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eAppendix A.  Notation and simulation procedures  

eA.1. Notation and technical details  

eA.2.1. Optimality (step IV.4.1 described below) 

RTARs balance earning, providing the (likely) best treatment on day 𝑑𝑑, with learning, 

trying (currently) inferior arms to learn about endpoint rates so that better decisions can be made 

about all future patients, including those after the trial. For many reasons, positive endpoints and 

knowledge is better now than in the future, so we slightly discount future endpoints by a factor, 

𝛿𝛿, where 𝛿𝛿 ∈ (0, 1). 

We represent knowledge about each arm by a (Bayesian) posterior distribution, a Beta 

distribution, with parameters 𝛼𝛼𝑎𝑎𝑎𝑎 and 𝛽𝛽𝑎𝑎𝑎𝑎, for arm 𝑎𝑎 based on endpoints observed up to day 𝑑𝑑. 

(For ease of exposition, we switch notation from the text (𝛼𝛼𝑎𝑎(𝑑𝑑)) to this eAppendix (𝛼𝛼𝑎𝑎𝑎𝑎).) Git-

tins [e4] proved that the optimal balance between earning and learning is to compute a “Gittins 

index” for each arm and assign patients to the arm with the lowest index. (We are minimizing 

mortality, so lower is better.) We compute the Gittins index by comparing the “rewards” from a 

(currently) uncertain arm to the rewards from assigning patients to an arm where the endpoint 

rate is the Gittins index, 𝐺𝐺(𝛼𝛼𝑎𝑎𝑎𝑎,𝛽𝛽𝑎𝑎𝑎𝑎). For the trials we analyze, “rewards” is mortality (GUSTO-

1 and EUROPA) or another negative event (EUROPA). Fewer mortalities/negative-events are 

better. We write this value as 𝐺𝐺𝑎𝑎𝑎𝑎 for short. 𝐺𝐺𝑎𝑎𝑎𝑎 represents the comparative daily rewards for an 

arm in which the anticipated endpoint is known with certainty. 

Let 𝑅𝑅(𝛼𝛼𝑎𝑎𝑎𝑎,𝛽𝛽𝑎𝑎𝑎𝑎) be the expected discounted rewards for acting optimally on day 𝑑𝑑 and all 

future days. We compare an uncertain arm to a certain arm to compute the Gittins index. In this 

comparison, the rewards for day 𝑑𝑑 are related to 𝐺𝐺𝑎𝑎𝑎𝑎 and the rewards for day 𝑑𝑑 + 1 by the Bell-

man equation. See derivation in [e2,e3]. 

𝑅𝑅(𝛼𝛼𝑎𝑎𝑎𝑎 ,𝛽𝛽𝑎𝑎𝑎𝑎) = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐺𝐺𝑎𝑎𝑎𝑎

1 − 𝛿𝛿
,

𝛼𝛼𝑎𝑎𝑎𝑎
𝛼𝛼𝑎𝑎𝑎𝑎 + 𝛽𝛽𝑎𝑎𝑎𝑎

[1 + 𝑎𝑎𝑅𝑅(𝛼𝛼𝑎𝑎𝑎𝑎 + 1,𝛽𝛽𝑎𝑎𝑎𝑎)] +
𝛽𝛽𝑎𝑎𝑎𝑎

𝛼𝛼𝑎𝑎𝑎𝑎 + 𝛽𝛽𝑎𝑎𝑎𝑎
𝛿𝛿𝑅𝑅(𝛼𝛼𝑎𝑎𝑎𝑎 ,𝛽𝛽𝑎𝑎𝑎𝑎 + 1)� 

There is no analytical solution to this Bellman equation, but the 𝐺𝐺(𝛼𝛼𝑎𝑎𝑎𝑎,𝛽𝛽𝑎𝑎𝑎𝑎)’s are easy to 

compute numerically. We do the numerical calculations and store a table of Gittins indices by 𝛼𝛼 

and 𝛽𝛽. 
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The Gittins solution is provably optimal if one patient is assigned on day 𝑑𝑑 and if the 

endpoint for patients assigned on day 𝑑𝑑 is observed before assignments on day 𝑑𝑑 + 1. The Git-

tins solution is an heuristic algorithm, which we hope will reduce mortality relative to an RCT or 

the block-based FLGI, when more than one patient is assigned on day 𝑑𝑑 and there are delays in 

observed endpoints. This is an empirical question. The main paper tests whether the approximate 

optimal solution provides benefits relative to an RCT, the previously-proposed block-based 

FLGI solution, and an 𝜂𝜂-variant. 

