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Key Takeaways

e Dynamic warp analysis enables investors to rescale individual stock price bubbles that
progress along different calendar paths into synchronized steps.

e This synchronization enables investors to observe stock characteristics that coincide
with different phases of a bubble as well as periods when a stock is not experiencing a
bubble.

e By warping nearly 7 million bubble pairs, the authors offer compelling evidence that
investors may be able to profit by detecting bubbles and recognizing how far they have
progressed.



Abstract

The authors apply a technique called dynamic warp analysis to rescale the unique cadences of
2,638 bubbles into synchronized steps. They then observe the distributions of chosen stock
characteristics for each step across all the bubbles. They also observe these stock
characteristics during periods when a stock is not experiencing a bubble. The authors use this
information to detect when a bubble is underway and how far it has progressed. They test
several trading rules to assess the potential to profit from this information.



DYNAMIC WARP ANALYSIS:
A NEW APPROACH FOR DETECTING AND TIMING BUBBLES

Investors have long been challenged to detect when a stock price bubble has begun and if so,
whether it is in its early, middle, or late stage.! This task has proven to be daunting because
bubbles progress at different paces. Some bubbles fully evolve from inception to conclusion in
just a few days whereas others proceed over several years. Moreover, though we tend to
visualize a bubble as a smooth and symmetric concave progression of prices, bubbles ascend
and descend non-monotonically. It would be much easier to detect a bubble and where it is

along its path if we could rescale calendar time into synchronized units.

We, therefore, apply a rescaling technique called dynamic warp analysis to analyze
2,638 individual stock price bubbles that occurred between January 1, 1973 and May 16, 2023.
We show that when converted to synchronized warped units, bubbles conform more closely to
our stylized visualization of them, and they exhibit common characteristics that enable us to
predict with considerable success the emergence of a bubble and how advanced it is along its

journey.

We proceed as follows. First, we illustrate our warping algorithm with a numerical
example. We then give an example of two bubbles that proceeded at dramatically different
paces in calendar time, but when warped proceeded along remarkably similar paths. Next, we

describe our data including the rules we use to define bubbles and the stock characteristics we



use to indicate the phases of a bubble. We then describe our methodology for estimating
whether a bubble has begun and, if so, how far it has progressed. Finally, we provide evidence
of the efficacy of our bubble detection system by testing trading rules designed to exploit

bubble dynamics.

Dynamic Warp Analysis

Dynamic warp analysis is a technique for synchronizing series that proceed at different
cadences. It was introduced in the 1970s to aid with speech recognition and later shown to be
closely related to Hidden Markov Models.? We apply this technique to synchronize the

evolution of stock price bubbles that evolved disparately when observed in calendar time.

Warping Algorithm

Consider two series, A and B.

Exhibit 1: Pre-warped Series

Step Series A Series B
1 0.01 -1.04
2 0.07 -1.12
3 -0.55 -0.49
4 -0.33 -0.55
5 -0.15 -0.52
6 0.21 -0.11
7 -0.09 -0.35
8 0.81 -0.50
9 0.37 -0.45
10 0.63 -0.54

We begin by constructing a cumulative distance matrix as shown in Exhibit 2.



Exhibit 2: Cumulative Distance Matrix

A 0.01 0.07 -055 -033 -0.15 0.21 -0.09 0.81 037 0.63
B

-1.04 110 232 256 3.06 384 540 6.29 970 11.68 14.46
-1.12 238 252 265 319 400 562 6.46 10.03 11.93 14.75
-0.49 263 269 253 255 267 315 331 500 573 6.98
-0.55 295 3.02 253 258 271 325 337 517 585 7.13
-0.52 323 330 253 257 271 325 344 515 595 7.8
-0.11 3.25 3.27 273 258 257 267 267 352 375 430
-0.35 338 343 277 258 261 288 274 4.01 4.04 471
-0.50 364 371 277 261 270 312 291 446 478 5.32
-0.45 386 392 278 262 270 314 3.04 451 514 595
-0.54 4.16 423 278 267 277 327 324 487 534 6.51

The top row and the left most column of the cumulative distance matrix are the two
series we wish to warp. The interior cells of the matrix are the squared Euclidean distances
between the values of Series A and Series B plus the minimum value of the adjacent cells that

precede it horizontally, diagonally, and vertically, as given by Equation 1.

