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Real-time Adaptive Randomization of Clinical Trials 

 
Abstract 

 
 Objective: To evaluate real-time (day-to-day) adaptation of randomized controlled clinical 

trials (RCTs) with delayed endpoints  forward-looking optimal-

response-adaptive randomization (RAR). To identify the implied tradeoffs between lowered 

mortality, confidence intervals, statistical power, and potential misidentification based on 

empirically-grounded data and on simulations of temporal changes in endpoint rates. 

 Study Design and Setting: Using data from RCTs in acute myocardial infarction (30,732 

patients in GUSTO-1) and coronary heart disease (12,218 patients in EUROPA), we resample 

treatment-arm assignments and expected endpoints to simulate (1) real-time assignment, (2) for-

ward-looking multiday-block-based assignment, and (3) an -variant that balances RCT and real-

time assignments. (Stationarity, which enables resampling, is tested.) Blinded day-to-day arm 

assignments are adjusted by optimizing the tradeoff between assigning the (likely) best treatment 

and learning about endpoint rates for future random assignments. 

 Results: Despite delays in endpoints (in EUROPA), real-time assignment quickly learns 

which arm is superior. In the simulations, by the end of the trials, real-time assignment allocated 

more patients to the superior arm and fewer patients to the inferior arm(s) resulting in fewer 

mortalities over the course of the trial. Endpoint probabilities and odds ratios were well within 

(resampling) confidence intervals of the actual RCTs, but with tighter confidence intervals on the 

superior arm and less-tight confidence intervals on the inferior arm(s) and the odds ratios. The -

variant and block-based assignments provide intermediate levels of benefits and costs. With 

temporal changes, real-time assignment improves estimation of the end-of-trial superior-arm 

endpoint rates, but exaggerates differences relative to inferior arms. Unlike most RARs, real-

time assignment automatically adjusts to reduce biases when temporal changes are large. 

 Conclusion: Real-time assignment would have improved patient outcomes within the trial 

(beneficence) and reduced the confidence interval for the superior arm. Benefits are balanced 

with larger confidence intervals on inferior arms and odds ratios. Variants and block-based 

assignments provide intermediate benefits and costs.
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Real-time Adaptive Randomization of Clinical Trials 

 
1. Adaptive trials, response-adaptive-randomization, and real-time adaptive 

randomization 

The gold standard for large-scale Phase III trials is randomized controlled trials (RCT) in 

which patients are assigned randomly (and usually in equal proportions) to different treatments, 

or .  However, patient lives might be saved (and non-fatal endpoints prevented) if blinded 

information, gained from patients within the trial, is used to automatically assign more patients to 

the best treatment (endogenously-identified superior arm) and fewer patients to other treatments 

(inferior arms). Such beneficence and equipoise might come at the cost of higher-variance odds-

ratios, a change in the ability to identify the best arm, or statistical confidence that the superior 

arm is indeed best. 

Adaptive designs reallocate patients based on observations throughout the trial. For 

example, a Data Safety Monitor Board (DSMB) might periodically review results and reallocate 

the next batch of patients among arms [1, 2]. Alternatively, trialists might use prospectively-

planned algorithms to reassign patients more often [3]. Such designs are often called response-

adaptive randomization (RAR) methods [4, 5, 6, 7, 8]. 

RAR methods include Thompson Sampling (assign patients proportional to the 

probability that an arm is best), modifications of Thompson sampling, play the winner, 

sequential maximum likelihood, sequential posterior mean, and various other methods based on 

Bayes updating [4, 5, 6, 7, 8]. RARs vary in how they choose to use information in their 

adaptive-sampling strategies, leading to different trade-offs between patient beneficence and 

uncertainty reduction (e.g., statistical power for endpoint rates or for odds ratios). For example, 

an RAR might increase the likelihood of positive endpoints within a trial, but at the expense of 
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less power to distinguish among pairs of inferior arms. Because RARs often allocate more 

patients to the superior arm as the trial progresses, RARs may or may not be robust to temporal 

changes in (true) endpoint rates [12, 15, 16]. Furthermore, RAR analysis must use all available 

information and account for small-sample biases [2, 9, 11, 15, 16, 28, 30]. When RARs are 

Bayesian in nature, reported statistics must be justified as appropriate for the data-generating 

process [15, 25, 26]. 

Most RARs tend to be myopic, require randomization within periods (blocks of patients), 

and use fixed overall sample sizes [9]. Recently, researchers have proposed variations of 

forward-looking patient-by-patient optimal experimentation. Forward-looking patient assignment 

balances the benefit of learning the endpoint rates of the arms to make better patient assignments 

during the remainder of trial (and post-trial) against the immediate expected best-arm 

assignments in the current period [10, 11, 12, 13, 14]. 

