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CHAPTER I 
THE ADVANCED ALGORITHMS RESEARCH PROJECT: 

AN INTRODUCTION 

During the period from 1967 to 1971 significant 
research was devoted to investigation of the potential 
use of computers in the control of demand responsive 
transportation systems. Two of the more tangible outputs 
of these efforts were 

1. A computer simulation model which was developed
to test alternative computer control algorithms and
to predict system performance, and

2. A recommended set of computer control procedures
resulting in the immediate assignment of each request
to the current "tour" of the best vehicle, based on

a) Feasibility conditions, under which each
user receives service within specified bounds, and 

b) Minimization of total service times for
current and future passengers. 

These control procedures were tested in the simulation 
model environment and were found to perform well on intui­
tive grounds (i.e., by examining individual assignments 
and comparing them with judgment) and to compare favor-
ably with other proposed algorithms. However, since no 
optimal solution algorithm had been developed (nor has 
one been developed since), absolute statements about their 
performance were impossible. 

One result of this research program was the decision 
to mount a demonstration project of the concept in 
Haddonfield, New Jersey, in order to obtain a market test 
of the service concept and to obtain data on the potential 
of computer dispatching. The system (which has been 
extensively described elsewhere1) has just terminated 

(1) Report UMTA-NJ-06-0002-74-7, Haddonfield Dial-A-Ride
Project Final Report, February, 1975.
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its demonstration project phase having provided valuable 
data in both these areas. The computer control system 
used in the latter stages of the Haddonfield project was 
developed by the MITRE Corporation using the control 
algorithms previously developed at M.I.T.

M.I.T. is now the recipient of a University Research
and Training Grant from the Urban Mass Transportation Ad­
ministration to develop advanced dial-a-ride control 
procedures based on the experience gained in Haddonfield, 
and to explicitly investigate the problem of controlling 
integrated dial-a-ride fixed route transit services. This 
presents a rare opportunity to evaluate academic research 
in light of subsequent operational experience, specifically 
to validate the simulation model and to analyze and im­
prove the operation of the total system. An additional 
benefit of the Haddonfield experiment has been the collec­
tion of extensive data on a similar manual system (identi­
cal from a user viewpoint), thus making possible a compar­
ison of the quality of computer assignment with that of 
manual assignment. 

The research objectives of the Advanced Dial-a-Ride Al-
gorithms Research Project can be subdivided into four tasks: 

1. Evaluation of simulation effectiveness and up­
grading of simulation capabilities so as to ensure
the availability of an effective method of assessing
the likely effects of changes to the dial-a-ride
control techniques or operating environment prior
to, or in lieu of, field testing.

2. Evaluation of the present dial-a-ride control
algorithm (used in Haddonfield, New Jersey), and
identification of shortcomings and areas for improve­
ment.

3. Development of advanced computer control algor­
ithms in the context of single.module dial-a-ride
systems incorporating better use of contraints,
control of service extremes to individual passengers, and 
scheduling of deferred and periodic demands. 
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4. Definition, description, and evaluation of roles
for computer scheduling in the context of co-ordinated
dial-a-ride systems which incorporate interfaces to
each other and to existing conventional modes of
transportation.

This report describes work accomplished to date on 
these tasks. It comprises observations, conclusions, 
and new work based on the Haddonfield demonstration pro­
ject, as well as more abstract research and improvements 
which are a logical continuation of prior work not direct­
ly connected with Haddonfield. Work on Tasks l and 2 has 
been essentially completed. Chapter 2 discusses the work
performed under Task 1. Comparisons are drawn between 
computer controlled Haddonfield operation and simulation 
of Haddonfield operation. Also described are modifica­
tions to the simulation model to facilitate these tests. 
Chapter 3 deals with Task 2. In it operational experience 
with computer dispatching is reviewed from an algorithm 
viewpoint, and comparisons are drawn between manual and 
computer dispatching as observed in Haddonfield. Finally 
shortcomings in the algorithm and areas where the algor­
ithm is being or might be improved ar� discussed. 

Tasks 3 and 4 represent work in progress. Signifi­
cant progress in eliminating the drawbacks of constraints 
and improving service extremes to individual passengers 
has been made through development of the quadratic objec­
tive function. Scheduling of deferred and periodic 
demands is at this time not yet a solved problem, but is 
a prime target of current research efforts. Encouraging 
results have been obtained, however, in the area of 
scheduling of fixed-time stops, which, it is thought, 
is a necessary preliminary to being able to schedule 
advanced requests. Chapter 4 discusses the quadratic 
objective function along with relevant utility theory, 
and mentions some preliminary results in the area of 
scheduling of fixed stops. 
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Most of the work accomplished thus far has been con­
cerned with single module systems. Some preliminary ideas 
on co-ordinated systems have, however, been formalized 
(under Task 4) and are discussed in Chapter 5. 

Finally Chapter 6 presents a summary of work accom­
lished and work to be accomplished under the Advanced 
Algorithms Research Project. 

Five appendices are also included in this document. 
Appendix A investigates the distribution of interarrival 
times fo� demands for dial-a-ride service in Haddonfield. 
Appendix B investigates algorithm performance as a func­
tion of varying demand levels. In Appendix C are discussed 
a proposed procedure to assess consumer preference and a 
method for determining parameter settings for the quadra­
tic objective function. The derivation of the quadratic 
objective function appears in Appendix D. Finally, 
Appendix E describes the system (loosely based on Haddonfield) 
which was used in investigating the performance of different 
objective functions. 
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CHAPTER 2 
VERIFICATION OF THE SIMULATION MODEL 

2.0 Introduction 

With the ultimate goal of development of dial-a-ride 
assignment algorithms (or automatic control strategies) 
that provide the best possible service to the riding public, 
a secondary problem arose - that of designing an accurate, 
cost effective model. Only by using a mathematical char­
acterization can the analyst perform experiments to evalu­
ate control procedures which would be difficult and/or 
expensive to carry out on the real system. The primary 
raison d'etre of the simulation model which has evolved to 
fill this need is to analyze and test algorithm effective­
ness. It is important, therefore, that the model be a 
valid one. 

The dial-a-ride computer simulation model developed 
at M.I.T. was completed in 1968, and for the past seven 
years it has undergone significant expansion and modifica­
tion. A simulation model is necessary to evaluate al­
ternative control procedures because the dial-a-ride system 
is too complex to model analytically at this time. The 
model is an event-driven simulation which was implemented 
in FORTRAN to facilitate implementation of complex decision 
rules and compatibility with a wide range of computers. 

The major events in the model are the occurrence of 
a service request, and a vehicle's making a stop. At 
the time each request is generated, a record is established 
including request time, origin and destination. As soon 
as the request occurs it is assigned by the algorithm to 
the future tour of a vehicle (It is this assignment that 
is the raison d'etre of the objective function, which is 
perhaps the heart of the dial-a-ride control algorithm.). 
Whenever a vehicle makes a stop the record for the passen­
ger served (either picked-up or delivered} is updated 
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with the time of the stop. The vehicle's travel time to 
its next scheduled stop is then estimated based on the 
direct distance between the two points, a street adjust­
ment factor, and assumed vehicle speed. When a passenger 
is delivered, its wait, travel and total service times 
are computed and added to the statistics of all other 
passengers served, and its record is erased. 
2.1 Experience in Haddonfield, New Jersey 

Unique opportunities to test, calibrate and improve 
the purely simulation aspects of preceding M.I.T. work 
were presented by the existence of the Haddonfield demon­
stration project, since the algorithmic procedures em­
bodied in the computer system used in Haddonfield were 
derived directly from earlier research at M.I.T. Specifical­
ly, with a minor exception in the area of advanced (or 
periodic) requests and an addition in the area of vehicle 
in and out of service times, the algorithm used was taken 
directly from the. previous M.I.T. work. Complete data 
describing travel demands in Haddonfield and the conse-
quent performance of the system were �athered, making full 
and valid comparisons possible. 

Focusing on the design of the simulation model, it 
should be noted that, as with any model, numerous assump­
tions and simplifications of the real world were required. 
The model, as developed under the previous DOT grant, 
was designed to provide the analyst with the ability 
to simulate a wide range of systems. To this end the 
input parameters incluqe area dimensions, demand rate, 
demand pattern, number of vehicles, vehicle size, vehicle 
speed, etc. However, there were two major assumptions 
of the original model which warranted further investi­
gation in light of Haddonfield operating experience: 

1) A constant number of vehicles are in continuous
service throughout the simulated period.
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2. The demand rate is constant over the simulated
period -- although the time between successive
demands is selected from a user specified distribution.

2.2 Changes to the Model 

In order to investigate the validity of the model two 
new options have been implemented which allow the two above 
mentioned assumptions to be relaxed by the analyst. The 
first model extension provides the analyst with two comple­
mentary ways of comparing predicted and observed results: 

a) perform a 'pure' simulation by having the model
generate as well as assign demands and simulate
vehicle movement, and

b) perform a 'replication' by using actually
observed demands (in both time and space), limiting
the simulation to assignment and vehicle movement.

The primary difference between these two techniques is 
that (a) requires the user to provide a demand function 
in the form of statistical distributions for times and 
end-of-trip coordinates while (b) eliminates the demand 
function completely, replacing it with a specific set 
of trip requests. Because the algorithms used in Haddon­
field and the M.I.T. model are virtually identical, 
case (b) amounts to a test of the manner in which the 
model simulates vehicle movement. 

The second option allows vehicles to enter or leave 
service at any times specified by the analyst or to 
utilize a constant, continuous supply of vehicles. These 
options provide significant flexibility and power in 
validating the simulation model. 

2.3 Findings on Modelling Assumptions 

Once these options were implemented, simulation ex­
periments were run representing the Haddonfield system 
using real and simulated demand and vehicle input. Be­
cause of the close similarity between the Haddonfield 
algorithm and the algorithm in the M.I.T. model, most 
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parameters were rathe- easy to set inasmuch as they had 
identical counterparts -- except vehicle speed, the one 
major parameter for which there is no direct correspondence. 

2.3.1 Variation in Vehicle Speed 

For validation it is in fact vitally important to 
have an accurate representation of the speeds at which 
vehicles actually travel. In order to determine this, 
a program was written to extract this information from 
Haddonfield transaction tapes. This program, which 
computed the speeds of individual vehicles as well as 
the overall speed, showed that there was great variation 
both among drivers and among days. To illustrate, the 
following results were obtained for two days of actual 
computer operation: 

19 September 
MEAN 
MINIMUM 
MAXIMUM 

15 mph 
12 mph 
18 mph 

1974 4 October 1974 
12 mph 
10 mph 
15 mph 

Though simulation results indicate that the average 
speed will suffice if it is accurate (all vehicles in 
the simulation have the same nominal speed), these numbers 
suggest that the speed of individual vehicles could have 
a great effect on service for some individual customers. 

2.3.2 Vehicles' Entering and Leaving Service 

It was found that the assumption of a constant supply 
of vehicles in continuous service resulted in significant 
over-estimation of vehicle productivity and/or over-estima­
tion of the quality of service which can be provided. 
The reason for this is that when a vehicle enters (leaves) 
service it is significantly under-utilized in the period 
immediately following (preceding) the change. The greater 
the number of changes in vehicle status the greater the 
overall impact. Moreover, since fully demand responsive 
operations occur in the base period of the schedule, 

8 



vehicle status changes are frequent because of shift 
changes and driver lunch breaks. 

It was found to be difficult to approximate Haddonfield 
results using the basic unmodified simulation model with
the constant number of vehicles equal to the average number 
of vehicles actually operating. However, by using actual 
vehicle in-service times, it was possible to closely 
npproximate actual Haddonfield quality of service. Table 
i-1 shows the summary statistics for one day of Haddonfield
operations. Table 2-2 shows results of four different
simulation experiments to reproduce this system. The
first and second set of results utilize a constant number
of vehicles in continuous service, and demonstrate that
similar service could be provided with about 20\ fewer
vehicles if they were in continuous service. The third
case is a simulation using actual vehicle in-service
times and shows close correspondence with the actual opera­
tion.