2 .
dij= (A4 —B;)" +min(d;_q -1, d; j-1,di—1) (1)

To calculate these distances, we begin with the cell in the top row and first column. We
calculate its value as 1.10 = (0.01 — (-1.04))? + min (0, 0, 0), because there are no preceding
values. We then proceed horizontally, diagonally, and vertically to fill out the matrix. Consider,

for example, the cell in seventh row and sixth column. We calculate its value as 2.88 = (0.21 — (-



0.35))? + min (2.61, 2.57, 2.67). Now consider the cell in the last row and last column. We

calculate its value as 6.51 = (0.63 — (-0.34))? + min (5.14, 5.34, 5.95).

To find the warped series that are most closely aligned, we proceed in reverse from the
cell in the last row and last column to the cell in the first row and first column, always moving to
the prior adjacent cell with the minimum distance. The path that best aligns the two series,
which is shown in red, reveals whether the series proceed in lockstep or if one series proceeds

faster than the other at some of the steps.

Although we work backwards to identify the most closely aligned warped series, our
goal is to synchronize their forward progression. If the two series proceed at the same pace,
the synchronized path advances from the upper left to the lower right along the cells in the
diagonal. If Series A proceeds at a faster pace than Series B, the synchronized path moves to
the vertical adjacent cell to give Series B time to catch up, as in the case with the cell in the
fourth row and third column. If Series B proceeds at a faster pace than Series A, the
synchronized path moves to the horizontal adjacent cell as in the case with the cell in the sixth

row and sixth column.

Exhibit 3 shows the warped series. Notice that the warped series require 11 steps
whereas the original series has only 10 steps. This additional step is required because each

series moves without the other one time.



Exhibit 3: Warped Series

Warped Warped
Step . .

Series A Series B
1 0.01 -1.04
2 0.07 -1.12
3 -0.55 -0.49
4 -0.55 -0.55
5 -0.33 -0.52
6 -0.15 -0.11
7 0.21 -0.11
8 -0.09 -0.35
9 0.81 -0.50
10 0.37 -0.45
11 0.63 -0.54

Exhibits 4, 5, and 6 illustrate the transformation effect of warping based on two bubbles
that occurred in our historical sample according to the bubble definition we describe in the next
section: Zebra Technologies, which occurred over three years and two months from May 26,

2003 through July 21, 2006; and Perrico Company, which occurred over four and a half years

from November 9, 2011 through May 13, 2016.3

The lower left and upper right graphs in Exhibit 4 show the calendar time progression of
these two bubbles. The lower right graph links the fraction of each bubble’s duration that has
elapsed since their inceptions. It reveals that when we express the phases of bubbles as

percentages of elapsed calendar time they are perfectly aligned when mapped in calendar

units.




Exhibit 4: Calendar Time Bubbles Linked in Elapsed Time
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The lower left and upper right graphs in Exhibit 5 show the calendar time progression of
the bubbles, just like the graphs in Exhibit 4. However, the lower right graph now links them in
warped units. It shows that we must bend calendar time to align the bubbles when we express

their joint progression in warped units.



Exhibit 5: Calendar Time Bubbles Linked in Warped Time
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The lower left and upper right graphs in Exhibit 6 are expressed in warped units. The
lower right graph shows that the bubbles are synchronously aligned when we link them in
warped units. Moreover, the shapes of the two bubbles are nearly identical when plotted in

warped units, unlike their shapes when plotted in calendar units.



Exhibit 6: Warped Time Bubbles Linked in Warped Time
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These graphs illustrate why warping is necessary to synchronize bubbles. When we map
bubbles in percentages of elapsed time, we only synchronize their durations. When we map
them in warped time, we synchronize their entire shapes, which allows us to account for the

pace at which they proceed as well as irregularities in their patterns.
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Data and Methodology

Data

Our data comprises the total returns of all the stocks in the S&P 500 Index as well as three

types of stock characteristic data: investor behavior data, price-based data, and fundamental

data, as shown in Exhibit 7. The investor behavior category comprises flows and holdings

indicators produced by State Street Associates and pertain to the overall GICS industry to which

a given stock belongs. All other data are specific to the individual stock.

