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Abstract

We model multi-project collaborative dynamics with self-enforcing incen-

tives. Two players collaborate across several domains, each offering infinitely

many ex-ante identical projects. Every period, they jointly explore or exploit

projects in each domain and make transfers. After exploring a project, play-

ers learn its benefits, which are asymmetrically distributed. We show that

common features of collaborations such as gradualism, lengthy exploration, the

postponement of project exploitation, the engagement in temporary project ex-

ploitation, or the return to previously abandoned projects occur in equilibrium.
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1 Introduction

Collaborations between firms in research and development (R&D) play a pivotal

role in driving business success, from buyer-supplier relationships and joint ventures

to strategic alliances. These collaborations are intricate and require careful devel-

opment, often involving extensive experimentation and the management of multiple

joint projects. For instance, in buyer-supplier relationships, companies frequently

come together to create an array of products tailored to meet the demands of differ-

ent markets. Similarly, R&D alliances typically involve collaborations across distinct

areas of technological advancement. As one example, in the pharmaceutical sector,

research-focused companies might form R&D alliances to combine their resources

across several areas like novel drug discovery, the development of breakthrough ther-

apies, and the implementation of pioneering biotechnologies.

In these broad collaborations, firms face the challenge of making joint decisions

regarding the exploration and exploitation of opportunities across all their domains

of cooperation. These decisions are complicated by the need to ensure that each

collaborating firm perceives continued participation in the partnership to be in their

best interest. Often, imbalances emerge in the distribution of benefits, making some

firms more advantaged than others in the collaboration. As noted in a McKinsey

report on buyer-supplier relationships, “Some collaborations promise equal benefits

for both parties. [...] In other cases, however, the collaboration might create as much

value overall but the benefit could fall more to one partner than to the other.” (Be-

navides et al., 2012). As a result, the parties deriving most benefits must incentivize

cooperation from those gaining less by promising to share the benefits. However,

the effectiveness of these promises hinges on their credibility, which depends on the

overall net present value of the collaboration. This value, in turn, is shaped by the

net present value of each cooperative domain, fostering inter-dependencies among do-

mains, both within the present moment and across different time periods, that affect

the firms’ exploration and exploitation choices.

In this paper, we develop a model of relationship building that examines the dy-

namics of multi-project collaborations when incentives are self-enforcing. We show

that, despite the parties’ desire to create common value swiftly, the process of estab-

lishing a successful collaboration is marked by a gradual expansion in the scope of the

relationship and extended experimentation. The model also predicts other phenom-
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ena such as the postponement of project exploitation, the engagement in temporary

project exploitation, and the return to previously abandoned projects. In Section 6,

we discuss our main findings in light of the applied literature on collaborative dynam-

ics and the literature regarding persistent productivity differences across firms.

The key features of our model are as follows. We consider a discrete-time frame-

work where two players interact repeatedly over an infinite time horizon, with all

actions being publicly observable. The players have the opportunity to engage in

collaboration across a fixed number of domains that are identical ex ante. Specifi-

cally, the players can opt to cooperate on one project per period within each domain,

where each domain corresponds to an infinite pool of projects that are identical and

independent ex ante. Working individually on projects is not an option for the play-

ers; a successful outcome on any given project requires both parties’ collaboration.

Within each domain, any project that has been chosen before can be chosen again for

collaboration, a scenario we call “project exploitation.” The benefits of each project

are time-invariant but initially uncertain, and they may vary asymmetrically across

the players. Cooperation on a new project, or “project exploration,” immediately

reveals that project’s benefits. Moreover, all projects entail a constant fixed cost for

the players, during both the exploration and exploitation phases. As a result, players

might be reluctant to cooperate in exploring projects if they expect that their individ-

ual benefit will not exceed the cost, and they may similarly be reluctant to cooperate

in exploiting a project if their realized individual benefit falls below the cost. Finally,

players can transfer money to each other, but these transfers are voluntary.

We focus on relational contracts (i.e., Subgame Perfect Equilibria) that maximize

the players’ joint surplus. In the main setting, we assume that each project exclusively

benefits a single player. To highlight the challenges inherent in building common value

within such asymmetric contexts, we contrast the dynamics that emerge under the

optimal relational contract against those from a benchmark scenario with symmetric

benefits where, in equilibrium, the players can act as a single player maximizing

joint-surplus.

In the first part of the analysis, we assume not only that every project benefits

the same player, but also that it is known which of the two players receives the ben-

efits. This known asymmetry in the distribution of benefits can be illustrative of a

buyer-supplier collaboration, in which the buyer is the sole recipient of the revenues

generated from the sale of the final product. In this initial analysis, to focus on the
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mechanisms through which the player who benefits from the projects succeeds in in-

centivizing the other player to collaborate in both the exploration and exploitation

of projects, we further assume that all projects yield benefits that are either zero

or a fixed constant. When the discount factor is high, the decisions of the players

regarding the exploration and exploitation of projects mirror those observed in the

symmetric-benefits benchmark. They immediately explore projects in all domains

and, in each domain, exploit the first project they find that generates positive bene-

fits, using monetary transfers to redistribute the benefits. When instead the discount

factor is low, we show that the players adopt a gradual approach, expanding the

scope of their relationship (defined by the number of domains within which they are

either exploring or exploiting projects) incrementally over time (Propositions 3 and

4). By expanding scope gradually, the players are able to initiate their collabora-

tion, with both the low initial costs for the non-benefiting player and the prospect

of future scope expansions enabling the benefiting player to credibly offer compen-

sation. Concurrently, the discovery of projects worth exploiting raises the value of

the relationship and makes it possible for the players to expand the scope of their

collaboration by exploring projects in new domains. Furthermore, when the initial

value of the relationship is particularly low, the players might have no choice but to

gradually extend the scope of their relationship by delaying the exploitation of valu-

able projects. This strategy lowers the immediate costs for the non-benefiting player,

enabling the exploration of projects in new domains. Notably, when this approach is

chosen, whether the players’ relationship ever reaches its maximum potential scope

can be uncertain (Proposition 5).

In the second part of the analysis, we assume that both players are equally likely to

benefit from any given project. As a result, both players are motivated to collaborate

in the exploration of projects, leading to a maximal relationship scope in all periods.

However, for the exploitation phase of a project, one player must still provide incen-

tives to the other. Moreover, we posit that the benefits derived from projects follow a

distribution with convex support, so our analysis focuses on which projects the players

choose to exploit. When the discount factor is high, the players’ actions again repli-

cate those that arise in the symmetric-benefits benchmark: they treat the exploration

of projects independently across domains and opt for a project’s exploitation when its

benefits exceed a common threshold set for all projects. When the discount factor is

low, the players’ search for exploitable projects becomes interdependent. Specifically,
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the thresholds used for assessing whether a project is worth exploiting permanently

are co-determined and differ across projects. This co-determination arises because

selecting a project for exploitation impacts the overall value of the relationship and,

consequently, the players’ ability to cooperate on exploiting other projects.

We first show that the permanent exploitation of projects across all domains occurs

only when each project is valuable enough that the players would exploit it under

symmetric benefits, and further, only when the average value of the projects exceeds a

threshold (Proposition 6). This additional condition guarantees that the relationship’s

value is sufficiently high, enabling the players to collaborate in the exploitation of each

project. Moreover, it implies that the resulting time at which a project is permanently

exploited is likely to substantially exceed that observed under the symmetric-benefits

benchmark. Moreover, in their quest to identify projects for permanent exploitation,

we show that the players may opt for the temporary exploitation of certain projects

with the understanding that they might abandon them later, or they may bypass

some projects, only to return to them when the value of their relationship has grown

sufficiently to enable exploitation (Proposition 7). In sum, inefficiencies arise not

only in terms of the time spent exploring projects, but also in the departure from

the decision rule optimal for a single decision-maker consisting of either permanently

exploiting projects or permanently abandoning them.

Our theoretical analysis ends with an extension of the model that includes projects

that yield both symmetric and asymmetric benefits. We show that the players use

symmetric projects as stepping stones, enabling cooperation in identifying more lu-

crative but asymmetric projects. We also find that the players set lower exploitation

thresholds for symmetric projects compared to asymmetric ones. This difference oc-

curs because symmetric projects do not require promises of compensation to enable

exploitation.

Finally, we examine the applied literature on collaborative dynamics, interpret-

ing it through the framework of our model. Patterns of gradualism and prolonged

experimentation are commonly observed in buyer-supplier relationships. Moreover,

the slow growth in relationship value helps explain the surprisingly robust nature of

buyer-supplier relationships, a phenomenon documented within the trade literature.

Additionally, we discuss how our model can be interpreted to capture internal firm

dynamics, thereby contributing to the literature highlighting the role of managerial

practices in driving persistent productivity differences.
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The rest of the paper is organized as follows. Section 1.1 discusses the related

theoretical literature. Section 2 describes the model. Section 3 characterizes the set

of optimal relational contracts we focus on and analyzes a benchmark scenario with

symmetric benefits. Section 4 solves the model, first by focusing on the dynamics

of the scope of the players’ relationship and then by analyzing the dynamics of the

players’ project exploitation choices. Section 5 analyzes extensions and Section 6

reviews the applied literature on collaborative dynamics. Section 7 concludes.

1.1 Related Theoretical Literature

In this section, we review the theoretical literature related to our work. We

postpone the discussion of the applied literature to Section 6.

Firstly, our research connects to the large literature on multi-armed bandit prob-

lems, dating back to Weitzman (1979). For a review of applications within economics,

see Bergemann and Välimäki (2008). A subset of this literature analyzes strategic

interactions. Bolton and Harris (1999) and Keller et al. (2005) consider settings in

which players independently pull arms and free-ride on each others’ experimentation.1

In Strulovici (2010), players collectively choose between a safe arm and a risky one,

with its asymmetric benefits revealed over time through experimentation. Bonatti

and Hörner (2011) examine a scenario in which a group of agents collaborates in a

collective experimentation process, characterized by private effort choices. Further,

Reshidi et al. (2021) and Chan et al. (2018) contrast group and individual decision-

making regarding experimentation, looking at the impact of static versus sequential

information acquisition and of voting rules. Similar to these papers, our focus is on

strategic interactions. The main distinctions are that our setting is characterized by

infinitely repeated interactions and heterogeneous preferences, includes transfers, and

permits players to collectively experiment with multiple projects simultaneously. We

analyze a general setting characterized by analytically tractable, yet rich, dynamics,

and a wide array of applications.