Future research might improve assignments with the solution to a fully optimal Bellman 

equation that accounts for multiple patients on day 𝑑𝑑 and delays in endpoints. Thus, all results 

for the (hopefully) approximately-optimal RTAR in this paper are conservative relative to the so-

lution to such a Bellman equation. Note that one way of handling delays is to change the dis-

count rate, 𝛿𝛿, to reflect a 30-day lag in updating. Fortunately, for our data, the Gittins solution 

appears to be robust to changes in the discount rate suggesting that the loss of optimality due to 

delays may not be severe. Another heuristic might be to modify the RTAR to use the FLGI 

within each day 𝑑𝑑 for which multiple patients are assigned. Such a variant, and many other vari-

ants, are readily explored with our resampling simulation code. We did not explore all variations 

to avoid overfitting the empirical data. 

eA.1.2. Learning (step IV.4.3) 

The learning step is based on updating the Beta priors, 𝛼𝛼𝑎𝑎𝑎𝑎 and 𝛽𝛽𝑎𝑎𝑎𝑎, with observations of 

the endpoints at day 𝑑𝑑. (The Beta priors are updated at the end of day 𝑑𝑑, patients assignments at 

the beginning of day 𝑑𝑑 are based on all data up to, but not including, endpoints observed on day 

𝑑𝑑.) Assuming the endpoints are observations from a Bernoulli process with stationary endpoint 

rates, the updating is simple and quick. When one endpoint is observed per day:  

𝛼𝛼𝑎𝑎,𝑎𝑎+1 = 𝛼𝛼𝑎𝑎𝑎𝑎 + 1, 𝛽𝛽𝑎𝑎,𝑎𝑎+1 = 𝛽𝛽𝑎𝑎𝑎𝑎 if the endpoint is a mortality 

𝛼𝛼𝑎𝑎,𝑎𝑎+1 = 𝛼𝛼𝑎𝑎𝑎𝑎, 𝛽𝛽𝑎𝑎,𝑎𝑎+1 = 𝛽𝛽𝑎𝑎𝑎𝑎 + 1 if the endpoint is survival 

If more than one endpoint is observed at the end of day 𝑑𝑑, say 𝑚𝑚𝑚𝑚𝑎𝑎 mortalities and 𝑚𝑚𝑠𝑠𝑎𝑎 survivals, 

then we update using 𝑚𝑚𝑚𝑚𝑎𝑎 and 𝑚𝑚𝑠𝑠𝑎𝑎. 
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eA.2. Endpoints  
In GUSTO-1, the endpoint is death or survival at 30-days since randomization. In EU-

ROPA, the endpoint is a composite of cardiovascular mortality, non-fatal MI, and resuscitated 

cardiac arrest at any point in the trial. 

eA.3. Simulation procedures 
The RTAR multi-arm bandit (MAB) simulation can be run for any number of replicates. 

The number of replicates is set in the file “Parameters.R.” All reported results in the manuscript 

are results averaged across 200 replicates. The RTAR MAB code is in the file “MAB.R.” The 𝜂𝜂-

variant follows the same procedure except that, with probability 𝜂𝜂, patients are assigned as in an 

RCT (equally likely) until the arm reaches a pre-defined minimum number of patients. With 

probability 1 − 𝜂𝜂𝑘𝑘𝑎𝑎, patients are assigned with the RTAR MAB. 𝑘𝑘𝑎𝑎 is the number of arms that 

have not yet reached the minimum number of patients at the start of day 𝑑𝑑. The block-based for-

ward-looking Gittins index (FLGI) algorithm is described in [e1]. In the block-based FLGI algo-

rithm, patients are randomized in blocks. The code is available from the authors. We provide 

here the conceptual steps in the RTAR resampling simulations.. 

Step I. Load parameters and set seed.  

 When the parameter file indicates that a single replicate is to be run, the system uses a 

fixed seed. When more than one replicate is to be run, the system uses different random seeds in 

each replicate. Results are averaged across replicates. In the case of confidence intervals, we note 

the values where 2.5% are below (lower) or 2.5% are above (upper) the confidence limits. 

Step II. Load support functions. 

Step III. Load data. 

Step IV. Loop over all replicates (this the main part of the code)  

    Step IV.1. Build the pools of patients for this replicate. 

The original RCTs (GUSTO-1 and EUROPA) assigned one set of patients to each arm 

(treatment). We refer to each of these sets of patients as a “pool of patients” for that arm. 

