal to induce maximal effort as cheaply

as possible, as long as any effort is worthwhile, but effort stops being worthwhile earlier for the

monopolist.

In the principal’s problem, the wage dynamics must offset the free-riding incentives. The

principal must concede some rents to the agents to induce them to work early. This is easier

when agents are impatient (the wage decreases in r), and more difficult when they are more

agents. In fact, the principal’s payoff is decreasing in the number of agents: a larger team means

more effort early, but the cost in terms of additional rents more than offsets this benefit. In

fact, the maximal amount of total effort produced (nT ∗ = ln δ) is decreasing in the number

of agents: the larger the team, the less the principal is willing to experiment. Again, this can

be easily understood in terms of the familiar trade-off faced by a monopolist, who must trade

off lower output against lower rents. Observe that this amount of effort is independent of the

discount rate. While discounting affects the rents, it also affects the cost of providing this rent,

and because the principal and the agents have the same discount rate, these effects cancel out.

As the discount rate r tends to zero, the wage approaches the affine function w(δ)−αt (n − 1),

where w(δ) := α
(

1 + 1−p
p

δ + n−1
n

ln δ
)

. To provide incentives when agents are perfectly patient,

the wage must decay at the rate of the marginal cost (or be constant when n = 1).

Figure 5 illustrates how the wage scheme varies with the parameters. Effort stops when

ptwt = α, or wt = pt/α. Note that this time is independent of the discount rate, as is already

clear from the formula for δ. This means that the total amount of effort is independent of the

discount rate, and so is efficiency. On the other hand, the amount of effort varies with the size of

the group. As is easy to verify, the value of δ is decreasing in n: the larger the group, the higher

the aggregate effort. However, the principal’s payoff need not increase in n. Smaller groups are

14Here as well, the choice of wt for t > T ∗ is to a large extent arbitrary.
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typically better, because it is less costly to overcome the incentive to free-ride.
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Figure 5: Optimal wages

One might wonder whether total effort is lower under an output-restricting, but sophisticated

principal, or under a mechanism as imperfect as a self-imposed deadline. It is shown in the

appendix that, when v = n, so that the comparison is meaningful, and the discount rate is

sufficiently low, T P ≤ T : a principal stops the project before the optimal deadline. Clearly,

agents are then worse off.

6 Synergies

Social psychology stresses the role of synergies as an important factor in team success, and

Alchian and Demsetz (1972) emphasized their importance for moral hazard in teams. Among

the many kinds of possible synergies, we focus here on two extreme versions. In the first case,

agents are more effective when working together than working when separately. That is, the

rate at which a success arrives if the project is good displays complementarities in their effort

choices. In the second case, in which attention is restricted to two agents, agents have different

37



skills, so that, depending on the type of project, one skill, the other, both or neither might be

appropriate.

6.1 Complementarities

In this subsection, we assume that the instantaneous probability of a breakthrough, condi-

tional on the project being good, is given by

f(u1, . . . , un) = (
∑

i

uρ
i )

1/ρ, where ρ ∈ (0, 1),

and, as before, capacity λ is normalized to 1. The instantaneous rate of arrival of a success in

case the project is good has the property of constant elasticity of substitution with respect to the

agents’ levels of effort.15 The assumption that ρ is positive guarantees that limu−i→0 fi(ui, u−i) >

0 for all ui > 0, where fi = ∂f/∂ui.
16 The baseline model corresponds to the special case ρ = 1.

Agents are assumed to be identical for now (αi = α). We assume that the discount rate satisfies

(n − 1)r−1 ≥ α−1 − n1− 1
ρ

p
> 0.

Due to the fact that limui→0 fi(ui, u−i) = ∞ for all u−i > 0, it is no longer possible that,

in equilibrium, some agents exert no effort whatsoever while some other agents exert effort.

No matter what the other agents do, the returns from some sufficiently small amount of effort

are arbitrarily large. As we shall see, this does not imply that the equilibrium is necessarily

symmetric.

This specification captures the notion that by working together, agents are more productive

than by themselves. Indeed, observe that, in the team problem in which agents work coopera-

15Of course, there are many other technologies with the property that levels of effort are imperfect substitutes
(for example f (u) = δ min {ui} + (1 − δ)maxj 6=i {uj}). The C.E.S. function provides the clearest comparison
with the baseline model, as shown in Theorem 6.

16Otherwise, there always exist trivial equilibria in which no agent exerts any effort.
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tively, it is optimal to set ui = 1 for all i, so that f(ui, . . . , un) = n
1
ρ , up to the time at which the

common belief drops to the level n− 1
ρ α. That is, there is strictly more experimentation here than

in i’s single-decision problem (i.e., when u−i = 0). In this case, the instantaneous probability of

success is equal to ui, as in the baseline case, and effort is only exerted at a maximal rate up to

the time at which the common belief reaches the threshold α.

As in our baseline case, it is more convenient to represent the equilibrium level of effort in

terms of the common equilibrium belief at that time. However, recall that effort is not observable,

and that effort is a function of time only, while the common belief is a function of time and effort,

which can be derived from the equilibrium strategies.

Theorem 6 There exists a unique symmetric equilibrium, in which the level of effort exerted at

time t is given by

ui(pt) = u(pt) :=
r

n − 1

(

α−1 − n1− 1
ρ

pt

)

,

given the equilibrium value of pt. Effort is positive and strictly decreasing, tending to 0 as t → ∞.

This result generalizes Theorem 1 in the natural way. With synergies as well, free-riding leads

to delay and effort dwindles over time. The belief pt converges to n1− 1
ρ α, which corresponds,

here as well, to the effort exerted in the team problem when the prize is divided by n. Observe

that this belief is no longer equal to the threshold in the single-player decision problem. As

mentioned above, in the single-player decision problem, effort is exerted up to the point at which

the belief is equal to α. Given that α > n1− 1
ρ α, aggregate equilibrium effort is higher with

synergies and tends to the efficient level as the parameter ρ tends to zero. The threshold at

which effort asymptotically stops, n1− 1
ρ α, is decreasing in n, unlike in the case without synergies

in which it was constant. Provided that the belief is low enough, effort is greater with more

agents, although not compared to the first-best level.

It is easy to derive the corresponding symmetric Markovian equilibrium in the observable
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case. The equilibrium effort is given by

ui(p) =
r

(n − 1)α

(

p − α

kn
− α

kn
(1 − p) ln

p

1 − p

1 − α/kn

α/kn

)

,

where kn := n
1
ρ
−1, which gives rise to the same asymptotic threshold as in the non-observable

case. It is easy to verify, as in Theorem 2, that the effort exerted is less than in the non-observable

case, for any given degree of belief.

To discuss the asymmetric equilibria, it is simpler to assume that n = 2, an assumption

that is maintained throughout this subsection. As mentioned above, synergies ensure that there

cannot be an equilibrium in which some agent does not exert any effort at all, while his partner

does. However, they might exert different levels of effort. To describe the asymmetric equilibria,

define the function

g(σ) :=
(σρ + 1)2− 1

ρ

σ2ρ−1 + 1
.

It is easy to verify that this function is strictly increasing for ρ > 1/2, so that its inverse function,

g−1, is well-defined and increasing as well. Without loss of generality, assume that u1,0 ≥ u2,0,

i.e. agent 1 exerts at least as much effort as agent 2 at the initial instant.

Theorem 7 For ρ < 1/2, there exists no asymmetric equilibrium. For ρ ≥ 1/2, there exists a

continuum of asymmetric equilibria. Each asymmetric equilibrium is uniquely identified by the

value of u1,0/u2,0, which is in (1, g−1(p/α)] if ρ > 1/2, and is unrestricted for ρ = 1/2.

The symmetric equilibrium corresponds to the special case in which u1,0/u2,0 = 1. In the proof

in the appendix, we further show that the aggregate effort is strictly lower in any asymmetric

equilibrium than in the symmetric equilibrium for ρ > 1/2, and equal to it for ρ = 1/2. Agents

stop exerting effort at the same finite time if ρ = 1/2, but never stop if ρ > 1/2. The roles of

agents are never reversed: because agent 1 exerts more effort than agent 2 at the initial time, he

keeps on exerting more effort throughout. Figure 6 displays the range of values of initial ratios
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σ0 := u1,0/u2,0 for which an asymmetric equilibrium exists, for a given prior p0 = p and a level

of complementarity ρ.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

100

200

300

400

500

600

700

800

900

1000

Complementarity, ρ

I
n
i
t
i
a
l
 
A
s
y
m
m
e
t
r
y
,
 
 

σ 0

Parameter Values: α=0.5, p
0
∈ {0.35,0.4,0.45}

p
0
=0.35

p
0
=0.45

p
0
=0.4

Figure 6: Admissible initial values for asymmetric equilibria

As in the baseline model, there is a trade-off between efficiency and fairness: it is always best

for the team’s aggregate payoff if the team members’ choices about how much effort to exert

are, to a certain extent, asymmetrical when synergies are not too strong. However, as one would

expect, simulations show that the optimal degree of asymmetry decreases as the strength of the

synergies increases.

What if agents have different costs? Suppose that α1 < α2, so that agent 1 is more efficient.

There exists a continuum of equilibria, indexed by the initial ratio of effort levels, σ0 = u1,0/u2,0,

which uniquely defines the equilibrium path. (Depending on p, there might be a bound on

the admissible values of σ0. The appendix contains a more formal discussion.) The equilibrium

trajectories of effort can be decomposed into two time intervals. Initially, the more efficient agent

works more than his counterpart. Afterwards, the opposite is true. Depending on the initial value

of σ0, one or the other interval might be empty. This ordering of roles can be understood in
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terms of the agents’ relative incentives to procrastinate. The more inefficient agent stands to

lose less by procrastinating (the project is worth less to him, and so discounting his value is less

costly), and has more to gain (effort being costlier for him, he appreciates more the potential

cost saving from procrastination). Therefore, if agents must “take turns,” he must be the second

agent.

The total amount of experimentation, as measured by the limit value of the belief p, is

maximized when the more efficient agent works more throughout; more precisely, he must work

sufficiently more for the ratio σ to reach asymptotically (α2/α1)
1/(1−ρ), as the common belief

p tends to its limiting value α2((α2/α1)
ρ/(1−ρ) + 1)1−1/ρ. This means that, not only are there

asymmetric equilibria that tend to the symmetric equilibrium as α2 → α1, but this is in particular

the case for the equilibrium that maximizes the amount of experimentation. Moreover, this

statement does not depend on the value parameter ρ. Therefore, the discontinuity between

equilibria of the baseline model with symmetric and asymmetric players is not robust to the

introduction of (an arbitrarily small level of) complementarities. The two panels of Figure 7

illustrate how the respective efforts might vary with the initial value σ0.
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6.2 Different Skills

In this subsection, the baseline model is generalized as follows. Instead of the project’s being

simply good or bad, it may be any of four possible types. (1) It is good (type 0), and both agents

are equally able to achieve a breakthrough, as before. In this case, we maintain the assumption

that the arrival rate of a breakthrough has instantaneous probability u1,t + u2,t. (2 and 3) It

is of type i = 1, 2, in which case only agent i’s effort might lead to a breakthrough. That is,

the instantaneous probability of a breakthrough is now ui,t, independently of u−i,t. (4) It is bad

(type 3), and efforts are then wasted, because breakthroughs are impossible.

The initial belief is now given by a vector p = (p0, p1, p2), where pk is the initial belief that

the project is of type k. More generally, we write pk
t for the equilibrium belief at time t that

the project is of type k, so that p3
t = 1 − p0

t − p1
t − p2

t , and we assume that p3 > 0.17 Let

u0 := u1 + u2, u3 := 0. Using Bayes’ rule, it is readily verified that, for k = 0, . . . , 3,

ṗk/pk =

3∑

j=0

pjuj − uk.

Agent i seeks to maximize

Vi(p) = r

∫ ∞

0

(
3∑

j=0

pj
tuj,t − αiui,t)e

−
R t
0
(
P3

j=0 pj
suj,s+r)dsdt.

We assume that agents are symmetric, i.e. αi is independent of i. We focus first on the case in

which p1 = p2.

Observe that it is no longer an equilibrium for only one agent to exert effort throughout the

project. Indeed, if agent i = 1, 2 works by himself, pi will decrease while pj will increase, where

j is the index of the other agent. That is, the absence of a breakthrough leads agent i to become

17The case p3 = 0 can be studied independently. In particular, when skills are perfectly negatively correlated
(p0 = p3 = 0, p1 = p2 = 1/2), as in Klein and Rady (2008), belief and effort remain constant, with a level of
effort equal to r(α−1 − (1/2)−1), which is the same effort as in the baseline model for a belief p = 1/2.
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more pessimistic about his chances of making a breakthrough than agent j. Therefore, at the

point at which it does not pay for i to continue exerting effort on his own, it would still be

profitable for j to exert effort.