Forward-looking methods show much promise in terms of positive endpoints, such as 

lives saved, relative to myopic RARs and fixed randomization [13], but forward-looking 

optimization faces theoretical challenges when endpoints are delayed. The proof of optimality 

for forward-looking experimentation assumes that a trialist observes an endpoint before the next 

patient is assigned. However, in our first empirical example, mortality is observed 30 days after 

arm assignment and in our second empirical example the last primary endpoints (a composite of 

cardiovascular mortality, myocardial infarction and cardiac arrest) are observed in the follow-up 

study with a mean of 4.2 years after treatment. To address delayed outcomes and to maintain 

randomization within periods, most previously-proposed forward-looking algorithms group 

patients into blocks and sample from all potential patient orders within the block. Simulated 

optimal assignments within block provide (unequal) randomization probabilities. 
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Assigning patients within blocks is a creative and effective strategy, but does not fully 

address delayed endpoints. Unless the trialist plans no-assignment periods between successive 

blocks, delayed patient endpoints for assignments late in the block period are not observed in 

time for the next-block patient assignments. One solution is to use large blocks so that the per-

centage of such patients is small, but large blocks decrease the advantages of optimal experimen-

tation [13]. 

We examine an alternative forward-looking optimal-experimentation algorithm which 

assigns patients on a real-time (day-to-day) basis based on all data observed up to the day of pa-

tient assignment  real-time adaptive randomization (RTAR). Our analyses suggest that, had 

RTAR assignments been used in two large-scale cardiovascular trials, then lives would have 

been saved and non-fatal cardiovascular events prevented. We evaluate advantages and 

disadvantages of RTARs and highlight the ethical issues raised by RTARs. In §5.2, we examine 

the impact of temporal changes in endpoint rates, a known issue with RARs [12, 15, 16]. 

1.1. Multi-arm bandit algorithm when there are no delayed outcomes 

RTARs use a preplanned statistical algorithm to assign patients to arms based on the end-

points observed up to the time of assignment. For ease of exposition, we first describe a real-time 

adaptive design in which exactly one patient arrives each day and endpoints are observed the day 

of assignment. We next extend the discussion to the more-realistic situation where more than one 

patient arrives each day and endpoints are delayed. Based on tests of stationarity (§5.1), we as-

sume that patients are interchangeable  the true endpoint rates (e.g., mortality) per arm do not 

change throughout the trial.  

Optimal experimentation is based on a multi-arm bandit (MAB) [17]. Conceptually, the 

trialist seeks to optimize endpoints over all current and future patients, including those after the 
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trial. To best assign arms to patients, the trialist must balance learning about the endpoint proba-

bilities See Figure 1.  

We use Bayesian thinking. Let  be our current beliefs at the start of day  about the 

endpoint probability for arm . If we assign arm  for the day-  patient, we get an expected 

reward of  for that patient, but we also learn more about arm . On day , we have a 

better estimate of the endpoint probability, , which enables the trialist to make a better 

decision on day . Mathematically, the trialist has posterior beliefs about the distributions of 

 and  for all arms in the trial.  

  

Fig. 1. Real-time adaptive randomization 

We would like to learn the best treatment earlier than later. For example, if we know the 

best treatment today rather than a year from now, we can save lives and prevent non-fatal 

cardiovascular events while we are learning. To capture that concept, optimal experimentation 

parameter to value endpoints today slightly more than endpoints 

tomorrow [11, 13, 17, 18, 19]. ter is chosen conservatively; analyses for 

our data suggest that the RTAR for the two empirical trials is robust with respect to this 

parameter. We seek an algorithm that minimizes discounted negative outcomes, such as 

Patients randomly arrive daily on day 

Balance earning and learning for current patients 
and all future patients (within and after trial).

Provide the (likely) best treatment 
and better learn current best-arm 

outcome rate (earn).

Better learn outcome rates of 
inferior arms for potential future 

treatments (learn).

(Delayed) endpoints observed 
(only those available by day )

Update beliefs about 
endpoint rates.
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mortality or cardiovascular events, for all future periods recognizing that we value saving lives 

earlier rather than later.  

An RTAR represents system knowledge about the endpoint probabilities using a beta 

probability distribution per arm [11, 12, 21]. The beta probability distribution has two 

parameters,  and , for each arm . Larger parameter values mean less uncertainty in 

 The expected value of the beta distribution, 

, gives an estimate of the endpoint probabilities for each arm. Suppose the endpoint is 

mortality, then, when an endpoint is observed at the end of day ,  is incremented by 

+1 for mortality and  is incremented by +1 for survival.  

Gittins proved that the optimal dynamic-programming solution for the Bellman Equation, 

that represents the tradeoff between learning  i that 

is a function of  and  [11, 19]. Details in eAppendix A. The optimal allocation is to 

assign to the arriving patient the arm with the lowest Gittins index (ties broken randomly). (Low-

est because the endpoint is mortality; highest if the endpoint were survival.) The first patient is 

assigned based on prior beliefs, which may be 1:1. The calculations necessary to compute Gittins 

indices are easily completed and tabled before (blinded) patients are assigned to an arm. 