TABLE 2-1: 

ANALYSIS OF OPERATIONS (9 a.m. - 3 p.m.) 9/19/74 

NUMBER OF PASSENGERS 262 

VEHICLE PRODUCTIVITY (PASS/VEH/HR) 

NUMBER OF VEHICLES IN SERVICE 

NUMBER OF TIMES VEHICLE ENTERED 
(LEFT) SERVICE 

5 
9 - 11 

34 

ACTUAL QUALITY OF SERVICE 

WAIT TIME (MINS) 

RIDE TIME (MINS) 

9 

MEAN 
9.5 

9.5 

STD.DEV. 

6.0 

5.4 

MAX 

34 
32 



TABLE 2-2: 

SIMULATED QUALITY OF SERVICE 

CASE 1: CONSTANT 8 VEHICLES 

MEAN STD.DEV. MAX 
WAIT TIME 9.7 6.3 36 
RIDE TIME 11.6 7.0 34 

CASE 2: CONSTANT 7 VEHICLES 

MEAN STD.DEV. MAX 

WAIT TIME 12.0 8.0 54 
RIDE TIME 12.5 8.5 59 

CASE 3: VEHICLES IN AND OUT OF SERVICE 

MEAN STD.DEV. MAX 
WAIT TIME 9.6 8.1 47 
RIDE TIME 12.5 8.1 47 

CASE 4: VEHICLES IN AND OUT OF SERVICE 
REPLICATION 

MEAN STD.DEV. MAX 
WAIT TIME 8.2 7.5 56 
RIDE TIME 10.7 7.3 42 

Once the variable number of vehicles feature was 
installed, the model performed well in all cases, with 
excellent results in replication of Haddonfield (Case 4). 
Clearly, this indicated that the two significant factors 
in modelling vehicle movement, i.e., the absence of a 
street network and the mechanism to simulate the uncer­
tainty of vehicle travel times, were functioning well. 
2.3.3 Comparison of Replication and Simulation 

Results using generated demands, although moderately 
good, were not as good as those for replication. In light 
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of what had been learned about the effects of transient 
availability of vehicles, this was only to be expected, 
since the inter-arrival rate for generated demands was 
based upon only one distribution. It is not a surprising 
conclusion that demand in suburban Haddonfield from the 
hours of 9 A.M. to 3 P.M. cannot be described with one 
probability density function (for a further discussion of 
this see Appendix A). Thus, even though performance of 
the model was adequate, it was thought desirable to make 
more complex specifications of demand rates possible. 
To this end the model was modified to allow a user to 
specify one or several inter-arrival rate distributions 
which are all added together. This solution almost cer­
tainly does not make it possible to closely simulate actual 
demand patterns, but it does greatly increase existing 
capabilities and specifically permits the user to add 
spikes which were previously impossible to simulate. 

Other tests gave a preliminary indication that results 
were less sensitive to the use of actual spatial data as 
opposed to spatial data generated by the model itself. 
This can be ascribed to two factors: tthe use in an 
approximate way of observed Haddonfield patterns, and the 
ability of the trip generator to accept the existence of 
different zones with different demand rates (as opposed 
to the one distribution for inter-arrival times). Because 
only seven zones were used to generate trips, the use of 
observed Haddonfield data does not vitiate this result. 

Thus it was determined by comparing an actual demand 
stream simulation (as obtained from Haddonfield transaction 
tapes) with random demands (based on approximations of 
the Haddonfield demand pattern) that approximate and random 
demands are quite satisfactory for the prediction of sys­
tem performance. This suggests that estimating the 
appropriate spatial distribution of demand and level of 
demand is sufficient to predict future performance in a 
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demand responsive transportation system. This is fortunate, 
since if this assumption were not valid, prediction of 
future systems' performance would have been infeasible. 

2.4 summary and Conclusions 

In this chapter, the followi,1g conclusions were drawn 
concerning the validity of the simulation model: 

1. The initial assumption of vehicles' being con­
tinuously in service resulted in significant over­
estimation of productivity and service quality. In
Haddonfield the error due to this assumption repre­
sents a twenty percent change in vehicle requirements.

2. The assumption that an actual street network is
not a necessary element of the model was verified.

3. The mechanism which simulated uncertainty of
vehicle travel times is apparently functioning
well.

4. Estimation of the appropriate spatial distribution
of demand and level of demand is sufficient to
predict future performance for a demand responsive
transportation system.

Although the simulation model was sophisticated by 
any standard, it was not, as originally designed, realis­
tic enough to provide reliable estimates of productivity 
and service quality. At the time the simulation model was· 
developed, not enough was known about the transient 
behavior of the system to recognize this as a significant 
factor. The assumption of a constant and continuous 
supply of vehicles resulted in overestimation of quality 
of service. 

More attention must therefore be directed to system 
performance under transient supply conditions, and the 
improved model should be used in planning new systems in 
conjunction with expected vehicle in-service times. In­
deed the model might now be considered a valuable tool 
in planning driver shifts and in investigating ways to 
increase productivity by utilizing driver shift information 
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such techniques as allowing the driver to be relieved whiie 
the vehicle is in active service should be considered. 
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CHAPTER 3: 
THE ASSIGNMENT ALGORITHM 

3.0 Introduction 

The computer assignment algorithm which was used in 
Haddonfield was the result of the previous research project 
at M.I.T. The algorithm, which was first developed in 
1 968, focuses on the assignment of immediate requests for 
service1 In the algorithm each passenger is assumed to 
have a utility function which is linear in service time 
up to a specified constraint. During assignment the origin 
and destination of the new request are inserted in the 
future tour of each vehicle in service -- all such assign­
ments are considered. An assignment is termed feasible 
if as a result no service constraints are violated for 
any passenger currently on the system. In selecting 
the best assignment any feasible assignment is preferred 
to any infeasible assignment, and between alternative 
feasible (infeasible) assignments the one which minimizes 
the sum of total service time for all �current customers 
and change in system resources used is selected. Clearly, 
depending on the demand level and the setting of the 
constraints, constraints on occasion will be violated, 
but their purpose is to cut off the tail of long service 
times without significantly affecting other measures of 
service.. In the Haddonfield implementation no diversions 
were permitted on the current (first) leg of a vehicle's 
tour, no passenger re-assignment was considered, and 
there was no empty vehicle policy. 

In general the algorithm used in Haddonfield performed 
well. Preliminary evaluation indicates that the quality of 
(l) Wilso N" · , . n, igel, et al, Scheduling Algorithms for a Dial-
:-Ride System, M.I.� 1 Department of Civil Engineering eport Number USL TR-70-13, March, 1971.

' 
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service provided under computer control was at least as 
good as that under manual decision-making, and probably 
somewhat better. This chapter first compares manual and 
computer dispatching in Haddonfield and then addresses 
the shortcomings of the computer control algorithm. 

3.1 Comparison of Manual and Computer Dispatching 

Manual and computer dispatching can only be compared 
for that service which both have provided: many-to-many 
service from the hours of 9 A.M. to 3 P.M. on weekdays. 
From the customers' point of view these two dispatching 
methods are identical: except inasmuch as different qual­
ities of service may be provided, customers otherwise do 
not know whether the computer is being used or not. 
Effective comparison of the data for manual and computer 
dispatching is limited by three factors: 

1. When manual operation was the only mode of
operation, the service area and number of vehicles
were not the same as when the computer became
operational.

2. Once the computer did become operational, manual
dispatching was used only when the computer could
not function due to hardware or software failures.

3. The computer reached full and effective operation­
al status in early September 1974.

Therefore the statistics to be compared in this report 
represent every 'immediate' trip (i.e., excluding every 
deferred trip) for weekdays from 16 September 1974 to 8 
October 1974 inclusive (excluding 2 October) for computer­
ized operation, and 11 days of manual operation in July 
1974 when the computer was not used because of various 
air conditioning and hardware problems. Because of the 
manner in which trips were manually disp�tched, manual 
statistics do not include any trips originating at the 
PATCO speedline station . . In addition there are a small 
number of trips made between 9 A.M. and 10 A.M. on Satur-
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days as well as from 9 A.M. to 3 P.M. on Sundays. Because 
of the preponderence of weekday trips, it is thought that 
the following figures are valid for weekday 9 A.M. to 3 P.M.
trips. Table 3-1 shows the manual many-to-many data by 
hour of day, and Table 3-2 shows the data resulting from 
computer dispatching for both scatter and many-to-many 
trips. It should be stressed that both sets of data refer 
to actual trips taken in Haddonfield, not simulation re­
sults. Before discussing these results it should be noted 
that both the demand rates and the numbers of vehicles in 
service were essentially identical for both manual and 
computer operations {hence the productivities2 of the two
periods were similar). 

TABLE 3-1: 

MANUAL MANY-TO-MANY STATISTICS 

WAIT TIME TRAVEL TIME 
time trips mean st.dev. mean st.dev. 
9-10 402 16.5 9.2 9.9 6.6 
10-11 370 15.6 10.8 9.6 6.0 

\.'. 11-12 359 16.7 11.1 10.7 5.8 
12-1 431 19.7 13.3 11.4 7.5 
1-2 451 19.6 12.0 11.6 8.7 
2-3 624 18.4 10.6 12.4 8.6 

Total(9-3) 2637 17.9 11.3 11.1 7.5 

TABLE 3-2: 

CQMPIJTER PJSPATCHJNG RESULTS
WAIT TIME 

trips mean st.dev. 
from PATCO 853 
others 2658 

10.6 
14.9 

9.3 
11.1 

TRAVEL TIME 
mean 

13.0 
11. 3 

st.dev. 
8.3 
8.2 

(2) Productivity
vehicle hour.

is here measured in passenger trips per 
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It can be seen in the two tables that the service pro­
vided by the computer to passengers not starting from 
PATCO (i.e., the service for which manual statistics are 
available) has a wait time significantly lower than that 
provided by manual dispatchers. In all other respects 
computer and manual dispatching performance are very sim­
ilar. It is interesting to note the excellent service 
provided passengers originating at PATCO (figures for manual 
dispatching are not available for these passengers): The 
mean wait time for such passengers was a full four minutes 
lower than that for other trips, and standard deviation 
was also lower. The slightly higher travel time for passen­
gers starting at PATCO is due to a greater average trip 
length than that of the remaining passengers: 1.56 miles 
versus 1.36 miles (air-line distance). These results 
are encouraging for the continued use of the computer in 
demand responsive systems. In particular it is now clear 
that the computer can perform at least as well as manual 
dispatchers, even in small systems (10-12 vehicles) 
operating at low demand levels (40-60 demands per hour). 
Furthermore, as discussed in the following sections, it 
is clear that further improvement in computer dispatching 
is feasible which would yield clearly superior performance 
by computer dispatching. 

3.2 Improving the Algorithm 

Based on operational experience in Haddonfield im­
proved performance might be achieved through concentra­
tion on the following problem areas: 

1. Inflexibility of hard constraints

2. Objective function not a true reflection of cus­
tomer utility

3. Handling of advanced and periodic requests
4. Inability to constrain vehicle position at
future time
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5. Inability to restrict certain vehicles to given
zones

6. Re-assignment capability

7. Problems scheduling at start and end of driver/
vehicle shift

8. Algorithm not geared to under-utilized system.

Each of these areas are described briefly here in 
addition to more complete discussions of some of them 
elsewhere in this report. 