It cannot be, either, that one agent works after another agent stops working, because the

agent that remains active would exert maximal effort as soon he was working by himself, say

at time t. Yet the other agent would be unwilling to exert any effort at time t − dt, for small

enough dt > 0. So when one agent works, both must work, and if they are patient enough, the

unique solution for equilibrium effort is symmetric and interior. The restriction on the discount

rate and on the parameters must be changed to

r−1 ≥ α−1 − 1

1 − p3

(

1 +

(

1 +
p0(1 − p3)

p1p2

)−1/2
)

> 0,

which is assumed here. If the second inequality fails, effort is identically zero in every equilibrium.

As stated, the problem is multidimensional. However, it turns out that it can be solved

explicitly and that, on the equilibrium path, effort only depends on p3. To state the result, we

define

C :=
p0

p1

p3

p2
, and p̃3 :=

1 − 2C − 2α(1 − C) +
√

1 − 4α(1 − α)(1 − C)

2(1 − C)
.

Theorem 8 Assume p1 = p2 > 0. There exists a unique equilibrium, which is symmetric. In

this equilibrium, at time t, given the equilibrium value of p3
t , agents exert a level of effort equal

to

ui(p
3
t ) = u(p3

t ) :=
r

α

(

1 − α

1 − p3
t

(
1 + (1 + C(1 − p3

t )/p
3
t )

−1/2
)
)

.

Effort is positive for all t ≥ 0, and limt p3
t = p̃3.

The exact relationship between time t and belief p3
t is given in the appendix. Given this

result, it would appear that having different skills does not fundamentally change the incentives

of agents to free-ride. As in the baseline model, the equilibrium reflects dilatory behavior. The
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project suffers a protracted delay and effort dwindles over time. Indeed, it follows from the

theorem that limt→∞ ui,t = 0. As the common value p1 = p2 tends to zero, the effort approaches

the symmetric equilibrium from Theorem 1. Therefore, introducing agent-specific skills restores

uniqueness and singles out the symmetric equilibrium in the limit.

Somewhat surprisingly, the limiting threshold p̃3 only depends on the prior belief p via a

one-dimensional statistic, C, in which it is increasing. One extreme case is obtained by taking

p1 = p2 to zero. We are then back to the baseline model, in which the belief 1 − p3 tends to α.

The other extreme case is obtained by taking p0 to zero. Skills are then entirely independent,

yet free-riding persists, because effort is not maximal, and 1 − p3 tends to a higher threshold,

2α, which reflects the lower probability that a particular agent’s skill is the appropriate one.

If one agent is more likely to solve the problem that the other, in the sense that p1 > p2,

say, the equilibrium is unique as well. As we show in the appendix, along the equilibrium path,

the more “optimistic” agent (agent 1, here), starts by exerting maximal effort by himself, up

to the point at which p1 = p2 (recall that p1 will decrease and p2 will increase), provided that

the resulting p3 is still lower than p̃3 (otherwise, agent 1 stops at some point, and neither agent

works thereafter). From that point on, both agents work symmetrically, as a function of p3, as

described in Theorem 8.

As we show in the appendix, the belief p̃3 has a natural interpretation. In the team problem

in which agents behave cooperatively, if a breakthrough is worth 1/2 to each agent, rather than

1, the optimal strategy profile calls for both agents to exert maximal effort up to the time t

at which p3
t = p̃3. This means that, as in the baseline model, the effect of free-riding can be

decomposed into two components: (i) it affects the total exertion of effort in the usual way (p̃3

falls short of the cooperative threshold); and (ii) it also affects the timing of this exertion, as

described above. Figure 8 below illustrates the pattern of effort and belief over time.
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7 Multitask Projects

So far, we have presented a project as consisting of a single breakthrough. This is a gross

simplification. Most projects involve several steps, or tasks, each of which must be completed for

the project to be a success. In this section, we adapt some of our earlier findings to the design

of optimal collaborations in the case of multiple tasks. For simplicity, we restrict attention to

the case of two tasks. In addition, given that the information structure is no longer trivial, we

require strategies to be sequentially rational. At any time, agents now observe whether a task

has been already (successfully) completed, which task it was, and at what time it was completed.

Neither the level nor the allocation of effort is observed. We also assume that if both agents

work on one task simultaneously and the task gets completed at that instant, the specific agent

that is responsible for the success cannot be identified.18

The literature on project design has emphasized the relevance of the type of task for the

18This is not to say that the other case is uninteresting or intractable, but for the sake of concision, one or the
other modeling choice had to be made.

46



effect of social loafing. Particular attention is devoted to the distinction between: conjunctive

tasks, all of which must be completed for the project to be a success; disjunctive tasks, only of

which must be completed to guarantee the success of the team (and completing any further task

provides no further benefit); and additive tasks, for which the value of the project is additive in

the completion of the tasks (if only one project is completed, it is worth a payoff normalized to

1 to each agent. If both are completed, each agent obtains a payoff of 2.)

Another dimension along which projects vary relates to the timing of tasks. For some projects,

it is possible to work on two tasks simultaneously. For others, however, it is imperative to

complete a specific task before tackling the second one.

As before, we assume that each task is either good or bad. The type of task is statistically

independent across tasks and the initial probability that any given task is good is still denoted by

p. Effort is additively separable across tasks. Agents are assumed to be identical, with marginal

cost α, and the total capacity for effort normalized to 1. We describe here some equilibria. It is

easy to verify that these strategy profiles are indeed equilibria. Proofs are omitted and available

upon request.

7.1 The Team Problem

To understand the agents’ incentives better, it is useful to start with the case in which there

is only one agent (or, equivalently, in which agents act cooperatively). The following result holds

for all discount rates r ≥ 0. In all cases, effort is exerted at the maximal rate until some point

at which effort stops altogether. Our focus is on the allocation of effort across tasks, so we omit

a discussion of these stopping times. The next proposition describes the optimal sequencing.

Proposition 1 (The Team solution) If n = 1, it is optimal to:

1. Work sequentially on tasks if they are conjunctive. If the prior probability p of each task

being good is identical across tasks, it is better to start with the task for which the parameter
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α is higher. If the cost parameter α is the same, it is better to start with the task for which

p is lower.

2. Split work equally across tasks if they are disjunctive and identical. If they are not identical,

effort must be devoted exclusively to the task for which the difference p − α is larger, until

these differences are equalized, after which effort must be split so as to maintain these

differences equal.

3. Tackle the tasks in any order, if tasks are additive and r = 0. If r > 0, effort with additive

tasks should be allocated as in the disjunctive case.

The first conclusion might first sound a little surprising. However, recall that all conjunctive

tasks must be completed for the project to be successful. If one task is likely to be impossible to

complete, either because agents are quite pessimistic about it (low p) or because it is demanding

(high α), then it makes sense to avoid wasting effort on the “easier” task by postponing tackling

it until it has been determined whether or not the more difficult task can be completed.19

If tasks are disjunctive, on the other hand, it makes sense to devote the effort to whichever

task yields the higher immediate return, that is, the task for which the spread p − α is larger.

This also holds for the additive case, but only because agents are impatient. Otherwise, since

tasks are independent, the order becomes irrelevant.

7.2 Sequential Conjunctive Tasks

We first consider the case in which task 1 needs to be completed in order to start task 2.

Agents each receive a payoff of 1 if both tasks are completed, and nothing otherwise.

Observe first that, in the single-agent problem with only one task, which is worth v, the

agent would exert maximal effort up to the point at which his belief p would satisfy pv = α, or

p = α/v. That is, increasing the prize has the same effect as decreasing the marginal cost, and if

19Obviously, the threshold for the first task in the sequential problem is not the threshold α for that task
considered on its own.
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agents had different values for the project, the unique equilibrium would involve the agent with

the higher valuation exerting all the effort.

Next, observe that, in the asymmetric equilibrium of the single-task project in which one

agent exerts effort at a maximal rate and the other agent does not exert any effort at all, the

idle agent has quite obviously a strictly higher payoff.

It follows that, if agent i performs the last task all by himself, his continuation payoff vi, at

the time at which the first task is completed, is strictly lower than the payoff of the other agent,

vj . From the point of view of performing the first task, the second task can be summarized

by the continuation payoffs (v1, v2). Therefore, if agent i performs the last task by himself,

independently of the time at which the first task is successfully completed, it must be that agent

j 6= i is the only one exerting effort on the first task. With two tasks, there is no longer a

trade-off between efficiency and fairness and there exists a unique equilibrium such that the last

task is performed by one agent only.

This reasoning can be extended to multiple tasks. With two tasks left, the agent who performs

the last task has a slightly higher continuation payoff. This is because he will only exert effort if

(and after) the other agent is successful. Therefore, he must be the one working by himself on

the first of the three tasks. This reasoning can obviously be extended to any number of tasks:

there exists a unique equilibrium such that the last task is performed by one agent only; in this

equilibrium, agents alternate in executing tasks, as long as they are successful.

7.3 Conjunctive Tasks

Now consider the case in which the two tasks are conjunctive (i.e., the payoff is awarded only

upon completion of both). However, there are no restrictions on the timing of players’ efforts.

We focus on the case in which players are symmetric and sufficiently patient, and discuss the

following two equilibria.20

20The specification of the appropriate bound on r is omitted here.
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Proposition 2 (Conjunctive Tasks) If agents are sufficiently patient, the following are pure-

strategy equilibria of the game with two tasks.

1. Agents work sequentially, each on one task. Agent 2 begins to work only if, and after, agent

1 has completed the first task successfully .

2. Agents work simultaneously, each on one task. Agents exert maximal effort until some time

T , at which they stop working. Upon completing a task, an agent stops working, while the

other one keeps on exerting maximal effort up to some time.

In the equilibrium with sequential efforts, beliefs eventually reach the efficient thresholds. In

fact, the first agent works until his beliefs offset the payoff from having the second agent complete

the remaining one. After and if the first agent has completed the task, the second agent works

until the beliefs reach α, because his value from a success is equal to 1. Furthermore, both agents

exert maximal effort, which makes this equilibrium the most efficient noncooperative solution.

The equilibrium with simultaneous work and specialization is supported by the threat that,

if an agent is successful after time T , he is required to work alone on the remaining task, up to

the appropriate thresholds. As agents work, they become increasingly pessimistic about their

partner’s chances of completing the other task. This reduces the value of completing their own

task, so that the belief threshold at which they would stop actually increases over time. This

threshold is reached when α/p equals the expected value from having the other agent work alone

on the remaining task, starting from a belief p. However, if a task gets completed, the remaining

agent works until the usual threshold p = α. Therefore, this equilibrium is less efficient than

the sequential one, purely in terms of total effort (because both individual thresholds increase

over time). The continuation strategy of stopping work after a success is efficient both from an

ex post perspective (because having only agent work on one task is efficient), and from an ex

ante perspective. It is of critical importance that each agent knows that he is alone working

on his task. Otherwise, he would be tempted to wait for the other agent to complete his own

task. Continuation play prescribes the strongest possible punishment for deviating. In fact, if
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the first success is obtained after the time at which both agents were supposed to stop, the

first agent to succeed must also complete the remaining task. This specification is admittedly

extreme, although the equilibrium outcome can also be supported by weaker ones (under stronger

restrictions on the parameters).

Finally, there are also several equilibria with simultaneous and non maximal effort levels.

For instance, agents use the symmetric (baseline) equilibrium strategy on task 1, given the

continuation payoff (which affects the limit threshold) and then, if successful, on task 2.

7.4 Additive Tasks

Now consider the case in which tasks are additive and payoffs are given by the total number

of successes.

Proposition 3 (Additive Tasks) If players are sufficiently patient, the following are pure-

strategy equilibria of the game with two tasks.

1. Agents work sequentially, each on one task. Agent 2 begins to work only if, and after, agent

1 has completed his task.

2. Agents work simultaneously, each on one task. Agents exert effort at the maximal rate

until the single-task threshold p = α is reached. Upon obtaining a success, an agent stops

working, while the other one completes his task.

In the equilibrium in which agents work simultaneously, both agents work until they reach

the single-task threshold, because the value of each success is independent of their beliefs about

other tasks. This also deters an agent from delaying his efforts to until after his partner has

completed his task. Unlike in the case of conjunctive tasks, this equilibrium is more efficient

than the sequential one. In fact, both equilibria involve both agents working until the single-

project threshold, but the sequential one has a longer expected completion time.
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There also exists a symmetric equilibrium without maximal effort. Agents can work on the

two tasks both sequentially or simultaneously. In either case, agents adopt the equilibrium

strategies described in our baseline model with one task. The equilibrium with sequential efforts

requires a minimal level of patience to ensure that agents actually want to wait for one task to

be completed (or abandoned) before starting to work on the other.