The RTAR algorithm differs from many RARs because the patient is assigned to an arm 

deterministically based on the endpoints observed up to that day. (Variants introduced in §1.3-

1.4 allow randomization within day.) When patients arrive randomly and when endpoint 

probabilities do not change over the course of the trial, the random arrival of patients assures that 

the RTAR algorithm is a randomization procedure an optimal randomization procedure. In 

RTARs, the data and safety monitoring boards still maintain their role as independent oversight 

and monitoring of the trial progress, data integrity, and participant safety [2, 20]. 
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RTARs optimize discounted patient endpoints, while avoiding arm assignments that are 

unnecessary  for the learning process [11, 21]. RTARs automatically assign a sufficient number 

of patients to all study arms, but not necessarily in a 1:1 ratio, until uncertainty in endpoint rates 

is reduced enough that assigning patients to the inferior arms no longer provides value.  

Stabilization to the superior arm occurs when the trial be sufficiently long. In our primary 

application, arm assignments almost always stabilize across replicates. In our experience, a trial 

size that is sufficiently powered as if run as an RCT is sufficiently long for real-time assignments 

to stabilize. In a new trial, trial size can be planned with simulation [2]. 

1.2. Multi-arm bandit algorithm with delays and multiple patients per day 

As an approximation to optimality, if more than one patient arrives on a given day, we 

assign all patients to the arm with the lowest index. When there are delays, we use only end-

points that have been observed by day . The Gittins algorithm is no longer provably optimal, 

but we expect the algorithm to be close to optimal if (1) the number of patients that arrive on 

each day is small compared to the total patients in the trial and (2) the delay is small compared to 

the length of the trial. The first condition is met in both trials that we analyze, but it remains an 

empirical question whether an RTAR saves lives and minimize other adverse end outcomes. The 

second condition is met in the first trial we analyze, but not necessarily the second trial, thus 

enabling us to examine the impact of substantial endpoint delays.  

1.3. Block-based MAB  

RTARs assign patients deterministically, relying on random arrival and stationarity. An 

alternative MAB-based algorithm assigns patients to blocks and randomizes within blocks [12, 

13]. If the block is sufficiently large relative to the endpoint delay, then most, but not all, end-

points can be observed before assignments are made in the next block. 
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The block-based adaptive design enrolls patients in  blocks of size , assigning patients 

in block  using the information gathered up to and including the  block [13]. The design 

assumes endpoints are observed immediately at the end of a block and used for assignments in the 

next block. Because, theoretically, learning could happen within a block, the block-based 

algorithm looks forward through the block by simulating the expect endpoints and Gittins-Index 

updates within a block. The simulation to identify assignment probabilities assumes (1) the first 

patient is assigned based on the Gittins index calculated based on previous-block endpoints and 

(2) second and subsequent patients within a block are assigned, endpoints observed, and Gittins 

indices updated based on simulated endpoints within the block. Assuming stationarity and random 

arrival, the algorithm calculates the expected percentages of arm assignments over all possible 

patient orders. To make the algorithm feasible, the order of patient arrivals is sampled rather than 

exhaustively enumerated. This algorithm is known as the forward-looking Gittins index algorithm 

[FLGI, 10, 12, 13]. We refer to it as the block-based MAB. 

In simulations grounded to a breast-cancer-treatment RCT, the block-based MAB 

relative to other trial 

strategies including RCTs and other RARs. The block-based MAB improved the expected 

number of positive endpoints by almost 50%, but with a reduction in statistical power of approxi-

mately 70%. Results depended upon the block size, with more positive endpoints and lower 

power observed for smaller blocks. Other RARs produced intermediate patient successes and 

power relative to the block-based MAB and an RCT. 

1.4. RTAR -variant to ensure a target minimum power 

 Theoretically, an RTAR identifies the superior arm quickly and assigns substantial sample 

to the superior arm. Less sample is assigned to inferior arms resulting in less statistical power for 
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the inferior-arm endpoint rates. This is an ethical dilemma. Trialists may wish to assure a minimum 

sample size (minimum statistical power) on the inferior arms or on odds ratios [12, 22]. 

To explore this issue while retaining many advantages of RTARs, we examine an 

variant of an MAB algorithm that seeks a minimum level of statistical power to inferior arms. 

In the -variation, with probability  we randomize patients in equal proportions to all arms that 

have not yet reached a target minimum number of patients and, with probability , we 

assign patients with Gittins indices.  is the number of arms that have not yet reached the mini-

mum number of patients at the start of day . The -variant is an alternative means to achieve 

burn-in [5, 8, 23]. 

 RTARs, the block-based MAB, and the -variants are all MAB-based algorithms. An 

MAB-based algorithm is a type of RAR and an RAR is a type of adaptive design. 