Secondly, this work is related to the literature on relational contracts (see e.g., Bull,

1987; Macleod and Malcomson, 1989; Baker et al., 1994, 2002; Levin, 2003, for early

contributions).2 The positive feedback effect between the value of players’ relationship

1For more recent work along these lines, see Anesi and Bowen (2021) and Hörner et al. (2022).
2Also at the intersection of the bandit and the relational contracting literatures, Urgun (2021)

examines a scenario where a principal interacts with multiple agents whose publicly-observable types
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and incentive strength is pervasive across relational contracting models. However, it

rarely produces dynamics, because current production is typically influenced only

by present actions, not by past choices as in our setting. An exception is Halac

(2014), who studies a setting in which the value of the players’ relationship increases

with the duration of the relationship. The players initially choose to cooperate on

low-risk, low-return projects, and they switch to high-risk, high-return projects once

their relationship has grown sufficiently valuable.3 In our setting, it is the discovery of

projects worthy of exploitation that increases the value of the relationship. We analyze

the implications of this effect on the players’ choices between project exploration

and exploitation when they are engaged in multiple projects. In contrast, Chassang

(2010) analyzes a setting where increases in relationship value diminish the players’

motivation to enhance their collaboration. In his model, the agent knows which

arms are productive and which are not, while the principal, at the outset, cannot

differentiate between the two. Without monetary incentives, incentivizing the agent

to choose productive arms is accomplished by the threat of firing the agent following

failures. This dynamic makes motivating exploration progressively expensive as more

productive arms are identified. Should the relationship endure, it ultimately enters

an “exploitation” phase and its value stops growing. In our model, the players are

symmetrically informed about their environment, and the presence of transferable

utility removes the need for inefficient on-path punishments. These two features lead

to the positive feedback effect mentioned above.4

Our work also connects to Bernheim and Whinston (1990), who analyze firms op-

erating in multiple markets, showing that maintaining collusion in easier markets can

help support collusion in more challenging ones. Similarly, Levin (2002) shows the

advantages firms gain by pooling heterogeneous employees’ incentives into a “multi-

lateral” relational contract. In our setting, the ability to pool relational incentives

across multiple projects is key in generating gradualism in relationship scope.

Finally, we add to the body of research that examines gradualism. Watson (1999,

2002) examine a setting in which players are uncertain regarding their counterpart’ in-

depend on the contracting history.
3In Halac (2015), a principal leverages this feedback effect by making an upfront and relationship-

specific investment prior to her repeated interaction with an agent.
4Introducing transferable utility within Chassang (2010), where information asymmetry plays a

central role, would make the value of the players’ relationship constant on path. For a setting similar
to Chassang (2010) but with imperfect transfers and uncertainty about the value of the relationship,
see Venables (2013). For a bandit problem embedded in a principal-agent setting, see Ide (2024).

7



tentions—to either collaborate genuinely or take advantage of the other. The players

begin with low cooperation to mitigate the losses from defection. As the players be-

come more optimistic, the collaboration grows. Collaborations involving trustworthy

players achieve optimal cooperation, while those with untrustworthy players eventu-

ally end. In our setting, the relationship develops incrementally, not due to screening

intentions, but because credibility is built by the players over time.5

2 The Setup

We suppose that there are 2 players who have the opportunity to interact at

different time periods t = 0, 1, 2, . . . . Each player, denoted by i = 1, 2, has a discount

factor δ and a per-period outside option equal to zero. The players’ interaction spans

m “domains,” where m is fixed exogenously. For each domain j = 1, . . . ,m, there

exists an infinite set of projects Pj, where P = ∪jPj. In each period t, and for each

domain j, the players may select up to one project from the set Pj. We assume that

the players cooperate on a project if and only if both players choose it, thus following

a unanimity rule. We denote by P t
i the finite set of projects chosen by player i in

period t and by Pt the corresponding set of projects the players cooperate on, where

Pt = P t
1 ∩ P t

2. We refer to |Pt| ≤ m as the players’ “relationship scope” in period t.

Each project in Pt imposes a cost of c > 0 on both players. Further, each project

p ∈ P is associated with a vector of initially unknown time-invariant individual

valuations (vp,1, vp,2) ∈ R2
+. A project’s associated individual valuations are publicly

observed immediately after the players have cooperated on it for the first time. We

say that a project p is being “explored” in period t if the players cooperate on it for the

first time, and that it is being “exploited” during period t if the players have chosen

to cooperate on it already in some prior period. Note that we place no intertemporal

restrictions on the set of projects that are available; for instance, nothing prevents

the players from exploring a project, potentially exploiting it for several periods, then

temporarily abandoning it, and returning to it at a later time. We refer to a project’s

5Gradualism also arises in Ghosh and Ray (1996) and Kranton (1996), where players are ran-
domly matched and can exit relationships at any time, with new partners possessing only limited
information about the player’s past history. In the context of corporate finance, investment levels
can increase over time as borrowers gradually build collateral (see Tirole, 2006, Chapter 4 and refer-
ences therein). In our scenario, the continuation value of the relationship functions like a collateral.
However, this collateral is pledged by both players involved, rather than a single player.
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sum of individual valuations as the project’s value, and denote it by sp. We assume

that each project p’s vector of individual valuations is distributed independently and

identically across projects and domains. This assumption implies that all domains of

the relationship are ex ante identical.

The players can exchange money twice during each period. At the beginning of

each period t, the players make discretionary transfers to each other, where wt
i,−i ∈ R+

denotes such a transfer from player i to player −i. At the end of each period t, players

again make discretionary transfers to each other, where bti,−i ∈ R+ denotes such a

transfer from player i to player −i.6

Further, player i’s period t payoff is equal to:

πt
i = wt

−i,i − wt
i,−i + bt−i,i − bti,−i +

∑
p∈Pt

(vp,i − c), where i,∈ {1, 2} . (1)

Equation (1) implies that a key friction between the players will be about the

choice of projects that benefit one player but not the other, and that money will serve

the purpose of aligning incentives. As we will show, this friction will lead to comple-

mentarities across domains despite the absence of technological inter-dependencies.

We conclude the model’s description by stating the timing of the stage game.

Both players simultaneously choose their discretionary transfers wt
i,−i. Next, both

players simultaneously make their project choices P t
i . For each project p ∈ Pt, the

players observe the vector (vp,1, vp,2), pocket their individual valuation, and incur the

cost c. Finally, both players simultaneously choose their discretionary transfers bti,−i.

Relational Contracts. A relational contract is a complete plan for the relation-

ship. Let ht = (w0,P0,v0,b0, . . . , . . . ,wt−1,Pt−1,vt−1,bt−1) denote the history up

to date t and Ht the set of possible date t histories, where boldface lowercase letters

indicate vectors. Then, for each date t and every history ht ∈ Ht, a relational con-

tract describes: (i) the wt transfers; (ii) the set of projects Pt (wt) as a function of

wt; and (iii) the bt (wt,Pt,vt) transfers as a function of wt, Pt, and the realizations

of vt. Such a relational contract is self-enforcing if it describes a Subgame Perfect

6We incorporate the option of monetary transfers both before and after the players’ project
choices, although removing either would not qualitatively affect our results. Without transfers at
the beginning of each period, surplus might no longer be fully redistributed across the players without
affecting incentives. Without transfers at the end of each period, incentives for the current period
would rely on transfers from the subsequent period, complicating the proofs.
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Equilibrium of the repeated game. Within the class of Subgame Perfect Equilibria,

we analyze pure-strategy equilibria which maximize the players’ joint surplus.7 In the

event of a deviation in some period t, the players respond (i) by choosing P t
i = ∅ and

bti,−i = 0 if these choices have not been made yet and (ii) by permanently breaking

off their relationship (i.e., reverting to the worst equilibrium of the stage game from

the next period onward). This punishment is without loss of generality as it occurs

only out-of-equilibrium (c.f. Abreu, 1986).8

Examples. We present two concrete illustrations of the setting. In the first exam-

ple, a buyer and a supplier engage in collaboration to manufacture a final product

intended for distribution across various geographical markets. These markets each

present unique local conditions, demanding tailored product customization. The ex-

perimentation process requires both firms to undertake non-contractible investments,

such as worker training and marketing efforts. Even after experimentation concludes,

ongoing investments will still be needed. Since all revenue generated from the sale of

the final products accrues to the buyer, they must offer credible compensation to the

supplier to guarantee their continued collaboration. In the second example, two firms

establish an R&D alliance with the aim of pooling resources across various domains

of research. To identify profitable collaborations within each domain, cooperation

necessitates extensive experimentation efforts, involving repeated investments that

cannot be fully formalized in contracts. Furthermore, the collaborations the firms

settle on may result in uneven benefits across the firms, possibly due to the utiliza-

tion of distinct strengths or resources in ways that were uncertain at the beginning.

The firm reaping the greatest benefits from the collaboration might have to promise

compensation to the other to secure their continued involvement.

7Restricting attention to pure strategy equilibria is without loss because (i) mixing on transfers
cannot benefit the players as it increases the maximal transfers they promise each other and (ii)
mixing on projects either results in inefficiently low relationship scope due to miscoordination or a
limited relationship scope that can be replicated by players not choosing projects in some domains.

8Equivalently, in the period following a deviation, players could transition to a continuation
equilibrium in which everything remains the same, except that the entire surplus is allocated to the
player who did not deviate. This punishment provides identical incentives. Because it is Pareto
optimal, it is also less prone to renegotiation.
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3 Preliminary Analysis

In this section, we characterize the set of surplus-maximizing relational contracts

our analysis focuses on. We also analyze the benchmark case where every project

equally benefits both players.