3.2.1 Inflexibility of Hard Constraints 

The algorithm was designed to minimize total service 
time (for current and future passengers) within fixed 
constraints on wait, travel, and total service times. 
Any assignment in which no constraint is violated is pre­
ferred to any assignment involving a violation, independent 
of the value of the objective function. This policy was 
developed to reduce the number of passengers experiencing 
"unreasonably long" service times, with the acknowledged 
and expected effect of some increase in the mean service 
times (see Figure 3-1). To achieve this goal the con­
straints must be set about 100% above the mean service 
times. In practice two problems arise from this approach: 

a) Because the short-run demand rate varies widely
over the course of the day, and because mean service
times are very sensitive to the recent demand rate,
a constraint set correctly for some time of the day
may be incorrect for many other times of the day.
The problem is that the constraints are not dynamically
set as a function of the number of passengers currently
on the system and the number of vehicles currently in
service. This problem could be solved by using a
short-memory heuristic to compute the current con­
straint set.

b) More basic is the problem that assignments which
may be far superior from the objective function's
viewpoint will be rejected if a constraint is violated.
This introduces a perturbation in performance and
can lead to short-sighted decisions which tend to
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FIGURE 3-1: 
RELATIONSHIP BETWEEN MAXIMUM SERVICE TIME 

AND MEAN SERVICE-TIME AS A FUNCTION OF CONSTRAINT VALUE

MAXIMUM TIME 

ME.AN TIME 

CONSTRAINT VALUE 



waste system resources. This problem cannot be solved 
by any useful setting of the constraints, and its 
existence argues for a reduction in the role of con­
straints in future algorithm development work. This 
is possible only if the individual customer utility 
function can be equally or better represented by some 
other construct (see below}. 

3.2.2 Objective Function Not a True Reflection of Customer 
Utility 

The current objective function implies that users of 
the system associate with the service a utility function 
which is linear in service time. This may be an inaccurate 
and simplistic representation of actual passenger satis­
faction, and hence its use might result in customer dis­
satis·faction. Al though the actual utility function assoc­
iated with dial-a�ride service has not yet been identified, 
it is clear that for the distribution of service time other 
measures than the mean are also important -- e.g., standard 
deviation. It is probable that the uncertainty in service 
is also an important characteristic. One measure of this 
is the difference between estimated and actual pickup 
and delivery times. Once again the means and standard 
deviations of these distributions should be considered. 

It is clear that different customers will have differ­
ent utility functions. For example, someone who is going 
to work or transferring to a scheduled bus will be very 
conscious of the latest arrival time. Another person 
arriving from a scheduled bus or leaving work will be very 
conscious of earliest pickup time. Thus a range of differ­
ent passenger utilities should be able to co-exist simul­
taneously in the algorithm. 

It is highly likely that actual utility functions will 
vary not only from customer to customer, but from area to 
area. For these reasons it is important that the next 
generation of algorithms incorporate a richer mix of ele­
ments in the objective function and provide the user 
(operator) with ways to manipulate the objective function 
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to achieve desired service characteristics. With a more 
reprasentative objective function, the service constraints 
can be used more as a means to reduce computation (by elim­
inating unpromising assignments early), rather than as 
an integral part of the algorithm. This problem is addressed 
in the next chapter. 

3.2.3 Handling of Advahced and Periodic Requests 

At present advanced requests (this term also being 
used to include periodic requests) are assigned a fixed 
period before their desired pickup time with a special 
set of (tight) constraints, using a modified objective 
function which attempts to minimize the time between 
expected and desired pickup time. All subsequent assign­
ments to a tour including an advanced request are made 
as if the tour consisted of only immediate service requests. 
This results in service for the advanced request being no 
better than service for immediate requests -- an unsatis­
factory state of affairs since advanced requests should be 
easier to schedule and serve than immediate requests. 
This is an important area of future work. 

3.2.4 Inability to Constrain Vehicle Position at Future 
Time 

The present system was designed for the dynamic many­
to-many case for which scheduled and/or repetitive demands 
on the system are not a major factor. In actual opera­
tion there will frequently be a need for vehicles to make 
regularly scheduled or one time appearances at specific 
locations, even though no originating service requests 
have been made, e.g., PATCO station in Haddonfield for 
scatter operations. This capability has been implemented 
in the simulation model and is currently being evaluated 
(see Section 4.6).

21 



�5 Inability to Restrict Certain Vehicles to Given Zones 
For ease of use at high-density demand generators, it 

may be desirable to specify service zones so that passengers 
know immediately which vehicle serves their destinations -­
each vehicle can then post one or more zone numbers. For 
this operational technique to be compatible with computer 
dispatching, the computer system must be able to restrict a 
vehicle to serve only limited origin/destination pairs. 
This capability does not exist in the Haddonfield system, 
but recently M.I.T. has implemented a scheme whereby 
vehicles can be restricted in terms of the origins and/or 
destinations served in the simulation model. 

3.2.6 Re-assignment Capability 

The Haddonfield computer system does not have a passen­
ger reassignment capability except in the situation where 
a vehicle breaks down, in which case the tour (including 
both collected and uncollected passengers) is shifted to 
the end of the tour of the vehicle which can be the first 
to reach the breakdown point. Passeng�r reassignment is an 
element of the algorithm which was investigated previously 
by M.I.T. and found to be of only marginal benefit. This 
work was performed in the context of constant demand rates 
and vehicle supply (not to mention the absence of other 
external transients such as vehicle failures, etq) as 
discussed in Section 2.1. Now that the importance of 
transient effects has been realized, this area should be 
re-examined, if only for the handling of vehicles which 
break down or suffer unusual delays en route. 
3.2.7 Problems Scheduling at the Start And End of Driver/ 

Vehicle Shift 

As discussed in connection with driver lunch breaks 
and the starts and ends of shifts (Section 2.3.2) there is a 
need for the computer to be able to build up tours efficient­
ly and stop further assignments at specific times so as to 
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maximize system productivity. 

3.2.8 Algorithm not Geared to Under-utilized System 
The previous algorithm development research was geared 

heavily to system (and hence algorithm) performance at or 
near the point of maximum system utilization. This resulted 
in higher vehicle productivities than typically observed 
in Haddonfield, and therefore the algorithm has been oper­
ating at much lower productivities than previously studied. 
It now appears, both from observations in Haddonfield and 
from simulation experiments, that the·algorithrn may not 
perform most effectively in this situation. Specifically, 
the increase in the tour length term in 1he objective func­
tion may lead to significant imbalances in utilization of 
vehicles. There is a high probability of a new request's 
being assigned to an already highly utilized vehicle, and 
moreover, once a vehicle becomes unassigned it tends to 
remain so. It must be recognized that the best objective 
function may well be a function of the current utilization 
of the system. This is discussed in detail in Appendix B. 

3.3 Summary 

From operational experience gained in Haddonfield with 
the existing computer control algorithms the following gen­
eralizations may be made: 

1. Computer dispatching in its current state can be
more effective than manual dispatching even for small
systems (e.g., 10 square miles) operating at low 
productivities (about 5 passenger trips per vehicle 
hour). 

2. Further improvements can be made in computer
control techniques without exceeding computational
constraints.

In Chapter 4 two approaches are examined which have been
implemented to improve the existing control procedures.
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CHAPTER 4: 
IMPROVING EXISTING COMPUTER CONTROL TECHNIQUES

4.0 Introduction 

Under the current DOT grant M.I.�. is investigating 
means of further improving the .basic dial-a-ride control 
algorithm used in Haddonfield as suggested by the discussion 
in the previous chapter. In this chapter two approaches 
will be described which have received most attention 
to date on the research project. The first is the use of a 
quadratic rather than linear objective function within the 
basic algorithm framework. Most of the chapter will be 
devoted to this research (Sections 4.1 - 4.6). Additionally 
the concept of the fixed time stop and its potential use 
to improve service for certain types of passengers is in­
troduced (Section 4.7). 

The area of investigation most advanced to date is 
the use of a quadratic objective function aimed at elimina­
ting the inflexibility of hard constraints, thus providing 
a more desirable service and eliminating the performance 
sensitivity to system loading. In Sections 4. 1 - 4.6 the 
relationship between individual utility functions and the 
algorithm objective function is explored and preliminary 
results from simulation experiments using a quadratic 
objective function are presented. 

The choice of the objective function is one of the 
more important design considerations in the implementation 
of Wilson's1 dial-a-ride routing algorithm. The objective 
function, which is used to synthesize various measures of
performance associated with each insertion of a demand in a
vehicle subtour, establishes a criterion for selecting the
"best" assignment.
(1) Wilson, Nigel, et al, Scheduling Algorithms for aDial-A-Ride Sy·stemTM.I.T. Department of Civil Engineering,Report Number USL TR-70-13, March, 1 971 .
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4.1 Form of the Quadratic Objective Function 

The quadratic objective function is a "second gen­
eration" equation which was developed in an attempt to 
eliminate weaknesses discovered during the first actual 
implementation of the original - linear - objective func­
tion in Haddonfield (see Section 3. 2). Based on the theory 
that customer dissatisfaction increases quadratically rather 
than linearly as a function of time delay and/or estimation 
error, the quadratic objective function incorporates terms 
in wait time, travel time, wait time deviation and delivery 
time deviation. The quadratic objective function consists 
of four separate equations of similar form -- each corres­
ponding to one level-of-service parameter -- and a fifth 
equation concerned with conservation of system resources 
for the service of future requests. These equations (which 
are derived in Appendix D) are presented below. The value 
of a specific assignment is the weighted sum of the values 
of these five functions. 

1. Wait Time

Z (WT) 

where 

NP(P) 

NP (D) 
dP = 

dD = 

TWT{P) 
TWT(D) 
WT(NEW) 

= 

= 

= 

(NP(P)) (dP) 2 + (NP(D)) (dP +idD)2 + 2(dP) (TWT(P))
+ 2 (dD) (TWT (D)) + (WT (NEW))2 

Number of pickups between new pickup and delivery 
insertion 
Number of pickups after new delivery insertion 

Detour due to insertion of new pickup 
Detour due to insertion of new delivery 

= Total wait time for pickups after new pickup
= Total wait time for pickups after new delivery 

= Wait time for new passenger based on this assign-
ment. 

2• Wait Time Deviation
Z (WTD) = (NP (P)) (dP) 2 + (NP (D)) (dP + dD}2 + 2 (dP) (TWD (P}}

+ 2(dD)(TWD(D}}
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where 

TWD(P) = Total wait 
new pickup 

time deviation for all pickups after 

TWD(D) = Total wait time deviation for all pickups after 
new delivery. 