2. Statistical concepts, adaptivity bias, and expected performance 

2.1. Statistical concepts and potential adaptivity bias 

Learning in the Gittins framework is inherently Bayesian. Bayesian interpretations are 

based on the posterior likelihood. For RARs, the posterior likelihood can be factored into a term 

based on the observed endpoint conditioned on the assignment and a term based on the probabil-

ity of assignment given the data from prior endpoints. Because the latter is a known function of 

the data, the second term does not depend upon the unknown endpoint probabilities and can be 

removed from the likelihood [25]. Thus, the Bayesian posterior likelihood does not depend 

explicitly on how the RAR assigns patients. All information about unequal sample sizes among 

arms is included in the likelihood function [15, 25, 26]. 

Because the likelihood does not depend upon how the RAR assigns patients, neither do 

typically-used maximum-likelihood estimators (MLE). MLEs are consistent estimators 
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(asymptotically unbiased for large numbers of patients), efficient estimators (no consistent 

estimator has a lower asymptotic mean-square error), and are asymptotically normal [9, 25, 27, 

28]. From a Bayesian perspective, MLEs are asymptotically equivalent to maximum posteriori 

estimation with weakly informative priors [29]. The factored likelihood implies that MLEs can 

be reported and analyzed after the trial is completed, especially for large samples [9, 25, 27, 28, 

30].  

MLEs are consistent, but they may be biased for small samples [2, 11, 16, 28, 30]. When 

adaptive designs are based on a small number of intermediate analyses, trialists use standard cor-

rections for estimation biases and especially for Type 1 error inflation [2, 28, 32, 33, 34]. Small-

sample biases occur in many RARs and require advanced statistics or propensity scores [15, 25, 

27, 35]. Such biases are minimal for the large samples in this paper [25, 30, 35].  

Researchers estimate the distributions of statistics to evaluate RARs, such as the percent 

of times the superior arm is identified as superior, by sampling from a known model [2, 7, 8, 11, 

12, 13, 16, 24, 28] or resampling with replacement when patient-by-patient endpoints are 

observed [30, 21]. When we have patient-by-patient observations, resampling generates the 

distribution of observations from which we compute means and confidence intervals for statistics 

such as odds ratios and endpoint rates. Resampling also provides the percent assignments to 

arms, the probability an arm is identified as superior, Type 2 error (the probability of declaring a 

trial inconclusive when it is not), and the percent of adverse imbalance in arm assignments [5, 

23, 24, 30, 31]. Resampling statistics are consistent with the (Bayesian) likelihood principle. 

When the number of patients is sufficiently large, they are consistent with commonly-reported 

post-trial statistics. 
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2.2. Anticipated performance of an RTAR relative to an RCT 

 As an RTAR learns endpoint rates for each arm, we expect it to allocate more patients to 

the (endogenously-identified) superior arm. With more patients allocated to the superior arm and 

fewer patients allocated to inferior arms, we expect the negative endpoints to be fewer for 

RTARs relative to an RCT. When the endpoint is mortality, RTARs will lead to greater patient 

beneficence. 

When more patients are allocated to the superior arm, we expect that the (resampling) 

confidence intervals, relative to RCT confidence intervals, will be tighter for the superior arm at 

the expense of less-tight confidence intervals for the inferior arms. We also expect there will be 

more power to estimate superior-arm endpoint rates and less power for inferior arms. 

For two arms, pairwise power will be maximal and odds-ratio confidence intervals are 

tighter for equal allocation. With three (or more) arms, predictions are less clear. With three 

arms, we expect that the RTAR will allocate fewer than  patients to the worst inferior arm, 

resulting in more than  patients split between the superior arm and the second-best arm. 

Depending on the specific allocation, the superior-arm-to-inferior pairwise power may either 

increase or decrease relative to the corresponding RCT. Similarly, the confidence intervals for 

the odds ratios may be tighter or less-tight depending upon the specific allocation of patients to 

arms. We resolve this ambiguity empirically for the two trials analyzed in this paper. 

By design, the -variant approaches an RTAR as  and approaches an RCT as 

, thus we expect the performance of the -variant to be between that of an RTAR and an RCT. 

By choosing  between 0 and 1, the trialist can finetune emphasis on patient beneficence, 

estimating the endpoint rates for the superior arm, estimating the endpoint rates for the inferior 

arms, power for endpoint rates, and power for odds ratios.  
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We examine the performance in terms of endpoint outcomes and statistical power of an 

RTAR and variants on data from two large-scale trials. We also examine the percent of times the 

superior arm (and inferior arms) are identified as superior, and how quickly the real-time 

algorithm converges to the superior arm. In §5.1, we test stationarity of endpoint rates. In §5.2, 

we examine the impact of temporal changes in endpoint rates. 

3. What if the GUSTO-1 and EUROPA trials had been adapted in real time? 

3.1. The GUSTO-1 and EUROPA RCT trials 

To study the potential performance of RTARs, we use resampling simulations grounded 

by the data from the GUSTO-1 and the EUROPA trials [36, 37]. The design and principal results 

of both trials have been published and are summarized in Table 1. Briefly, GUSTO-1 random-

ized a total of 31,180 patients presenting with acute myocardial infarction to one of three throm-

bolytic strategies. (30,732 patients after excluding observations with missing data. A fourth strat-

egy was added later into the trial.) The primary endpoint was 30-day all-cause mortality and was 

lowest in the patients randomized to accelerated tissue plasminogen activator (t-PA) with intra-

venous heparin, 6.3%. The GUSTO-1 investigators concluded that this combination is the best 

thrombolytic strategy to date (i.e., 1993) for patients with acute myocardial infarction.   