3.1 Characterization of Optimal Relational Contracts

In our setting, surplus-maximizing relational contracts will depend on the play-

ers’ beliefs about the projects. Denote by µt(ht) := {∆(vp,1, vp,2)|ht)}p∈P the beliefs

the players hold about the projects’ valuations given all the observed valuations up

through period t − 1. We now show that there exist surplus-maximizing relational

contracts that condition on ht only through the beliefs µt(ht). Formally, restrict-

ing attention to relational contracts that specify the same continuation equilibrium

following any two on-path histories ht
1 and ht′

2 that lead to the same beliefs µ is

without loss. Further, the continuation equilibrium the relational contract prescribes

is surplus-maximizing, in the sense that there does not exist another continuation

equilibrium that generates a higher total surplus across the players. The following

proposition formalizes this result and provides a necessary and sufficient condition

for a given project selection rule (i.e., a mapping from beliefs to projects) to be

implemented by a relational contract.

Proposition 1 (Optimal Relational Contracts)

• For any surplus-maximizing relational contract, there exists an alternative surplus-

equivalent relational contract such that (i) for all t and for all on-path histories

ht ∈ Ht, the continuation equilibrium is surplus maximizing, and (ii) for any

two on-path histories ht
1 and ht′

2 , if µ
t (ht

1) = µt′
(
ht′
2

)
, then the relational con-

tract specifies the same continuation equilibrium following these histories.

• There exists a relational contract that implements a project selection rule P(·) if
and only if the following inequality holds for all t and for all histories ht ∈ Ht:

∑
p∈P(µt)

2∑
i=1

max
(
0, c− E

(
vp,i|µt

))
≤ C

(
µt
)
, (2)
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where C (µt) (“the continuation value”) is the expected net present value of the

players’ relationship starting in t+ 1 given P(·) and µt.

The proof of this proposition extends the work of Levin (2003) and is provided

in the Online Appendix. In our setting, the players’ continuation value is stochastic.

We show that considering the expectation of the continuation value is sufficient to

characterize which project selection rules can be implemented by a relational contract.

The intuition for the first statement of the proposition is based on the following two

observations. First, any surplus-maximizing relational contract is necessarily surplus-

maximizing following any on-path history, for otherwise non-surplus-maximizing con-

tinuation equilibria could be replaced with surplus-maximizing ones, with transfers

appropriately designed to maintain all players’ incentives. Second, when confining our

attention to surplus-maximizing continuation equilibria, the only history-dependent

outcome that can alter the set of optimal continuation equilibria are the players’

beliefs µt about the projects. We call such relational contracts optimal.

Next, recall that the main tension faced by the players is that the project selection

rule which maximizes their joint surplus may involve the selection of projects that

do not benefit each player. Inequality (2) states that for a relational contract to

implement a project selection rule everywhere on path, the continuation value must

exceed the total reneging temptation across players and projects in all periods and

for all possible histories. The total reneging temptation is the sum across players

and across projects of a project’s reneging temptation to a player. The sum is across

projects because each player can deviate from the relational contract by selecting any

subset of Pt. In turn, a project’s reneging temptation to a player is either equal

to zero, in case the project generates a positive net expected gain to the player, or

equal to the magnitude of the net expected loss. That the relational contract creates

more continuation value to the players than the sum of their gains from defecting is

necessary for the relational contract to constitute an equilibrium. In the proof, we

show that the presence of money also ensures that this condition is sufficient.

Finally, we note that the second statement of the proposition means that charac-

terizing the optimal relational contract can be reduced to characterizing the players’

optimal project selection rule, which will thus be the focus of our analysis hereafter.

To understand this, observe that all transfers cancel each other in the expression for

the joint surplus of the players, as well as on the right-hand side of Equation (2).
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3.2 Benchmark with Symmetric Benefits

We now analyze the benchmark case where every project benefits the players

equally, ensuring that they have perfectly aligned incentives. Specifically, we suppose

that for each project p ∈ P , vp,1 = vp,2.
9 The predictions this benchmark analysis

produces are identical to those that would result if a single decision-maker, whose

payoff is given by the sum of the payoffs of both players, were to make all the decisions.

Proposition 2 (Symmetric Benefits Benchmark)

When projects generate symmetric benefits, all optimal relational contracts specify a

project selection rule that is identical and independent across all m domains of the

players’ relationship. Further,

1. If the players select any project in any period t in domain j, then the players

select a project in domain j in all periods.

2. There exists an increasing function s0(δ) such that the players exploit project p

in domain j if and only if sp ≥ s0(δ).

When projects yield equal benefits for both players, Inequality (2) from Proposi-

tion 1 simply states that the net present value of the net payoff resulting from the

selection of any project (accounting for the potential abandonment of a project) must

be non-negative. Because this feature will always hold under any optimal relational

contract, Inequality (2) can be ignored. The intuition behind the players treating

each domain of their relationship separately and identically follows from our assump-

tions wherein (i) payoffs are additively separable across projects, meaning there are

no inter-dependencies like economies or diseconomies of scope, and (ii) all projects

benefit the players equally. The intuition for statement (1) is that if the players find

it rational to explore project p ∈ Pj in some period t, then exploration must exhibit a

positive net present value of the players’ net payoffs, accounting for the possibility of

project abandonment. Since the players have access to infinitely many ex ante identi-

cal projects, they would thus always opt for exploration rather than the non-selection

of a project and, by extension, a project will be selected in every period.

To gain intuition for statement (2), note that when the players find it optimal to

select a project, the players either (i) exploit a previously-explored project p or (ii)

9The findings of this subsection remain valid for asymmetric benefits as long as each project
either positively or negatively affects both players.
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explore new projects with the hope of ultimately settling on a superior project in the

future. The players never return to an abandoned project because we have assumed

an infinite supply of ex ante identical projects. Finally, statement (2) also states that

as the discount factor increases, the value of exploring alternative projects rises, since

any superior project identified can be used across all future periods.

In sum, when benefits are symmetric, the players maximize the scope of their

relationship at all times and they switch to permanently exploiting projects based

on an independent, identical, and time-invariant threshold. These features will not

always be true when benefits are asymmetric, a scenario we now analyze.

4 Analysis

We divide the analysis of the asymmetric benefits case into two subsections. In

subsection 4.1, we assume that one player requires incentives to explore projects.

Within this context, we analyze the dynamics of the scope of the players’ relationship.

In subsection 4.2, we assume that both players are motivated to explore projects

and instead focus on their decision-making process regarding project exploitation.

Throughout the analysis, we make the following assumption:

Assumption 1 (Feasibility) With positive probability, sp > s̃(δ) := c1+δ
δ
.

By Proposition 1, Assumption 1 implies that there always exist projects that the

players can cooperate in exploiting, despite the asymmetry of benefits across players.

We denote the minimum value of s that fulfills Assumption 1 by s̃(δ).

4.1 The Dynamics of Relationship Scope

We specialize the model as follows. We assume that, ∀p, sp ∈ {0, v}, where

v > 2c/q. Specifically, sp = v with probability q, independently across projects. These

assumptions streamline our focus on the players’ relationship scope by simplifying

their decision-making: for instance, players will not exploit projects valued at 0 and

will not explore in domains where a project with value v is already found.10 We

also assume player 2 gains no benefit from any project, meaning that v2,p = 0 ∀p,
10The analysis remains qualitatively identical when considering distributions with convex support.

Also, qv > 2c implies that exploring domains is socially efficient independently of the discount factor.
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and, therefore, must be incentivized to both explore and exploit projects by player 1.

Throughout, we refer to projects with value v as “suitable projects.”

By Proposition 1, the optimal relational contract depends only on the num-

ber of suitable projects identified to date. Denote this number by n and denote

(i) by fexplore(n) the number of domains where the players are exploring projects,

(ii) by fexploit(n) the number of projects the players are exploiting, and (iii) by

f(n) = fexplore(n) + fexploit(n) the corresponding scope of the players’ relationship.

The following proposition provides key properties of the function f(n).

Proposition 3 (Scope)

To any (non-empty) optimal relational contract corresponds a function f(n) specifying

the scope of the players’ relationship. Such a function satisfies the following two

conditions:

1. f(n) is monotonically increasing in n for all n.

2. f(n) ≥ min
(
⌊n
c

δ
1−δ

(v − 2c)⌋,m
)
≥ n for all n.

Proof of Proposition 3. Statement 1: Any project selection rule that the players im-

plement when they have identified n − 1 suitable projects remains implementable

when they have identified n suitable projects. This occurs because the continuation

value is weakly increasing in the number of suitable projects identified by the players.

Statement 2: By Assumption 1, the players can always exploit the n suitable

projects they have identified to date. Further, the number of suitable projects discov-

ered by the players can only increase over time. Thus, their continuation value when

they have identified n suitable projects exceeds nδ(v − 2c) / (1 − δ). Next, because

exploring projects is always valuable when feasible (since qv > 2c), under any opti-

mal relational contract the scope of the players’ relationship is as large as feasible.

In turn, a given scope is feasible if (i) it is an integer, (ii) if it is lower than m, and

(iii) if the integer multiplied by c is lower than or equal to the continuation value (see

Inequality (2) in Proposition 1). Combining these three conditions generates the first

inequality. The second inequality follows from Assumption 1.

Proposition 3 states that any optimal relational contract exhibits weak growth in

the scope of the players’ relationship along the equilibrium path. However, it does not

rule out the possibility that the players always start with maximal scope, similar to

the symmetric-benefits scenario considered in Proposition 2. We now show that, with
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asymmetric benefits, there exists a value of δ low enough such that both 0 < f(0) < m

and the scope of the relationship increases over time.

Proposition 4 (Gradualism)

For any m ≥ 2, there exist two thresholds 0 < δ∗ < δ̄ < 1. If δ ≥ δ̄, any optimal

relational contract is such that the relationship scope is always maximal on path (i.e.,

|Pt| = m for all t). If δ ∈ [δ∗, δ̄), any optimal relational contract is such that the

relationship scope is initially limited (i.e., 0 < |P0| < m) on path, with the scope (i.e.,

|Pt|) increasing at least once along the equilibrium path.