3. Travel Time

Z(TRT) = (NO(P)) (dP)2 + (NO(D)) (dD)2 + 2(NB(P,D)) (dP) (dD)
+ 2 (dP) (TRT (P)) + 2 (dD) (TRT (D)) + (TT (NEW)) 2

where 

NO(P) = Number of passengers on board at new pickup 
NO(D) = Number of passengers on board at new delivery 
NB(P,D) = Number of passengers on board at both new 

pickup and new delivery 
TRT(P) = Total travel time for those on board at new 

pickup 
TRT(D) = Total travel time for those on board at new 

delivery 
TT(NEW) = Travel time for new passenger 

4. Delivery Time Deviation 
\• 

Z (DTD) = (ND (P)) (dP) 2 + (ND (D)) (dP + dD) 2 + 2 (dP) (TDD (P))
+ 2 (dD) (TDD (D) )

where 

TDD(P) = Total delivery time 
after new pickup 

TDD(D) = Total delivery time 
after new delivery 

ND(P) = Number of deliveries 
new delivery 

ND (D) = Number of deliveries 
5. System Resources
z (SR) = (dP) + (dD) 

deviation for deliveries 

deviation for deliveries 

after new pickup but before 

after new delivery 

The total objective function is then:
z = A(.Z(WT)) + B(Z(WTD)) + C(Z'(TRT)) + D(Z(DTD)) + E(Z(SR)).
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The parameters A, B, C, D, and E determine the rela­
tive weights of the five level-of-service measures. As 
might be expected, different sets of relative weights are 
appropriate for different classes of users. The following 
sections discuss the development of the quadratic objec-
tive function and the reasoning behind the form described 
above. As mentioned above, the purpose of an objective 
function is to synthesize various measures of performance 
associated wlth each insertion of a demand in a vehicle 
subtour. It seems appropriate therefore, to begin the dis­
cussion with an attempt to identify what "ideal" performance 
criteria might be. 
4.2 Ideal Criteria 

One potential criterion might be "to maximize some 
measure of goodness for the current and future passengers 
of the service." More rigorously, the algorithm would 
compute for each current passenger and estimate for each 
future rider a scalar measure of goodness, i.e., utility 
with the property that the larger the utility for a particu­
lar option, the more that option is preferred. It would 
then synthesize these individual util¼ties into a group 

2 utility. Keeney shows that under reasonable assumptions 
such a group utility can be computed by summing individual 
utilities, i.e., 

where 

= 

u =g
k. =

J.
u. = 

J.

r k.u. 
J. J. 

group utility 
weight for individual i 

t·1·t f •th • d' 'd 1u J. J. y or i in J.VJ. ua 

(2) Keeney, Ralph. A Group Preference Axiomatization with
Cardinal Utility. Presented at the 46th Annual Operations 
R�search Society of American Conference in San Juan, Puerto
Rico, October 16-18, 1974. 
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Another criterion might be "for a given cost, maximize 
r:--. ronage." In other 11,ords, determine how the consumer makes 
his choice of travel and provide service in such a way as to 
make dial-a-ride as favorable as possible within the constraints. 
Hauser and Urban3 show that an important step in determining 
consumer response is to identify individual utility functions 
which compact the measures of performance into a scalar 
measure of goodness. Again under reasonable assumptions, the 
probability of choice of a mode increases as the utility of 
that mode increases. The overall objective is to maximize the 
market share of dial-a-ride, but an approximation would be to 
maximize the increase in average utility, where - u./N u = E i 
and N = number of individuals 

u = average utility 
Both criteria discussed above indicate the need to iden­

tify individual utility functions. Such (multi-attributed) 
utility functions combine the performance measures, such as 
wait time, travel time, pickup deviation, dropoff deviation, 
into a single number. In doing so, it explicitly incorporates 
risk, tradeoffs, and interdependencies among the performance 
measures. Various utility theorists such as Keeney, Fishburn, 
and Ting identify conditions under whach a multi-attributed 
utility function can be decomposed into a sum of uni-attributed 
utilities. I.e., let 

then 

x1,x2, ... ,xK = performance measures 
u(x1,x2, ... ,xK) = multi-attributed utility function
uk(xk) = uni-attributed utility for performance measure xk

K 

k=l 
U ( X l , X 2 , ... X

K
) = 

In this particular form, the Ak's identify the tradeoffs among
the performance measures and the risk preference (reliability) 
is incorporated in the uni-attributed utilities.4

<3> Hauser, John and Glen Urban. A Normative Methodology for Modeling Consumer Response to Innovation. M.I.T. OperationsR:search Ce�t�r Technical Report 109, May, 1975. ( ) An additive form assumes no interdependency among the performance measures.
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s 111ce most people are risk averse, i.e., prefer 
reliability, the functions, uk(xk), are strictly concave.
In other words, they have the following shape: 

uk(xk)

FIGURE 4-1:
CONCAVE UNI-ATTRIBUTED UTILITY FUNCTION

In essence, the above theoretical arguments imply the 
following: 

(1) An ideal objective function would calculate in­
dividual utlities for current passengers, estimate
them for future passengers, and determine an overall
measure of goodness by summing the individual utili­
ties.
(2) Individual utilities can be approximated by summing
transformations of performance measures such as wait
time, travel time, etc.
(3) These transformations, uk(x ), are to have the
shape indicated in Figure 4-1 (sfrictly concave). 

4.3 Consideration of Computer Constraints 
The preceding section described what an ideal objec­

tive function would be if there were no limitations on 
computer capabilities. Because assignments and insertions 
must be made in "real time" there are severe limitations 
on the complexities of the individual utility functions.
These limitations imply that individual utilities cannot
be computed separately for all passengers, but must be
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inferred from some aggregate measure which is simply up­
dated for each potential assignment and insertion. 

An example will help to clarify this concept: Suppose 
that one is concerned only with waiting time, and suppose 
that the insertion under consideration increases everyone's 
wait time by dw. Then the new utility sum must be easily 
computed from the old utility sum, i.e., 

where 
W, l. 

becomes 
= 

N 
= r 

i=l 
u (w.)

l. 

individual i's wait time 

N 
= r u(w. + dw). 

l. 
unew

N 
= r 

i=l 
(u(w.+dx) - u(w.)) 

i i 

Wilson 5 shows that if u(w.) = b(w.) + c then this
l. l. 

constraint is satisfied. Later work in connection with 
the Advanced Dial-A-Ride Algorithms Research Project has 
shown that a more general requirement is: 

u(w.+dw) - u(w.) = (aw.+b)dw. l. :i. l. l. 

This implies that: 
u(wi) = a'wi

2 + bwi + c

(Note that this reduces to Wilson's objective function
when a' = o.) 

This objective function is the quadratic objective
(5) �ilson, Ni'gel, et al, Scheduling Algorithms for a

Dial-A-Ride System-,-M. I. T. Department of Civil
Engineering, Report Number USL TR-70-13, March, 1971.
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function, which is believed to be the most complex form 
pos�ible within the current limits on computing cost.

4.4 Advantages of the Quadratic Objective Function 

The previous sections argued for an objective function 
which _approximated a group utility function and showed that 
a quadratic form is the most general form useable at reason­
able costs in the existing algorithm. The question arises: 
"Can a group utility function be reasonably approximated 
by a quadratic objective function?" Consider the three 
criteria given at the end of Section 4.2 (1,2, and 3). 

Criterion 1 (summing individual utilities) and criterion 
2 (additive individual utilities) are automatically satis­
fied by any functional form for u(x.) and are naturally 
satisfied for quadratic objective functions. Criterion 3 
(strictly concave) is satisfied for quadratic objective 

functions if a' is negative. 
In the interest of making the model more intuitively 

understandable, we change the uni-attributed utility 
function to a more familiar form disutility: 

disutility = -utility !,· 

Performing this transformation and defining the scale such 
that no wait time is equal to zero disutility we have the 
following uni-attributed "cost" function, where now the al­
gorithm tries to minimize total consumer "cost." 

FIGURE 4-2: 
QUADRATIC COST FUNCTION 
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Interpreting this curve we note that it has the prop­
erty that large deviations from an "ideal" wait time are
much more onerous (more heavily weighted) that small
deviations. This property, which is equivalent to risk 
aversion in the utility function� tends to favor reliabili­
ty at the expense of average travel time. In other words, 
it would tend to favor the "reliable" distribution of wait 
times in Figure 4-3a over the "unreliable" distribution in 
Figure 4-Jb. 

# of occurences # of occurences 

wait time wait time 

10 minutes 
(a) 

9.99 minutes 
(b) 

FIGURE 4-3:
RELIABLE AND UNRELIABLE DISTRIBUTIONS OF WAIT TIME

Notice that a linear cost function6, would ignore
the spread (measured by the variance) in the performance 
measures and always chose the alternative with the smallest 
mean. Given the distributions in Figure 4-3, it would 
choose the unreliable distribution. 

4.5 The Quadratic Objective Function: Summary 

Thus far we have suggested that (1) a quadratic objec­
tive function is a good approximation to a true consumer 
utility function, (2) a true utility function would be the 
ideal objective function based on social welfare and maxi-

(G) A linear function is concave, but not strictly concave.
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l!h;�-· patronage criteria, (3, the quadratic objective func­
tion can increase reliability (and thus avoids providing 
extremely bad service to a few individuals) and (4) a 
quadratic objective function can be implemented in the 
existing computer model.

The issue of determining parameter settings for the 
quadratic objective function is addressed in depth in 
Appendix c. In the next section some preliminary experi­
ments with the quadratic objective function are described. 

4.6 Testing the Quadratic Objective Function 

In order to gain familiarity with the properties of 
the quadratic objective function a series of simulation 
experiments were made. The primary objectives of the 
experiments were 

1. To compare the performance of the linear and
quadratic objective function.

2. To determine the extent to which the type of
service provided can be controlled by different
settings of its parameters.

3. To determine the sensitivity of the best par-
ameters for the quadratic at different demand levels.

4. To compare the performance of the linear and
quadratic objective function under varying system loads.

Before describing the results obtained, the charac-
teristics of the quadratic objective function and the 
specific system simulated should be described. For this 
first series of experiments, two simplifying assumptions were 
made. First, only one set of weight coefficients (one class of
passenger) was assumed. Second the objective function included
only the pure quadratic terms in wait time and travel time and
the term in increase in tour length. The terms in wait time
deviation and delivery time deviation were not included be­
cause they require specification of the advertised pickup
and delivery times at time of assignment. Prediction of
advertised times adds significant complications to the
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a 5 signment process and so has not been addressed 
�o date. This problem will be addressed in 
later stages of this research and at that time the 
deviation terms will be considered for inclusion in the 
objective function. It should be stressed that their 
exclusion at this time in no way invalidates results 
obtained with the quadratic; we should bear in mind, how­
ever, that further improvements may be achieved when the 
deviation terms are also included. 

The parameters which controlled the setting of the 
quadratic objective function were defined as: 

A = weight given to quadratic term in wait time 
C = weight given to quadratic term in travel time 
E = weight given to increase in tour length
In all experiments with the quadratic form the value 

of C was set equal to 0.1 and the values of A and E varied. 
In order to obtain results which would provide the 

most insight into the performance of different objective 
functions all simulation experiments utilized similar in­
put conditions except for the demand rate and the objec-"· 
tive function. The system simulated, which is described 
in detail in Appendix E, is loosely based on Haddonfield. 
Specifically, the spatial distribution of demand was 
taken directly from Haddonfield although vehicles were
assumed to be in continuous service and continuous know­
ledge of vehicle location was also assumed. While the
results to be presented are accurate for this situation,
it is not certain that similar results would be obtained
in different situations. Work to validate these prelimin­
ary results will be completed in the remainder of this
project. 

In the absence of individual utility functions
estimated as described in the previous section, settings of
the parameters in the quadratic objective function were
selected to reflect approximately equal weighting of
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passenger wait and travel time. 
Two demand levels were used to determine the best 

parameter settings for the quadratic objective function: 
approximately 40 demands per hour, which closely approxi­
mated the Haddonfield demand rate, and 60 demands per hour. 
Tables 4-1 and 4-2 present the results obtained for a range 
of parameter settings for the quadratic objective function 
as well as for the linear form for both demand levels. 
The following conclusion can be drawn from these results: 

1. In all cases the quadratic objective function
reduced the standard deviation of service times
over the linear form.

2. In some cases at the lower demand level the quad­
ratic objective function produced improvements in the
mean service times.

3. In all cases the quadratic objective function pro­
duced lower deviation in pickup and delivery times.

4. The performance of the quadratic objective function
is not very sensitive to the setting of its parameters. 

5. The best settings of the parameters of the quad­
ratic objective function are not �ery sensitive to
demand level.

6. Significant control of the ratio of wait time to
travel time can be achieved through varying the
parameter settings for the two terms in the quadratic
·objective function without significant degradation
in the overall quality of service.·

7. No significant improvement in the overall quality
of service can be expected from the quadratic form
over the linear form.