 The EUROPA investigators randomly assigned 12,218 patients with stable coronary heart 

disease to either a treatment with the angiotensin-converting-enzyme (ACE) inhibitor perindopril 

or to a matching placebo. The primary endpoint was a composite of cardiovascular death, non-

fatal myocardial infarction and cardiac arrest with successful resuscitation, and was lowest (8%) 

in those patients randomized to perindopril. In 2003, the investigators concluded  top of 

other preventive medications, [perindopril] should be considered in all patients with coronary 

heart disease.  The mean time-to-the-last observation of outcomes across all patients in 
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EUROPA was 4.2 years since the start of the trial. 

 The GUSTO-1 and EUROPA trials were conducted according to the prevailing ethical 

regulations at the time, which included approval of the protocol by the institutional review board 

at the participating hospitals, and informed consent by the study participants. Our analyses are 

based on the individual (anonymized) patient data from the trials, which we obtained by courtesy 

of Duke University School of Medicine and Servier. 
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Table 1. GUSTO-1 and EUROPA Trials (conducted as RCTs) 

Trial details GUSTO-1 ii EUROPA iii 

Goal 
Compare streptokinase and tissue plasmin-
ogen activator thrombolytic strategies in 
the treatment of acute myocardial infarc-
tion 

Assess the effect of perindopril versus 
placebo on the combined endpoint of 
cardiovascular death, non-fatal MI, and 
resuscitated cardiac arrest in patients 
with stable coronary heart disease 

1st Enrollment December 27, 1990   27 October, 1997 

Termination   February 22, 1993 20 March, 2003 

Arms at the start of the 
trial 

Arm 1: t-PA, IV Heparin  

Arm 2: SK, IV Heparin  

Arm 3: t-PA+ SK, IV Heparin  

Arm 1: Perindopril  

Arm 2: Placebo 

Patients per randomly  
allocated treatment a  

t-PA, IV Heparin:      10,396 

SK, IV Heparin:       10,410    

t-PA+ SK, IV Heparin: 10,374 

Perindopril:  6,110 

Placebo:    6,108 

Primary endpoint Death from any cause at 30 days of follow-
up 

Composite of cardiovascular mortality, 
non-fatal MI, and resuscitated cardiac 
arrest during (mean) 4.2 year follow-up 

Incidence of the primary 
efficacy endpoints a  

t-PA, IV Heparin:        653 (6.3 %) 

SK, IV Heparin:         763 (7.3 %) 

t-PA+ SK, IV Heparin:    723 (7.0 %) 

Perindopril: 488 (8.0%) 

Placebo:   603 (9.9%) 

 

Eligibility 
Patients presenting to a participating hospi-
tal less < 6 hours after symptoms, with 
chest pain lasting at least 20 minutes and 
accompanied by electrocardiographic signs 

-segment elevation in two 
 two or 

more contiguous precordial leads 

Men and women  18 years with evi-
dence of coronary heart disease per MI, 
percutaneous or surgical coronary revas-
cularization, angiographic evidence 
70% narrowing of at least one major cor-
onary artery, or a history of typical chest 
pain in male patients with an abnormal 
stress test 

Exclusion 
Previous stroke, active bleeding, previous 
treatment with streptokinase or an-
istreplase, recent trauma or major surgery, 
previous participation in the trial, or non-
compressible vascular punctures 

 Clinically evident heart failure, planned 
revascularization procedure, hypoten-
sion, uncontrolled hypertension, use of 
ACE-inhibitors or angiotensin-2 receptor 
blockers in the last month, renal insuffi-
ciency, and serum potassium 

a Before removing observations with missing data. GUSTO-1 sample sizes after removing missing data are: 10,255 (arm 
1),10,268 (arm 2); 10,209 (arm 3)  
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3.2. Data and grounded simulations 

The detailed distribution of the RCT randomizations and endpoints per day in the 

GUSTO-1 and EUROPA trials are presented in the online eAppendix B (eFigures 1 and 2). The 

figures cover the entire duration of the trial, from the first randomization until the last primary 

endpoint was observed. 

