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1 Introduction

Through the allocation of external financing, lending standards play a key role in the economy,

determining, for example, which entrepreneurs get initial funding, which firms grow, and which

consumers buy houses. Lending standards by many metrics are highly countercyclical, tightening

in recessions and loosening in booms. For example, lending standards were loose in the lending

boom of the mid-2000’s, when credit spreads and default rates were low, and relatively tight during

the credit crunch and recession that followed, when spreads and default rates were high. Notably,

lending standards were slow to relax following the 2008-09 financial crisis. An important aspect

of countercyclical lending standards is that banks use less private payoff-relevant information to

condition lending on during good times when lending standards are loose than during market

slumps when they are tight (e.g. Howes and Weitzner, 2023). This raises important questions: What

determines the dynamics of private information acquisition among lenders? How does it matter

for the dynamics of credit markets as a whole? Are market outcomes efficient, and if not, can

well-timed government interventions improve matters?

We study the dynamics and efficiency of credit provision in a model of a credit market in

which lending standards are endogenous, both influencing and responding to the quality of the

borrower pool. We model lending standards as the extent to which banks acquire costly private

payoff-relevant information about borrowers and condition their lending on this information. Our

model consists of competitive banks and borrowers who are identical conditional on public or

readily-available information (e.g. conditional on credit score). Each instant, some borrowers have

the opportunity to approach banks in search of a loan to fund an investment project. Projects differ

by borrower type: projects of high-quality (low-quality) borrowers have positive (negative) net

present value. A bank can simply lend to a borrower who approaches it, or it can condition lending

on costly private information about the borrower’s type, e.g. an interview with the applicant,

verification of reported employment or income, an appraisal of the collateral, or an analysis of the

business plan. Critically, borrowers whose loan applications are declined by one bank may apply at

another in the future.

These assumptions imply that lending standards are dynamic strategic complements: tight lending
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standards in the present imply that banks will confront a more adversely-selected pool in the future,

which raises their incentive to impose tight lending standards in the future. Our model’s dynamics

are most interesting when the ex ante expected net present value of borrowers’ projects is positive,

such as in credit markets where borrowers are “prime” or have passed a preliminary evaluation.

Under our assumptions, the lending market exhibits multiple steady states in the single state

variable, the pool quality, defined as the share of high-quality borrowers in the pool of borrowers.

In the pooling steady state, the pool quality is high enough that each bank chooses to approve loans

without incurring the additional information collection costs, what we call a “normal” lending

standard. Low-quality borrowers are funded along with high-quality borrowers, which keeps the

pool quality high. In this steady state, the volume of lending is high and loan spreads are low.

Conversely, in the screening steady state, the pool quality is low enough that banks collect costly

private information about borrowers and condition lending on that information, what we call a

“tight” lending standard. In this steady state, the tight lending standard keeps the pool quality low,

the volume of lending is low, and loan spreads are high.

Our first main result is that lending standards can endogenously lead to credit market hysteresis.

While at any point in time the equilibrium of our model is unique, transitory changes in market fun-

damentals can lead to permanent differences in lending volumes, credit spreads, and default rates.

A temporary deterioration in market fundamentals, e.g. a worsening of borrowers’ projects, can set

in motion a self-reinforcing feedback loop between deteriorating pool quality and tighter lending

standards. This feedback loop culminates in a permanent shift in the credit market equilibrium, from

the pooling steady state to the screening steady state.

Whether these dynamics lead to permanent changes or not, the model’s dynamics match the

correlation between lending and lending standards observed in credit booms and busts (as discussed

subsequently), but the specific mechanism of time-varying, information-sensitive lending standards

is supported by direct evidence that banks condition lending on more (less) private assessments

during market downturns (booms) (see Lisowsky, Minnis and Sutherland, 2017; Bedayo, Jimenez,

Peydro and Vegas, 2020; Howes and Weitzner, 2023). Further, because the information acquisition

associated with tighter lending standards raises the cost of loan origination, the model dynamics

are also in line with the negative correlation between lending and (labor) productivity of financial
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institutions (e.g. Chen, Favilukis, Lin and Zhao, 2023).

Our second main result is that lending standards can be inefficiently tight, providing a rationale

for government intervention to relax lending standards. This result follows because tight lending

standards have negative externalities: a bank that tightens its lending standard today increases the

share of low-quality borrowers in the pool in the future which makes the credit market less efficient.