7.5 Disjunctive Tasks

Now consider the case in which projects are disjunctive, which means that success in any one

project ends the game with a unit payoff for both agents.

Proposition 4 (Disjunctive Tasks) If agents are sufficiently patient, the following are equi-

libria of the game with two tasks.

1. Agents work simultaneously, each on one task. Each agent exerts a lower amount of effort

than in the case of a common single-task project.

2. Agents work simultaneously and divide their efforts equally across tasks.

As in the team problem, agents maintain the spread p−α constant across tasks. In the equi-

librium with agents working each on one task, the incentives to procrastinate are stronger than

in our baseline case. By shirking today, an agent “freezes” his beliefs about his task. Exerting

effort tomorrow will therefore be relatively more productive. Analogously, in the equilibrium in

which efforts are divided across tasks, the total amount of effort that is exerted on each task is

lower than in the equilibrium with division of labor. Indeed, suppose that the total amounts of

effort exerted on each task were equal to the case of division of labor. Holding fixed the effort

devoted to one task, each agent would be indifferent between working and not working at all on

the other task, provided his partner does not collaborate on it. Since his partner is now exerting

positive effort on both tasks, each player then has an incentive to free-ride and reduce his effort,

relative to the equilibrium with division of labor.
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8 Concluding Remarks

We have shown that moral hazard distorts not only the amount of effort, but also its timing.

Agents work too little, too late. Downsizing the team might help, provided that agents’ skills

are not too complementary. On the other hand, increasing transparency might aggravate the

delay. Setting an appropriate deadline is beneficial, in as much as the reduction in delay more

than offsets the further reduction in effort.

The model that we have considered is quite stylized, partly for reasons of simplicity, partly

for tractability. We discuss here how relaxing two of the assumptions affects the main results.

Learning-By-Doing: In practice, agents do not only learn from their past effort whether they

can succeed, but also how they can succeed. Such learning-by-doing can be modelled as in

Doraszelski (2003), by assuming that each agent i accumulates knowledge according to

żi,t = ui,t − δzi,t,

with zi,0 = 0. If the project is good, a breakthrough occurs with instantaneous probability
∑

i hi,t, where

hi,t = ui,t + ρzφ
i,t.

The baseline model obtains if we let δ → ∞, or ρ → 0. While the first-order conditions

given by Pontryagin’s theorem cannot be solved in closed-form, they can be solved numerically.

It is no longer the case that effort is positive forever (at least, if φ is not too large). This

should not be too surprising, because accumulated knowledge is a substitute for actual effort,

so that it serves as its proxy once its stock is sufficiently large relative to the public belief. The

probability of a breakthrough evolves as in the baseline model. It decreases over time, and

remains always positive (which is obvious, since accumulated knowledge never fully depreciates).

Effort decreases continuously and reaches zero in finite time. The asymptotic belief is now lower

than α: although effort may (or may not) stop before this threshold is reached, the belief keeps
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decreasing afterwards, because of the accumulated knowledge. Figure 9 depicts the locus of

beliefs and knowledge stocks at which effort stops, and shows one possible path for the public

belief, from zi,0 = 0 to the point at which all effort stops, for two possible values of φ. The dotted

lines represent the evolution of p and z once effort has stopped. As one would expect, time until
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Figure 9: Public belief and accumulated knowledge, as a function of φ

which effort stops grows without bound as we approach the baseline model (i.e., if ρ → 0 or

δ → ∞).

Convex Costs: Throughout the analysis, we have maintained the assumption that the cost

is linear in the level of effort. While this affords tractability, it is natural to ask whether the

findings are robust to this assumption. This is especially relevant given that, with linear cost,

agents are actually indifferent between any level of effort at a symmetric equilibrium, so that

such an equilibrium has the flavor of a mixed-strategy equilibrium, for which comparative statics

are sometimes counterintuitive.

While it is no longer possible to obtain closed-form formulas for the solution of the Euler-

Lagrange equations that characterize the interior solution in the case of nonlinear cost, we present

here a few numerical illustrations for the case of cost functions that are power functions, i.e.

c(ui) = c ·uγ
i , γ > 1, c > 0. We focus here on the case of symmetric agents, and the instantaneous
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probability of a breakthrough is still given by the sum of the efforts. That is, the model is

otherwise identical to the baseline case.
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Figure 10: Cost of delay and payoffs with convex cost

The first remark is that convex costs are similar to synergies, in the sense that, with more

agents, it is possible to achieve the same total level of effort at a lower cost (because dividing

the same total effort across more agents lowers the overall cost, when the cost is convex). This

should favor larger teams, and we might expect that the amount of effort exerted by an agent

does not decrease as quickly, as we increase the number of agents, relative to the baseline model.

In turn, this might lead to the time within which a breakthrough is expected to occur being

reduced (conditional on a breakthrough occurring in finite time) for larger teams, while the

impact on payoff is ambiguous.21 Indeed, this is precisely what we find, provided the convexity

is sufficiently pronounced. See Figure 10 for an illustration of welfare and the cost of delay, and

see the left panel of Figure 11 below, which shows that the effort path becomes flatter as the

convexity becomes stronger (the cost functions have been normalized so that the value of the

single-decision problem remains constant).

The other finding that seems to depend significantly on the linear cost structure is the dis-

21Such conditioning is meaningful, since the overall effort over time is still independent of n.
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Figure 11: Effort with convex cost with or without a deadline

continuity in equilibrium levels of effort when there is a deadline. Indeed, with convex costs, one

suspects that the equilibrium effort should be a continuous function of time. This is indeed the

case, as shown in the right panel of Figure 11. Furthermore, for a deadline that is far enough in

the future, the graph for effort is approximately U-shaped.

Incomplete Information: In many applications, uncertainty pertains not only to the quality

of the project, but also to the productivity of agents. That is, the value of the parameter α of

each agent might be unknown. We may model this by assuming that α ∈ {αL, αH} is drawn

independently across players, with αL < αH , and some probability q0 that each agent is of the

low type αL, that is, that his productivity is high.

Solving for an equilibrium is difficult, because agents are updating on both the quality of

the project and the productivity of their opponent, and this updating depends on the effort

choices, which are private information. While we have not attempted to establish uniqueness,

the following constitutes a symmetric Bayes Nash equilibrium path (for those values of the

parameters for which the solution is not trivial). The low-type (high-productivity) agent starts

by exerting effort by himself. As time passes, he quickly becomes more pessimistic, while the

high-type agent, who does not work during that time, does not update his belief downward as

fast (the lack of success is not as surprising to him because he does not work). That is, the
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private beliefs of the two agent’s types about the quality of the project diverge. At some time,

the relative optimism of the high-cost agent more than offsets his cost disadvantage and he starts

exerting effort. Simultaneously, the low-cost agent stops working once and for all. The high-

cost agent’s effort then dwindles over time and his belief converges asymptotically to αH , his

Marshallian threshold. Because of his initial effort level, the private belief of the low-cost agent

remains forever below the high-cost agent’s and converges asymptotically to a level below his

own Marshallian threshold, namely αL. The effort trajectories in such an equilibrium are shown

in Figure 11 below.22

An interesting open question is what happens when effort is observable. Since the level of

effort conveys information about the agent’s type, this might give rise to ratcheting, as low-cost

agents might want to hide their private information. This might further depress the exertion of

effort in the observable case, but a careful analysis is left for future research.
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Figure 12: Effort under incomplete information

22Note that effort can be increasing over time. This is due to the fact that, because the probability that agent
−i assigns to agent i being of the low type decreases over time, the effort agent −i needs to exert to keep player
i indifferent between exerting effort or not might actually increase.
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[34] Murto, P. and J. Välimäki, 2008. “Learning and Information Aggregation in an Exit Game,”

working paper, Helsinki Center of Economic Research.

[35] O’Donoghue, T. and M. Rabin, 1999. “Incentives for procrastinators,” Quarterly Journal of

Economics 104, 769–816.

[36] Olson, M., 1965. The Logic of Collective Action. Harvard University Press.

[37] Presman, E.L., 1990. “Poisson Version of the Two-Armed Bandit Problem with Discount-

ing,” Theory of Probability and its Applications, 35, 307–317.

[38] Presman, E.L. and I.N. Sonin, 1990. Sequential Control with Incomplete Information: The

Bayesian Approach to Multi-Armed Bandit Problems. Academic Press, London.

[39] Radner, R., R. Myerson and E. Maskin, 1986. “An Example of a Repeated Partnership

Game with Discounting and with Uniformly Inefficient Equilibria,” Review of Economic

Studies, 53, 59–69.

[40] Rosenberg, D., E. Solan and N. Vieille, 2007. “Social Learning in One-Arm Bandit Prob-

lems,” Econometrica, 75(6), 1591–1611.

[41] Seierstad, A. and K. Sydsaeter, 1987. Optimal Control Theory with Economic Applications.

North-Holland.

[42] Strausz, R., 1999. “Efficiency in Sequential Partnerships,” Journal of Economic Theory, 85,

140–156.

[43] Toxvaerd, F., 2007. “A Theory of Optimal Deadlines,” Journal of Economic Dynamics and

Control, 31, 493–513

61



[44] Tuckman B.W., and M.C. Jensen, 1977. “Stages of small-group development revisited,”

Group and Organization Studies, 2(4), 419–427.

[45] Williams S. and R. Radner, 1988. “Efficiency in partnerships when the joint output is

uncertain,” in The Economics of Informational Decentralization: Complexity, Efficiency,

and Stability: Essays in Honor of Stanley Reiter. J. Ledyard, Ed., Kluwer Academic, Boston.

[46] Winter, E., 2004. “Incentives and Discrimination,” American Economic Review, 94(3),

764–773.

62



Appendix

A Proofs for Section 4

Proof of Theorem 1: (Preliminaries.) Observe first that, since ṗt = −pt(1 − pt)
∑

i ui,t, we

have pt

∑

i ui,t = −ṗt/ (1 − pt). It follows that pt

∑

i ui,t = d log (1 − pt) /dt. We can then rewrite

the discount factor exp(−
∫ t

0
(ps

∑

i ui,s + r)ds) in expression (3) as exp(−rt)(1− p)/(1− pt), and

the objective function as

r

∫ ∞

0

(

− ṗt

1 − pt
+ α

(
ṗt

pt(1 − pt)
+ u−i,t

))
1 − p

1 − pt
e−rtdt,

where u−i,t :=
∑

j 6=i uj,t. Applying integration by parts to the objective and ignoring all irrelevant

terms (those that do not depend on ui or x), we obtain

∫ ∞

0

(

rα ln
pt

1 − pt

+
r(α − 1) + αu−i,t

1 − pt

)

e−rtdt.

Making the further change of variable xt = ln ((1 − pt) /pt), and defining β := 1/α − 1, agent i

maximizes
∫ ∞

0

(−xt + e−xt(u−i,t/r − β))e−rtdt, such that ẋt = ui,t + u−i,t,

over functions ui,t in [0, λ], given the function u−i,t.

The Hamiltonian for this problem is

H
(
ui,t, xt, γi,t

)
= (−xt + e−xt(u−i,t/r − β))e−rt + γ̂i,t (ui,t + u−i,t) .

It is easy to see that no agent exerts effort if pt < α (consider the original objective function:

if pt < α, then choosing ui,t = 0 is clearly optimal). We therefore assume that p > α, which

is equivalent to x0 < ln β, where x0 = ln ((1 − p̄) /p̄). Assumption (4) on the discount rate is

equivalent to 1 + e−x0(λ/r − β) > 0.
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(Necessary Conditions.) Define γi,t := γ̂i,te
rt. By Pontryagin’s principle, there must exist a

continuous function γi such that, for each i,

1. (maximum principle) For each t ≥ 0, ui,t maximizes γi,t(ui,t + u−i,t);

2. (evolution of the co-state variable) The function γ satisfies γ̇i,t = rγt +1+e−xt(u−i,t/r−β);

3. (transversality condition) If x∗ is the optimal trajectory, lim
t→∞

γi,t(x
∗
t −xt) ≤ 0 for all feasible

trajectories xt.

The transversality condition follows here from Kamihigashi (2001). Since there is a co-state

variable γi for each player, we are led to consider a phase diagram in R
n+1, with dimensions

representing γ1, ..., γn, and x.