 Using the empirical trial data, we resampled patients to simulate what would have 

happened had the trial been based on an RTAR. Priors were weakly informative and equal for all 

arms, thus starting with an equally-likely ratio (1:1:1 for GUSTO-1; 1:1 for EUROPA). For each 

day of the trial, the RTAR automatically assigns patients arriving on day  to the study arms, 

based on observed endpoints up to that the beginning of day . (Only endpoints observed before 

day-  assignments are used.) Patients for each arm are drawn randomly (with replacement, given 

stationarity and exchangeability of patients) from the pool of RCT patients in the chosen arm. To 

avoid a particularly favorable draw and to compute confidence intervals for all statistics, we re-

peat the process with 200 replicates for each study. In GUSTO-1, these pools have 10,255 

patients in arm 1, 10,268 patients in arm 2, and 10,209 patients in arm 3. In EUROPA, these 

pools have 6,100 patients in Perindopril and 6,108 in the placebo. The empirically-grounded sim-

ulations continue until the final day of the original RCT trials. Mean endpoint rates, confidence 

intervals, power, pairwise odds ratios, and other statistics of interest are based on the distribu-

tions over replicates. 

3.3. Odds ratios 

As more patients are assigned to arms, the estimated odds ratios evolve and the odds-ratio 

confidence intervals become tighter. Figures 2a to 2c plot the evolution of the mean and the con-

fidence intervals for the odds ratios of all pairs of arms (averaged over replicates). We observe a 
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tighter confidence interval for the arm-1-to-arm-3 odds ratio (the two arms with lowest mortality 

rates) with a less-tight confidence interval for the arm-1-to-arm-2 odds ratio (superior to third 

best) and for the arm-2-to-arm-3 odds ratio (second best to third best).  

 

Fig. 2a. Changes in real-time adaptive trial odds ratios during the trial for arms 1 and 2, averaged over 

200 replicates  

 

Fig. 2b. Changes in real-time adaptive trial odds ratios during the trial for arms 1 and 3, averaged 
over 200 replicates 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



      Real-time Adaptive Randomization  16 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2c. Changes in real-time adaptive trial odds ratios during the trial for arms 2 and 3, averaged 
over 200 replicates 

 
For the RCT and the RTAR, we compute 2.5%, 50%, and 97.5% confidence intervals 

over 200 replicates, each based on patient resampling. For GUSTO-1, the resampling median 

RCT arm 1:2 odds ratio is 1.182 (1.075, 1.297), the arms 1:3 odds ratio is 1.116 (0.997, 1.240), 

and the arms 2:3 odds ratio is 0.944 (0.852, 1.052). (In the RCT, the observed means were 1.184, 

1.118, and 0.945, respectively.) The median RTAR odds ratio estimates are 1.204 (1.073, 1.632) 

for arms 1:2, 1.150 (1.032, 1.414) for arms 1:3, and 0.946 (0.721, 1.199) for arms 2:3. The RCT 

medians are within the RTAR confidence intervals and the RTAR medians are within the RCT 

confidence intervals for all pairs of arms. Nonetheless, the confidence intervals for the RTAR 

odds ratios are larger than those for the RCT. 

We get similar results for EUROPA. For example, the median odds ratio for Perindopril 

versus a placebo is 1.246 (1.118, 1.412) and the median RTAR odds ratio is 1.248 (1.080, 

1.455), . 

3.4. Number of Patients Assigned, Mortalities, and Mortality Rates 
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The first four columns of Table 2 present the results of GUSTO-1 trial. The last three col-

umns present the results of the EUROPA trial. For each trial, we present the number of assigned 

patients, the number of primary endpoint events, and the endpoint rates for the original RCT (in 

the first three rows) along with confidence intervals. In the last nine rows of Table 2, we present 

the results had these trials used an RTAR, an -variant, or a block-based MAB to assign patients 

in real time or by block.  

For both trials, the ranking of all arms in the simulations by the RTAR, the -variant, and 

the block-based MAB match the RCT ranking (t-PA with IV Heparin is the best, SK with IV 

Heparin is the worst in GUSTO; Perindopril is the best, placebo is the worst in EUROPA). The 

primary endpoint rates estimated with all three adaptive algorithms are quite close to those 

estimated with the RCT and well within the confidence intervals. Relative to the RCT, all MAB 

variants provided tighter confidence intervals on the mortality rate for the (identified-within-the-

trial) superior arm, with the tightest confidence interval provided for by the RTAR. As expected, 

the tighter bound for the superior arm comes with a tradeoff: confidence intervals are not as tight 

for the (endogenously-identified) inferior arms. 

The lowest mortality (greatest beneficence), in GUSTO-1, was observed for the RTAR 

(1,952 lives lost) and the highest mortality for the RCT (2,074 lives lost)  a net saving of 122 

lives due to real-time adaptation. The net savings for the -variant and the block-based MAB 

were 72 and 102 lives saved, respectively. 

 Resampling suggests that the RCT would have identified the best arm in 98% of the rep-

licates, comparable to the 99% achieved by the RTAR. There were no cases, for either the RTAR 

or the RCT, where an inferior arm (arm 2 or arm 3) was identified as statistically significantly 

better than the superior arm (arm 1). There were only 2% cases of arm imbalance where one of 
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the inferior arms (arm 2 or arm 3) was assigned more patients than the superior arm (arm 1). We 

obtain similar results for EUROPA despite the substantial delays in observing outcomes in the 

follow-up. 