Despite the fact that tighter lending standards have the first-order social benefit of leading to less

funding of low-quality (negative net present value) projects, the pooling steady state dominates

the screening steady state (in a utilitarian sense). Further, in response to a transitory decline in the

quality of the pool of borrowers, it can be optimal for the government to intervene temporarily

and relax lending standards to avoid getting stuck in the steady state with tight lending standards.

An example of such a policy is a temporary loan guarantee program funded by a tax on loan

payments. Optimal policy requires collective, i.e. government, action because the pool of borrowers

is a common resource and an individual bank cannot recover the short-term losses associated with

the policy from the later increased efficiency of the competitive credit market. Interestingly, the

dynamics of our model suggest that if a certain “window of opportunity” has passed, it may no

longer be optimal for the planner to intervene because the costs incurred during the transition

path back to the pooling steady state may be too high. That is, once the economy has neared the

steady state with tight lending standards, it may be too costly to move to the steady state with loose

lending standards, even though the latter steady state Pareto dominates the former.

While policies that target lending standards improve outcomes, they do not achieve the first

best. A first-best policy would eliminate the externality associated with screening by making any

private information acquired by banks public. While credit bureaus can potentially address this

externality, there are several reasons why they likely fail to do so in many markets (Appendix F).

Our third main result is that there may be an intermediate range of pool quality in which banks

restrict lending by rationing credit instead of imposing tight information-based lending standards,

a situation we refer to as slow thawing. The logic behind this credit rationing is different from the

typical credit rationing due to adverse selection (Stiglitz and Weiss 1981, Mankiw 1986). During slow

thawing, lending rates fall sufficiently quickly that high-quality borrowers are indifferent between

getting funded right away and waiting for their next funding opportunity. This indifference reduces
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the surplus from bank lending today, leading to credit rationing as some banks stop lending, which

in turn reduces the speed of improvement in lending volumes and credit spreads. The speed of

convergence to the pooling steady state is thus non-monotonic, and during the initial slow thawing

period, the typical effects of many parameters on lending volumes and interest rates are reversed.

Our fourth main result considers a simple and exogenous version of a balance sheet constraint—

an additional costs of lending, such as from regulatory or management concerns about leverage. We

find that such costs unambiguously incentivize banks to tighten lending standards. Tighter lending

standards can then, as just described, lead to declines in pool quality, hysteresis, and suboptimal

market outcomes. When balance sheet costs are large, banks have a greater incentive to screen

borrowers in order to lend their limited capital to the most profitable borrowers. This implies that

downturns accompanied by financial crises are more likely to lead to the emergence and persistence

of tight lending standards, and that there are potential benefits from government policies to relax

lending standards. This persistence is a notable feature of financial crises (see Cerra and Saxena,

2008; Reinhart and Rogoff, 2009; Jorda, Schularick and Taylor, 2013; Baron, Verner and Xiong, 2021)

and this model prediction contrasts with the predictions of leading macro-finance models (e.g.

Gertler and Karadi, 2011) in which periods of high balance sheet costs during financial crises imply

high returns on assets and speedy recoveries.

Finally, we extend our model to endogenize the quality of the inflow of borrowers by assuming

that expected future looser (tighter) lending standards reduce (raise) the quality of new borrowers

entering the pool. In this case, lending standards can be too loose or too tight. Specifically, at high

levels of pool quality optimal policy can call for a minimum lending standard which improves the

quality of the borrowers approaching all banks.

Related literature. Our four main contributions are about the dynamics of lending. As such, they

build on the static models of Fishman and Parker (2015) and Bolton, Santos and Scheinkman (2016)

in which a static strategic complementarity leads to multiple equilibria. These papers cannot speak

to issues such as hysteresis, the role of dynamically optimal policy, and slow thawing, which we

investigate here.

Other static models focus on different aspects of lending standards. In Ruckes (2004), lenders
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simultaneously acquire private information about borrowers and then simultaneously quote loan

rates. In that setting, lending standards can be strategic substitutes. In Dell’Ariccia and Marquez

(2006), there is cream skimming by informed lenders but these lenders are endowed with their

information. Hachem (2021) studies lending standards in a static model in which banks can also

exert search effort to attract borrowers. When banks are resource constrained, they put too much

effort into searching for borrowers and too little effort into checking them upon arrival, so that

lending standards are inefficiently loose.