Exhibit 7: Stock Characteristics

Indicators

Source

Description

Investor Behavior Indicators
Sentiment

Disagreement

Industry flows

Industry holdings

Price-Based Indicators
Momentum

Reversal

Volatility 60 day
Market beta

Value beta

Size beta

Fundamental Indicators
Dividend yield

P/E multiple

EPS 1year growth

Net margin

Cash and equivalents/of total assets
Long-term debt/common equity
Fixed charge coverage ratio
Cash earnings return on equity
Sales estimate

Pretax profit estimate

Earnings per share estimate
Cash flow per share estimate

State Street Associates
State Street Associates
State Street Associates
State Street Associates

QAD DataSteam
QAD DataSteam
QAD DataSteam
QAD DataSteam, Fama/French 3 Factors
QAD DataSteam, Fama/French 3 Factors
QAD DataSteam, Fama/French 3 Factors

QAD WorldScope PIT
QAD WorldScope PIT
QAD WorldScope PIT
QAD WorldScope PIT
QAD WorldScope PIT
QAD WorldScope PIT
QAD WorldScope PIT
QAD WorldScope PIT
QAD IBES
QAD IBES
QAD IBES
QAD IBES

Stock-level sentiment (rolling 30 day average)
Stock-level disagreement (rolling 30 day average)
Industry-level flows (rolling 20 day average)
Industry-level holdings

Total return - past 1 year

Total return - past 20 days

Standard deviation - past 60 days
Stock beta relative to market factor
Stock beta relative to value factor
Stock beta relative to size factor

Annual dividend per share/price per share

Price per share/quarterly earnings per share
Percentage change in EPS - last 12 months

Net income/total revenue (x 100)

Cash and marketable securities/total current assets
Long term debt/shareholder equity

Earnings before interest and taxes/fixed charges
Operating cash flow/equity

Mean and standard deviation across analysts
Mean and standard deviation across analysts
Mean and standard deviation across analysts
Mean and standard deviation across analysts
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All the data is for the period beginning January 1, 1973 and ending May 16, 2023.
Additionally, we standardize the data by converting the observations to cross-sectional

percentile ranks.

Bubble Definition

We define a bubble as an event in which the total return index of a stock increased 50% or
more from its previous low point and then declined by 50% or more from its previous peak.
The bubble is deemed to have ended when the return index reached a new low point prior to
recovering to 30% below its prior peak. We identify the start date of the bubble as the most

recent time the index value was as low as the value at the conclusion of the bubble.

We identified 2,638 bubbles for 866 stocks from January 1, 1973 through May 16, 2023.

Training and Prediction

Training Process

Our training process proceeds as follows.

1. We select randomly without replacement 10% of the bubbles from the full sample to
use as the holdout sample, and we use the 90% complement as the training sample.
2. We warp bubble 1 and bubble 2 from the training sample into 21 time steps of 5%

intervals from 0% to 100% of warp time.
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3. Fortime step 1, which is 0% of warp time and therefore the inception of the bubble, we
record a vector of the stock characteristics, previously shown in Exhibit 7 and expressed
as cross-sectional percentile ranks.

4. We repeat this process for bubble 1 with every other bubble, bubble 2 with every other
bubble, bubble 3 with every bubble, and so on until we have warped every bubble pair
in our training sample, recording the vectors of stock characteristics along the way.

5. We then repeat this entire process for time steps 2 through 21, producing distributions
of stock characteristics for every time step of the warped bubbles.

6. We repeat this process 10 times, thereby evaluating all the bubbles in the full sample.

It is important to note that warp time is not universal. It is unique to each bubble pair.