The gain in the reduction of negative endpoint outcomes comes at the cost of making 

fewer assignments to the inferior arms. For the RTAR, the assignments to the inferior arms 

averaged 2,755 as opposed to 10,268 in GUSTO-1 arm 2, 4,311 as opposed to 10,209 in 

GUSTO-1 arm 3; and 1,859 as opposed to 6,108 in the placebo arm in EUROPA). The -variant 

and the block-based MAB allocated fewer patients to the superior arm and more patients to the 

inferior arms than the RTAR. While the -variant specifies a minimum patient target for each 

arm, the observed minimums for inferior arms vary slightly because the real-time portion of the 

-variant favors the superior arm. 
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3.5. The trade-off between (odds-ratio) statistical power and patient beneficence 

More patients assigned to the superior arms implies greater power for the superior-arm 

endpoint rates. Fewer patients assigned to inferior arms implies less power for inferior-arms  

endpoint rates. However, the deviation from equal allocation of patients to arms implies lower 

power for the odds ratios [9, 10]. To examine this tradeoff further, we plot the change in odds-

ratio statistical power (solid lines, left vertical axis) and the number of patient exposed to the 

superior and inferior arms (dotted lines, right vertical axis) had different values of the tuning 

parameter, , been used in the GUSTO-1 trial (  implies an RTAR) .  

 

Fig. 3. Trade-off between statistical power and patient beneficence in GUSTO-1 

More aggressive (right side of Figure 3) provide higher statistical power for the odds 

ratios, but also lower patient beneficence (spread from the orange to the blue dotted lines). At 

, the power of the -variant is almost indistinguishable from the power of the RCT 
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(90%). The trialist can choose  to make ethical judgments between beneficence and odds-ratio 

power. (The code is provided as open-source.)  

3.6. Greater patient beneficence with larger differences in endpoint probabilities 

Every life is important, but one might ask whether, for example, 122 fewer deaths out of 

2,074 mortalities in GUSTO-1 justifies the use of a new method. This is an ethical issue beyond 

the scope of this article. However, if we examine the GUSTO-1 trial, we see that the three arms 

are close in mortality risk, 0.062, 0.069, and 0.072. As an hypothetical, we examine more 

substantial differences mortality rates of 0.063, 0.126, and 0.189 for the three arms, unknown 

before the trial. In this hypothetical world with 30,732 patients, a real-time adaptive assignment 

would have saved 1,700 lives compared to an RCT assignment. We kept the total patients the 

same for a clear comparison. If the trialist had strong priors on the mortality risk and required the 

same statistical power, the trialist would allocate fewer patients to both the RTAR or the RCT. 

Even in this case, the RTAR would lead to substantial greater patient beneficence. 

3.7. Summary of the GUSTO-1 and EUROPA empirically-grounded simulations 

The GUSTO-1 and EUROPA empirically-grounded resampling simulations illustrate the 

ethical decisions when choosing between an RTAR and an RCT. Patient risk is reduced, and 

patient beneficence increased, when more patients are automatically allocated to the 

(endogenously identified) superior arm. RTARs result in tighter confidence intervals and more 

power for the endpoint rates of the superior arm. In GUSTO-1, the allocations implied slightly 

more pairwise power when comparing the superior arm to one inferior arm and slightly less 

power relative to the other inferior arm. There was less statistical power to distinguish between 

the two inferior arms. However, power for the odds ratios was reduced. 

The -variant and the block-based MAB algorithm provide the trialist with the ability to 
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balance the benefits and costs of an RTARs versus an RCT. The -variant and the block-based 

MAB allocate more patients to the superior arm than an RCT, but fewer patients than RTARs. 

Confidence intervals for the superior arm are tighter than an RCT, but less tight than an RTAR. 

Power to compare superior-to-inferior arms is between that of an RCT and RTARs and odds-

ratio power is comparable to an RCT for  or higher. Misidentification of the inferior 

arm as superior is not a problem. Neither the RTAR, the -variant, nor the block-based MAB 

identify an inferior arm as statistically superior.  

4. Stationarity and temporal changes in endpoint rates 

4.1. Tests of stationarity 

 To test stationarity, we split the RCT trial by quantiles on the date of assignment and ex-

amine whether endpoint rates vary significantly by quantile. For deciles, the null hypothesis of 

stationarity was not rejected for all GUSTO-1 arms (arm 1  = 0.47, arm 2  = 0.45, arm 3  = 

0.80) and for both EUROPA arms (Perindopril  = 0.37, placebo  = 0.39). Particularly relevant 

for the analyses in the next section, two-way quantile splits were also not significantly different. 

Other stationarity tests (available from the authors) do not reject stationarity. 

4.2. Temporal changes in endpoint rates  

 Temporal changes in endpoint rates are a known issue with RARs and are potentially an 

issue with RTARs [12, 15, 16, 28]. Suppose that there is a shock to the system, perhaps due to a 

mutation in a virus, a change in the demographics of patients, environmental changes, or the ad-

vent of auxiliary treatments. Such a temporal change might imply that the mortality rate is higher 

for later patients than for earlier patients.  