(Candidate Equilibrium.) We first show that the candidate equilibrium strategy u∗
i,t and the

corresponding beliefs function x∗
t satisfy the necessary conditions. Consider a strategy generating

a trajectory that starts at (γ1, ..., γn, x0) = (0, ..., 0, x0), and has ui,t = u∗
i,t := r(β−ext) /(n − 1).

This implies that γi,t = 0 along the trajectory. Observe that u∗
i,t > 0 as long as xt < ln β, and is

decreasing in t, with limit 0 as t → ∞. Indeed, the solution is

x∗
t = ln β − ln(1 + (βe−x0 − 1)e−(n/(n−1) )rβt). (8)

This implies u∗
i,t = (rβ /(n − 1)) /((βe−x0−1)−1e(n/(n−1) )rβt+1), which corresponds to expression

(7) in the text. Indeed, this trajectory has xt → ln β, and γ∗
i,t = 0, for all t.

(Uniqueness.) We now use the trajectory
(
γ∗

1,t, ..., γ
∗
n,t, x

∗
t

)
as a reference to eliminate other

trajectories, by virtue of the transversality condition. We shall divide all possible paths into

several subsets:

1. Consider paths that start with γj ≥ 0 for all j, with strict inequality γi > 0 for some i.

Since γi > 0, ui = λ, and so γ̇j > 0 for all j. So we might as well consider the case γj > 0
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for all j. Then for all j, we have uj > 0 and γj strictly increasing. It follows that γ1, ..., γn,

and x all diverge to +∞. Given the reference path along which x converges, such paths

violate the transversality condition.

2. Consider paths that start with γi ≤ 0 for all i, with strict inequality γi < 0 for all but one

agent j. We then have u−j = 0. Since p > α implies that rγj + 1 − βe−x0 < 0, it follows

that γ̇j < 0, and we might as well assume that γi < 0 for all i. So we have ui = 0 for

all i, and x remains constant, and all γi diverge to −∞. Since x0 is less than ln β, the

limit of our reference trajectory, this again violates the transversality condition. The same

argument rules out any path that enters this subset of the state space, provided it does so

for xt < ln β. However, we do not rule out the case of γ = (γ1, ..., γn) ≤ 0 with two or

more indices j s.t. γj = 0 and u−j > 0.

3. Consider paths that start with some γi < 0 for all agents i 6= j, and with γj > 0. Assume

further that rγj + 1 − βe−x0 ≥ 0. Because uj > 0, ẋt > 0 and so we might as well assume

that γ̇j ≥ rγj + 1 − βe−x0 > 0. It then follows that uj > 0 forever, and so γj diverges to

+∞, as does x. This again violates the transversality condition. If there is more than one

j such that γj > 0, then u−j ≥ λ, and 1+ e−x0(λ/r−β) > 0 implies that a fortiori γ̇j > 0.

The same argument then applies.

4. Consider paths that start with some γi < 0 for all i 6= j, and with γj > 0. Assume further

that rγj + 1 − βe−x0 < 0. Since uj > 0 as long as γj > 0, the trajectory must eventually

leave this subset of parameters, either because γj ≤ 0, and then we are back to case 2, or

because γ̇j ≥ 0, and then we are back to case 3. If the trajectory enters one of the previous

subsets, it is not admissible for the reasons above. Therefore, the only case left is if this

trajectory hits (γ1, . . . , γn, x) ≤ (0, ..., 0, lnβ) with at least two indices j such that γj = 0.

This is case 5. Notice that if there were more than one index j for which γj > 0, then

u−j ≥ λ, and 1 + e−x0(λ/r − β) > 0 would imply γ̇j > 0 even if rγj + 1 − βe−x0 < 0,
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bringing us back to case 3.

5. Consider paths that start with (γ1, ..., γn, x) ≤ (0, ..., 0, lnβ) with at least two j such that

γj = 0. Let At = {j : γj,t = 0}. Then there is a unique solution u∗
j,t (|A|) := r(β −

ext) /(|A| − 1), such that γ̇j = 0 for all j ∈ A (as long as xt < ln β, since u∗
j,t = 0 when

xt = lnβ). Along this trajectory, xt → ln β. Furthermore, the effort levels must switch

to u∗
j,t (|At| + 1) for all j ∈ A ∪ {i} whenever γi = 0 for i 6∈ At. Similarly if two or more

i 6∈ At hit γi = 0 at the same time. We show this by ruling out all other cases. Any

policy with u−j < u∗
−j (|A|) for all j implies γ̇j < 0, leading to case 2. Any policy with

u−j > u∗
−j (|A|) leads to case 1. Finally, any policy different from u∗

j (|A|) can lead to two

or more γj > 0 (case 3), or to a single γj > 0 (cases 3 and 4). This leaves us with the only

possible scenario, uj = u∗
j (|A|) for all j ∈ A, and this is precisely the candidate trajectory

examined earlier.

We have thus eliminated all but one family of paths. These paths start with at most one agent

i exerting ui = λ, then switching (before the beliefs have reached ln β) to two or more agents

(including i) who play the reference strategy u∗
i,t (|At|), as if only agents i ∈ At were present in

the team. At any point in time before the beliefs have reached the threshold α, more agents

may be added to A (but not subtracted). In that case, the policy switches to the appropriate

strategy u∗
j (|A|). That is, all candidate equilibria have several phases. In the first phase, one

player exerts effort alone. In the subsequent phases, all (active) players exert effort at equal

levels, adding new players at any point in time. Of course, there are extreme cases in which some

phase is non-existent. Therefore, the only symmetric equilibrium is one in which |A0| = n, that

is, all players exert effort u∗
j (n) from the start.

(Sufficiency.) We are left with proving that these candidate equilibria are indeed equilibria.

While the optimization programme described above is not necessarily concave in x, observe that,
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defining qt := pt/(1 − pt), it is equivalent to

max
ui

∫ ∞

0

(ln qt + qt(
u−i,t

r
− β))e−rtdt s.t. q̇t = −qt(ui,t + u−i,t).

so that the maximized Hamiltonian is concave in q, and sufficiency then follows from the Arrow

sufficiency theorem (see Seierstad and Sydsaeter (1987), Thm. 3.17). Therefore, all these paths

are equilibria. �

Proof of Lemma 1: (1.) From expression (7), it is clear that individual effort is decreasing in

t, and that for a fixed t, u∗
i,t is increasing in r and p̄.

(2.) Aggregate effort is measured by x∗
t , since we know ẋt =

∑

i ui,t. Differentiating expression

(8), it follows that the equilibrium x∗
t is decreasing in α and in n, and that limt→∞ x∗

t = ln β for

all n.

Given the equilibrium strategies, the probability of a success occurring is given by

∫ ∞

0

f (s) ds =

∫ ∞

0

1

1 + kes
e−

s
1+kes ds,

where s = nrβt/ (n − 1). It is therefore independent of n. Let τ ∈ R+ ∪{∞} denote the random

time at which a breakthrough arrives. The conditional distribution of arrival times t for a team

of size n is given by

Gn (t) :=

∫ s̃(t,n)

0

f (s) ds

/∫ ∞

0

f (s) ds ,

where s̃ (t, n) := nrβt/ (n − 1). Since s̃ is decreasing in n, the probability of a success arriving

before time t is also decreasing in n. In other words, the conditional distributions of arrival

times Gn (t) are ranked by first-order stochastic dominance. As a consequence, the conditional

expected time of a breakthrough is increasing in n.

(3.) Substituting expressions (8) and (7) for x∗
t and u∗

i,t, the equilibrium payoffs in (3) can be
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written as

V =
r2kβ

(1 + β) (β + 1 + k)

∫ ∞

0

(

1 +
β

1 + ke−
nrtβ
n−1

+
βkn /(n − 1)

k + e
nrtβ
n−1

)

e−
nrtβ
n−1

−rtdt,

where k := (βe−x0 − 1). The change of variable y = exp((n /(n − 1)) rβt) allows us to write the

payoff as

V =
rkβ

(1 + β) (β + 1 + k)

(

1 − 1

n

∫ 1

0

y(n−1)/nβ

1 + ky
dy

)

,

which is increasing in n, since y ∈ [0, 1] implies the integrand is decreasing in n. Furthermore,

the un-normalized payoff is independent of r. The other comparative statics follow upon differ-

entiation of V . �

Two-player, asymmetric case: Assume that players are asymmetric, in the sense that α1 <

α2, which implies ln β1 > ln β2. The nontriviality condition becomes now that p > α1, while we

maintain the patience assumption 1 + e−x0(λ/r − βi) > 0.

(Necessary Conditions.) There must exist a continuous function γi such that, for each i,

1. ui,t maximizes γi,t(ui,t + u−i,t).

2. γ̇i,t = rγt + 1 + e−xt(u−i,t/r − βi).

3. If x∗ is the optimal trajectory, lim
t→∞

γi,t(x
∗
t − xt) ≤ 0 for all feasible trajectories xt.

(Candidate Equilibrium.) We consider a phase diagram in R
3, with dimensions γ1, γ2,

and x. Consider the trajectory that starts from some (γ1, γ2, x), with γ1 > 0, γ2 < 0 and

γ̇1 = rγ1 + 1 − β1e
−x < 0 (i.e. it has u1,t = λ and u2,t = 0 to begin with) such that it reaches

(γ̄1, γ̄2, x̄), with γ̄1 = 0, γ̄2 < 0, γ̇1 = γ̇2 = 0, and x̄ = ln β1. At this point (γ̄1, γ̄2, x̄), ui,t = 0 for

all t, and the trajectory stops.

(Uniqueness.) To prove that this is the unique equilibrium outcome, we divide this space

into several subsets.
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1. Consider any path that starts with γi> 0, γj ≥ 0. This case is analogous to case (1) in the

proof of Theorem 1.

2. Consider paths that start with γi< 0, γj ≤ 0. There are several subcases, depending on

the initial condition.

(a) rγk + 1 − βke
−x > 0 for either k = i or j. Then γk diverges to +∞, and so must x.

This violates the transversality condition.

(b) rγ2 + 1 − β2e
−x = 0. Given that x0 < ln β1, it follows that γ̇1 < 0 (unless possibly

γ2 = 0 and u2 > 0, in which case, however, ẋ > 0 and so the trajectory immediately

enters the previous subcase). So γ1 diverges to −∞, and x remains constant at a level

strictly below x. Again, this violates the transversality condition.

(c) rγ2 + 1 − β2e
−x < 0. As in the previous case, it follows that γ̇1 < 0 (with the same

caveat as before), so γ1 diverges to −∞, and so does γ2; x remains constant, and

again, the transversality condition is violated.

3. Consider paths that start with γi< 0, γj > 0, and rγj + 1 − βje
−x0 ≥ 0. This case is

analogous to (3.) in the proof of Theorem 1.

4. Consider paths that start with γi< 0, γj > 0, rγj +1−βje
−x0 < 0. There are two subcases:

(a) i = 1. Because u2 > 0 as long as γ2 > 0, so that ẋ > 0, the trajectory must eventually

leave this subset of parameters. Note that it must do so for a value of x no larger

than ln β2. The only possibility that has not already been ruled out previously is if

this trajectory hits (γ1, γ2, xt) = (0, 0, xt), for some xt ≤ ln β2. This is ruled out in

case 5.

(b) i = 2. Since u1 > 0, ẋ > 0; hence, here as well, we must eventually leave this region.

The cases not covered so far are if the trajectory hits (γ1, γ2, xt) = (0, 0, x) for some

x < ln β1 (ruled out in case 5), or if it hits (γ1, γ2, xt) = (0, γ2, ln β1) for some γ2 ≤ 0.
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If γ2 > γ2, then as in case 3, γ2 must diverge to +∞, and so must x, violating the

transversality condition. If instead γ2 < γ2, then u1 = 0 identically thereafter, in

which case γ2,t → −∞, and player 2 never exerts effort. This outcome is identical

to the one in our reference trajectory. In fact, if player 2 exerts any effort, x must

increase at some point, from which point on γ1 will diverge to +∞, and so will x,

violating the transversality condition.

5. Consider paths that start from (γ1, γ2, xt) = (0, 0, x), for some x ≤ ln β1. There are two

subcases:

(a) x ∈ (β2, β1). Then γ̇2 > 0; if also γ̇1 ≥ 0, we are back to the first case; if instead,

γ̇1 < 0, we are in the third case. Both cases have already been ruled out.

(b) x ≤ ln β2. Then there is a unique solution u∗
2,t, given in Theorem 1, such that γ̇i= 0.

Observe that, unlike in the symmetric case, u∗
2 > 0 for all x ≤ ln β2. For uj > u∗

j ,

γ̇i> 0. There are four cases to consider. Either γ̇i> 0, γ̇j ≥ 0. Then the region

covered in case 1 is entered, and such a path cannot satisfy the necessary conditions.