In the intuition that follows, we consider only the histories in which the constraints

implied by Proposition 1 are most binding. Appendix A provides proofs showing the

necessity and sufficiency of these constraints.

First note that, if they can, the players adopt the project selection rule of the

symmetric-benefits benchmark, immediately exploring projects in all domains of co-

operation, since this approach maximizes their joint surplus. In this case, the most

binding incentive constraint implied by Proposition 1 is:

m · c ≤ m · C(exploration), (3)

where C(exploration) denotes the per-domain continuation value associated with the

current exploration of a project. As δ diminishes, C(exploration) decreases to a point

where Inequality (3) fails to hold. In other words, immediate cooperation in all

domains is implementable only if the discount factor is relatively high (δ ≥ δ̄).

The drawback of starting exploration in all domains simultaneously is that it

prevents players from pooling incentives across domains, as evidenced by (3) not

depending on m. For this reason, when δ < δ̄, project selection rules in which

relationship scope is limited but constant over time are not implementable either.

Instead, gradual project selection rules, in which players initially collaborate in a

limited number of domains and later expand their cooperation, emerge as the possible

optimal alternative. A gradual approach reduces the total cost borne by player 2 in

the initial stages by postponing the start of advantageous cooperation in additional

domains. Furthermore, when the scope of their collaboration increases, the players

are able to leverage the value derived from the suitable projects they have identified.

To illustrate, suppose the players start by exploring projects in a single domain

and, upon finding a suitable project, begin exploring projects in the m− 1 remaining
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domains while exploiting the first project. There exists a relational contract that

implements this specific project selection rule if and only if:

c ≤C(exploration) + (m− 1) · C(delayed exploration), (4)

m · c ≤(m− 1)C(exploration) + C(exploitation), (5)

where C(exploitation) denotes the per-domain continuation value associated with the

permanent exploitation of a project, and C(delayed exploration) denotes the per-

domain continuation value associated with the exploration of a project that will begin

following the discovery of a suitable project in the first domain of cooperation. In

words, Inequality (4) ensures that the players are able to explore a project in one

domain anticipating the future exploration of projects in them−1 remaining domains.

Similarly, Inequality (5) ensures that the players are willing to explore projects inm−1

domains while simultaneously exploiting one project.

The right-hand sides of Inequalities (4)-(5) are strictly increasing in δ. Further,

(4) is strictly easier to satisfy than (3) since C(delayed exploration) > 0, and (5) is

strictly easier to satisfy than (3) since C(exploitation) > C(exploration). As a result,

the gradual project selection rule described above is implementable across a broader

range of discount factors when compared to the symmetric-benefits project selection

rule, and, therefore, there are always gradual project selection rules available to the

players when the discount factor reaches a level that permits their implementation,

albeit not sufficient for achieving maximal scope right from the outset.11,12

Proposition 4 states that the scope of the players’ collaboration will be limited

at first and expand over time when the discount factor is intermediate (δ ∈
[
δ∗, δ̄

)
).

However, it does not state that scope necessarily reaches its maximum potential of

m.13 Moreover, Proposition 3 establishes a lower bound on the scope of the rela-

11An implication of the previous proposition is that as m increases, the range of discount factors
for which the optimal relational contract is nonempty also widens. Intuitively, a larger m offers the
players a wider range of project selection rules and more chances to pool incentives across cooperation
domains. Further discussion of this feature and related findings can be found in Section 5.1.

12A more gradual project selection rule may not always be feasible across a wider range of discount
factors compared to a less gradual approach, as it delays valuable collaboration.

13Addressing this question by obtaining closed-form analytical solutions for fexploit(n) and
fexplore(n) is intractable for a general value of m. To illustrate this complexity, consider the case
where n = m − 2. Although Proposition 3 states that f(m − 2) ≥ m − 2, there remain numerous
potential values for fexplore and fexploit. The players might choose to exploit the m− 2 projects and
explore zero, one, or two additional projects, or the players might exploit m−3 projects and exploit
zero, one, or two additional projects. Moreover, the optimal project selection rule is discontinuous
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tionship as a function of n, which in turn sets a lower bound for the growth of the

relationship’s scope. If the lower bound on f(n) exceeds n + 1 for all values of n,

then relationship scope converges to m. This could happen if a low value of q leads

to a sufficiently low continuation value that the optimal project selection rule is grad-

ual, while a large value of v ensures that identifying suitable projects substantially

increases the continuation value, causing large expansions in relationship scope. We

now show that if this sufficient condition is not satisfied, optimal gradual project

selection rules might not achieve maximal scope.

Definition 1 (Maximal Equilibrium Scope)

The broadest scope of the players’ relationship achieved on the equilibrium path is said

to be stochastically maximal (respectively, deterministically maximal) if it equals m

with a probability of 0 < p < 1 (or, in the deterministic case, p = 1).

We are now in a position to present and prove the following results.

Proposition 5 (Bounded Relationships)

For any non-empty optimal relational contract, the broadest scope of the players’ re-

lationship achieved on the equilibrium path is (i) either stochastically or determinis-

tically maximal, (ii) deterministically maximal when m = 2, but (iii) is stochastically

maximal for an open set of parameter values when m ≥ 3.

The reason why the scope of the relationship must reach its maximum with positive

probability is as follows. If scope is bounded by the value n < m, then, with positive

probability, the players will first identify n − 1 suitable projects and, subsequently,

explore projects in exactly one domain. However, if players can explore projects after

identifying n−1 suitable projects, it becomes even easier for them to also do so upon

identifying n suitable projects. Therefore, the players would never limit the scope of

their relationship to a value n lower than m with certainty. One can use such a result

to show that the scope must reach m with positive probability.

Next, the proposition states that when m = 2, the broadest scope the players

achieve is deterministically maximal. If it were stochastically maximal, f(1) would

equal 1. However, by Proposition 3, the condition 0 < f(0) ≤ f(1) would also have to

in the model parameters. Finally, the choice of project selection rule at n = m − 2 determines the
continuation value at n = m − 3, which, in turn, determines what project selection rule is feasible
at n = m− 3 (and in all earlier periods). Solving for the corresponding Bellman Equation in closed
form is intractable.
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hold. Yet, f(0) = f(1) = 1 implies that scope never reaches its maximum potential

of 2, which we have just shown cannot occur. In contrast, we find that the broadest

scope of the players’ relationship attained on path is not always guaranteed to achieve

m when m ≥ 3. In Appendix A we show this result by focusing on the case where

m = 3. Applying the same logic as in the preceding paragraph, scope must exceed

1 for any non-empty relational contract. However, scope can be bounded by 2. For

this to happen, the following three conditions must hold: (i) When n = 1, players

explore projects in two domains, since the relationship must reach m with positive

probability; (ii) To explore projects in two domains, players must postpone exploiting

the first suitable project that they found. This is necessary to prevent a situation

where f(1) > f(2), which has also been shown to be impossible; and (iii) When n = 0,

the players explore projects in a single domain. Given the structure of the problem,

one can show that if f(0) = 2, then f(2) > 2. The only project selection rule that

satisfies these conditions is:

fexplore(n) =

n+ 1 if n ≤ 1

0 if n > 1
fexploit(n) =

0 if n < 2

n if n ≥ 2
(6)

To gain intuition, suppose δ is so low that the scope of the relationship may at

best increase by one domain upon identifying a suitable project. The players initiate

cooperation by exploring projects in one domain, in part driven by the anticipation of

future expansions in scope. Upon identifying a suitable project, the players choose to

delay its exploitation to save on the cost incurred by player 2. Instead, they explore

projects within the remaining two domains, planning to exploit the first project only

after discovering one more suitable project. Should the players identify two additional

suitable projects within the same period, they switch to exploit all three projects. If

instead they find only one suitable project, they stop exploration and permanently

exploit the two projects they have identified.

This project selection rule is the only one enabling an increase in scope after identi-

fying a first suitable project. It is feasible due to the relatively short expected duration

before exploiting the project put on hold, since the players are exploring projects in

two domains simultaneously, and the motivating prospect of possibly identifying two

additional projects. As noted, if the players identify only one additional suitable

project, they halt exploration in the third domain. Intuitively, the cost of delaying
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the exploitation of a project to explore projects in the third domain is relatively

large. This is because the expected duration before finding another suitable project

is high, given that the players are exploring projects in only one domain. Similarly,

the players cannot simultaneously exploit the two suitable projects they have already

identified and explore projects in the third domain, due to the absence of any further

scope expansion beyond this third domain.

To conclude, Figure 1 reports the optimal project selection rule as a function

of q and v when m = 3, δ = 1/9, and c = 1. In the White region, the optimal

project selection rule is empty. In the Blue region, the optimal project selection rule

is described by Equation (10), signifying a gradual approach with a stochastically

maximal relationship scope. In the Gray region, all optimal project selection rules are

gradual and result in a deterministically maximal scope, while in the Green region,

the project selection rule of the symmetric-benefits benchmark is optimal. Higher

values of q or v lead to project selection rules that improve joint surplus.

0.6 0.7 0.8 0.9

10.5

11

q

v

Figure 1: Optimal Project Selection Rules

We assume m = 3, δ = 1/9, and c = 1. The figure starts at v = 10, the lowest value of v that
satisfies Assumption 1. In the White region, the empty project selection rule is optimal. In the Blue
region, the gradual project selection rule in which scope is stochastically maximal is optimal. In the
Gray region, the optimal project selection rule is gradual and such that scope is deterministically
maximal. In the Green region, the project selection rule of the symmetric-benefits case is optimal.
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In this subsection, we analyzed an environment with asymmetric benefits which

requires one player to be incentivized for both exploration and exploitation. In this

environment, unless the discount factor is high enough to enable the implementation

of the symmetric-benefits project selection rule, the scope of the players’ relationship

may (i) be limited in the initial phases of collaboration, (ii) gradually expand over time

and (iii) fail to reach its full potential. Furthermore, when there is uncertainty about

whether their collaborative relationship will attain its maximum potential scope, the

players seek to expand the scope by delaying the exploitation of suitable projects.