RARs tend to allocate relatively more patients to superior arms and fewer patients to 

inferior arms as the trial progresses. To visualize the effect, assume the temporal change happens 
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midway through the number of patients in the trial. For an RCT, the estimated endpoint rates will 

be the average of the endpoint rates in the two periods. For RARs, because the superior-arm 

sample grows relative to the inferior-arm sample, the endpoint rate for the superior arm will be 

closer to the endpoint rate at the end of the trial and the endpoint rate for the inferior arm will be 

closer to the endpoint rate at the beginning of the trial. The net result will be that, relative to an 

RCT, the difference in endpoint rates between the superior and inferior arms will be 

overestimated. The logic generalizes, for example, we would observe similar effects when 

endpoint rates drift throughout the trial [12, 16]. Prior research suggests that RARs are robust to 

drift as long as the drift is less than 25%, that the block-based MAB is less sensitive to drift than 

Thompson sampling, and that it is important to distinguish RAR biases from biases induced by 

early stopping [12, 28]. 

RTARs are based on Gittins indices which react to observed endpoint rates [36]. If there 

are sufficient post-shock observations, the Gittins indices will evolve causing the MAB to 

reexplore the inferior arms. The MAB will automatically begin to learn the new endpoint rates. 

To examine temporal changes, we simulate midpoint shocks of 5%, 10%, 15%, 20%, and 

25%. See eAppendix C. As expected, the RTAR estimates are closer to the end-of-trial 

mortalities than the RCT estimates. Consistent with the literature, shock leads to an upward bias 

in the differences between arms relative to an RCT. For arms 1:3, the biases are approximately 

19% for a 5% shock, but smaller (1-3%) for higher shocks because the MAB explores more with 

higher shocks. For arms 1:2 the bias is approximately 11% for low shocks but decreases to 6-9% 

for higher shocks. For comparisons among the inferior arms 2:3, the bias is usually higher due to 

fewer patients being allocated to inferior arms. RTAR improves end-of-trial estimates, but at the 

cost of a modest bias between arms. The effect of shock and drift on MABs is still under 
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development. Researchers are exploring MABs that allocate patients while anticipating temporal 

changes such as shock and drift [40, 41]. These developments are promising. 

5. Discussion 

Our goal is to evaluate empirically an RTAR relative to an RCT when there are delays in 

observing endpoints. The RTAR would likely have saved lives (in GUSTO-1) and avoided 

cardiovascular events (in EUROPA) relative to an RCT while providing estimates of endpoint 

rates and odds ratios within statistical confidence of the RCT  even though endpoints are 

delayed by 30 days or more. The tradeoff is that confidence intervals for the odds ratios and 

inferior-arm event rates increase. Confidence intervals are tighter for superior-arm event rates. 

Power is lower for odds ratios but higher for superior-arm event rates. The -varient enables the 

trialist to finetune the power/beneficence tradeoff. For example, for  we obtain 

substantial beneficence with little loss of power. A trialist can balance ethical considerations for 

a planned trial by resampling using priors on endpoint rates for that trial. 

Ethically, RTARs enhance the principle of beneficence in the sense of the Belmont 

report "maximize possible benefits and minimize possible harm [2].  RTARs also respect 

persons and justice because a priori arm assignments depend upon endpoints not knowable in 

advance. The algorithm does not depend upon demographic indicators. On the other hand, the 

likelihood of receiving the best treatment changes over time (violating the ethical principle of 

equality). In RTARs, patients who enter the trial late or after the trial has ended are more likely 

to receive the best treatment than patients who enter the trial early. (This is also true to a lesser 

extent when trial assignment ratios are adapted due to a small number of interim reviews and is 

always true when comparing patients in a trial to those who receive treatment after a trial.) 
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5.1 Study limitations 

Our simulations are empirically-grounded and their implications are as predicted by 

theory, but all of our simulations are post hoc analyses of the GUSTO-1 and EUROPA trials. 

There is nothing in our analyses that used knowledge that was not available at the time of RCT 

patient assignment. Nonetheless, any post hoc analyses must be treated with caution.  

 Our data are time-stamped at the daily level, hence our real-time assignments and end-

point-rate learning are conservative relative to an MAB that adapts assignments within days (if 

feasible from a blinding standpoint). For multiple-trial multiple-population settings, researchers 

can merge RTARs and platform-trials. Adaptive platform trials provide a means to compare 

multiple interventions, generate subgroup estimates, and minimize downtime between trials [36]. 

Finally, we might improve assignments further with the use of biomarkers as surrogate measures 

of endpoints [10, 38, 39]. 

5.2 Conclusion 

 We used conceptual arguments and empirically-grounded simulations to examine the 

trade-offs trialists face when using RTARs, the -variant, and the block-based MAB. RTARs 

increase patient beneficence (e.g., fewer cardiovascular events) and enable better estimates of 

endpoint rates for superior arms.  
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