These pools will be used in step IV.4.2, when the RTAR MAB algorithm draws (with re-

placement) from these pools when making its assignments. 

    Step IV.2. Load priors for 𝛼𝛼𝑎𝑎(d) and 𝛽𝛽𝑎𝑎(𝑑𝑑) for this replicate. 
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These priors are set in the file “Parameters.R.” 

Step IV.3. Initialize intermediate data structures  

See the file “Data dictionary.txt” for details on the intermediate variables. 

Step IV.4. For each day 𝑑𝑑 of the trial in this replicate, perform the following:  

Step IV.4.1 DECIDE: select arm 𝑎𝑎𝑎𝑎∗  to use on day 𝑑𝑑. This is the optimality step. 

Select the optimal treatment arm, 𝑎𝑎𝑎𝑎∗ , given current 𝛼𝛼𝑎𝑎(𝑑𝑑) and 𝛽𝛽𝑎𝑎(𝑑𝑑) parameters of the 

Beta distribution over treatment-arm endpoint rates. The parameters are based on all end-

points observed at the start of day 𝑑𝑑. The RTAR algorithm chooses the arm with the larg-

est Gittins index, 𝐺𝐺𝑎𝑎𝑎𝑎. 𝐺𝐺𝑎𝑎𝑎𝑎 is a pre-computed tabled function 𝛼𝛼𝑎𝑎(𝑑𝑑) and 𝛽𝛽𝑎𝑎(𝑑𝑑). The Git-

tins index optimally balances, on a daily basis, the amount of learning and earning the 

system does [e2, e3]. For details on the optimality step, please refer to §e3.2. 
 

Step IV.4.2. RESAMPLING PATIENTS: The RTAR MAB draws patients from the pool of 

arm 𝑎𝑎𝑎𝑎∗ . 

Compute the number of patients 𝑁𝑁𝑎𝑎 that were randomized by the RCT on day 𝑑𝑑.  

Assign 𝑁𝑁𝑎𝑎 patients to the optimal treatment arm, 𝑎𝑎𝑎𝑎∗ , by drawing with replacement 𝑁𝑁𝑎𝑎 pa-

tients from the pool of patients that were randomized by the original RCT to the treat-

ment 𝑎𝑎𝑎𝑎∗ . 
 

Step IV.4.3. LEARN  

For each treatment arm, learn from the endpoints observed for all the patients that had 

been assigned to that treatment arm and for whom endpoints have been observed by the 

start of day 𝑑𝑑. Update 𝛼𝛼𝑎𝑎(𝑑𝑑) and 𝛽𝛽𝑎𝑎(𝑑𝑑) as described in §e3.2. 

Step IV.5. Summarize results of the original RCT.  

Step IV.6. Summarize the results of this RTAR replicate. 

Step IV.7. Save all outputs to .csv files. 
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eAppendix B.   Empirical details on the original RCTs and the RTAR simulations 

eB.1. Randomization and endpoints for GUSTO-1 and EUROPA RCTs 
Figure 1 (for GUSTO-1) and Figure 2 (for EUROPA) present the randomization of pa-

tients and the endpoints observed in both studies. 
 

The dots at the bottom of eFigure 1 and to the left of eFigure 2 correspond to the number 

of patients that were randomized by the RCT in each day of the GUSTO-1 trial (Figure 1) and 

EUROPA trial (Figure 2). This information is shown separately per treatment, using a color 

code. For GUSTO-1, blue corresponds to RCT randomizations to t-PA+Heparin (arm 1). Red 

corresponds to RCT randomizations to SK+Heparin (arm 2). Gray corresponds to RCT randomi-

zations to t-PA+SK+Heparin (arm 3). For EUROPA, blue corresponds to RCT randomizations to 

Perindopril and orange corresponds to RCT randomizations to placebo. eFigures 1 and 2 also 

present, in the green solid line on the top of the figures, the number of endpoints that were ob-

served in each day of the trial. This is the total number of daily endpoints summed over all arms 

in each study (GUSTO-1 had three arms; EUROPA had two arms).  

 

 
eFig. 1: RCT Randomizations (in blue, orange and gray) and endpoints (in green) in GUSTO-1    
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eFig. 2: RCT Randomizations (in blue and orange) and follow-up study’s endpoints (in green) in EU-
ROPA   

eB.2. Evolution of RTAR arm assignments for GUSTO-1 and EUROPA   
eFigure 3summarizes arm assignments for (a) GUSTO-1 and (b) EUROPA. The purple, 

gold, and gray lines (GUSTO-1) or purple and gold lines (EUROPA) and the left vertical axis 

present the cumulative number of assignments over the duration of the trials. The horizontal axis 

represents the days of the trial. The RTAR adapts as data on patient endpoints become available. 