4.2 The Dynamics of Project Exploitation Choices

In the previous subsection, we assumed that one player required incentives to both

explore and exploit projects. This approach provided insights into the dynamics of

the players’ relationship scope. In this subsection, we assume that both players are

motivated to engage in project exploration while maintaining the premise that one

player requires incentives to exploit projects.14 Additionally, we extend our analysis

beyond the binary support assumption for project values, allowing us to delve into

the dynamics of the players’ choices about which projects to exploit.

Specifically, for any project p, we assume that (vp,1 = sp, vp,2 = 0) occurs with a

probability of 1 / 2 and that (vp,1 = 0, vp,2 = sp) occurs with a probability of 1 / 2,

independently across projects.15 In addition, the distribution of sp is subject to the

following restrictions: (i) ∞ > E(sp) > 2c, implying that exploring a project selected

at random is optimal and an equilibrium of the stage game, and (ii) supp(sp) is

convex to allow for a meaningful trade-off between exploration and exploitation. In

this environment, scope is maximal from the beginning under any optimal relational

contract, and characterizing the players’ project selection rule amounts to analyzing

their choices regarding which projects to exploit in all domains.

By Proposition 1, the optimal relational contract in any period t depends only

on the values of the most valuable projects discovered in each of the m domains of

cooperation, denoted as ŝ1, . . . , ŝm. Further, recall the definition of s̃ as established

in Equation (1), which corresponds to the value a single project must generate for its

14In Section 5, we consider the scenario where projects benefiting both players coexist with those
benefiting only a single player.

15This approach assumes an extreme form of asymmetric benefits. However, for our results to
hold qualitatively, it suffices that each project yields a net benefit to just one player.
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exploitation to be sustained on its own in equilibrium. We now provide the condition

under which the players are able to follow the project selection rule of the symmetric-

benefits benchmark, specifically, to exploit a project if its value is at least s0.

Lemma 1 (Necessary Condition for Permanent Exploitation)

Upon finding projects with values ŝ1, . . . , ŝm, the players permanently follow the project

selection rule of the symmetric-benefits benchmark if and only if:

h(ŝ1, . . . , ŝm) :=
1

m

m∑
j=1

max{ŝj, s0} ≥ s̃. (7)

When condition (7) holds, the players can pool their relational incentives to follow

the project selection rule of the symmetric-benefits benchmark. This condition states

that, when considering the average across all domains, the maximum value between

the best project found thus far in each domain and the threshold s0 must exceed

the threshold s̃. We note that the function h(ŝ1, . . . , ŝm) does not correspond to the

arithmetic mean of the values ŝ1, . . . , ŝm for two reasons: (i) the players will choose

to explore rather than exploit a project with value lower than s0 and (ii) exploration

is valuable to the players and thus contributes to their continuation value.

When the condition in Lemma 1 holds and sj ≥ s0 for all j, then the project

selection rule from the symmetric-benefits benchmark dictates permanent exploita-

tion, and since Equation (7) holds, the players choose “permanent exploitation”. In

the proposition below we show that these two conditions are, in fact, necessary and

sufficient conditions. We also note that permanent exploitation occurs in finite time

since, under Assumption 1, there exist project values exceeding s̃.

Proposition 6 (Permanent Exploitation)

In any optimal relational contract, the players permanently exploit projects with values

ŝ1, . . . , ŝm if and only if ŝj ≥ s0 for all j ∈ {1, . . . ,m} and the average of ŝ1, . . . , ŝm

exceeds s̃.

Proof of Proposition 6.

{ŝj ≥ s0 ∀j and

∑
j ŝj

m
≥ s̃} ⇐⇒ {ŝj ≥ s0 ∀j and

∑
j max{ŝj, s0}

m
≥ s̃}

The conditions listed in Proposition 6 fully characterize the players’ optimal

project selection rule when m = 1. When m = 1, if the players exploit project p
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in period t, then µt = µt+1, since the players have not acquired any information dur-

ing period t. It follows that the players also exploit project p in period t + 1 and in

all subsequent periods, and exploitation is thus permanent.

Corollary 1 (Single Domain Project Selection Rule)

When m = 1, in any optimal relational contract, there exists a threshold s∗(δ) =

max{s̃(δ), s0(δ)} such that the players explore projects until they find a project p with

an associated value sp ≥ s∗. Once they find such a project, the players exploit it in

all subsequent periods.

Figure 2 provides an illustration by plotting the thresholds s̃, s∗, and s0 as func-

tions of δ, when c = 1 and sp ∼ Exp(1/3). This distribution satisfies our assumptions,

since a randomly selected project has an expected value equal to 3, which, in turn,

guarantees (i) that exploration is an equilibrium of the stage game and (ii) that, for

any δ, there always exists a project that can be exploited in equilibrium.
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Figure 2: Comparison of Project Exploitation under Symmetric and Asymmetric Benefits

The figure plots the s̃, s∗, and s0 thresholds when sp ∼ Exp(1 / 3) and c = 1. The threshold s̃ is
the minimum value of s such that cooperation in project exploitation is sustainable. The threshold
s0 is the minimum value of s such that the players switch from exploration to exploitation in the
benchmark with symmetric benefits. The threshold s∗ is the minimum value of s such that the players

switch from exploration to exploitation. The closed-form solutions are s0 = 3W
(
δ /
(
e(1− δ)

))
+3,

where W (·) is the Lambert W function, and s̃ = 2 + (1 − δ) / δ. As shown in the figure, s∗ is the
point-wise maximum of s̃(δ) and s0(δ).
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By Proposition 2, s0(δ) is monotonically increasing in δ and approaches infinity

as δ → 1. This positive relationship arises because, in the presence of symmetric

benefits, agents become more selective as their patience increases. However, from

(1) it follows that s̃(δ) is monotonically decreasing in δ. This negative relationship

occurs because, in the presence of asymmetric benefits, the players can cooperate

in exploiting a wider range of projects as their patience grows. Therefore, a value

δ∗ exists where, if δ < δ∗, s0 is lower than s∗, and the opposite is true for δ ≥ δ∗.

In words, for low values of δ, the players must be more selective with asymmetric

compared to symmetric benefits, whereas when δ is high, they are equally selective.

We have provided closed-form conditions under which the players choose the

project selection rule of the symmetric-benefits benchmark. Additionally, we have

derived the conditions that dictate when projects are selected for permanent exploita-

tion. To delve into the equilibrium dynamics that arise before the players identify a

set of m projects suitable for permanent exploitation, we now suppose m = 2 and

focus on a specific parametric example.

Exponential Distribution Example When m = 2. Suppose c = 1, δ = 1 / 3,

and sp ∼ (3− 1 / λ) + Exp(λ), such that E (sp) = 3. Further, denote by C(ŝ1, ŝ2) the
continuation value of the players’ relationship as a function of ŝ1 and ŝ2. We first note

that 1 ≤ C(ŝ1, ŝ2) for all combinations of ŝ1 and ŝ2. This inequality holds because the

players can always choose to explore two new projects in every period, generating a

payoff of 3 − 2 per project and thus a continuation value of δ
1−δ

2, which reduces to

1 when δ = 1 / 3. Within this example, (i) we utilize Proposition 6 to characterize

the players’ project selection rule when h(ŝ1, ŝ2) ≥ s̃ and (ii) we derive results for the

optimal project selection rule when h(ŝ1, ŝ2) < s̃.

Figure 3a displays the threshold s0 as dotted black lines and the set of ŝ1 and

ŝ2 values that satisfy h(ŝ1, ŝ2) = s̃ in red. This set is the solution to Equation (7).

In Figure 3b, we indicate which projects are chosen for exploitation based on the

respective values of ŝ1 and ŝ2. Each region is denoted by the set of domains for which

the highest-valued project in that domain is exploited. First, it follows from Figure

3a that both projects are chosen for exploitation when h(ŝ1, ŝ2) ≥ s̃ and ŝ1, ŝ2 ≥ s0.

Outside of this region, we must address two questions: (i) will there be a project

selected for exploitation, and (ii) if so, which one? Evidently, the answer to the

second question is the best project. Therefore, in Figure 3b, the selection between ŝ1
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and ŝ2 hinges on which side of the 45 degree line the project values fall. Further, one

can prove that there exists a threshold, s′, on the value of the best of the two projects

such that, below this threshold, the players choose to explore two new projects rather

than exploiting the best of the two projects. Conversely, above this threshold, the

players choose to exploit the best of the two projects and explore a new one. Moreover,

the threshold s′ is independent of the value of the worse of the two projects, since

this project will never be exploited. Finally, Figure 3b also presents a sample path

illustrating the evolution of realized project values over time, depicted in blue. In the

phase where the players are exploring two projects simultaneously, both ŝ1 and ŝ2

weakly increase over time. In the phase where the players exploit a project in domain

j, ŝj remains constant, while ŝ−j weakly increases over time. Finally, in the phase of

the relationship where the players exploit both projects, ŝ1, ŝ2 stay constant because

exploitation is permanent. Arrows are used to signify changes in project values when

a more valuable project is identified, while self-loops indicate situations where more

valuable projects are either not discovered or not pursued.