8. At higher demand rates the linear form seems to
perform as well as the quadratic form.

To further investigate the performance of the quad­
ratic objective function, a replication of Haddonfield was 
run with both linear and quadratic objective functions, no 
continuous knowledge of vehicle location and vehicles 
entering and leaving service. These replication results 
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�re presented in Table 4-3 together with the results of actual
operation. These results support the previous conclusion
that the quadratic form performs slightly better than the
linear form actually used in Haddonfield.

A final series of experiments was run to compare the 
performance of the linear and quadratic forms in a situation 
where the demand rate varied over the course of the experi­
ment. In this case experiments were also run on the linear
form with constraints set effectively for the lower demand 
rate to determine the extent to which poorly set constraints 
could affect service during a period of variable demand. 
The simulation was for a six hour period in which the first 
two and last two hours had a demand rate of 40 per hour and 
the middle two hours had a demand rate of 80 per hour. 

First the best setting of the constraints for 40 
demands per hour was determined by running unconstrained 
and constrained experiments at tnat demand rate. The re­
sults showing the level of constraints selected and the 
impact on service are shown in Table 4-4 with the maxima 
also shown. As expected the constrain\� can be effective 
in reducing the maximum service times without adversely 
affecting other measures of service. 

Table 4-5 shows the results of constrained linear, 
unconstrained linear and the quadratic under the varying 
demand rate condition. The results spow that the uncon­
strained linear and the quadratic perform very similarly,
with the linear having a slightly lower mean and the quad­
ratic having a slightly lower standard deviation. As be­
fore, the quadratic is superior in both pickup and delivery
time deviations. Also as suspected the constrained linear
with constraints geared to the lower demand rate does signi­
ficantly worse than either of the other two -- underlining
the danger of using constraints without an adaptive process
for changing them as the state of the system changes.
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4.7_ Fixed Time Stops

During operation of the Haddonfield computer control 
system, it became clear that a control capability was 
needed which would guarantee a vehicle to be present at a 
specified location at a given time. This capability has 
been implemented and tested in the simulation model with 
preliminary results described in this section. As currently 
implemented fixed time stops to be used in a simulation ex­
periment must be specified at the start of an experiment: 
they are not dynamically assigned like a normal service re­
quest. With this restriction fixed time stops may be used 
to encourage the development of certain types of tours 
which might be expected to improve the overall quality of 
service. Any vehicle can be given many fixed stops (at 
different times) at the same or different locations, the 
requirement on subsequent tours being that the vehicle 
must be available to leave the fixed stop at the specified 
time. 

Fixed·time stops which are pre-assigned might be used 
to 

1. Ensure that passengers transferring from a fixed
route bus to dial-a-ride would always have a dial-a­
ride vehicle waiting.

2. Operate zonal service in which all vehicles meet
at a common transfer point at regular intervals.

3: Ensure that passengers in a remote part of the ser­vice area frequently have a vehicle available. 
If fixed time stops are also allowed to be dynamically 

scheduled then they might also be used to
4- Ensure that dial-a-ride passengers transferring to a scheduled fixed route service arrive in time tocatch the bus.

5: Ensure that advanced (pre-booked) requests are not
picked up before their earliest pickup time. 
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Before describing some initial results obtained from 
the use of fixed time stops it should be noted that in
general use of fixed time stops will result in some idle
vehicle time at every such stop. Thus extensive use of fixed 
time stops may well result in increased unproductive vehicle 
time. For this reason fixed time stops will be used only
sparingly and where desired service characteristics dictate
their use. 

The rather dramatic improvement in level of service 
that is achievable by incorporating fixed time stops in the 
dial-a-ride control algorithm is illustrated in Table 4-6. 
Two simulation runs were made, both using vehicle and demand 
characteristics similar to those of Rochester, N.Y., to determine 
the effectiveness of using prescheduled fixed time stops to 
improve service for passengers transferring from fixed route 
service to dial-a-ride. Service demands from transferring 
passengers are considered advanced requests. In Run #1, 
there are no fixed time stops. In Run #2, each vehicle 
has a scheduled fixed time stop at the line-haul transfer 
point at the time it is to come in and out of service, if that 
time is near to the time of one of the line haul departures. 
Additional fixed stops were added to ensure that every line­
haul vehicle would be met by at least one dial-a-ride vehicle. 

TABLE 4-6:* EFFECT OF FIXED TIME STOPS 
Transferring Passengers 

Fixed Route-DAR 
Wait 

Run #1 11. 1
Run #2 0.6 
Percentage ofTotal Passengers

Travel 

16.8 

14.2 

10% 

DAR-Fixed Route 
Wait Travel 

10.0 16. 6

10.5 13.9 

10% 

*All figures are means in minutes.
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Many-to-Many 

Wait Travel 

13.1 19. 3

13.5 18. 8

80% 
___________________________________________________



In this experiment, a significant improvement in level 
of service to passengers transferring from fixed route
service to dial-a-ride is achieved by use of fixed time
stops without significantly reducing service to other
customers. It is believed that further experimentation
with fixed time stops will lead to improved service for
passengers transferring from dial-a-ride to fixed route
service as well.

work is currently underway to evaluate the potential 
of fixed time stops in the other situations mentioned pre­
viously. 
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CHAPTER 5 
THE CONTROL OF INTEGRATED DIAL-A-RIDE, FIXED ROUTE SYSTEMS 

5.0 Introduction 
To date, most dial-a-ride systems have been implemented 

in relatively small geographic areas, but as dial-a-ride 
becomes more popular, there wjll be a demand for services 
which encompass entire counties. Although it is possible 
that the best system for such areas would be a simple single 
module dial-a-ride, there are other, coordinated systems 
worth investigating. On the one hand control problems 
are more complex, but on the other hand it becomes possible 
to consider more capital intensive control options because 
of the larger number of vehicles involved. 

Investigation of coordinated systems is one of those 
projects on the frontier of advanced algorithms research. 
The simulation program has been modified to facilitate 
simulation of certain simply coordinated systems, but no 
substantive testing of algorithms has yet been performed. 
In this chapter an initial control algorithm for a basic 
coordinated system is presented. 

The basic philosophy behind coordina�ed systems is to 
serve "local" trips directly by dial-a-ride and to serve 
longer distance trips by a sequence of dial-a-ride and 
line haul. To do this, the geographic area is partitioned 
into dial-a-ride zones and a separate line haul system is
provided for travel between zones, as shown in Figure 5-1. 

Although a continuum of zonal and/or line haul options 
are possible, three basic zonal options and four basic 
line haul options can be identified. They are: 

Zonal Options
(1) Autonomous dial-a-ride zones.
(2) Overlap: some sharing of zones and/or communica­tion between zones.
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(3) Rendezvous: some trips between contiguous dial­
a-ride zones to be served by rendezvous of dial-a-ride 
vehicles. 

Line Haul Options 

(1) Fixed route and fixed schedule between fixed zonal
terminals.

(2) Fixed route between zonal terminals with dynamic
dispatch from route terminals.

(3) Dynamically scheduled and routed between zonal
terminals. Routes restricted to arterial network.

( 4) Other:
(a) dynamically scheduled and routed with possible
route deviation to serve single demands.

(b) dumbbell tours: i.e., some tours allowed
with all origins in one zone and all destina­
tions in another. 

(c) dynamically scheduled and routed with no
network or terminal points defined.

This chapter defines and presents a general algorithm for 
the least complex and most basic option�(and, thus, the 
easiest to implement in a real-world situation): autonomous 
dial-a-ride zones/fixed route-fixed schedule line haul. 

. 
- - -

FIGURE 5-1: 
COORDINATED SYSTEMS 
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S.i system Definition for the Basic Coordinated System

The zones in this option are autonomous -- that is, 
they are mutually exclusive (no overlap) and collectively 
exhaustive (together cover the entire area}. The control 
center for each zone communicates with the master control 
center regarding interfaces with the line haul system, but 
it retains complete control over all dial-a-ride trips with­
in the zonal boundaries. Furthermore, it is unaware of 
the state of the system in other dial-a-ride zones. 

The line haul system is a fixed (pre-planned} route 
and fixed scheduled bus system operating on an arterial 
road network connecting fixed terminals in each zone. To 
avoid degradation in line haul travel time, the number of 
terminals within each zone is limited preferably to one or 
two. This limitation in number also allows the algorithm 
to examine each terminal more carefully when routing inter­
zonal demands. 

5.2 A General Algorithm 

For ease of display and understanding, various nota­
tional definitions are used in presenting the algorithm. 
These are summarized below. Besides this notation, four 
subroutines are referred to in the algorithm; a short 
discussion of each appears after the algorithm. 

The basic algorithm assumes that each demand requests 
service by phone. This restriction was made for ease of
presentation. Other options are allowed, such as park and
ride or hailing of the line haul vehicles. Explanations
of how each of these alter the algorithm are presented
after the discussion of the subroutine.

Finally, to encompass a wider variety of situations,
two options are provided in step A. Option Al: if the
telephone exchange boundaries are coincident with dial-a­ride zone boundaries, an automatic telephone switching sys-
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tem can be utilized to direct the request for service di­

rectly to operators at zonal centers. Option A2: requires

telephone operators at a central location rather than in

each zone. 

Notation summary 

zo 

zd 

i 

j 
C(Z0)

C(Zd) 
MC 

(xo,yo)

(xd,yd)

(x.,y.) 
]. ]. 

(x.,y.) J J 

t 
t0 (i) 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

origin zone, i.e., the zone in which the demand 
originates 

destination zone, i.e., the zone to which the 
demand is going 

index for terminals in the origin zone 

index to terminals in the destination zone 

controller for zone Z
0

controller for zone Zd

master control 
coordinates of the point at which the demand 
originates 

coordinates of the point at which the demand
terminates \r 

coordinates of the .th terminal in the origin
zone 
coordinates of the .th terminal in the destina-
tion zone 

time at which request for service is made 
feasible time at which a demand from (x ,y) 
can arrive at terminal i, i £ z . [esti2atgd 
by C ( z ) ] o 

0 

0 0

the time from t (i) until arrival at terminal 
j, j_£ Z

d ' giveR that the demand arrives at 
terminal i, i £ z at t  (i). [estimated by MC] 

�he estimated time from arrival at terminal j, 
J £ Za until arrival at (x ,y ), given that the dernana arrives at terminaldj Rt t (i) + t (i,j).[estimated by MC] o lh 
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t- T = "safety" times, constants provided for the'5' S algorithm

S(i) = a measure of system slack used up if C (Z0)assigns demand to terminal i, i £ z 
0 [estimated by C(Z0)].

C = generalized notation for constraints

origin Zone'= Z
0 . 11terminal i = 

(xo,yo) \
·i=2

I 

r- I 
I 
1oestination one = Zd1 j=l 

best route 
from i=2 to fj=2

request 
for 

aervice 

I 
\ 
[
l

t ( i) 
e�timated 
arrival 
at origin 
terminal i

I 

FIGURE 5-2:
NOTATION 

l 
to(\) +tlh (i, j)
estimatea: 
arrival 
at destination
terminal j 

FIGURE 5-3:
TIME AXIS 
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Ts l· _ 
time
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0(i)=ta(i,j)+td(j)
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arrival at 
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A. 

Algorithm Description 

call reception 
Option Al: (1) Automatic telephone

Option A2: 

switching system transfers
call directly to C(Z0) 

based on telephone exchange 
number 
(2) Operator at Z 's con­o 
trol center records data
and inputs it into C(Z0)
(3) C(Z0) determines zd
(1) Operator at master
control center receives
call, records
(x0,y0,xd,yd,t,c) and in­
puts data into MC computer 
(2) MC determines Z0 and
Zd then transfers dataJ:o
C ( Z ) 

B. Initial assignment in origin zone

c. 