Our model is more closely related to two recent dynamic models which are based on assumptions

such that, at times, lending standards are dynamic strategic substitutes. In Hu (2022) and Farboodi

and Kondor (2020), this substitutability arises because tight lending standards raise the average

quality of newly-entering borrowers.1 In Hu (2022) economic recoveries can have interesting

dynamics such as double-dip recoveries, while Farboodi and Kondor (2020) shows that credit

markets can exhibit endogenous cycles in lending standards and borrower quality. In our baseline

model, the quality of new borrowers is exogenous. In section 6.2 we endogenize the quality of new

entrants and show that intermediate lending standards maximize pool quality and welfare.

A number of related papers study dynamic adverse selection models without information

acquisition. Daley and Green (2012, 2016) and Malherbe (2014) analyze models where current

markets can break down when high-quality sellers have the incentive to wait for market prices

to improve over time as the composition of sellers improves over time. In contrast, during slow

thawing in our model, the equilibrium composition of borrowers does not change, only the speed of

lending is reduced.2 Camargo and Lester (2014) builds on the following strategic complementarity.

If buyers offer asset sellers high prices, sellers with high- and low-quality assets sell. Consequently,

the average quality of sellers’ assets is maintained and there is more incentive for buyers to offer a

high price rather than a low price and potentially have to wait. In Asriyan, Fuchs and Green (2017),

if future market liquidity and hence prices are expected to be high (low), then prices today are high

(low) and the adverse selection problem will be less (more) severe.

1In Farboodi and Kondor (2020), in addition, rejected borrowers go bankrupt and leave the pool of borrowers.
2Related, Zryumov (2015) and Caramp (2023) study models where bad sellers strategically enter when market prices

are good. This, in and of itself, does not lead to a market shutdown (lower prices positively select entrants), but as
Caramp (2023) emphasizes, the bigger presence of bad sellers can raise the likelihood of adverse selection induced market
failures in the future.
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Finally, our paper is related to information acquisition and adverse selection in secondary

markets. Zou (2019) analyzes a dynamic model of trade in which an agent’s incentive to collect

information is higher if agents in the future are expected to collect information. Gorton and

Pennacchi (1990), DeMarzo and Duffie (1999), and Dang, Gorton and Holmstrom (2020), among

others, analyze how debt securities minimize adverse selection problems in secondary markets.

While the issues of information acquisition are similar, our model is designed to address adverse

selection at origination (in primary markets) and abstracts from issues of security design. In Gorton

and Ordonez (2014), lenders learn about the value of borrowers’ collateral, but the information

decays over time, which can trigger information acquisition and a drop in lending. Finally, Lee and

Neuhann (2023) present a model with multiple steady states due to a strategic complementarity

between borrowers, rather than banks as in our baseline model (but related to our extension in

Section 6.2).

2 A Model of Lending Standards

Time is continuous and runs from 0 to infinity, t ∈ [0, ∞). There are two sets of agents: a unit-mass

pool of potential borrowers and a large mass J of competitive banks; for brevity we will refer to

borrowers rather than potential borrowers. All agents are risk neutral with discount rate ρ > 0. To

simplify the description of our model as much as possible, we build on the search-and-matching

literature (Diamond, 1982; Mortensen and Pissarides, 1994) and its application to financial markets

(e.g. Duffie, Garleanu and Pedersen, 2005; Golosov, Lorenzoni and Tsyvinski, 2014).

Borrowers. At Poisson rate κ > 0, each borrower receives a project requiring an up-front invest-

ment of 1. Borrowers have no capital and must fund the project externally. If a borrower raises the

funds and invests at time t, the project returns a pledgeable cash flow at t + T and a non-pledgeable

private benefit u > 0 (in present value) to the borrower.