3 4 5

3

4

5

s0

s0
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(a) Feasible Region for First-Best Project Exploitation
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(b) Project Exploitation and Sample Path

Figure 3: Optimal Multi-Project Selection Dynamics

In the figure, we assume c = 1, m = 2, δ = 1/3, and sp ∼ Exp(1/3). The values ŝ1 and ŝ2 represent
the values of the best projects discovered by the players to date in cooperative domains 1 and 2,
respectively. The left figure plots (i) the threshold s0 such that the players switch from exploration
to exploitation in the benchmark case with symmetric benefits and (ii) the set of ŝ1 and ŝ2 values
such that h(ŝ1, ŝ2) = s̃ in red. The right figure plots in Black the project selection behavior of the
players under the optimal relational contract. Each region is denoted by the set of domains for which
the highest-valued project in that domain is exploited. For example, in the region {1, 2}, the best
project for each domain is exploited. In region {∅}, no project is chosen for exploitation. In Blue,
we plot one realization of a sample path.
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The sample path of realized project values depicted in Figure 3b implies novel

dynamics along the equilibrium path, characterized by several instances of temporary

project exploitation, including of projects with values below s0.16 Building on this

observation, in what follows we assume that sp ∼ (3 − 1 / λ) + Exp(λ) without

restricting δ to 1/3 or c to 1 . In this environment, we provide an analytical proof that,

beyond the departures already highlighted in Proposition 6, additional discrepancies

from the symmetric-benefits benchmark can arise in equilibrium.

Proposition 7 (Further Departures From Symmetric Benefits Rule)

Suppose sp ∼ (3− 1 / λ) + Exp(λ) and m = 2. For an open set of parameter values,

the following behaviors occur with positive probability on path:

1. The players exploit a project in period t but not in some period t′ > t.

2. The players exploit a project with value sp < s0.

3. The players choose not to exploit a project in period t, but choose to exploit it

in some later period t′ > t.

The behaviors described in the proposition do not occur with positive probability

across all parameter values, a conclusion that follows when noting that, as δ converges

to 1, players follow the project selection rule of the symmetric-benefits benchmark.

Furthermore, even within the parameter range where these behaviors occur with a

positive probability, their occurrence is not guaranteed: for instance, there is always

a non-zero probability that the players immediately identify two projects worthy of

permanent exploitation.

As argued above, the first statement follows from the second statement combined

with the result from Proposition 6, whereby the players only permanently exploit

projects whose values exceed s0. The intuition behind the second statement can be

seen by comparing the players’ exploration incentives in the presence of symmetric

versus asymmetric benefits, and by supposing that sp is distributed such that the

continuation value of the players’ relationship exceeds 2c with an arbitrarily small

probability. In this case, with a probability approaching 1, the players are able to

exploit at most one project, implying the exploration of at least one other project.

16In this scenario, the players never return to previously abandoned projects. However, when
m > 2, players may opt to exploit a project for several periods, subsequently abandon it, and later
revert to its exploitation.
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Consequently, the benefit of exploration stems from the chance to find a more valuable

project for exploitation in the next period. However, since the players are already

exploring one project, the gain from undertaking a second exploration might be lim-

ited: even if two superior projects are identified, they can only exploit one. On the

other hand, with projects generating symmetric benefits, the players, upon discov-

ering these two projects, can exploit both, providing them with greater exploration

incentives. This higher benefit of exploration, in turn, prompts the players to set a

higher exploitation threshold when benefits are symmetric.

Regarding the final statement, consider a value of δ sufficiently small such that

the players are unable to cooperate in exploiting projects achieving values slightly

exceeding s0. If in period 0 the players do find two projects with associated values

only slightly higher than s0, the players are compelled to explore two new projects

during the next period. However, if one of these new projects happens to achieve a

high value, the continuation value of the players’ relationship may exceed 2c and the

players may wish to return to one of the two period 0 projects.

In summary, this subsection has shown that in scenarios characterized by asym-

metric project benefits, when both players are motivated to explore projects but one

player requires incentives to engage in project exploitation, the players are likely to

explore projects for a considerable amount of time before identifying suitable projects

for permanent exploitation. Furthermore, players engage in incentive pooling across

different cooperation domains to facilitate collaboration, resulting in significant path

dependence in the selection of projects for exploitation. Throughout the collabora-

tion, players may interrupt the exploitation of a project in one domain upon discov-

ering a superior project in another domain, and they may revisit previously explored

projects in some domains when valuable projects are found in other domains.

5 Extensions

In this section, we provide additional results regarding the role played by the

dimensionality m of the players’ relationship. Next, we explore two extensions of the

main model, incorporating projects with both symmetric and asymmetric benefits.
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5.1 On the Benefits of Scope

Denote by π̃(m) := π(m) / m the average joint surplus of the relationship per

domain of the relationship. Similarly, denote by δ∗(m) the minimum discount factor

for which the optimal relational contract is non-empty. The following two inequalities

hold: π̃(m ·k) ≥ π̃(m) and δ∗(m ·k) ≤ δ∗(m), with k ≥ 1. The intuition behind these

weak inequalities is that the players can always engage in k independent relationships,

each replicating the optimal relational contract with m domains.

In the environment considered in Section 4.1, where exploration is not an equi-

librium of the stage game, δ∗(m · k) < δ∗(m). To see why this inequality holds

strictly, recall that, when δ = δ∗(m), the players’ optimal relational contract is nec-

essarily gradual. The players could adopt k separate gradual relational contracts.

However, doing so would be inefficient because it would condition further project ex-

ploration exclusively on the number of projects suitable for exploitation found within

an (inefficiently segmented) separate relational contract. By the same argument,

π̃(m · k) > π̃(m) whenever the optimal relational contract exhibits gradualism.17

In the environment considered in Section 4.2, where exploration can always be

sustained in equilibrium, δ∗(m) = 0. However, one can show that π̃(m · k) ≥ π̃(m)

holds as a strict inequality in the range of parameter values such that the players are

unable to replicate the project selection rule of the symmetric-benefits benchmark.

In these instances, pooling relational incentives across the previously k independent

relationships is valuable to the players.

5.2 Symmetric Projects as Stepping Stones in Relationships

We can also explore the dynamics of the scope of the players’ relationship when

projects with both symmetric and asymmetric benefits are available. Suppose that the

distribution of project benefits is as in Section 4.1, namely vp,2 = 0∀p ∈ P . However,

the players now also have access tom projects (each associated with a distinct domain)

with guaranteed benefits of vc for both players. We assume that 2c < 2vc < E(sp)
to ensure that these projects are profitable, but less so (in expectation) compared to

17While π(m) is monotonically increasing in m, π̃(m) may not be. To see this, suppose that
sp belongs to a three-point support (low, medium, and high). Suppose further that a high-valued
project and a single medium-valued project can be jointly exploited by the players, but that a high-
valued project and two medium-valued projects cannot, then π̃(m) would depend on the parity of
m and monotonicity would break.
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those chosen from the set P . As the projects with symmetric benefits can always be

selected, the presence of projects with symmetric benefits increases the value of the

players’ relationship for two related reasons: (i) the players’ relationship is maximal

from the very beginning and (ii) the presence of valuable projects with symmetric

benefits allows the players to begin exploring and subsequently exploiting the more

profitable asymmetric projects earlier. In this sense, the symmetric projects act as

stepping stones in the building of the players’ relationship.

5.3 Favoring Symmetric over Asymmetric Projects

In the Online Appendix, we modify the setting of Section 4.2 to allow for projects

with both symmetric and asymmetric benefits across the players. We show that, when

m = 1, players exhibit less selectivity for projects with symmetric benefits compared

to asymmetric ones. Additionally, the existence of asymmetric projects diminishes

selectivity for symmetric projects compared to when only symmetric projects are

available. Two distinct exploration/exploitation thresholds exist, s∗s and s∗a, where

the first threshold applies to projects with symmetric benefits, while the second one

applies to those with asymmetric benefits. The key finding that emerges from this

analysis is that: s∗a ≥ s0 ≥ s∗s. The intuition behind s∗a ≥ s0 is the same intuition

as before: a project that benefits just one player must be valuable enough to enable

cooperation in exploitation. The intuition behind s0 ≥ s∗s is as follows. If the players

identify a project with value sp ∈ (s0, s∗a), they can exploit it only if it yields symmetric

benefits. As a result, the overall value of exploration is lower for the players, leading to

lower exploration/exploitation thresholds for projects with symmetric benefits. These

results bear resemblance to Acharya and Ortner (2022), where two players involved

in collective search prioritize projects that benefit both players.

6 Applications

In this section, we integrate our theoretical analysis with case studies and empirical

research focused on collaborative dynamics. First, we consider inter-firm collabora-

tions, with an emphasis on buyer-supplier relationships. Next we examine how our

framework can also be applied to understand intra-firm collaborative dynamics, such

as interactions between managers and employees, and connect our findings with the
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literature on persistent performance differences across firms.

6.1 Between Firms

We have shown that when asymmetric benefits are present among collaborating

parties and the value of the relationship is initially low, parties may find it necessary

to: (i) expand the scope of their collaboration only gradually, leveraging early suc-

cesses as stepping stones to broaden their partnership, as discussed in Section 4.1;

and (ii) to engage in prolonged experimentation to identify projects with substantial

value, so that no party will find it in their interest to withdraw their cooperation in

the long run, as detailed in Section 4.2.

These predictions and their underlying logic align closely with the applied litera-

ture focusing on buyer-supplier dynamics. In buyer-supplier relationships, suppliers

often undertake non-contractible investments that tend to benefit the buyers. Toy-

ota’s relationship with its suppliers is a well-documented example of a gradual and

experimental approach, where Toyota encouraged each of its suppliers to incremen-

tally adopt various practices from the Toyota Production System—a strategy that

initially yielded benefits primarily for Toyota through improvements in quality and

efficiency (Dyer and Nobeoka, 2000).

Moving beyond the Toyota example, Vanpoucke et al. (2014) identify commonali-

ties across case studies through a survey involving more than one hundred buyer–supplier

relationships. They find that these relationships often exhibit gradualism and lengthy

experimentation. For example, analyzing a collaboration involving the development

of soy bean products, Vanpoucke et al. (2014) observe that “the buyer decided to pur-

chase from this supplier. This was the start of the exploration stage. ... it took about

10 years before the two parties started up a first integration initiative and entered the

expansion stage. It then took a long time for both partners to get to know each other,

build enough trust and see the benefits of learning from each other’s expertise and

further building up the relationship.” Consistent with our analysis, Vanpoucke et al.

(2014) emphasize the strong path dependence that marks relationship dynamics, not-

ing that “events rather than time define the development stage of the relationship.”