Or γ̇i≤ 0, γ̇j < 0, but then the region covered in case 2 is entered, and again this path

can be ruled out. Or γ̇i> 0, but γ̇j < 0, for some i = 1, 2, but this would lead to

one of the two regions covered in case 4, and given the dynamics there, such a region

cannot be entered for a positive interval of time starting from (0, 0, x). Or, finally,

ui = u∗
i for both i = 1, 2, but since u∗

2 > 0, ẋ > 0, and so, as in the case 3, γ2 must

diverge to +∞, and so must x, violating the transversality condition.

(Sufficiency.) We have thus eliminated all but one outcome: the one in which the strongest

player experiments alone as long as he finds it profitable to do so. Sufficient conditions did not

rely on symmetry, hence this path is an equilibrium. �

Proof of Theorem 2: Subtracting the equilibrium value of effort in the observable case from
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the value in the unobservable case gives

r

α(n − 1)

1 − p

p

(

p − α − αp ln
(1 − p)α

(1 − α) p

)

.

This term is positive, as can be seen as follows. Let f(p) be the term in brackets. This function

is convex, as f ′′(p) = α/(p(1− p)2), and its derivative at p = α is equal to (1−α)−1 > 0. Hence,

f is increasing in p over the range [α, 1], and it is equal to 0 at p = α, so it is positive over this

range. �

B Proofs for Section 5

Throughout, let x := ln 1−p
p

, so that in particular x0 = ln 1−p
p

, and β = α−1 − 1.

Proof of Lemma 2: (Preliminaries.) Consider the objective function under a deadline T .

We again use the fact that ṗt = −pt(1 − pt)
∑

i ui,t, and hence pt

∑

i ui,t = d log (1 − pt) /dt. We

can then rewrite expression (3) as

r

∫ T

0

(

− ṗt

1 − pt
+ α

(
ṗt

pt(1 − pt)
+ u−i,t

))
1 − p

1 − pt
e−rtdt,

where u−i,t :=
∑

j 6=i uj,t. Applying integration by parts to the objective, and ignoring irrelevant

terms, we obtain

∫ T

0

(

rα ln
pt

1 − pt

+
r(α − 1) + αu−i,t

1 − pt

)

e−rtdt − e−rT α

(
1 − α

α

1

1 − pT

+ ln
1 − pT

pT

)

.

Making the further change of variable xt = ln ((1 − pt) /pt), and defining β := 1/α − 1, player i

maximizes:

∫ T

0

(−xt + e−xt(u−i,t/r − β))e−rtdt − e−rT

r

(
β
(
1 + e−xT

)
+ xT

)
,

such that ẋt = ui,t + u−i,t,

71



over functions ui,t in [0, 1], given the function u−i,t.

The Hamiltonian for this problem is

H
(
ui,t, xt, γi,t

)
:= (−xt + e−xt(u−i,t/r − β))e−rt + γ̂i,t (ui,t + u−i,t) ,

and the salvage value is given by

φ (x, T ) := e−rT (β (1 + ex) + x) /r.

We now drop the subscript i and, as in the proof of Theorem 1, we assume that p > α, which

is equivalent to x0 < ln β. We also maintain the assumption on the discount rate given in (4),

namely 1 + e−x0(1/r − β) > 0.

(Necessary Conditions.) Define γi,t := γ̂i,te
rt. By Pontryagin’s principle, there must exist a

continuous function γi,t for each i, such that,

1. ui,t maximizes γi,t(ui,t + u−i,t);

2. γ̇i,t = rγt + 1 + e−xt(u−i,t/r − β);

3. γi,T = φx (xT , T ) = (βe−xT − 1) /r.

We again consider a phase diagram in R
n+1, with dimensions γ1, ..., γn, and x.

(Candidate Equilibrium.) Our candidate equilibrium strategy u∗
i,t generates a trajectory that

starts at (γ1, ..., γn, x0) = (0, ..., 0, x0), and has ui,t = u∗
i,t := r(β − ext) /(n − 1) for 0 ≤ t ≤ T̃ ,

and ui,t = u∗
i,t := 1 for T̃ < t ≤ T . This implies γi,t = 0 for t ≤ T̃ and γi,t > 0 for t > T̃ . The

switching time T̃ is given by the solution to

T − T̃ − T (xT̃ ) = 0. (9)
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The function T (x) in equation (9) is defined as

T (x) :=
1

n + r
ln

(n + r) (β − ex)

β + 1
.

The equilibrium beliefs x∗
t are given by the solution to ẋt = nu∗

i,t. Therefore, for all t ≤ T̃ , we

have x∗
t = ln β− ln(1+(βe−x0 −1)e−(n/(n−1) )rβt), and for all t > T̃ we have x∗

t = x∗

T̃
+n(t− T̃ ). It

is immediate to verify that T (x) < Tn (x), which is the time it takes for beliefs to reach α when

n agents exert maximal effort: stopping occurs before beliefs have gone down to the Marshallian

threshold.

We first verify that our candidate strategy is an equilibrium. For all t ≤ T̃ , agents exert

effort at the interior level u∗
t > 0. At time T̃ , agents switch to maximal effort. When u∗

t = 1,

necessary condition 2 implies γ̇T̃ > 0, and hence γt > 0 for all t ∈ (T̃ , T ]. Finally, continuity

of the function γ∗
t requires that γ∗

T̃
= 0. We therefore need to verify that the solution to the

following differential equation,

γ̇t = rγt + 1 + e−x∗

t ((n − 1) /r − β),

with boundary condition γT = (βe−x∗

T −1)/r, is equal to zero at t = T̃ . Notice that γT is positive

because xT ≤ ln β. Using the fact that x∗
t = x∗

T̃
+n(t−T̃ ), the solution to the differential equation

is given by

γ∗
t =

(n − 1 − rβ) enT̃−x∗

T̃

r (n + r)

(
e−(n+r)T+rt − e−nt

)
−
(

1

r
− β

r
e−r(T−t)−n(T−T̃)−x∗

T̃

)

. (10)

The continuity of γ∗
t is verified by evaluating (10) at t = T̃ , and setting the right-hand side equal

to zero. We then obtain exactly equation (9), which defines T̃ .

If T (x0) ≥ T , then γt > 0 for all t, and agents exert u∗
t ≡ 1. This implies γ∗

t is given by

(10), where we replace x∗
T̃

with x0. It then suffices to verify that γ∗
0 > 0. Indeed, this is the case,
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because the right-hand side of (10) is increasing in t, decreasing in T , and it would be equal to

zero at t = 0 with a deadline of T (x0) > T .

(Uniqueness.) We now rule out all other symmetric paths. Suppose that, in equilibrium,

agents choose effort ut = 1 at some time t1 < T̃ . This would imply γt1 ≥ 0. However, if

ut1 = 1, then necessary condition 2 and assumption (4) on the discount rate imply γ̇t1 > 0.

Therefore, we might as well consider the case of γt1 > 0. In this case, agents exert maximal

effort, and γt increases from time t on. However, let xt = xt1 + n (t − t1), and consider the

solution to the differential equation γ̇t = rγt + 1 + e−xt((n − 1) /r − β) with boundary condition

γT = (βe−xT − 1) /r. Again, the solution γt will be strictly increasing. Furthermore, we will

have γT̃ = 0 and therefore γt1 < 0, since t1 < T̃ , contradicting the assumption that γt1 ≥ 0.

Now suppose agents continue to exert effort at the interior levels of ut = r(β − ext) /(n − 1)

for t > T̃ . Denote the switching time to maximal effort by t2 > T̃ , with γt2 = 0. The implied

path of γ∗
t , given the transversality condition, would then imply γt2 > 0, which contradicts the

assumption of interior effort levels for t ≤ t2.

Finally, suppose that agents choose effort ut = 0 at any time t3. This requires γt3 ≤ 0.

However, γt3 ≤ 0 and ut3 = 0 also imply γ̇t3 < 0. Therefore, we consider the case of γt < 0. In

this case, agents exert no effort, and γt decreases for all t ≥ t3. In particular, this implies γT < 0,

which violates the transversality condition. Indeed, since xt < ln β (because ut = 0 from time t3

on), the transversality condition requires γT > 0.

(Sufficiency.) The sufficient conditions in the proof of Theorem 1 did not rely on the infinite

horizon, so this path is an equilibrium. �

Proof of Theorem 3: Let Vi(p) := Vi(p, T (p)). If the deadline is such that effort switches to 1

at time T̃ , the payoff of agent i is then

Vi(T̃ ) := (1 − p)

(
∫ T̃

0

(npt − α)

1 − pt

u∗
i,te

−rtdt + e−rT̃ V (pT̃ )

1 − pT̃

)

,

74



where pt solves ṗt = −pt(1−pt)nu∗
i,t, p0 = p. Taking derivatives with respect to T̃ , and considering

the derivative at T̃ = 0 gives

dVi(T̃ )

dT̃

∣
∣
∣
∣
∣
T̃=0

=
α((n − 1)p + r) − pr

(n − α)(n − 1)p2

(

(n − α)p − α(n − p)

(
(n − α)p

α(n − p) − r(p − α)

) n
n+r

)

.

The derivative with respect to r of the term in parenthesis has a derivative equal to (up to a

positive multiplicative constant)

ln

(
(n − α)p

α(n − p) − r(p − α)

)

−
(

(n − α)p

α(n − p) − r(p − α)
− 1

)

≤ 0, (11)

so dVi(T̃ )

dT̃

∣
∣
∣
T̃=0

is decreasing in r. Since dVi(T̃ )

dT̃

∣
∣
∣
T̃=0,r=0

= 0, it follows that dVi(T̃ )

dT̃

∣
∣
∣
T̃=0

≤ 0. Because

it is optimal to have agents choose level of effort u = 1 as long as possible, the optimal value

is T̃ = 0: agents should be given a deadline for which it is optimal to exert at a maximal rate

immediately.

Finally, differentiating T (p̄) with respect to r, one can show that −∂T /∂r is exactly equal to

expression (11), and so the optimal deadline is increasing in the discount rate.

The Agent’s Problem: Given a wage function wt, each agent maximizes

∫ ∞

0

∑

j ujptwt − αui

1 − pt
e−rtdt.

Integrating by parts and ignoring constant terms (assuming, as will be verified, that w is differ-

entiable) gives

w0

1 − p
+

∫ ∞

0

(
r (α − w) + αu−i + ẇ

1 − p
+ rα ln

p

1 − p

)

e−rtdt.
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In terms of the function x, agent i maximizes

w0

(
1 + e−x0

)
+

∫ ∞

0

(
−rαx + (r (α − w) + αu−i + ẇ)e−x

)
e−rtdt,

over functions ui such that ẋ =
∑

j uj. Applying Pontryagin’s principle gives

ẇ − rw = −α (rex + r + u−i) ,

which generalizes the earlier formula for w = 1. Note that this formula will hold even if u = 1 over

some interval, as the principal cannot gain from giving agents strict rather than weak incentives

to exert maximal effort.

Proof of Theorem 4 (Agents’ Optimal Wage): Agents induce symmetric levels of effort

ui,t = ut in order to maximize

∫ ∞

0

nut

(
e−xv − α

(
1 + e−x

))
e−rtdt,

subject to

∫ ∞

0

nut (v − nwt) e−xe−rtdt = 0,

rw − α (rex + r + (n − 1) ut) = ẇ,

nut = ẋ.

Integrating by parts both the objective and the first constraint gives the following program

max
ut

∫ ∞

0

−
(
e−x (v − α) + αx

)
e−rtdt,

s.t. ẋ = nut, ẇ = rw − α (rex + r + (n − 1)ut) ,

e−x0 (v − nw0 + α (n − 1)) + nα − r (v − α)

∫ ∞

0

e−xe−rtdt = 0.
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Associate the co-state µ to the constraint ẇ = rw−α(rex + r+(n − 1)u), σ to the isoperimetric

constraint k0 =
∫∞

0
e−xe−rtdt and γ to ẋ = nu. Given the constraint u ≤ 1, with associated

Lagrangian coefficient λ, the Hamiltonian is

H = −
(
e−x (v − α) + αx

)
e−rt + σe−xe−rt + γnu + µ (rw − α(rex + r + (n − 1)u)) + λ (1 − u) ,

with λ ≥ 0 and λ (1 − u) = 0. So µ = µ0e
−rt, and

γn − αµ (n − 1) − λ = 0.

Observe that, if λ = 0 over some interval, then γ = αn−1
n

µ0e
−rt and therefore γ̇ = −rαn−1

n
µ0e

−rt.