Holdout Sample Prediction

Next, we use a statistic called the Mahalanobis distance to estimate the time step of a bubble
from the holdout sample by comparing its stock characteristics to the distributions of the stock
characteristics we observed during each time step of the training sample bubbles. The

Mahalanobis distance is given by Equation 2.

ds(xi,t) = (xi,t - .us)zs_l(xi,t - .us), (2)

In Equation 2, ds(x;.) is the Mahalanobis distance of the stock characteristics of bubble i
observed at time t in the holdout sample from the stock characteristics of warp step s from the
training sample; x; , is a vector of the bubble stock characteristics at the time it is observed in

the holdout sample; g is a vector of the average of the stock characteristics at warp step s
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from the training sample; and X is the covariance matrix of the stock characteristics at warp

step s from the training sample.

The vector (xi,t - us) measures how different the stock characteristics of the currently
observed bubble are from the average characteristics of a time step from the training sample.
By multiplying this vector by the inverse of the covariance matrix, we capture the interaction of
the characteristics associated with the training sample time step. By multiplying this product by
the transpose of the vector we consolidate the outcome into a single number, which represents
the covariance-adjusted distance between the stock characteristics of the holdout sample
bubble and the average characteristics of the various time steps from the training sample.
Based on information about a stock experiencing a bubble at time t, we estimate its current

warp time step as the step s to which its characteristics are least distant.

Once we identify the most likely time step of the currently observed bubble, we
calculate the percentage price appreciation remaining to its peak, assuming it has not yet

reached its peak, as:

peak date price - prediction date price

Remaining price percentage to peak =

(3)

peak date price - bubble start date price

If the bubble is in its selloff phase, we calculate the remaining percentage price

depreciation to the conclusion of the bubble as:

conclusion date price - prediction date price

Remaining price percentage to conclusion =

(4)

conclusion date price - peak date price

We calculate these remaining price changes in both warped time and calendar time to

compare the efficacy of these dimensions for assessing a bubble’s progression.
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Results

As we mentioned previously, we repeat the training process and holdout estimation 10
separate times to produce our results. Each time we randomly select a 10% holdout sample
without replacement. For each training sample, we consider 6,260,765 bubble pairs (2,638 x 2,
637 x 0.90), and we evaluate 264 bubbles (2,638 x 0.10) in the holdout sample. Given that we
repeat the process 10 times, in total we consider all 2,638 bubbles in our sample.

Bubble Phases: Warped Time versus Calendar Time

Exhibit 8 shows the composite distribution of subsequent price appreciation to the bubble peak
for bubbles in the holdout samples that were estimated to be in each stage of the run-up
phase. The horizontal axis reflects the percentage of elapsed warped time for each time step
from inception to peak. The vertical axis represents the remaining percentage of price
appreciation from inception to peak that subsequently occurred. The box plots show the 25,
50t™, and 75 percentile values, with lines extending to the 5" and 95 percentiles. These
distributions comprise the bubble step estimates made for every day of every bubble in the

composite holdout sample.
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Exhibit 8: Elapsed Warp Time versus Realized Percentage Change from Inception to Peak
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Consider, for example, 0% warp time to peak. This warp time represents holdout
sample observations for which the stock’s attributes at the time suggested it is most likely at
the inception of a bubble. In 50% of these cases, the bubble had more than 89% of its total
price appreciation remaining (the median of the distribution is 89%). When warp time was
estimated to be at 50% of the bubble appreciation phase, the realized median percentage to
peak was 54%. And when the bubbles were estimated to be at their peaks, the median realized

percentage change to peak was 13% across all bubbles.

Exhibit 9 presents the distribution of remaining price appreciation if, instead of using
warp time, we estimate a bubble’s stage of progression based on the elapsed calendar time

since inception. Because the calendar duration of the bubbles can vary dramatically, we
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calibrate the horizontal axis as the number of six-month periods from the bubbles’ inceptions
up to three years, which captures the total duration, or at least a large fraction of it, for most

bubbles in our sample.