In the previous example regarding soy bean products, and across the other cases ana-

lyzed in Vanpoucke et al. (2014), the impetus for additional joint collaborations came

from successes in previous domains of cooperation.
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In this applied literature, the need for collaborating parties to build the credi-

bility necessary to sustain their relationship is often cited as a key explanation for

gradualism and lengthy experimentation. In a McKinsey report about buyer-supplier

dynamics, Gutierrez et al. (2020) note that “Building trust takes time [...]. Often this

means starting small, with simple collaboration efforts that deliver results quickly,

building momentum.” Similarly, Dwyer et al. (1987) note that “the critical distinc-

tion [between the exploration and expansion phases in buyer-supplier relationships]

is that the rudiments of trust and joint satisfactions established in the exploration

stage now lead to increased risk taking within the dyad. Consequently, the range and

depth of mutual dependence increase.”

Further, our analysis sheds light on patterns documented by an empirical litera-

ture in economics on the strong persistence of buyer-supplier relationships and the

tendency for relationship value to increase over time (e.g., Macchiavello and Morjaria,

2015; Bernard and Moxnes, 2018; Monarch, 2022; Monarch and Schmidt-Eisenlohr,

2023). The persistence of relationships is surprising according to existing models

that suggest suppliers would gain significantly in productivity by changing partners

frequently, and can only be explained if significant exogenous costs associated with

switching or searching for new partners are assumed. Our analysis suggests that buy-

ers may be reluctant to switch suppliers, even when alternatives seem better, precisely

because relationship value grows over time. To be certain, growth in relationship

value can occur for a number of reasons. Learning dynamics, such as instances where

suppliers gain confidence in their partners’ ability to fulfill orders or sincere inten-

tion to collaborate, can contribute to the enhancement of relationship value, lead to

larger transaction volumes, and foster the persistence of the relationship (c.f., Rauch

and Watson, 2003). Our framework shifts focus towards a complementary mecha-

nism for the growth of relationship value: the gradual expansion of collaboration

scope between buyers and suppliers across domains of cooperation. This expansion

in scope offers an additional explanation for the sustained increase in the value of

buyer-supplier relationships, maintaining its significance even once both parties have

established confidence in each other’s capabilities and intentions.
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6.2 Within Firms

While much of our focus has been on interactions between firms, our model serves

as a valuable lens for examining employer-employee dynamics. In this context, one

can conceptualize one party in our model as the employer and the other as the em-

ployee, where, for instance, benefits consistently accrue to the employer, as assumed

in Section 4.1. Furthermore, the different domains of collaboration can be seen as

various responsibilities assigned to the employee, with every project representing a

potential managerial approach for collaborative task achievement.

With this interpretation in mind, our work also contributes to the literature on

firm performance and, specifically, persistent performance differences among seem-

ingly similar enterprises (see Syverson, 2011; Gibbons and Henderson, 2013, and ref-

erences therein). Numerous empirical studies have documented enduring disparities

in performance across a range of industries and countries, and these gaps have proven

surprisingly robust against plausible explanations such as market competition or local

geographical and demand conditions. According to Gibbons and Henderson (2013),

and the body of evidence they review, variations in managerial practices are key

in creating productivity disparities across firms. We adapt for our purposes their

categorization of explanations: (i) managers might either be unaware of their poor

performance, or, even if aware, believe that the best practices from other firms are not

suitable for their context; (ii) managers are aware of their poor performance and are

able to seek superior managerial practices suitable to their context, but opt not to;

and (iii) managers are “striving mightily” to adopt superior practices but face hurdles

during the implementation phase. The first explanation underscores information bar-

riers, prompting questions about why such information does not diffuse more readily

(c.f. Bloom et al., 2013; Atkin et al., 2017). The second explanation is consistent with

the framework developed by Chassang (2010) and discussed in Section 1.1, in which

players are informed about the existence of more efficient practices but choose not

to pursue them. This explanation is also consistent with our analysis in Section 4.1,

showing that not all collaborations are guaranteed to reach their maximum potential

despite identical initial conditions (Proposition 5).

Our model also offers insight into the third explanation presented by Gibbons

and Henderson (2013). To illustrate, consider a scenario with two ex ante identical

organizations, each consisting of one manager and one employee collaborating over

multiple domains (e.g., sales and customer support), and a low discount factor δ.
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Both organizations are in the process of improving their managerial practices in each

domain through trial-and-error, and solutions are organization-specific. The low dis-

count factor compels the parties in both organizations to initially focus their efforts

on identifying a superior managerial practice within a single domain of their collabo-

ration. They do so despite being aware that superior practices exist in other domains

as well. If one organization happens to discover a successful managerial practice in the

initial domain of focus early on, while the other organization does not, the paths of

the two organizations will diverge. The first organization, having found success early,

will be able to move on and seek superior managerial practices within additional do-

mains. Consequently, the first organization has the potential to persistently maintain

superior performance compared to the second organization. This performance gap

is expected to widen over extended periods due to the compounding impact of each

successful managerial practice discovered and implemented by the first organization.

As they continue to find and adopt superior practices across multiple domains, their

overall performance will continue to improve, leaving the less fortunate organization

further behind. The second organization is “striving mightily” (and may eventually

succeed) to match the performance of the first organization, as it is still attempting

to achieve success in the first domain. However, identifying superior practices is a

time-intensive endeavor, and the second organization will not be able to increase its

scope until finding such a success.

7 Concluding Remarks

This paper has presented a framework for examining the dynamics of multi-project

collaborations, particularly when benefits are distributed asymmetrically among the

parties. The model generates three key insights. First, in situations where relation-

ship value is initially low, the parties cannot immediately realize the full potential

scope of their relationship. To build the credibility needed for sustaining cooperation

across multiple projects, the parties start by cooperating on a select few projects.

Successes achieved in these initial projects serve as a foundation for expanding their

collaborative efforts to additional domains. Second, because credibility is intricately

tied to the value of the players’ relationship, collaborating parties invest a substantial

amount of time in seeking projects that are sufficiently valuable to enable cooper-

ation. Third, parties combine their relational incentives across projects, resulting
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in inter-dependencies and significant path dependence. In this context,“relational

inter-dependencies” between projects can lead to seemingly erratic behaviors, such

as prolonged cooperation on projects that are ultimately discontinued, or the revival

of previously abandoned projects, all driven by the time required for the parties to

build credibility in their relationship.
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A Appendix

Proof of Proposition 2.

Recall from the text that one can ignore Equation (2) when analyzing the equi-

librium that maximizes the joint surplus of the players. As such, since there are no

inter-depenencies across domains, the players will treat each domain identically and

symmetrically.

Statement 1: All projects in Pj are ex ante identical. Hence, if the players ever

find it optimal to explore a project, then in every period the players will select a

project from domain j. This implies that for each domain the players either choose

no projects in all periods or a project in every period.

Statement 2: Given that there exists an infinite number of ex-ante identical

projects, the optimal relational contract conditions only on the project with the

highest value amongst all previously explored projects, whose value we denote ŝ.

In particular, one can write the Bellman Equation:

B(ŝ) = max
explore, exploit ŝ

{E (s′)− 2c+ δE (B (max (ŝ, s′))) , ŝ− 2c+ δB (ŝ)}. (8)

The first term in the maximum operator corresponds to the players’ expected surplus

when exploring one more project (chosen at random, since all unexplored projects

are ex ante identical) and the second term is their surplus when exploiting the best

project found thus far. Next, one can show there exists a threshold s0, wherein the

players explore if ŝ < s0 and exploit if ŝ ≥ s0. Finally, for any δ < 1, one can use

Blackwell’s Sufficient Conditions to show that there exists a unique solution to the

Bellman Equation, and hence the threshold rule dictated by s0 is a solution.

Proof of Proposition 4. By Equation (2), under any optimal relational contract spec-

ifying |P0| = m, the continuation value C exceeds c ·m at date 0 and can only grow

over time as n increases. The players therefore follow the project selection rule of the

symmetric benefits benchmark and C is additively separable across domains. Further,

as the scope remains constant under the symmetric benefits benchmark, and the con-

tinuation value is lowest in period 0, the most binding incentive constraint is the one

for period 0 provided in Equation (3). Because C(exploration) = 0 when δ = 0 and

is strictly increasing in δ, there exists a threshold δ such that (3) fails to hold when

δ < δ. Thus, if δ ≥ δ, any optimal relational contract specifies the project selection
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rule of the symmetric benefits benchmark and |P0| = m.

We now show the existence of a non-empty range of discount factors within which

any optimal relational contract specifies 0 < |P0| < m. We show this result by

considering an arbitrary project selection rule with 0 < |P0| < m. Specifically,

consider (i) fexplore(0) = 1 and fexplore(n) = m − n if n ≥ 1 and (ii) fexploit(n) = n.

There exists a relational contract that implements this project selection rule if and

only if Inequality (2) holds when n = 0 and n = 1, which are provided as Equation

(4) and (5), respectively. As argued in the text, these inequalities are strictly easier

to satisfy and thus the gradual project selection rule has a strictly lower associated

critical discount factor δ̄ < δ∗.

Finally, notice that Inequality (3) is independent of m. Consequently, when the

players opt for a project selection rule where 0 < |P0| < m, scope must necessarily

increase along the equilibrium path. To see this, assume, by contradiction, that the

scope remains constant and equal to |P0|. Then, Inequality (2) at date 0 coincides

with Inequality (3) (upon replacing m with |P0|). However, if Inequality (3) holds,

the players adopt the project selection rule of the symmetric-benefits benchmark.

Proof of Proposition 5. Statement 1: We define n as an absorbing state if n is

reached with positive probability and, upon discovering n projects suitable for ex-

ploitation, the players choose to exploit all n projects, and thus have a scope that

remains at n for all subsequent periods. We begin by showing that no absorbing state

can be reached with probability one.