(1) If Z0 = zd then go to step D,
else call provisional dial-a-ride
assignment subroutines. 
(2) Provisional dial-a-ride assign­
ment subroutine returns t (i) and0 s(i) for each terminal i, i € Z .0 
(3) Pass (xd,yd,zd,c,t0(i),s(i))
to MC 
D�termination of optimal terminals andline haul route
(l) For each terminal i in zone Z 0and for each terminal j in zone zd,
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switching 
then C(Z0) 

MC 

C (Z )0 
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D. 

determine the line haul assignment 
that gets the demand to j at the 
shortest possible time after t0(i). 
The assignment is constrained be­
cause it cannot pick up the demand 
before t0(i). Thus, estimate 
tlh(i,j). 
(2) For each terminal j in zone
z., estimate td(j). 
(�) Determine "best" terminals in
z and zd where the "best" seto . 1 . . . F 1 of termina s minimize : 
F = �i� f(s(i),t0(i),t1h(i,j),td(j),t,etc)

i,J 
(4) Pass the following data to C(Z)0 

(a) (x0,y0,c)
(b) optimal terminal i
(c) t

0
(i): arrival time constraint 

(d) consumer information including
-line haul vehicle to be met
-destination terminal
-expected arrival times at

terminal and at destination
(5) Pass the following data to C(Z)0 (a) (xd,yd,c)

(b) terminal j
(c) arrival time: t0(i)+t1h(i,j)

Permanent assignment in origin zone 
(l) If Z

0 
= Zd, then call p�rmanent

dial-a-ride assignment with

Controller 

!� ) th�n:ae�ambplle 0 � an objective function is a linear functionria es, i.e., F = min {a* (.) + b * (t (') tlb(i,j) + td(j) - t]}. s i o i + i,j 
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origin = {x0
,Y0 >

destination = (xd,yd)
constraints = t,c 
else remove provisional assignments to
all terminals except for "best" i,
and call permanent dial-a-ride assign­
ment subroutine with 
origin = (x0 ,Y0 )
destination = (xi,yi)
constraints = t,c 

hard constraint that arrival 
time at terminal i be < t (i) - 0- t s

(2) If z 0 = Zd, then end;
else go to D ( 3) •
(3) If dial-a-ride assignment in
D(l) is feasible, then go to E.
Else return to B(2) and update
t (i) for all i £ z .

0 0 ·�
E. Initial assignment in destination zone

(1) Call provisional dial-a-ride
assignment subroutine with
origin
destination
constraints = c

arrival at (xj
,y

j) to be after 
t

0
(i) + t1h(i,j)

(2) Pass earliest possible pick-up
time to MC. 

F. Monitor line haul for late arrival
(1) If it appears assigned line haul

will arrive at j later than the time
given in E(2), then notify C(Z ) for
update. d 
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Else at time t
0

(i) + t1h(i,j) - Ts,
MC is sure of arrival time at 
j(t1h(i,j) is updated version)
(2) Return either updated time

or final time to C(Zd).
G. Permanent assignment in destination

zone
If time passed from Fis a final
time, then change the provisional
assignment to a permanent assign­
ment and end;
Else remove the old provisional
assignment and call provisional
dial-a-ride assignment subroutine
with origin =

destination
constraints= c

arrival at (x.,y.) to be after J J 
t (i) + t *(' ') o lh 1.,J 

and return to F. 

so 

Controller 



� 2 1 Subroutines
J-�•=-_:::.�:.=..:=-=.;__--

(1) Permanent dial-a-ride assignment: This is simply the

normal dial-a-ride assignment package currently in use.

(2) Provisional dial�a-ride assignment: This subroutine
is very similar to the normal dial-a-ride assignment package

except that it flags origin-destination insertions for easy
removal at a later time. Since it is only provisional, it
can use some heuristics which are more approximate than
the permanent dial-a-ride assignment subroutine.
(3) Determination of t1h(i,j): This subroutine is given
the origin terminal i, the destination terminal j, and an
arrival constraint at the origin of t

0
(i). It searches

the schedules of the line haul system to determine the
routing that gets the demand to j as soon after t (i) as

0 
possible, but under the constraint that the demand cannot
be picked up before t (i).

0 
(4) Determination of td(j): This subroutine is given the

destination terminal j and the destination (xd,yd}. It
estimates the time from arrival at j to arrival at (xd,yd)
in one of 

( 4-1)
origin 
( 4-2)
and a 

stjld

Sd

and

two ways: 
Call provisional dial-a-ride assignment 
(xj,yj) and destination (xd,yd).
C(Zd) maintains a service time matrix,

dynamic service speed value, sd' where:
n 

1 L (kTH= - previous service n k=l terminal j to subzone 
m 

1 

with 

time from 
Zld}.

= L n k=l
TH (k previous "speed" incurred

in zone Zd)

- zld are mutually exclusive, collectively exhaus­tive partitions of z d" - speed = the time from pick-up by dial-a-ride vehicle in zone Zd to drop-off by dial-a-ride vehicle insone Zd divided by distance travelled.
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Th� MC maintains a STd matrix and Sd value for all zones
wi,ich are updated at finite time intervals. Then

td(j) = a *  stjld + b * sd * (distance from (xj,yj)
to (xd,yd)) where (xd,yd) E Zld' a + b = 1,
and a,b > 0. 

s.2.2 Alterations to Algorithm

1. Request for service originates at origin zone terminal:
To encourage such requests, a toll-free telephone should

be placed at each terminal with a direct line to operators
either at C(Z ) or MC. The caller states his destination,

0 
the terminal he is currently at, and any constraints. 

The destination zone, Zd' is determined, the al­
gorithm is entered at C, and t0(i) is set as follows: 

t (i) = 0 
if i = terminal he is at 
otherwise 

Otherwise the algorithm remains the same. 
is of course skipped.) 

(Step D 

II. Request for service originates at destination terminal:
In some circumstances a rider will plan his own trip

via the line haul facility and request service directly 
from the toll-free telephone at the destination terminal. 
In this case the algorithm simply calls the permanent 
dial-a-ride assignment subroutine with origin (x.,y.) and J J destination (xd,yd).

II. Request for service originates by hailing line haul vehicle:
If there is no on-board communication, the person must

wait until he arrives at the destination terminal to request
•rvice. If there is on-board communication the driver

COllllunicates the destination to the MC. The algorithm is
eat.red at C with the following changes:

(a) Zd must be d t e ermined before entry.
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(b) t1h(i,j) is re-defined to be the time required to
travel from the pick-up point to terminal j, j £ zd. 
(c) since the origin terminal need not be determined,
step C3 is changed to:

(d) 

Determine the "best" terminal in zd where the 
best terminal minimizes G: 
G = min g ( t1h ( i, j) , td ( j) , t, etc. )
Cc•nsw7ter information no longer requires origin 

information. 
(e) Step D is skipped.

rv. Alteration in line haul terminals due to delay in line haul vehicles: 
Clearly, if delays are incurred on line haul vehicles, 

it may be optimal in terms of F to alter the assignment 
of terminals. This addition is not included in the al­
gorithm because it is felt that such changes in terminal 
assignments would have devastating effects on consumer 
perception of the service. Thus the line haul vehicle is 
not monitored for late arrival at the origin terminal nor 
is any change considered in the destination terminal 
assignment once it is made. (Steps F and G) 

53 

.. 



r 

CHAPTER 6: 
SUMMARY AND FUTURE RESEARCH 

6.1 Simulation Modelling 
The simulation capability which existed at the outset 

of the Project has been strengthened as follows: 

1. For the first time the simulation model has
been validated by comparing actual operating re­
sults from an existing dial-a-ride system with
results of simulations of that system.

2. The model now operates with vehicles' entering
and leaving service and with demand rates and patterns
varying over the course of the day as in real opera­
tion.

6.2 Advanced Algorithms 

To date much of the research on the project has 
been directed to this area with the principal results 
being 

1. Full evaluation of the performance of the linear
objective function operating in the Haddonfield
Dial-A-Ride Demonstration Project.
2. The development, implementation, testing andevaluation of quadratic objective functions designedto eliminate the use of constraints in the schedulingalgorithm. 
3. The development, implementation, and testing ofa n�w algorithm component designed to require aV�hicle_to be at a specified location at a statedtime (fixed time stops).
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4. The development of a procedure for estimating 
an individual's utility function for dial-a-ride 
service. 

5 The development of a procedure for facilitating 
t�ansfers between fixed routes and dial-a-ride using
fixed time stops. 

6. The development of a procedure for assigning ad­
vanced requests for service. 

7. The development of a control procedure for integrated
service including several dial-a-ride areas inter­
connected by fixed routes.

6.3 Future Research 
In the remainder of this project stress will be on the 

completion of these areas of algorithm design which have 
been started but not yet carried to evaluation: 

1. The quadratic objective function will be completed
with incorporation of the wait time deviation and
delivery time deviation terms. It will be tested
in a range of situations to verify the tentative
conclusions reached to date.

2. The use of fixed time stops will be further
explored, particularly as a means to facilitate
one-to-many service from either transfer points or
high activity generators.

3. Use of special objective functions for transfer
passengers will be explored as a means to further
improve their service.
4. Use of special objective functions, fixed stopsand �ard constraints will be used for improvingservice to advanced request passengers.
:· Direct dial-a-ride vehicle to dial-a-ride vehicleran� fers will be evaluated as a means for providing■ervice between adjacent dial-a-ride service areas.
Looking further ahead it is now becoming clear that •n�h•r attempts to improve service through optimizationObjective funct· . . ion are rapidly reaching the point of 1■hing retur ns. It will become increasingly impor-to investigate other approaches to improving service
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such as 
1. stop resequencing, passeng7r reassignment and
passenger transfer between vehicles.

2. Incorporation of expec�ed (but not yet known)
future requests in the assignment process.

3. obtaining bounds on best possible service to deter­
mine. how close the algorithm is to optimal service.

4. Adaptive control techniques for selecting algorithm
parameters as the system state changes.

s. Implementation and evaluation of control procedures
for integrated service including several dial-a-ride
areas inter-connected by fixed route bus.

with substantial research accomplished since the end 
of the Haddonfield Dial-a-Ride Demonstration Project it 
is now important to obtain real operational experience 
with these new techniques. In the forthcoming Rochester 
Integrated Demonstration Project a real opportunity to 
get this necessary experience will be provided and it is 
expected that the new approaches developed in the Advanced 
Algorithms Research Project will be implemented and eval­
uated in the demonstration. The Haddonfield Project 
demonstrated that computer control could be superior 
to manual dispatching, and the fruits of that experience 
should result in further improvement and expansion of 
capabilities in Rochester. 
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APPENDIX A: 
TESTING THE DISTRIBUTION OF INTERARRIVAL TIMES 

The existence of substantial amounts of data on ob­
served demand patterns in Haddonfield provided an oppor­
tunity to test some of the modelling assumptions used 
in the simulation model. In particular, this data made 
possible a testing of the commonly used Poisson assump-
tion for the distribution of demands through time. 
Additionally, if the Poisson assumption appeared untenable, 
this data provided the basis for the building of a more 
sophisticated model of demand arrivals. 

A sample of four days' demands was selected for 
testing, two days from June, 1974, and two from early 
September. For the present purposes, these will simply 
be referred to as Day 1 through Day 4. 