But we would then have

−γ̇ = −
(
−e−x (v − α) + α

)
e−rt − σe−xe−rt − αµrex,

rα
n − 1

n
µ0 = e−x (v − α − σ) − α − αµ0re

x,

from which it follows that x is constant over that interval, a contradiction. So λ > 0 and u = 1.

Hence, x = x0 + nt (or more precisely, on any subinterval on which u = 1), and we obtain the

following ordinary differential equation (hereafter, ODE) for the wage:

ẇ = rw − α
(
rex0+nt + r + (n − 1)

)
.

It remains to determine the initial value of w, or equivalently, the time at which all effort stops.

Once this time T is set, we know that the wage must satisfy the terminal condition wT = α/pT .

Therefore, the planner’s problem reduces to finding the positive root T of the “budget” function
∫ T

0
n (v − nwt) e−xe−rtdt, where wt is given by the previous ODE. This gives, upon simplification,
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that T is the root of

r

n + r
(
v

α
− 1)(e(n+r)T − 1) − (n − 1)enT (erT − 1) − nr

n − r
ex0+nT (enT − erT ) = 0.

Setting δ := enT , the left-hand side admits a single positive critical point, which gives precisely

the solution to the monopolist’s problem (to be described below). This means that either the

left-hand side is positive when T → ∞, in which case it admits no strictly positive root, or it

is strictly negative, in which it admits exactly one root, and that root exceeds the optimal T

for the monopolist. Clearly, if n > r, the left-hand side is negative for large enough r, and we

assume so thereafter. To compare the belief at the time of stopping with the asymptotic belief in

the baseline model, αn/v (the solution to pv/n = α), we plug in the value of v/α corresponding

to this asymptotic threshold (i.e., v/α = nex0+nT ), and argue that the left-hand side is negative

for r small enough (recall that the result was only claimed for r low enough). Indeed, define

X = nT , and consider a series expansion around r = 0; the left-hand side equals, to the second

order,

−(n − 1)
(
1 + (X − 1)eX

)
r + o(r),

which is always negative, since 1 + (X − 1)eX ≥ 0. Thus, the root is such that the belief has

not yet reached the asymptotic belief of the baseline model. In fact, the limit of the left-hand

side as r → 0 does not vanish for v/α = nex0+nT , implying that the difference in those beliefs is

strict, even in the limit.

Proof of Theorem 5 (Principal’s Optimal Wage): Let us now turn to the problem of

the profit-maximizing principal. The project is worth v to him. So the value of the project is

(proportional to)

∫ ∞

0

upt (v − nwt)

1 − pt

e−rtdt,

subject to ẋ = nu and ẇ = rw − α(rex + r + (n − 1)u) (u := ui). Integrating by parts and
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ignoring irrelevant terms gives

(v − nw0) e−x0 −
∫ ∞

0

e−x (rv − n (rw − ẇ)) e−rtdt,

or

(v − nw0) e−x0 −
∫ ∞

0

e−x (rv − nα (rex + r + (n − 1)u)) e−rtdt.

(Observe that there is a term in the integrand that is independent of x, u, w and can be ignored.)

Associate the co-state µ to the constraint ẇ = rw − α(rex + r + (n − 1)u), and γ to ẋ = nu.

Given the constraint u ≤ 1, with associated Lagrangian coefficient λ, the Hamiltonian is

−
(
e−x (rv − nα (r + (n − 1)u)) e−rt

)
+ γnu + µ (rw − α(rex + r + (n − 1)u)) + λ (1 − u) ,

with λ ≥ 0 and λ (1 − u) = 0. So µ = µ0e
−rt, and

(nγ − λ) ert = (n − 1)αµ0 − n (n − 1) αe−x.

Therefore

nγ̇ert − λ̇ert + r
(
(n − 1) αµ0 − n (n − 1)αe−x

)
= n2 (n − 1)uαe−x.

We also have

−e−x (rv − nα (r + (n − 1) u)) e−rt + µ0e
rtαrex = γ̇,

which implies that

ne−x (α − v) + αµ0 (n − 1 + nex) =
λ̇

r
ert.

Observe that, if λ̇ = 0 over some interval, then

µ0e
x (n − 1 + nex) = n

v − α

α
,
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from which it follows that x is constant over that interval, a contradiction. So λ is not constant,

and therefore, u = 1. Hence, x = x0 +nt (or more precisely, on any subinterval on which u = 1),

which gives

ne−(x0+nt) (α − v) + αµ0

(
n − 1 + nex0+nt

)
=

λ̇

r
ert,

which can be integrated for λ and γ then follows. It remains to determine the initial value of w,

or equivalently, the time at which all effort stops. Integrating the differential equation

ẇ − rw = −α

(

r
1 − p

p
ent + r + n − 1

)

gives wt, as a function of the as yet undetermined initial value w(δ), as given in Theorem 4. Let

T denote the time at which all effort stops. Given that pT wT = α, and since pT = p
p+(1−p)enT we

can solve for w0 = w(δ) as a function of δ = enT . We may now explicitly solve for the principal’s

payoff, as a function of δ, and directly verify that it is concave in δ, with a maximum achieved

at the value of δ given in Section 4.2. The details are omitted.

To show that the profit-maximizing time horizon T ∗ is shorter than the welfare-maximizing

deadline T , let v = n and r = 0. The difference between the two horizons may be written as

enT ∗ − enT =
p

2n(1 − p)

(√

(n − 1)2 + 4n
1 − p

p
(n/α − 1) − (n − 1)

)

− (n − α)p

α(n − p)
.

Simplifying yields

e2nT ∗ − e2nT ∝ − (n − p̄)−2 p̄−1α−2 (p̄ − α) (1 − p̄) n2 < 0,

since α < p̄. �
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C Proofs for Section 6

Proof of Theorem 6: We now consider the case with complementarities

ṗt = −pt (1 − pt) f (u1,t, ..., un,t) .

Writing in terms of the log-likelihood ratio, we obtain xt = ln(1−pt)/pt, and ẋt = f (u1,t, ..., un,t).

The objective is

r

∞∫

0

(ptf (u1,t, ..., un,t) − αui,t) e−rt−
R t
0 psf(u1,s,...,un,s)dsdt = r



1 − (1 − p̄)

∞∫

0

r + αui,t

1 − pt
e−rtdt



 ,

where the equality follows from integration by parts. So we are minimizing

∞∫

0

(r + αui,t)
(
1 + e−xt

)
e−rtdt such that ẋt = f (u1,t, ..., un,t) .

Pontryagin’s principle gives (assuming an interior solution)

α
(
1 + e−x

)
e−rt + λfi (u1, ..., un) = 0, and λ̇ = (r + αui) e−x−rt,

where fi is the derivative of f with respect to ui. Assuming a symmetric solution (u1,t, ..., un,t) =

ut ∈ R
n, and dropping time subscripts, we have

α
(
1 + e−x

)
e−rt = −λfi(u), λ̇ = − (r + αu) e−x−rt, ẋ = f(u).

So, differentiating the first equation, and defining v (x) = u (t), so that v′ (x) ẋ = u̇,

1 −
( r

α
+ v
) fi(v)

f(v)
=

1

p

(
Σjfij(v)

fi(v)
v′ − r

f(v)

)

. (12)
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This ODE characterizes the interior solution (if any) of the problem. For f (u1, ..., un) = (Σiu
ρ
i )

1
ρ ,

and u1 = · · · = un, Σjfij = 0, and so the equation can be solved for u = v, i.e., defining

kn := n1−1/ρ,

u(p) =
r

n − 1

(
1

α
− kn

p

)

.

Again, it is simple to verify that, if α−1 ≥ kn/p, agents do not exert effort at a maximal rate on

any interval of time in equilibrium. Sufficiency follows as in the baseline model. While it is not

possible to solve for the function pt, its inverse t(p) can be computed, and it can be verified that

limp→αkn t(p) = ∞, while t(p) < ∞ for p > αkn. �

Proof of Theorem 7:

The case ρ ≥ 1/2: Writing equation (12) for each player separately, we obtain

f(u1, u2)

fi(u1, u2)
−
( r

α
+ ui

)

=
1

p

(

− r

fi(u1, u2)
− fii(u1, u2)u̇i + fij(u1, u2)u̇j

fi(u1, u2)2

)

.

Inserting the C.E.S. function, and defining the ratio σi (p) = ui (p) /uj (p), We obtain

(1 − r

αui

σρ
i )(u

ρ
1 + uρ

2)
1/ρ =

1

p
((1 − ρ)(

u̇i

ui

− u̇j

uj

) − r(1 + σρ
i )). (13)

By adding equations (13) for each player, we obtain the relationship that needs to hold between

u1 and u2. Formally,

u2 =
r

2ασρ
1

(

σ2ρ−1
1 + 1 − α

p
(σρ

1 + 1)2− 1
ρ

)

. (14)

Similarly, subtract equations (13), substitute the expression for u2 in (14), and use u1 =

σ1u2 (σ1) . We then obtain the following ordinary differential equation for σ1:

(1 − ρ) σ′
1

σ1

=
1

1 − p



1 −
2
(

1 − α
p
(σρ

1 + 1)1−1/ρ
)

σ2ρ−1
1 + 1 − α

p
(σρ

1 + 1)2−1/ρ



 , (6)

where σ1 (p) := u1,0/u2,0. Notice that σ1 will not be a function of r (hence patience will only
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influence levels of effort, not the allocation).

(σ bounded.) We now drop the subscript 1 and refer to σ1 as σ. We first show that σ stays

bounded for all p. Notice that when u2 = 0, that is when α/p = (σ2ρ−1 + 1)
/
(σρ + 1)2−1/ρ , σ′

goes to +∞ whenever σ > 1. However, observe that for ρ ≥ 1/2,

σρ

(1 − α
p
)ρ

≥ σρ(1 − σρ−1)

σ2ρ−1 + 1 − α
p
(σρ + 1)2−1/ρ

.

To see this, consider the function x 7→ σρ(σ2ρ−1 +1−x(σρ +1)2−1/ρ)−σρ(1−σρ−1)(1−x)ρ, which

has a minimum on [0, 1] that is positive whenever ρ ≥ 1/2. Given this, and since the right-hand

side of (6) is bounded by −2/ ((1 − p) (1 − α/p)ρ), the solution to (6) must lie below the solution

of the differential equation
(1 − ρ) σ′

σ
= −2

1

1 − p

1

(1 − α
p
)ρ

,

with the same initial condition at p. This differential equation is easy to integrate, and since

ρ < 1, its solution is finite at p = α. Furthermore, either σ is finite, or if it diverges, then α/p = 1

when σ → ∞, but then the previous argument applies. Note however that α/p → 1 requires

σ2ρ−1 + 1

(σρ + 1)2−1/ρ
→ 1

and so ρ > 1/2.

(Experimentation in infinite time.) We know that σ′ → ∞ as u2 → 0. Now differentiate the

identity p (t (p)) = p, and obtain the following ODE for the function t (p):

t′ (p) = − 1

p (1 − p) u2(σ
ρ
1 + 1)1/ρ

.

Then compare t (q) with − ln (p − p̄). For p close to p̄ := α(σρ + 1)2−1/ρ /(σ2ρ−1 + 1), we would

like to have t′ (p) < −1/ (p − p̄), so that t (p) (which is decreasing) is steeper than − ln (p − p̄).
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We then require

p (1 − p) u2(σ
ρ
1 + 1)1/ρ < (p − p̄) .

But this is the case, since σ stays bounded when ρ > 1/2, and r is small enough. We have:

p (1 − p)u2(σ
ρ
1 + 1)1/ρ − (p − p̄)

= p (1 − p)
r

2ασρ
1

(

σ2ρ−1
1 + 1 − α

p
(σρ

1 + 1)2− 1
ρ

)

(σρ
1 + 1)1/ρ −

(

p − α(σρ + 1)2−1/ρ

(σ2ρ−1 + 1)

)

=
(

p
(
σ2ρ−1

1 + 1
)
− α(σρ

1 + 1)2− 1
ρ

)(

r
(1 − p) (σρ

1 + 1)1/ρ (σ2ρ−1 + 1)

2ασρ
1

− 1

)

< 0.

The case ρ = 1/2: Consider equation (6) again: let y := σ1−ρ, so that, when ρ = 1/2, we have:

(1 − y)α

(y + 1) (2p − α) (1 − p)
=

y′

y
.

Let y0 > 1 and define the function:

g (p) :=
(y0 − 1)2

2y0

(
p − 1

2
α

1 − p

1 − p

p − 1
2
α

) α
2−α

.