There are two types of borrowers, H and L. Borrowers privately observe their own type

and privately observe how long they have been in the borrower pool. Type-H borrowers’ projects

produce pledgeable cash flow DH at t+T with positive net present value (NPV): rH ≡ e−ρTDH − 1 >
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0.3 Type-L borrowers’ projects produce pledgeable cash flow DL at t + T with negative NPV:

rL ≡ e−ρTDL − 1 < 0. We assume rL + u < 0; investing in a type-L project is not profitable even

including the private benefit. Let r∆ ≡ rH−rL
−rL

> 0 equal the (normalized) return difference between

the two types’ projects.4

When a borrower receives a project, the borrower chooses whether to apply to a bank for funding

or wait for improved borrowing opportunities. We denote the probability of a type-L borrower

applying for funding by φL
t , and that of a type-H borrower applying for funding by φH

t . A borrower

who chooses not to apply for funding loses their project and remains in the borrower pool where,

as before, at rate κ a new project is received. Similarly, a borrower who applies for funding but

is unsuccessful is also assumed to lose their project and remains in the borrower pool.5 Finally, a

borrower who applies and receives funding exits the pool to run their project.

At Poisson rate δ > 0, a borrower no longer receives projects and exits the pool with a zero

payoff. All borrowers who exit the pool are immediately replaced by borrowers who are type-H

borrowers with exogenous probability λ and type-L borrowers with probability 1 − λ.6

The exit/entry assumption implies that the borrower pool size is constant at 1. This is convenient

as it allows the model to only have one state variable: the fraction of type-H borrowers in the pool,

or for short pool quality, at time t, xt ∈ [0, 1]. In Section 6.1 we show that our main insights carry

over to an environment with a constant inflow rather than a constant pool size.7 With a pool quality

of xt, the flow of type-H loan applicants is

κHt ≡ κφH
t xt, (1)

3Note that rH is the excess return on a type-H project because 1
T ln(1 + rH) = 1

T ln(DH)− ρ.
4While collateral is not explicitly modeled, one can interpret the loan as a collateralized loan and then u as the private

benefit net of the loss of collateral (e.g. u could represent the net benefit of purchasing and living in a house until
foreclosure; see Appendix E.3) and types as the quality of the collateral rather than the project.

5Assuming that previously denied borrowers are able to keep their projects and apply for funding more quickly than
at rate κ would only strengthen the results in our paper.

6Our analysis is unchanged if we assume that borrowers whose funding applications were previously denied exit
at a greater rate than other borrowers. This is because our model is formally equivalent to one in which only denied
borrowers exit at rate δ, while others do not exit exogenously.

7The only exception are the results in Section 4.2 on slow thawing, which are less tractable in a constant-inflow setting
due to there being two state variables, the number of type-H and number of type-L borrowers in the pool.
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the flow of type-L loan applicants is

κLt ≡ κφL
t (1 − xt), (2)

and the total flow of applicants is Kt ≡ κHt + κLt.

All agents have common knowledge of the structural parameters of the market and the initial

fraction of type-H borrowers in the pool, x0 ∈ [0, 1] and so can infer past, current, and future xt.

Loans. Banks consider lending 1 in exchange for a promised loan payment Dt at time t + T .

With loan face value Dt, repayment is min{Dt, D}, where D is the investment payoff, DL or DH,

depending on borrower type. Since type-L borrowers have negative-NPV investments, it must

be that Dt > DL for a bank to break even in expectation. Thus, type-L borrowers always default.

Nevertheless, given the private benefit u, type-L borrowers have the incentive to finance their

project even though they will receive no monetary benefit. The face value Dt is without loss of

generality bounded above by DH as any higher Dt generates no additional repayment. Thus, type-H

borrowers never default. We define and from here on work with rt ≡ e−ρTDt − 1 which is the credit

spread charged by banks since ρ + 1
T ln(1 + rt) is per-period (log) return on a loan that does not

default. Note that rt lies in (rL, rH).

Banks. At the beginning of each period t, each bank decides whether to be active or inactive. We

denote by Jt the mass of active banks. Any active bank then enters the lending market and meets

a borrower applying for a loan with probability min {Kt/Jt, 1}. This expression captures that if

Jt ≥ Kt, there are more active banks than borrowers, the probability of meeting a borrower is

Kt/Jt. If instead Jt < Kt, there are fewer active banks than borrowers, giving banks a probability

1 of meeting a borrower. Vice versa, the probability that a borrower applying for a loan meets a

bank is given by

θt ≡ min {1,Jt/Kt} . (3)