Exhibit 9: Elapsed Calendar Time versus Realized Percentage Change from Inception to Peak

100%
90% |
80% ‘
70%
60%

50%

T

Remaining price percentage change to peak

10%

0%
0 1 2 3 4 5 6 7 8 9 10
Number of half-years since bubble inception

In contrast to the relationship between elapsed warp time and remaining percentage
price change to peak, which shows a pronounced downward and relatively steady slope, the
relationship between elapsed calendar time and remaining percentage change to peak has a
much shallower and less monotonic slope, and the dispersion around the median outcomes is

far wider.
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Next, we consider the remining percentage change to conclusion for bubbles that have
already reached their peaks. Exhibit 10 compares estimates of the bubbles’ elapsed times as
percentage changes from peak to conclusion in warped units, shown along the horizontal axis,
with the distributions of the realized percentages changes from peak to conclusion that

remained, expressed as boxplots, shown on the vertical axis.

Exhibit 10: Elapsed Warp Time versus Realized Percentage Change from Peak to Conclusion
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Exhibit 10 shows a similar steady downward slope for peak to conclusion as we
observed for inception to peak. For example, when warp time estimated that the bubbles were
at their peaks (0%), the median percentage change to conclusion was 89%. When warp time
indicated that 50% of the bubbles’ times to conclusion had transpired, the median percentage

change to conclusion was 54%. And when warp time indicated that the bubbles had reached
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their conclusions, the median percentage change to conclusion was 11%. However, the bands
around the median estimates are wider than they are for bubble runups, indicating that the
warp predictions for bubble selloffs are less reliable than they are for bubble runups, except

near their conclusion.

Exhibit 11 presents the same selloff comparison but based on calendar time instead of

warped time.

Exhibit 11: Elapsed Calendar Time versus Realized Percentage Change from Peak to Conclusion
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Exhibit 11 reveals that calendar time gives a much less reliable estimate of the

percentage change remaining from a bubble’s peak to conclusion, as indicated by the wider
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bands around the median estimates and the significantly more shallow and less monotonic

slope.

Stock Characteristics: Warped Time versus Calendar Time

As further evidence that warping enables us to evaluate bubbles more effectively, we show in
Exhibit 12 how certain stock characteristics progressed in warped time (top panels) versus

calendar time (bottom panels).

Exhibit 12: Progression of Selected Stock Characteristics in Warped Time and Calendar Time
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The results we have presented thus far assume that we knew the bubbles in the holdout
samples were underway, but that we did not know at what time step they were along their
journeys; hence, these results are not fully out of sample. Next, we show how to detect the

inception of bubbles as well as how far they have progressed.

Out-of-Sample Testing

We test three market neutral trading rules to determine if observing bubbles in warped time
enables investors to detect their arrival and the phase of their progression. For these tests we
include an additional time step to represent times when a stock was not experiencing a bubble.
Just as we use the Mahalanobis distance to detect a bubble’s time step, we similarly use it to
detect “no bubble” periods. These tests are therefore fully out of sample. They presume no

foreknowledge of a bubble’s existence nor how far a bubble has progressed.

We begin by learning bubble characteristics from data beginning January 1, 1973

through December 31, 1999, and we expand this window each month as we move forward in
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our testing sample. We rebalance the positions monthly, and we weight them according to
their capitalizations. We test three trading rules: one in which we seek to participate in bubble
run-ups and exit before sacrificing accumulated gains; one in which we seek to exploit over-
reaction near the end of bubble selloffs; and one in which we combine these trading rules. Our
rebalancing occurs at each month end from January 31, 2000 through May 31, 2023. Hence,

our measurement period runs from February 2000 through June 2023.

1. Run-up Trading Rule
= Purchase bubble stocks weighted by their capitalization that are estimated to be
between 20% and 80% of the elapsed warp time from the bubble inception to the
bubble peak.
= Sell S&P 500 in equal amount to create market neutral exposure.
2. Over-reaction Trading Rule
= Purchase bubble stocks weighted by their capitalization that are estimated to be
between 80% and 100% of the elapsed warp time from the bubble peak to the
bubble conclusion.
= Sell S&P 500 in equal amount to create market neutral exposure.
3. Run-up and Over-reaction Trading Rule
= Purchase bubble stocks weighted by their capitalization that are estimated to be
between 20% and 80% of the elapsed warp time from the bubble inception to the
bubble peak and bubble stocks that are estimated to be between 80% and 100% of
the elapsed warp time from the bubble peak to the bubble conclusion.