(Equilibrium.) The exact solution is then given by

y (p) = 1 + g (p) +

√

g (p)2 + 2g (p)

⇒ σ (p) =

(

1 + g (p) +

√

g (p)2 + 2g (p)

)2

,

and hence g (p) → ∞ and σ → ∞ as p → α. We can derive the equilibrium levels of effort from

equation (14), and obtain that:

f (u1 (p) , u2 (p)) = 2r

(
p − α/2

pα

)

(g (p) + 2) .
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(Experimentation in finite time.) Finally, by setting K := (y0−1)2

y0

(
p− 1

2
α

1−p

) α
2−α

, we can show that

the solution to p′ = −p (1 − p) f (u1 (p) , u2 (p)) lies below the solution to

p′ = − (1 − p) (p − α/2)

((
1 − p

p − 1
2
α

) α
2−α

+
2

K

)

2rK

α
,

which converges to α/2 in finite time. So experimentation stops in finite time when ρ = 1/2.

The case ρ < 1/2: Recall that



1 −
2
(

1 − α
p
(σρ + 1)1−1/ρ

)

σ2ρ−1 + 1 − α
p
(σρ + 1)2−1/ρ




1

1 − p
=

(1 − ρ) σ′

σ
,

which is equivalent to, considering the inverse function p(σ),

p′(σ) =
(1 − ρ)(1 − p(σ))

σ

(

1 − 2(1 + σρ)
p
α
(1 + σρ)1/ρ(σ2ρ−1 + 1) − (σ2ρ − 1)

)

.

It is immediate to verify that p′(σ)|p/α=g(σ) = 0, while g′(σ) < 0 for ρ < 1/2. This implies that

σ(p) cannot converge to a finite value, but that it must diverge to infinity. Also, the second term

in brackets converges to zero unless p → 0, since

lim
σ→∞

1 + σρ

σ2ρ − 1
= 0, and lim

σ→∞

(1 + σρ)1/ρ(σ2ρ−1 + 1)

σ2ρ − 1
= +∞.

So if p does not converge to 0, p′(σ) is eventually positive, which is impossible. So p must

converge to zero. But exerting effort for beliefs arbitrarily close to zero yields strictly negative

profits, as even the team would not exert effort for sufficiently low beliefs. So such an equilibrium

cannot exist. �

Remarks on the case α1 6= α2: Back to the case, ρ > 1/2, we know analyze the equilibria
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with asymmetric players. Equations (14) and (6) may now be written as

1

1 − p



1 −
2
(

1 − α2

p
(σρ

1 + 1)1−1/ρ
)

α2

α1
σ2ρ−1

1 + 1 − α2

p
(σρ

1 + 1)2−1/ρ



 = (1 − ρ)
σ′

1

σ1
,

r

2α2σ
ρ
1

(
α2

α1
σ2ρ−1

1 + 1 − α2

p
(σρ

1 + 1)2− 1
ρ

)

= u2.

It is easy to show that when u2 > 0 and σ1 = 1, then σ′
1 (p) and (α2 − α1) have the same sign.

Let α2 > α1 so player 1 is the more efficient agent. Since ṗt < 0, the equilibrium can never move

from a scenario with σ1 < 1 to one with σ1 > 1. Therefore, if agents take turns, the more efficient

agent must exert higher effort first (and for σ0 close enough to one, this happens indeed). Both

agents stop working when

p =
α2(σ

ρ
1 + 1)2− 1

ρ

α2

α1
σ2ρ−1

1 + 1
.

This expression is minimized at σ∗ = (α2/α1)
1

1−ρ > 1, so the equilibrium with the highest

experimentation level is one in which players never take turns. The corresponding threshold for

beliefs is

p∗ = α2

(

(α2/α1)
ρ/(1−ρ) + 1

)1−1/ρ

.

This threshold will be reached in infinite time, since the corresponding terminal value for σ1 is

finite (see the proof of Theorem 6). Finally, notice that the value of p∗ is increasing in α2 and

equal to α21− 1
ρ if α1 = α2 = α.

Proof of Theorem 8: Applying integration by parts and ignoring constant terms, the payoff

that agent i maximizes is equal to

−
∫ ∞

0

(r + αiui
t)

e−rt

p3
t

dt such that ṗk/pk =

3∑

j=0

pjuj − uk, k = 0, . . . , 3.

Defining xi such that pi = p3e
−xi, for i = 1, 2, note that ẋi = ui. Defining also q := p−1

3 , the
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problem reduces to maximizing

−
∫ ∞

0

(r + αui) qe−rtdt such that q̇ = (1 − q)(u1 + u2) + u1e
−x2 + u2e

−x1, ẋi = ui, i = 1, 2.

Let µi denote the co-state variable associated with xi. Pontryagin’s principle gives

αqe−rt = γ
(
1 − q + e−xj

)
+ µi, γ̇ = (r + αui) e−rt + γ (u1 + u2) , µ̇i = γuje

−xi,

or, equivalently, if we let σ = γe−x1−x2,

αqe−rt = σex1+x2
(
1 − q + e−xj

)
+ µi, σ̇ = (r + αui) e−rt−x1−x2 , µ̇i = σuje

xj .

Since we are focusing on a symmetric solution, this means

αqe−rt = σe2x
(
1 − q + e−x

)
+ µ, σ̇ = (r + αu) e−rt−2x, µ̇ = σuex, q̇ = 2u

(
1 − q + e−x

)
, ẋ = u.

Differentiate αqe−rt = σe2x (1 − q + e−x) + µ and substitute for σ̇ and µ̇ to get

α (q̇ − rq) e−rt − (r + αu) e−rt
(
1 − q + e−x

)
= 2uσe2x

(
1 − q + e−x

)
− 2u

(
1 − q + e−x

)
σe2x = 0,

so that

q =
αu − r

αu − (1 − α) r

(
1 + e−x

)
.

So we are left with the system

q =
αu − r

αu − (1 − α) r

(
1 + e−x

)
, q̇ = 2u

(
1 − q + e−x

)
, ẋ = u.

We make the following change of variable. Let v (q) = x (t), so v′ (q) q̇ = ẋ, or 2v′ (q)
(
1 − q + e−v(q)

)
=
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1, whose positive solution is

v(q) = ln

(

1 +
√

1 + C(q − 1)

q − 1

)

.

Since we have v(q(0)) = x(0) = ln(p3(0)/p1(0)), we can solve for C to get C = p0

p1

p3

p2
. It follows

that

u(q) =
r

α

(

1 − αq

q − 1
(1 + (1 + C(q − 1))−1/2)

)

,

and, since t′(q) = v′(q)/u, we also get that t(q), the time at which the (inverse) belief is q, is

given by t(q) = F (q) − F (q0), where q0 = 1/p3, and

F (q) =
α

2r(α − 1)







ln(C(1 − q(1 − α)) − 1 +
√

1 + C(q − 1)) −
2 arctan

(
2(α−1)

√
1+C(q−1)−1√

4α(1−α)(1−C)−1

)

√

4α(1 − α)(1 − C) + 1







.

Observe that, as q → ∞, u = r (1 − α) /α > 0, while it is clearly negative for q ↓ 1. So

experimentation stops at some belief, although we may only reach this belief asymptotically. Let

s :=
√

1 + C(q − 1). Solving for the (larger) root of u (q) = 0 gives

q∗ :=
2 (1 − C)

1 − 2C − 2α (1 − C) +
√

1 − 4α (1 − α) (1 − C)
,

and p̃3, as defined in the text, is the reciprocal of q∗. It follows from the explicit solution for F

that limq→q∗ t(q) = ∞, i.e. experimentation never stops. This characterizes the unique candidate

for an interior, symmetric solution, and it is easy to verify that, for low enough discounting (more

precisely, whenever u(q0), as given above, is less than 1), agents cannot exert effort at a maximal

rate over some interval of time in equilibrium. Sufficiency follows from the linearity and concavity

properties of the objective, as in the baseline model. �

The case in which p1 6= p2: (Equilibrium with asymmetric players.) Suppose that p̄1 > p̄2.
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This means x1 (0) < x2 (0). In the unique equilibrium, player 1 exerts effort at the maximal rate

until x1 (t) = x2 (t). From that point on, both agents work symmetrically. Clearly, the second

phase does not take place if p3 reaches p̃3 before x1 = x2. It is immediate to see that this is

an equilibrium. While player 1 works, player 2 prefers to wait. When exerting effort at a level

that is interior, the two players play the mixed strategy equilibrium described in Theorem 5.

Finally, player 1 has incentives to work alone until the time at which x1 = x2, since player 2 is

not exerting effort, and player 1 expects to work even after that time.

(Uniqueness.) For the uniqueness part, we repeatedly use the following claim: there cannot be a

last person working alone. While a detailed analysis is omitted, this result is intuitive: if there

exists a last agent i working alone, then in the last instants t in which player j is required to

work, he has an incentive to deviate and shirk. Since player i will start working at t+dt anyway,

the gains in saved effort exceed the (vanishing) loss due to delayed arrival of a success. This

result rules out cases in which players work sequentially. Suppose that player 1 worked until his

individual threshold p∗1. If the asymmetry in p̄i is sufficiently small, player 2 would then start

working from there, because we would have p2 > p∗1. But then, anticipating that player 2 will

start working at the maximal rate, player 1 wants to deviate and shirk in the last instants before

his beliefs reach the threshold. A qualitatively identical scenario arises if player 2 works alone

until the individual threshold p∗2. We now analyze the candidate interior equilibrium, and rule it

out based on the same claim. Consider again the system of equations:

αqe−rt = σex1+x2
(
1 − q + e−xj

)
+ µi, σ̇ = (r + αui) e−rt−x1−x2 , µ̇i = σuje

xj ,

q̇ = (1 − q) (u1 + u2) + u1e
−x2 + u2e

−x1 , ẋi = ui.

As before, differentiate the first equation, and plug in the formulas for σ̇, µ̇i, q̇. Upon simplifica-

tion, we obtain the following relation between uj and xi, xj, q :

ui =
r

α

1 − q + e−xi + αq

1 − q + e−xj
. (15)
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Given that ẋi = ui, we can also solve the equation

q̇ = (1 − q) (u1 + u2) + u1e
−x2 + u2e

−x1 , (16)

and obtain as a general solution

q = 1 − ke−x1−x2 + e−x1 + e−x2, (17)

for some constant k. As before, we define vi (q) := xi (t), so that

v′
i (q) q̇ = ẋi = ui.

Substituting (15) in (16), we obtain the following first-order differential equation, separately for

each agent’s effort:

(
2 (1 − q) + e−v1 + e−v2 + 2αq

)
v′

i =
1 − q + e−vi + αq

1 − q + e−vj
.

Finally, using (17), we obtain

(

1 − q + e−vi + e−vi
(1 − q) k + 1

ke−vi − 1
+ 2αq

)

v′
i =

1 − q + e−vi + αq

e−vi
(1−q)k+1

ke−vi−1

,

which is the desired ODE characterizing vi(q). Observe that the ODEs for v1 (q) and v2 (q)

differ only because of the initial condition. In particular, vi (q (0)) = xi (0), implying that

v1 (q (0)) < v2 (q (0)). Since the paths of the solutions to the two ODEs cannot cross, v1 (q) will

reach zero for a level q̃ for which v2 (q̃) > 0. The fact that the weaker player works harder is

clearly necessary in order to have an interior (i.e. mixed strategy) equilibrium. When player

1 stops working, however, player 2 should continue exerting effort at the maximal rate, and he

will be the last player working, which we ruled out. This rules out all but the equilibrium we
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described earlier.

Interpretation of p̃3 in terms of the team problem: We prove here that the threshold p̃3

is also the threshold at which the team would stop, if the value was 1/2 per agent. In the team

problem, agents would choose to allocate efforts equally (if p1 = p2), and they would exert effort

at the maximal rate. That is, they would choose a time T to maximize

−
∫ T

0

(r + 2α)qte
−rtdt −

∫ ∞

T

rqT e−rtdt = −
∫ T

0

(r + 2α)qte
−rtdt − qT e−rT .

The optimal time then satisfies (taking first-order conditions with respect to T )

−(r + 2α)qT e−rT + rqT e−rT − q̇T e−rT = 0, or
q̇T

qT
= −2α.

Given that q, as defined in the proof of Theorem 5, satisfies q̇ = (1 − q) (u1 + u2), this means

that

qT =
1 + p1

p3 e−T

1 − α
.