At any instant t, any bank can only meet a single borrower, and any borrower can only meet a

single bank. Once in such a meeting, bank and borrower bargain over the credit spread rt. After the
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credit spread is set, the bank has the option to impose a (non-contractible) lending standard zt ∈ [0, z],

where z ∈ (0, 1] is a parameter. With lending standard zt, a type-L borrower who applies for a

loan is identified as type L with probability zt, in which case their loan is denied. Otherwise, the

borrower’s loan is approved. For simplicity a type H borrower is never misidentified as type L

(see Appendix E.1 for an extension with both types of identification errors). A bank’s cost of using

lending standard zt is c̃zt, where c ≡ c̃
−rL

> 0 is the (normalized) marginal cost.8 To ensure that

the lending standard has bite, we assume banks cannot observe a borrower’s past history of loan

applications (see Appendix F for a discussion of credit bureaus).

Optimal lending standard. Conditional on credit spread rt, the lending standard zt is chosen so

as to maximize bank profits,

Πt(rt) ≡ max
z∈[0,z]

κHt

Kt
rt +

κLt

Kt
(1 − z)rL − c̃z. (4)

where κHt/Kt and κLt/Kt are the respective probabilities of facing a type-H or type-L borrower.

With a linear screening cost c̃z, the choice of lending standard will be at a corner, zt = 0 or zt = z̄.

We discuss convex screening costs in Appendix E.2. For reasons that will become clear, we refer to

zt = 0 as a “normal” lending standard and zt = z̄ as a “tight” lending standard.

Borrower’s problem. Given the path of credit spreads {rt}, borrowers with projects choose the

probability with which they will apply for a loan at each time t. Let JH
t and JL

t denote the value

functions of a type-H and type-L borrower. The optimal strategies for the two satisfy the following

Hamilton-Jacobi-Bellman equations:

ρJH
t = max

φH
t ∈[0,1]

κφH
t θt

{
rH − rt + u − JH

t

}
+ J̇t

H − δJH
t (5a)

ρJL
t = max

φL
t ∈[0,1]

κφL
t θt(1 − zt){(u − JL

t )}+ J̇t
L − δJL

t , (5b)

8We omit bank-specific subscripts from the credit spread rt and the lending standard zt since all banks will behave
symmetrically in equilibrium.
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with transversality conditions limt→∞ e−(ρ+δ)t JH
t = limt→∞ e−(ρ+δ)t JL

t = 0 satisfied. (5a) captures

that a type-H borrower receives a project at rate κ, decides to apply with probability φH
t and meets

a bank with probability θt. Conditional on meeting a bank, its payoff is then the project return net of

the credit spread plus the private benefit, rH − rt + u. The HJB for type-L borrowers is similar except

that type-L borrowers’ projects are only funded with probability 1 − zt conditional on meeting a

bank, and their payoff is entirely equal to the private benefit.

Credit spread rt. Upon meeting a bank, a borrower applying for a loan makes a take-it-or-leave-it

offer to the bank, specifying the credit spread rt. Thus, the credit spread rt is set so as to impose

zero profits for banks,

Πt(rt) = 0. (6)

In that sense, the assumption of giving the borrower the power to make a take-it-or-leave-it offer is

similar to assuming perfect competition among banks. We denote the surplus between a type-H

borrower and the bank by

St ≡
κHt

Kt

{
rH − rt + u − JH

t

}
+ Πt(rt) =

κHt

Kt

{
rH + u − JH

t

}
+ max

z∈[0,z]

{
κLt

Kt
(1 − zt)rL − c̃z

}

Given the assumption of a take-it-or-leave-it-offer from borrowers, surplus St entirely accrues to the

borrower. We assume that banks strictly prefer to be active whenever there is positive surplus in

meetings with type-H borrowers, St > 0; and are indifferent between being active or not if St = 0.

As we show in Appendix E.4, this is a natural assumption that follows directly from bank optimality

whenever banks have any small amount of bargaining power.

Evolution of the pool of borrowers. The evolution of the fraction of type-H borrowers in the pool

is given by

ẋt = θtκLt(1 − zt)λ − θtκHt(1 − λ) + δ(λ − xt). (7)

The first term accounts for θtκLt(1 − zt) type-L borrowers who are funded and exit the pool (im-

proving pool quality). The second term accounts for θtκHt type-H borrowers who are funded and

exit the pool (reducing pool quality). The third term accounts for exogenous borrower exit and
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replacement by a new borrower with probability λ of being type-H.