The method of testing was to compare distributions of 
interarrival times (times between demands) with exponential 
distributions having the same mean as the collected data. 
If and only if the distribution of demands is Poisson, 
the distribution of interarrival times is exponential. 
Figures A-1 through A-4 illustrate the observed distribu­
tions of interarrival times, grouped into intervals of 
width 30 seconds. Superimposed over these histograms 
are the probability density functions of exponential 
random variables with mean equal to the observed sample 
Mm1 in each case. Even this sort of crude visual

ing indicates that there are differences in the
• to which the days conform to the Poisson assumption.
observation is confirmed by the results of a

orov-Smirnov (K-S) test to exponentially distribute
rivals. Table 
(xlexp) is the

A-1 summarizes the K-S results, 
probability that an interarrival 

ion which is truly exponential would give rise
observed data.
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TABLE A-1: 
SUMMARY OF K-S TEST RESULTS FOR THE FOUR DAYS

Mean Interarrival Time 
Day # Demands (mins) P(xlexp) 

1 218 1. 59 '\,. 4 
2 195 2.37 '\,. 1 
3 180 1.91 <.01 
4 196 1.84 '\, .1 

While the Possion model is a reasonable one for Day 1, 
it is quite unreasonable for Day 3, and questionable 
for Days 2 and 4. A glance at Figures A-1 through A-4 
indicates that the major discrepancies are in the first 
two frequency classes, i.e., those arrivals less than 
one min·ute apart. While very few calls are taken less 
than 30 seconds apart, a large portion of the calls 
are between 30 seconds and 60 seconds apart. This sort 
of observation contradicts the Poisson model, but may 
be more related to the "buffering" between the actual 
time of call and time of entry to t� computer than to 
the interarrival process itself. 

An additional point illustrated by the results in 
Table A-1 is that the mean arrival rate varies signifi­
cantly from day to day. 

Apart from the Poisson assumption, which is the most 
common way of modelling random arrival patterns, a 
typical characteristic of demand on transportation sys­
tems is periodic variation through the day. With this 
motivation, a series of tests for periodic components 
in the interarrival times was conducted. This series 
was largely unsuccessful with respect to finding signi­
ficant periodic components in the variation of inter­
arrival times, with the simple exception of Day 2, which 
exhibited statistically significant components with 
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periods 1, 2, 10, and 20 hours. Even for this day, 
the periodic components do not explain a great deal 
of the variation in interarrival times (nor would one 
expect them to), but they are statistically significant. 

A number of other possible models for the interarrival 
process were tested including lognormal, gamma, autore­
gressive, and (in conjunction with the periodic model) 
a model proposed by Fishman and Kas.1 None of these
models fit the data significantly better than did the 
Poisson, in general, although in certain specific cases 
they did provide better fits. 

are: 
The conclusions to be drawn from these comparisons 

1. The interarrival rate distributions and mean
arrival rates differ from day to day.

2. The Poisson model is probably adequate for
most purposes. (Results of simulation of
Haddonfield operations indicate low sensitivity of
model results to the distribution of arrivals.)

( 1) Fishman, G.S., and E.P.C. Kas, "Arrival Generators for
Queueing Simulations," Yale University Technical Report
28-5, July, 1974.
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APPENDIX B 
TBE EFFECTIVENESS OF DISPATCHING POINTS AND OBJECTIVE 
FUNCTIONS IN IMPROVING SERVICE AT VARYING DEMAND LEVELS 

A series of experiments were made to determine the 
extent to which system performance could be improved by 
using modified algorithms at different demand levels. 

Initially six runs were made simulating a Haddonfield­
like situation. Three experiments used no dispatching 
points,* and three used four dispatching points. Each 
input file was run at 30, 50, and 70 demands per hour. 
The general result, as can be seen in Table B-1, was 
that at low demand levels, the dispatching points 
improved service while at high demand levels the dis­
patching points had little effect. 

This is because at higher demand levels vehicles are 
sent to dispatching points less often {only unassigned 
vehicles can be sent to dispatching points). The output 
further suggests that dispatching points are useful at 
lower demand rates because they anticipate future vehicle 
needs. 

More particularly, at a demand rate of 30 per hour 
the dispatching points improved mean total time by 1.1 
minutes {from 15.5 to 14.4) and reduced the standard 
deviation from 7.5 to 5.3. {The maximum total time was 
also reduced to 32.6 from 42.8 minutes.} One drawback 
of the dispatching points was that they seemed to produce 
an uneven distribution of work, with maximum time con-

*Dispatching points are used only when empty and unassigned
vehicles occur in the simulation -- such a vehicle will be
sent to the closest dispatching point where it will wait
for assignment.
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TABLE B-1: 
SIMULATION RESULTS--VARYING DEMAND LEVELS 

MEAN WT MEAN TR MEAN TOT 
TIME TIME TIME 

NDEM=30 
DP3 5.672 8.451 14.123 
DP4 4.950 10.033 14.983 

NDEM:::40 
DP3 6.275 9.250 15.525 
DP4 6.187 9.998 16.185 

NDEM=50 
DP3 9.509 10.840 20.349 
DP4 7.307 10.586 17.893 

NDEM=70 
DP3 12.756 11.823 24.579 
DP4 9.772 12.575 22.347 

NDEM refers to the number of demands per hour. 
DP indicates the use of dispatching points. 
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�iruously unassigned varying from 9.8 to 109.7 minutes 
between vehicles, whereas without dispatching points 
this range was from 12 to 78 minutes. Also, the pickups 
and deliveries were �uch better distributed without dis­
patching points. In connection h'ith this, two vehicles 
were taken out of circulation (bringing the total to 
eight vehicles still at thirty demands per hour} with 
essentially unchanged results. 

When the demand rate is increased to 40 per hour the 
dispatching points algorithm was still substantially 
better than the version without dispatching points. 

At 50 demands per hour, an intermediate demand level, 
the situation changes drastically. The only advantage 
that the dispatching points provided was a somewhat 
better distribution of work: maximum unassigned time 
varied from 2 to 21 with dispatching point�whereas 
without dispatching points some vehicles were idle 
for as long as 48 minutes. As far as mean total time 
and variability are concerned, the dispatching points 
were no help: the mean total time wit� dispatching 
points was 17.9 compared to 16.8 without, and the standard 
deviation was unchanged. 

At 70 demands per hour, the no-dispatching points 
version slightly outperformed the dispatching version in 
most respects. The work load was slightly better dis-
tributed without dispatching points; and the range 
of percent time unassigned was smaller in the version 
without dispatching points, as was the composite per­
cent time empty. Concerning service provided, the no­
dispatching points version had a mean total time of 21.9 
compared to 22.3 for the dispatching points version. 
The dispatching points seemed generally unimportant at 
this high demand level. 

At this point it seemed clear that dispatching points 
offered better service at low demand levels but that there 

67 



was room for improvement in the area of work load distribu­
tion: apparently once a vehicle was unassigned for a 
while the system was reluctant to work that vehicle 
back in, leaving some drivers unassigned for as long 
as 98 minutes. To counteract this,experiments were 
performed using the objective function with the increase 
in tour length term eliminated (this will be referred to 
as the modified objective function). 

From Figure B-1 it seems clear that the modified 
objective function works very well with and without dis­
patching points at low demand levels. At intermediate 
and high demand levels, however, it performs abysmally. 
(One interesting feature of this poor performance is the 

fact that the modified objective function keeps the 
vehicles much busier even as it does a poor job.) 

More specifically, at a demand rate of 30, dispatching 
points and the modified objective function clearly out­
perform all other combinations in terms of mean, standard 
deviat.ion,and maximum service time, as well as work dis­
tribution. 

At 40 demands per hour, there is again a remarkable 
improvement with the modified objective function. With 
the dispatching points, mean total time drops from 16.7 
to 15.4,while standard deviation goes from 7.,3 down to 6.1. 

At 50 demands per hour, however, the modified objec­
tive function abruptly ceases to be effective. With 
dispatching points mean total time rose from 17.9 to 
20.4 with the modified objective function, while the 
standard deviation rose to 8.3 from 6.8. In the no­
dispatching points version, mean total time rose from 
16.8 to 21.1 and standard deviation from 6.5 to 8.7. 

At still higher demand levels the modified objective 
function continues to perform poorly. 
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APPENDIX C 
U'I'ILITY THEORY AND THE QUADRATIC OBJECTIVE FUNCTION

C.l Determining Parameter Settings for Quadratic Objective
Functions 

An objective function is a means to compute a single 
measure by which potential assignments are ranked, and 
as such defines an "optimum" assignment. Section 4.1 
showed that an ideal objective function would take the 
form of an "average" utility function, and it was shown 
that such an objective function is consistent both 
with maximizing social welfare and with maximizing patron­
age. It was then shown that within current computer and 
economic constraints, the best approximation to a utility 
function is a quadratic objective function. 

The problem remains: "What is the 'best' quadratic 
objective function?" To implement the dial-a-ride al­
gorithm, parameters must be selected for the quadratic 
objective function which are, in some sense, best. 
Clearly the best settings are those which most nearly 
approximate consumer preferences. Consider a hypothetical 
system in which a particular choice of assignment only 
affects one person,and all feasible alternatives 
have identical system costs. The best assignment will 
be that which the person favors, and it will only 
occur if consumer preferences are incorporated in the 
objective function. To do this, individual utility 
functions must either be inferred from actual choice 
behavior or directly assessed. 

Standard econometric techniques such as legit analysis1

might be used on revealed choice to infer preference par­
ameters. Unfortunately, such an analysis requires exten-

(1) Ben-Akiva, M. Structure of Passenger Travel Demand
Model, Ph.D. Thesis, Department of Civil Engineering, M.I.T.,
1973. 
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t;;,..1.V•-� collection of data and must be performed in a com­
munity which already has a dial-a-ride system. There are 
problems in interpretation due to multi-collinearity among 
the performance measures, due to extrapolation beyond the 
range of service available in the existing dial-a-ride 
system, and due to transfer from a community with a dial­
a-ride system to one without. 

A more feasible approach is to directly assess the 
utility functions of a sample of consumers from the community 
in which the dial-a-ride system is to be implemented. Recent 
advances such as 

(1) the identification of certain mathematical simplifica-
tions, 2 

(2) the development of computer prograrns3to compute the
utility parameters from simple questions, and 

(3) the development of consumer measurement techniques
to assess utility functions by questionnaire4

have made it feasible to determine individual consumers' 
utility functions directly. 

This approach is currently being used at M.I.T.51 6 to
determine consumer preferences and utilities for health 
maintenance organizations and to relate these preferences 
to design decisions. The next section presents a proposed 
procedure for applying this approach to dial-a-ride. 

(2) Keeney, R.L, "Multiplicative Utility Functions,"
Operations Research XXII, January, 1974, pp. 22-23.
(3) Sicherman, Alan. An Interactive Computer Program

for Assessing and Using Multi-attributed Utility Functions,
Master's Thesis, Operations Research Center, M.I.T.,
June, 1975.
(4) Hauser, John and Glen Urban. A Normative_Methodology

for Modeling,Consumer·Response t6··.Innovation, .r-1:r:T. 
Operations Research Cent�r_Techn1cal Report 109, May, 1975. 
(5) Hauser, ibid.
(6) Hauser, John. Modeling Decisions of Choice Among
Finite Alternatives: Applications to Marketing and to
Transportation Demand Theory, Operations Research Center
Report OR 038-74, M.I.T., October, 1974.
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Cc� Proposed Procedure to Assess Consumer Preference 

The proposed procedure consists of two phases, {I) 
exploratory and {II) actual consumer assessment. The 
purpose of the exploratory phase is to identify those 
performance measures important to the consumer in his 
choice of dial-a-ride which are operationally meaningful 
to the design team. The design team will first generate 
potential performance measures based upon their profession­
al judgement and experience. These will then be tested 
in a consumer survey to identify those which are relevant 
to the consumer choice process and to develop a set of 
semantics which adequately describe these performance 
measures to consumers. 

In "the consumer assessment phase a survey based on 
the identified performance measures will be developed, 
pre-tested, and implemented to directly assess consumer 
utility functions. This survey, which will allow con­
sumers to explicitly consider risk, tradeoffs, and 
interdependencies will have questions similar to the 
following: � 

Tradeoff Questions 

1. Suppose the mode of transportation you are using
costs $1.00. Suppose you can expect a waiting time
of 10 minutes and a travel time of 20 minutes.