The solution to q̇ = 2
(

1 − q + p1

p3 e
−t
)

is 1 − qt = ke−2t − 2p1

p3 e
−t, with k := −p0

p3 . This gives

−α + (1 − α)
p0p3

(p1)2
z2 + (1 − 2α) z = 0,

for z := p1

p3 e−T . That is, z =
−(1−2α)+

r

(1−2α)2+4α(1−α) p0p3

(p1)2

2(1−α) p0p3

(p1)2

, and therefore

qT =
2 (1 − C)

1 − 2C − 2α (1 − C) +
√

1 − 4α (1 − α) (1 − C)
= 1/p̃3.

Therefore, effort stops when the belief reaches the same threshold in both problems. �
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D Additional Proofs

D.1 Observable Efforts with Deadlines

We identify an equilibrium in three phases. For a given prior belief p̄, agents initially exert

interior effort levels (phase 1); they then stop working for an interval of time (phase 2); and

finally, they exert maximal effort until the deadline (phase 3). Either phase 1 or both phases 1

and 2 could be empty. We solve for the optimal strategies proceeding backwards in time, and so

we start from the deadline T .

(Phase 3.) Suppose the posterior belief pt and the remaining time T − t are such that all agents

are exerting maximal effort ui = 1. Under the Markov assumption, all agents will continue

choosing ui = 1 even after a deviation. Therefore, the individual incentives to deviate from

maximal effort are unchanged from the unobservable case, and the proof of Lemma 2 extends

to the observable case. In particular, we obtain a critical time t̃ after which agents can sustain

maximal effort until the end of the game, given the deadline T and the current posterior p. This

time is analogous to T̃ in equation (9), and it is given by

t̃ (p) = T − 1

n + r
ln

(n − α)p

α(n − p) − r(p − α)
.

We now verify the optimality of maximal effort over the time interval
[
t̃ (p) , T

]
. Consider the

optimality equation

0 = max
ui

{(ui + u−i) p − uiα − (r + (ui + u−i)p) V − (ui + u−i) p (1 − p)Vp + Vt} , (18)

and let W (p, t) indicate the continuation value, given by the returns to n players exerting effort

ui,t = 1 from time t until the deadline T .

W (p, t) = (1 − p)

∫ T−t

0

nps − α

1 − ps

e−rsds,
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with

ps =
p

p + (1 − p)ens
.

We then have

W (p, t) =
p (n − α)

n + r

(
1 − e−(n+r)(T−t)

)
− α

r
(1 − p)

(
1 − e−r(T−t)

)
.

Substitute W (p, t) into the optimality equation (18), and consider the incentives to exert effort:

∂W

∂ui
= p − α − pW − p (1 − p) Wp. (19)

It is immediate to verify that the right-hand side of (19) is equal to zero when t = t̃ (p). Therefore,

agents are indifferent between effort levels along the frontier
(
p, t̃ (p)

)
. Furthermore, differenti-

ating the right-hand side of (19) with respect to time, we obtain

d

dt

(
∂W

∂ui

)

= p exp (− (T − t) (n + r)) (n − α) > 0,

so agents have strict incentives to work throughout the third phase.

(Phase 2.) If the deadline is long enough, so that t̃ (p̄) > 0, there exists a phase in which players

do not exert any effort. In this “shirking” region, the equilibrium value is given by

Ω (p, t) := e−r(t̃(p)−t)W
(
p, t̃ (p)

)
.

We now use Ω (p, t) to construct the frontier t̂ (p) that separates the region in the (p, t) space

with interior effort from the shirking region. If effort is interior, by the optimality equation, the

value function must satisfy the ordinary differential equation

pα − V (p, t) − p (1 − p) Vp (p, t) = 0, (20)
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which is obtained by setting by the right-hand side of (19) equal to zero. The general solution

of equation (20) is given by

V (p, t) = 1 − α +

(

k (t) − α ln
p

1 − p

)

(1 − p) . (21)

We impose the smooth pasting and value matching conditions of the functions V (p, t) and Ω (p, t):

V
(
p, t̂ (p)

)
= Ω

(
p, t̂ (p)

)

Vp

(
p, t̂ (p)

)
= Ωp

(
p, t̂ (p)

)
.

We can then solve for the second switching frontier t̂ (p), and obtain

t̂ (p) = T − 1

n + r
ln

(n − α)p

α (n + r) − p(α + r)
− 1

r
ln

(

1 +
α2 (1 − p) (n − 1)

(α (n + r) − p(α + r)) (p − α)

)

= t̃ (p) − 1

r
ln

(

1 +
α2 (1 − p) (n − 1)

(α (n + r) − p(α + r)) (p − α)

)

,

where the log term is always positive. We also obtain the equilibrium value of the constant of

integration k (t) in equation (21):

k (t) =
Ω (p̂ (t) , t) − (1 − α)

1 − p̂ (t)
+ α ln

p̂ (t)

1 − p̂ (t)
,

where p̂ (t) is the inverse function of t̂ (p). Finally, we verify the optimality of zero effort in this

phase. By construction (value matching), agents are indifferent between levels of effort on the

frontier
(
p, t̂ (p)

)
. Now fix a p and evaluate how the expression is changing with t. We have

d[LHS(20)]

dt
= −r (p − α) < 0,

so agents have no incentives to exert effort at any time past the frontier t̂ (p).
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(Phase 1.) In the first phase, interior effort implies u (p, t) must satisfy the optimality equation

V (p, t) = 1 − α + (1 − p)

(
Ω (p̂ (t) , t) − (1 − α)

1 − p̂ (t)
+ α ln

p̂ (t)

1 − p̂ (t)

1 − p

p

)

,

so it must be that

u (p, t) =
rV (p, t) − Vt (p, t)

α (n − 1)
.

Optimality of interior effort then follows by construction. Furthermore, the equilibrium evolution

of beliefs is given by the solution to

ṗ = −p (1 − p) nu (p, t) .

The next figure illustrates the evolution of beliefs and the loci (p, t) separating the three phases.

D.2 Learning-by-Doing

Following Doraszelski (2003), we model the accumulated knowledge of player i as

żi = ui − δzi,

with z0 = 0 (though this boundary condition is not necessary, as we will see). The arrival rate

of a breakthrough, or human capital, for player i is given by

hi = λui + ρzφ
i .

It follows that beliefs evolve according to

ṗt = −pt (1 − pt)
∑

i

hi,t,
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and therefore player i seeks to maximize:

V =

∫ ∞

0

(pt

∑

i

hi,t − αui,t)e
−

R t
0 (ps

P

j hj,s+r)dsdt

=

∫ ∞

0

(

pt

∑

j

hj,t − αui,t

)

1 − p̄

1 − pt
e−rtdt,

by the usual integration by parts. Defining, as usual x = ln((1 − p)/p), so that ẋ =
∑

i hi,t, and

ignoring the constant (1 − p̄), we have

V =

∫ ∞

0

(ẋe−x − (1 + e−x)αui)e
−rtdt.

Again, we integrate the first term by parts, and ignore the values at the endpoint (fixed, or zero),

so that maximizing V is equivalent to maximizing

J = −
∫ ∞

0

(re−x + αui(1 + e−x))e−rtdt

= r

∫ ∞

0



−1

λ
x +

∑

j 6=i

(

λuj + ρzφ
j

)

+ ρzφ
i

λr
(1 + e−x) − e−x

(
1

α
− 1

λ

)


 e−rtdt,

subject to ẋt =
∑

j hj,t, and żi = ui− δzi. When ρ = 0 and λ = 1 we recover the expression from

the proof of Theorem 1,
∫ ∞

0

(−xt + e−xt(u−i,t/r − β))e−rtdt.

The Hamiltonian is

H =

(

−1

λ
x +

(
∑

j 6=i

(

λuj + ρzφ
j

)

+ ρzφ
i

)

1 + e−x

λr
− e−x

(
1

α
− 1

λ

))

e−rt

+γ
(

(n − 1)
(

λuj + ρzφ
j

)

+ λui + ρzφ
i

)

+ µ (ui − δzi) .

97



We now assume λ = 1 and we seek an interior solution. We then must have

γ + µ = 0. (22)

The co-state variables obey

γ̇ = −∂H

∂x
=

(
1

λ
+ e−x (n − 1)λu + nρzφ

λr
− e−x

(
1

α
− 1

λ

))

e−rt,

µ̇ = −∂H

∂zi

= −ρφzφ−1

λr

(
1 + e−x

)
e−rt − γρφzφ−1e−rt + δµ.

We let g := γert and m := µert, and then obtain

ġ = rg + 1 + e−x (n − 1)u + nρzφ

r
− e−xβ,

ṁ = −ρφzφ−1

r

(
1 + e−x

)
− gρφzφ−1 + (δ + r)m.

By differentiating condition (22), we can write

rg + 1 + e−x (n − 1)u + nρzφ

r
− e−xβ − ρφzφ−1

r

(
1 + e−x

)
− gρφzφ−1 + (δ + r)m = 0, (23)

and obtain an expression for g,

g =
1

ρφzφ−1 + δ

(

1 − e−xβ + e−x (n − 1) u + nρzφ

r
− ρφzφ−1

r

(
1 + e−x

)
)

. (24)

By differentiating condition (23), we obtain

rġ − ẋe−x (n − 1)u + nρzφ

r
+ e−x (n − 1) u̇ + nρφzφ−1ż

r
+ ẋe−xβ − ρφ (φ − 1) zφ−2ż

r

(
1 + e−x

)

+ ẋe−x ρφzφ−1

r
− ġρφzφ−1 − gρφ (φ − 1) zφ−2ż − (r + δ) ġ = 0.
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We can then solve for u̇, and write

u̇ (n − 1) = −ẋ
(
βr − (n − 1) u − nρzφ + ρφzφ−1

)

− (nρφz − ρφ (φ − 1) (1 + ex) − rexgρφ (φ − 1)) zφ−2ż

+
(
δ + ρφzφ−1

) (
r2exg + rex + (n − 1)u + nρzφ − rβ

)
, (25)

where g is given by (24). We now have three autonomous ordinary differential equations, for

u (t), x (t) and z (t). We therefore define

ζ (x) = z (t)

υ (x) = u (t) ,

so that ζ ′ (x) ẋ = ż and υ′ (x) ẋ = u̇. We then have

ζ ′ (x) =
υ − δζ

ẋ
(26)

υ′ (x) =
[RHS(25)]

ẋ
, (27)

with

ẋ = n(λυ + ρζφ).

In order to determine the terminal conditions, we construct a frontier (p, z) with the property

that u (p, z (p)) = 0 represents a stopping point (remember that p = (1 + ex)−1).

We can write the agents’ equilibrium value as

0 = p (ui + u−i + h) − αui + (1 − r − p (ui + u−i + h))V (p, h)

+Vh (p, h)
∑

i

φρzφ−1
i (ui − δzi) − p (1 − p) (ui + u−i + h) Vp (p, h) ,
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with
h := ρ

(

zφ
i + (n − 1) zφ

)

, and ḣ =
∑

i

φρzφ−1
i żi =

∑

i

φρzφ−1
i (ui − δzi) .

It follows that the optimality condition for effort provision is given by

0 = p − α − pV + Vhφρzφ−1
i − p (1 − p)Vp.

The continuation payoff, given beliefs p and total accumulated knowledge z, can be written as

V (p, h) = 1 − r

∫ ∞

0

(

1 − p + p exp

(

−h

s

(
1 − e−st

)
))

e−rtdt

= rp

∫ ∞

0

(

1 − exp

(

−h

s

(
1 − e−st

)
))

e−rtdt,

where

s := δφ, and h = ρ
(

zφ
i + (n − 1) zφ

)

.

Therefore, the stopping frontier (p, z) must solve

p (1 − V ) + Vzi
− p (1 − p)Vp − α = 0.

However, notice that

Vp =
V

p
,

and we can therefore express the stopping frontier as the function z∗ (p) solving

p − V + Vz − α = 0, (28)

with

Vzi
= φρzφ−1

i Vh = φρzφ−1
i rp0

∫ ∞

0

1 − e−st

s
exp

(

−h

s

(
1 − e−st

)
)

e−rtdt.

Finally, a straightforward argument implies that u = 0 at the stopping point. This means we
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can solve (26) and (27) for x ∈ [x0, x̄], with terminal conditions

υ (x̄) = 0, ζ (x̄) = z∗
(

(1 + ex̄)
−1
)

.

With this procedure we can obtain the pre-images of points along the stopping frontier z∗ (p),

and trace the paths back to an initial point (p, z) = (p0, 0).

We now provide illustrations of how parameters affect the frontier, and a generic path in

(x, z) path. We start with the impact of the decay rate, δ (Figure 10).
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Figure 14: Public belief and accumulated knowledge, as a function of δ

Finally, we consider the impact of the relative importance of accumulated knowledge in the

arrival rate of success, ρ (Figure 11).
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Figure 15: Public belief and accumulated knowledge, as a function of ρ
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