= Sell S&P 500 in equal amount to create market neutral exposure.
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Exhibit 13 shows that all three trading rules generated profits on average over the
testing period from January 2000 through June 2023. The run-up strategy underperformed
during the Dot Com Bubble, most likely due to systematic influences.* The over-reaction
trading rule, by contrast, performed extremely well during this period, suggesting systematic
negative over-reaction by investors. On average, the over-reaction trading rule produced a
higher return than the run-up trading rule but with considerably more volatility. The combined
trading rules generated a better return than the run-up trading rule, but they did not generate
as large a profit as the over-reaction trading rule. The performance of the combined trading
rules is more similar to that of the run-up trading rule than the over-reaction trading rule
because run-up periods tend to last longer than over-reaction periods; therefore, they tend to

dominate the combined sample.
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Exhibit 13: Cumulative Excess Returns
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Exhibit 14 shows the annualized details of these three trading rules. It shows that the

combined trading rules produced the best risk-adjusted outcome by a significant margin.



Exhibit 14: Trading Rules Annualized Return and Risk

Run-up Over-reaction Combined
Return (annualized) 2.2% 5.4% 2.9%
Risk (annualized) 5.7% 10.1% 3.9%
Information Ratio 0.39 0.53 0.74

Conclusion

We employed a technique called dynamic warp analysis to convert the calendar progression of
bubble pairs into synchronized warped time steps. For each warped time step we recorded a
variety of stock characteristics across all the warped bubble pairs in a training sample. We then
used the Mahalanobis distance to measure the relative proximity of an out-of-sample bubble
observed at an unknown time step to the distribution of stock characteristics of each time step
from the training sample. Next, we showed that observing bubbles in warped time gives much
more reliable estimates of the realized remaining percentage changes from inception to peak
and from peak to conclusion than observing bubbles in calendar time. We also showed that the
differences across stock characteristics conforms more closely to the stylized image of a bubble
when observed in warped time as opposed to calendar time. We cautioned that, although our
results presumed we had no foreknowledge of how far a bubble had progressed along its

journey, they did presume we had foreknowledge that a bubble was underway.

We then tested three trading rules fully out of sample to determine if observing bubbles
in warped units has the potential to generate profits. We considered a rule to determine if one
could participate in bubble run-ups and exit sufficiently early to preserve accumulated gains, as
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well as a rule that exploited investor over-reaction during the final phase of bubble selloffs. We
tested these two trading rules independently and in combination. These tests presumed we
had no foreknowledge of whether a bubble was underway, and if it was underway, how far
along it was in its journey. Our tests offer compelling evidence that dynamic warp analysis has
the potential to enable investors to profit by detecting new bubbles and by revealing how far

they have progressed.
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Notes

This material is for informational purposes only. The views expressed in this material are the
views of the authors, are provided “as-is” at the time of first publication, are not intended for
distribution to any person or entity in any jurisdiction where such distribution or use would be
contrary to applicable law and are not an offer or solicitation to buy or sell securities or any
product. The views expressed do not necessarily represent the views of Windham Capital
Management, State Street Global Markets®, or State Street Corporation® and its affiliates.

! Nobel Laureate Eugene Fama famously asserted in a 2010 interview “It’s easy to say prices went down, it must
have been a bubble, after the fact. | think most bubbles are twenty-twenty hindsight. . . . People are always saying
that prices are too high. When they turn out to be right, we anoint them. When they turn out to be wrong, we
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ignore them.” Greenwood, Shleifer, and Who (2019) argue that certain features of stocks correspond to a
heightened probability of bubbles.

2 See, for example, Juang (1984).

3 We chose these two historical examples arbitrarily for the purpose of illustration. This illustration does not imply
any views about these stocks.

4 We could neutralize the market effect associated with bubble identification by considering returns in excess of
the market’s return, but we believe that absolute bubbles resonate more with investors than relative bubbles.
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