A more reliable mode is offered which also costs $1.00. 
This mode guarantees only a 5 minute waiting time. 
What is the maximum travel time you would accept and 
still prefer this more reliable mode? 

Risk Questions 

2. Suppose the mode of transportation you are using
costs $1.00. Suppose you are not sure of the waiting
time, in fact, it is as if someone flipped a coin:
heads mean you had to wait 5 minutes, tails meant 25
minutes. In other words, an average time of Q/�(5+25) =
15 minutes.

A more reliable mode is offered which also costs $1.00. 
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This mode can guarantee a fixed wait time. What is 
the maximum guaranteed wait time you would accept 
and still prefer this more reliable mode? 

!�dependence Questions
3. If both the existing and the new reliable mode
cost only $.50 would your answers to questions 1 and
2 change? If so, what would �hey now be?

The analysis of the survey results will yield para­
meters of individual utility functions. These parameters 
will be synthesized to determine an "average" utility 
function and finally this "average" function will be 
approximated with a quadratic objective function. 

C.3 Relationship to Demand Prediction

The direct utility assessment described above can also 
be used to make initial predictions of demand. The tech­
niques will not be described here, but with a slightly 
enlarged questionnaire, enough information can be gathered 
to calibrate a direct utility/bayesian demand model as 

"b d • 7 descri e in Hauser . This model would then be used to
predict individual trial probabilities if the data is for 
a future system, or repeat probabilities if the data is for 
an existing system. 

The demand model is mathematically complex but basical-
ly works as follows: 

1. A distribution of the performance measures are
estimated with the simulation model for dial-a-ride
and are statistically determined for existing models.

2. The utility functions are used to compute scalar
measures of goodness for dial-a-ride and the existing
modes.

3. A Bayesian probability model is used to transform
(7) Hauser, John. Modeling Decisions of Choice Among Finite

Alternatives: Applications to Marketing and to Transportation
Demand Theory, Operations Research Center Report OR 038-74,
M.I.T., October, 1974.
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the scalar measures of goodness into individual 
choice probabilities. 

4. The individual choices are aggregated into market
share projections.

This section has proposed direct utility assessment 
of consumers as a technique to determine "optimum" par­
ameter settings for quadratic objective functions, and has 
indicated a methodology to do this. An added benefit 
of this study would be a dial-a-ride demand model. 
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APPENDIX D 
DERIVATlON OF QUADRATIC OBJECTIVE FUNCTION 

The premise that individual passenger utilities are 
proportional to the weighted sum of the squares of the 
following four level of service attributes: 

1. wait time
.2. difference between expected and actual wait time

(wait deviation) 
3. travel time
4. difference between expected and �ctual delivery
time (delivery deviation)

can be used to develop an objective function to select the 
best assignment of a new passenger. 

Definitions: 
NP(P) = number of pickups between new pickup and de­

livery insertion 
= number of pickups after new delivery insertion 
detour due to insertion of new pickup 

I • detour due to insertion of new delivery 
= total wait time for pickups after new pickup 

NP(D) 
dP = 
dD = 
TWT(P) 
TWD(D) = total wait time for pickups after new delivery 
WT(NEW) = wait time for new passenger based on this 

TW_D(P) = 

TWO (0) = 

NO(P) = 
NO(D) = 
NB(P,D) 

TRT(P) = 

= 

assignment 
total wait time deviation for all pickups 
after new pickup 
total wait-time deviation for all pickups 
after new delivery 

number of passengers on board at new pickup 
number of passengers on board at new delivery 

number of passengers on board at both new 
pickup and new delivery 

total travel time for those on board at new 
pickup 

TRT(D) • total travel time for those on board at new
delivery

TT(NEW) = travel time for new passenger 
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TDD(P) = 

TDD(D) = 

ND(P) = 

ND (D) = 
WT (i) = 

TT (i) = 

total delivery time deviation for deliveries 
after new pickup 
total delivery time deviation for deliveries 
after new delivery 

number of deliveries after new pickup but 
before new delivery 
number of deliveries after new delivery 
wait time for pickup at stop i, for all pickups 
after new pickup, i=l, ... ,NP{P) + NP(D) 
travel time for delivery at stop i, for all 
passengers on board at new pickup or new 
deli very; i=l, ... , NO (P) -NB (P, D) , ... NO (P) , ... , 
NO{P)+NO(D)-NB(P,D) 

DD(i) = delivery time deviation for all deliveries i 
after new pickup, i=l, ... ,ND(P) , ... ,ND{P)+ND(D) 

WAIT TIME 

Z (WT) = 

:, Z (WT) = 

Now TWT(P) 

NP(P) 
dU (WT) - E (WT (i) +dP) 2 -

i=l 

NP{P) 
E WT(i)2 

i=l 

NP(P)+NP(D) 
+ E (WT ( i ) +dP+dD) 2

NP(P) 
E 

i=l 
NP(P) 

E 
i=l 

i=NP (P)+l 
NP{P)+NP(D) 

E 
i=NP(P) +l 

NP(P) 
WT(i)2 + 2dP E

i=l 
WT(i) 

NP(P)+NP(D) 
E 

i=NP (P)+l 

+ NP(P)dP2 

WT{i)2

+ 2(dP+dD)
NP(P)+NP(D) 

E WT(i)+NP(D) (dP+dD)2

i=NP (P) +1 

NP{P)+ND(D) 
E 

i=NP{P) +l 
NP(P)+NP{D) 

= E WT(i) 
i=l 

and TWT(D) 
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Then by elimination of terms: 

Z(WT) = NP(P) * dP 2 + NP(D) * (dP+dD)2 + 2dP * TWT(P)
+ 2dD * TWT(D) + WT(NEW)2 

WAIT DEVIATION 

Z(WTD) = dU(WTD) = 
NP(P) 

E 
i=l 

NP(P) 
(WTD(i)+dP)2 - E WTD(i)2 

i=l 

NP(P) 

NP(P)+NP(D) 
+ Ei=NP (P)+l

NP(P)+NP(D) 
E 

i=NP (P)+l 

(WTD(i)+dP+dD)2 

,,",,Z (WTD) = 2 dP E WTD(i) + NP(P) * dP2 + 2 (dP+dD)

Now TWD(P) = 

i=l 

NP(P)+NP(D) 
E 

i=NP (P) + 1 

NP(P)+NP(D) 

WTD(i) + NP(D) * (dP+do)2 

� 
NP(P)+NP(D) 

E 
i=l 

WTD(i) and TWD(D) = E WTD (i) 
i=NP (D)+l 

•►.Z(WTD) = NP(P) * dP2 + NP(D) * (dP+dD)2 + 2dP * TWD(P)
+ 2dD * TWD(D)

TRAVEL TIME 
NO(P)-NB(P,D) NO(P)-NB(P D) 

Z(TRT) = dU(TRT) = E (TT(i)+dP)2 - E 
I 

TT(i)2 

i=l i=l 

NO(P) 
+ E (TT(i)+dP+dD)2 

i=NO(P)-NB(P,D) +l 
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Z {TRT) = 

NO{P) 2 t TT{i) 
i=NO(P)-NB(P,D)+l 

NO(P)+NO{D)- NB{P, D) 
+ t ( TT { i) +dD) 2

i=NO(P)+l 

NO{P)+NO{O)- NB(P, D) 
E TT(i)2+TT(NEW)2

i=NO {P)+l 

2 NO(P)-NB(P,D)
(NO(P)-NB(P,D)) * dP +2dP .r TT(i)+NB(P,D)* 

1=1 
NO{P) 

t TT (i)
i=NO(P)-NB{P,D) +l 

+ �O{D) - NB(P, D)) * do2

NO{P)+NO{D)-2NB(P,D) 
+2dD r TT(i)+TT(NEW)2

Now TRT(P) = 

;, z (TRT) = 

i=NO(P)+l 

NO{P) 
r 

i=l 
TT(i) and TRT(D) = NO(P)+NO(D)- NB{P,D) 

E TT{i) 
i=NO(P)-NB(P,D)+l 

NO(P) * dP2+NO(D) * dD2+2 * NB{P,D) * dP * dD

+2 dP * TRT(P)+2dD * TRT(D)+TT(NEW)2 

DELIVERY TIME DEVIATION 
ND{P) ND(P) 

Z(DTD) = dU{DTD) = r (DD(i)+dP) 2 - E DD(i)2

i=l i=l 

ND{P)+ND{D) 
+ t (DD(i)+dP+do)2

i=ND (P) +l 
ND{P)+ND{D) 

t DD{i)2
i=ND {P) +l 
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.'. Z {DTD) = 

Now TDD(P) 

/. Z (DTD) = 

ND{P) 
E DD(i)+ND(D) * (dP+dD)2 

i=l 

ND(P)+ND(D) 
+2{dP+dD) E DD(i) 

i=ND(P) +l 

N D(P) +ND (D) 
E DD (i) 

i=l 
and TDD(D) 

ND(P)+ND(D) 
E DD {i) 

i=ND (P) +l 

ND(P) * dP2+ND(D) * (dP+dD)2+2dP * TDD(P) +
2dD * TDD(D) 

SYSTEM RESOURCES 

Z(SR) = dP + dD 

OBJECTIVE FUNCTION 

The general objective function is then: 
Minimize: Z = A *  Z(WT) + B * Z(WTD) + C * Z(TRT) +" 

D * Z(DTD) + E*Z(SR) 
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APPENDIX E 
DESCRIPTION OF SIMULATION INPUT FOR 

OBJECTIVE FUNCTION TESTS 

E.l Characteristics of Service Area 

The service area is divided into six (6) zones for 
the purpose of reproducing a Haddonfield-like spatial 
distribution of demand. The simulated service area is as 
shown :in Figure E-1. The various zones have relative 
weights for origin and destination of trips as follows: 

ZONE ORIGIN WEIGHT 

1 21 
2 21 
3 53 
4 53 
5 53 
6 33 

E.2 Demand Characteristics

DESTINATION WEIGHT 

7 
123 

37 
32 
31 
11 

Demands are assumed to arise as a Poisson process 
through time, with mean interarrival time of 1.59 minutes 
(�38 demands/hour) in the base case. Note that the 

mean demand rate was changed for some of the experimental 
runs to a mean interarrival time of 1.0 minutes (60 demands/ 
hour). Each demand is assumed to be exactly one passenger. 

The trip length distribution consists of seven steps 
of width .5 miles. The weighting factors governing the 
choice of a given step are as follows: 

STEP 

0. 0-0. 5rni.
0. 5-1. 0mi.
1. 0-1. 5mi.
1. 5-2. 0mi.
2.0-2.Smi.
2. 5-3. 0mi.
3. 0-3. 5mi.

WEIGHT 

0 
78 
58 
45 
37 
20 

1 
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FIGURE: E-1: 
SIMULA':':'ED SERVICE .AREi\�OWING SIX ZONBS 

(SCALE: ·1 IN<:I-I = 1 .�ULE) 

2 

3 4 6 

1 
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This distribution implies a mean trip length of 1.47 miles. 

E.3 Vehicle Characteristics 

There are eight (8) vehicles in service, each with 
capacity of 20 passengers, and each of which travels at 
an average speed of 15 miles/hour when moving. These 
eight vehicles begin the simulation run empty, and at 
random locations in the service area. 

Continuous vehicle communication is used, with updates 
at 30 second intervals. 

E.4 Service Characteristics 

The waiting time constraint is set at 60 minutes when 
using the linear objective function. The travel time and 
total time constraints are set to 

3.5 * direct driving time + 60 (minutes).
The times required to pickup and deliver passengers 

are uniformly distributed between .25 and .50 minutes 
per passenger. 

The algorithm options (objective function and parameter 
values) are as described in the test results in Chapter 4 
of this report. 

A factor of 1.4 is used to convert straight-line 
distance to actual distance travelled for the purposes 
of travel time computation. 
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