Let’s suppose, by contradiction, that 0 < n < m is an absorbing state reached

with probability 1. No project selection rule can guarantee the players to identify

n projects suitable for exploitation without previously having identified n − 1 such

projects. Consider the case in which the players have identified n−1 projects suitable

for exploitation. In order for the players to identify precisely one more project suitable

for exploitation, they must explore projects on exactly one additional domain of

cooperation. Additionally, according to Proposition 3, any optimal relational contract

is such that f(n) ≥ f(n − 1) and f(n − 1) ≥ n − 1. Thus, the chain of inequalities

n− 1 ≤ f(n− 1) ≤ f(n) = n must hold. This means that the project selection rule

for n − 1 takes one of two possible forms. Suppose first that the players exploit the

n−1 projects suitable for exploitation they have found thus far and that they explore

projects in one additional domain. For this project selection rule to be implementable,
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by Proposition 1 the following inequality must hold:

nc ≤ C(exploration) + (n− 1)C(exploitation). (9)

However, Assumption 1 implies that C(exploitation) > c, so that Inequality (9) is

relaxed a n increases. Thus, if Inequality (9) holds, upon identifying an nth project

suitable for exploitation, the players would be able to exploit all n projects and

explore projects in one additional domain. This scenario leads to a contradiction.

Hence, when the players have identified n − 1 projects suitable for exploitation, it

must be that they explore projects in one additional domain and exploit n−2 projects.

However, note that exploiting n−1 projects is always feasible. Following this project

selection rule therefore implies that the players prefer the exploration of projects in

one additional domain of cooperation and eventual exploitation of two projects to the

immediate and permanent exploitation of a single project. Yet, once the players have

identified n projects suitable for exploitation, they face the same trade-off. Given

that they cease exploring projects after identifying n suitable ones, it follows that

they would also stop exploring once they have identified n − 1 such projects. Thus

we know no absorbing state is reached with probability one, and further if n is an

absorbing state, the players conduct two explorations when n − 1 suitable projects

have been discovered.

Given this result, it is sufficient to show that n and n + 1 < m cannot both

be absorbing states. To see why, note that if n is an absorbing state, but n + 1 is

not, then the previous result shows that if the relationship reaches n− 1 the players

conduct two explorations, and thus reach n + 1 with positive probability. Thus, if

there are never two consecutive absorbing states, the relationship reaches maximal

scope with positive probability. Let us now assume by contradiction that both n and

n + 1 < m are absorbing. Given this assumption, at n − 1 the players conduct two

explorations and n− 2 exploitations. As the players could always choose to conduct

n− 1 explorations, the players prefer to forego one exploitation for two explorations.

Next, note that if at n − 1 the players could conduct n − 2 exploitations and

two explorations , the players can similarly conduct n − 1 exploitations and two

explorations at n (by a similar observation to Equation (9) being increasing in n).

Further, as the players preferred to sacrifice one exploitation for two explorations

previously, the players will have the same preference at n. This is a contradiction, as
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we previously assumed n was an absorbing state.

Statement 2: The proof for this statement was provided in the text.

Statement 3: By statement 2, we must consider m ≥ 3. Also, by an identical

reasoning to that provided in the proof of statement 2, we know that at n = 1 the

players must conduct an exploration. Suppose m = 3 and consider 2 as an absorbing

state of the players’ relationship (as defined in the proof of statement 1). The proof

of Figure 1 is included in the Online Appendix.18 We show that the following project

selection rule is the only one inducing an absorbing state of n = 2:

fexplore(n) =

n+ 1 if n ≤ 1

0 if n > 1
fexploit(n) =

0 if n < 2

n if n ≥ 2
(10)

One can note from (10) that with probability q
2−q

limt→∞ |Pt| = 3 and with comple-

mentary probability 2−2q
2−q

limt→∞ |Pt| = 2.

Proof of Lemma 1. When the players have identified projects with values ŝ1, . . . , ŝm

at history h, the condition for the players being able to replicate the project selection

rule of the symmetric-benefits benchmark in all subsequent periods is that, for all

histories h′ occurring after h and with associated project values ŝ′1, . . . , ŝ
′
m, the players

exploit ŝ′j if and only if ŝ′j ≥ s0. This condition is as follows:

c
m∑
j=1

1ŝ′j≥s0 ≤ δ

(
m∑
j=1

C(ŝ′j)

)
∀(ŝ′1, . . . , ŝ′m) ≥ (ŝ1, . . . , ŝm), (11)

which corresponds to Equation (2) when the players follow the symmetric-benefits

benchmark where C(ŝ′j) denotes the continuation value in domain j under the symmetric-

benefits benchmark. Note that such a function is (i) constant below s0, (ii) limx↑s0 C(x) >
limx↓s0 C(x) and (iii) increasing after s0. Given such properties, one can note that set-

ting ŝ′i = max{ŝi, s0} both minimizes the right-hand side and maximizes the left-hand

side of Equation (11). Thus, an equivalent condition is:

m · c ≤ δ
( m∑

j=1

1

1− δ
(max{ŝj, s0} − 2)

)
, (12)

18See Footnote 13 for why such characterizations are lengthy and are thus included in the Online
Appendix.
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which corresponds to the expression stated in the Lemma.

Proof of Proposition 7. Suppose sp ∼ (3−1/λ)+Exp(λ), which implies that E(sp) =
3 > 2. Moreover, the support of this distribution is convex for any λ. Hence, this

distribution satisfies the assumptions made in the text. Recall that the optimal

relational contract conditions only on the best project found thus far in each domain.

Statement 3 Note that there exists a sufficiently small value of δ such that the

players are unable to exploit a project worth s0+ ϵ. Consider such a δ. With positive

probability, in period 0 the players identify two projects with values belonging to

an arbitrarily small range around s0 + ϵ and s0 − ϵ. The players are unable to

exploit either project in period 1 and, thus, must explore two new projects. Because

the distribution of sp is unbounded, for any δ, there exists a realization of sp large

enough such that h(s0 + ϵ, sp) > s̃. Finally, in this region (i.e., h(s0 + ϵ, sp) > s̃), the

players follow the project selection rule of the symmetric-benefits benchmark and thus

permanently exploit both projects. Therefore, with positive probability, the players

exploit a project they have previously chosen not to exploit.

Statement 1 Statement 2 implies Statement 1.

Statement 2 Suppose δ ≥ 1 / 3 and c = 1, which ensures that C(ŝ1, ŝ2) ≥ 1 =

c∀ŝ1, ŝ2. When C(ŝ1, ŝ2) ≥ 1 but h(ŝ1, ŝ2) < s̃, the value of the second best project is

irrelevant because within this range, the second best project will never be exploited

since at most one project can be exploited. One can write the Bellman equation for

the players: B(ŝ1, ŝ2) = B(max{ŝ1, ŝ2}) when h(ŝ1, ŝ2) < s̃.

The indifference condition defining s0 and the Bellman equation, B0(·), corre-

sponding to the symmetric-benefits benchmark is:

s0 − 2 + δB0(s0) = 3− 2 + δE(B0(max{s, s0})). (13)

The left-hand side corresponds to the players’ surplus when exploiting a project with

value s0. The right-hand side corresponds to the players’ surplus when exploring one

more project.

Suppose by contradiction, that the players never exploit a project with value less

than s0. In other words, suppose that the players weakly prefer to explore two new
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projects when the best project found so far is worth s0:

s0 − 2 + (3− 2) + δE(B(max{s, s0}) + δϵ1(λ) (14)

≤2(3− 2) + δE(B(max{s, s′, s0}) + δϵ2(λ).

The first line corresponds to the value of exploiting a project worth s0 and exploring

an additional project. Under such a project selection rule, the first two terms corre-

spond to the players’ expected surplus in the current period and the latter two terms

correspond to the continuation value. The term ϵ1 corresponds to the change in con-

tinuation value upon finding a project valuable enough that h(ŝ1, ŝ2) ≥ s̃. Specifically,

ϵ1(λ) corresponds to the probability that the new project’s value, s′, is sufficiently

large such that h(ŝ1, ŝ2) ≥ s̃, multiplied by the difference in continuation value in this

region, as opposed to the continuation value when the continuation value is less than

2. The second line corresponds to the players’ surplus following the exploration of

two projects, where ϵ2(λ) is defined analogously. Both ϵ1, ϵ2 approach 0 uniformly as

λ → ∞. These convergences happen because, to reach h(ŝ1, ŝ2) ≥ s̃, the players must

draw a project with value equal to at least 4. Because (i) drawing such a project

occurs with probability approaching 0 as λ → ∞ and (ii) the surplus differences asso-

ciated with ϵ1(·) andϵ2(·) remain bounded as λ → ∞, the ϵ1 and ϵ2 terms uniformly

decrease. One can then subtract Equation (13) from Inequality (14) and simplify

using the closed-form solution of B0 to derive:

1

λ(1− δ)
≤ E(B(max{s, s′, s0} −B(max{s, s0})) + ϵ2(λ)− ϵ1(λ). (15)

Next, we show that B(x) − B(y) ≤ (x − y) / (1 − δ) + ϵ3(λ) when x > y, where ϵ3

is exponentially decreasing in λ. Except for the exponentially decreasing probability

that the players’ continuation value exceeds two (which is accounted for by ϵ3(λ)),

the players will be able to exploit at most one project per period. As such, the

largest possible benefit from exploiting a better project occurs from exploiting the

better project in every period. Utilizing such a bound, we can derive the following
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inequality:

1

λ(1− δ)
≤ E

(
max{s, s′, s0} −max{s, s0}

1− δ

)
+ ϵ2(λ)− ϵ1(λ) + ϵ3(λ) (16)

⇐⇒ 1

λ(1− δ)
≤ 1

1− δ

(
2

λ
− 1

2λ
− 1

λ

)
+ ϵ2(λ)− ϵ1(λ) + ϵ3(λ). (17)

Finally, because ϵ1(λ), ϵ2(λ), ϵ3(λ) are all exponentially decreasing in λ, we can ignore

these terms in the limit. Thus, one can further simplify to derive:

1 ≤
(
2− 1

2
− 1

)
, (18)

which is a contradiction.
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