As the trial progresses, the RTAR automatically assigns more patients to the superior arm (gold 

line). By the roughly the 500th day of the 819-day GUSTO-1 trial, and the 500th day of the 1,989-

day EUROPA trial, the RTAR begins to assign almost all patients to the superior arm (gold line). 

In theory, a particularly adverse, but random, run of negative endpoints might lead an MAB to 

explore inferior arms after stabilization, but that probability is low. Future research might ex-

plore optimal stopping rules which could save even more lives than the RTAR studied in this 
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paper.  

A. GUSTO – 1  

  

B. EUROPA  

  

eFig. 3. Assignments to arms using the day-to-day RTAR 
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eAppendix C. Temporal Changes in Endpoint Rates 

To explore the impact of temporal changes in the endpoint rates on the performance of an 

RTAR, we use sample enrichment to simulate the effect of a change in endpoint rates midway 

through the trial. Patient enrichment is an accepted way to model temporal changes [11] and will 

provide equivalent implications to changing endpoint rates in simulations. With patient enrich-

ment, we add sufficiently many patients to the pool for each arm such that the endpoint rate in 

each arm is the endpoint rate we seek to simulate.  

For example, the RCT endpoint rate (mortality) for arm 1 in GUSTO-1 is 0.0615 and we 

wish to simulate a shock of 5%. For arm 𝑎𝑎 in the first period, we draw from GUSTO-1 patients 

for the days corresponding to the first 𝑁𝑁𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡/2 patients in GUSTO-1 arm 𝑎𝑎. We modify the 

pool of patients from which we draw patients for the days corresponding to the second 𝑁𝑁𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡/2 

patients in the GUSTO-1 trial. A 5% increase in 0.0615 is 0.0646, an increase of 0.0031 in the 

mortality rate. To maintain consistency with the literature, we increase all arms by 0.0031 result-

ing in a vector of endpoint rates of [0.0646, 0.0753, 0.0717] for arms 1, 2, and 3, respectively.  

eC1. Does an RTAR detect non-stationarity in end-outcome rates (e.g., shocks)? 

RTAR assignments are based on the smallest Gittins index at any point in time. eFigure 4 

illustrates how the Gittins index changes during the trial for two separate GUSTO-1 simulations.  

A change in the Gittins index indicates that the arm is being used. This is so because when an 

arm is used, the Gittins index is updated with the end-outcome. For example, the left pane of 

eFigure 4 shows that when there are no shocks, the RTAR algorithm for this replicate stabilizes 

slightly before the 500th day of the trial, i.e., the RTAR stops assigning the two worst arms (arms 

2 and 3). After the 500th day, the Gittins indices for arms 2 and 3 do not change as represented by 

the flat green and red lines. Note also that the ranking of the three arms also does not change.  
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eFig. 4. Gittins indices indicating assignments to arms using the day-to-day RTAR for one replicate of the 

GUSTO-1 data in the absence (left) and presence (right) of a 25% shock. 
 

Separately, in another replicate, we introduced a 25% shock after 50% of the patients to 

be assigned (day 530). The results, shown in the right pane of eFigure 4, indicates that the Gittins 

index driving RTAR assignments had stabilized for this replicate around the 450th day (repre-

sented by the flat red and green lines). Around day 560 (when the first 30-day after-shock 

GUSTO endpoint-outcomes were observed), the index detected the changes in mortality rates 

and the RTAR returns to using all arms. This is represented by changes in the green, blue and red 

lines. By day 730, the RTAR algorithm has sufficiently explored and learned about the best arms 

given the new mortality rates (i.e., post shock). Assignments again stabilize, and RTAR assigns 

patients only to the arm it has automatically determined is the best arm (arm 1, blue line). The 

green and red lines for arms 2 and 3 are flat, representing no new patients being assigned to those 

arms. The data for several shock levels (from 0% to 25%) are provided in a separate spreadsheet 

file.   

Non-stationarity (e.g., drift and shock) is an active area of research for multi-arm bandits 

[e6, e7, e8, e9]. We are hopeful that researchers will, in the future, develop real-time adaptive al-

gorithms that are optimal in the presence of delays and various forms of non-stationarity. 
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