Equilibrium. We define an equilibrium as follows:

Definition 1. Given an initial share of type-H borrowers x0 ∈ [0, 1] in the pool, an equilibrium

consists of a path of the fraction of type-H borrowers {xt}, credit spreads {rt}, the fraction of active

banks {θt}, borrowers’ application decisions {φH
t , φL

t }, implied application flows of type-H and

type-L borrowers {κHt, κLt}, and screening choices {zt} such that

• {φH
t , φL

t } solves each borrower type’s maximization problem (5) given {rt, zt, θt},

• {κHt, κLt} are determined by (1) and (2),

• at each t, zt solves the bank’s maximization problem (4) given rt, κHt, κLt,

• all banks are active, θt = 1, whenever the surplus is positive, St > 0, else banks are indifferent,

θt ∈ [0, 1],

• {rt} is determined by the zero profit condition (6),

• {xt} follows the law of motion (7).

A steady state (equilibrium) is an equilibrium with {xt, rt, θt, φH
t , φL

t , zt} constant over time.

To study variation in lending standards, we further make the following parameter assumptions:

Assumption 1. The cost of bank screening c is not too low or too high:

1 − λ < c < 1 − xs + z−1 min
{

xsr∆ − 1, 0
}

,

where xs = λ − λ (1 − λ) z
1−λz+δκ−1 .

The first inequality in Assumption 1 ensures that the screening cost c is high enough that the

lending standard z = z̄ does not strictly dominate z = 0. The second inequality ensures that c is not

so high as to rule out a steady state with z = z̄.
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3 Steady-state equilibria

We begin by characterizing the steady-state equilibria of our model. Since prices and quantities

are constant, we drop the time subscripts for this section. Provided accepting a loan has constant

and positive value for a borrower, no borrower has an incentive to wait to borrow in a steady-state

equilibrium and therefore φH = φL = 1. For type-L borrowers, the payoff to borrowing is a constant

u > 0. For type-H borrowers, (5a), J̇t
H
= 0, and the fact that the loan rate is always weakly below

the highest pledgeable payoff, r ≤ rH , imply that type-H borrowers prefer borrowing over waiting:

rH − r + u − JH > 0. (8)

Under these conditions, all banks are active in a steady state, θ = 1.

The steady-state quality of the pool x and the steady-state lending standard z are jointly deter-

mined by the interaction of two forces. On the one hand, the law of motion of x, (7), implies that

when ẋ = 0,

x = λ − λ
(1 − λ) z

(1 − λz) + δκ−1 . (9)

This equation highlights that tighter lending standards—higher z—are associated with a lower

steady-state quality of the pool of borrowers x, as more type-L borrowers are rejected by banks.

This effect is greater when the effects of lending standards on the pool are more persistent (low

exit rate δ) or when opportunities to invest arise more frequently (high κ) and so borrowers are

evaluated more frequently.

On the other hand, banks solve (4) and choose tighter lending standards precisely when the

pool is more adversely selected,

z =


0 if x > x

[0, z] if x = x

z if x < x

, where x ≡ 1 − c. (10)

The combination of equations (9) and (10) is illustrated in Figure 1. Both represent downward-
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Figure 1: The two forces shaping steady-state equilibria.
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Note: This figure shows two curves whose intersections yield the steady-state pool quality x and the steady-state lending
standard z. The solid line represents the optimal choice of the lending standard, (10). The dashed line represents the pool
quality x that is caused by any given lending standard z through the law of motion.

sloping relations between x and z, and given Assumption 1 admit three intersections, each of which

represents a steady-state equilibrium.9 This logic is summarized in the following proposition.

Proposition 1 (Steady-state equilibria). If λrH + (1 − λ)rL ≥ 0, then there exist three steady-state

equilibria, all with θ = 1:

(i) A pooling steady state with normal lending standards z = 0 and x = xp ≡ λ.

(ii) A screening steady state with tight lending standards z = z and x = xs ≡ λ − λ (1−λ)z
(1−λz)+δκ−1 .

(iii) A mixed steady state with z = λ−x
λ−λx

(
1 + δκ−1) ∈ (0, z) and x = x.

If λrH + (1 − λ)rL < 0, then there exists only one steady-state equilibrium: A screening steady state with

tight lending standards, as in (ii).

The root of the multiplicity in the first part of the proposition is a dynamic strategic complementarity

among banks. By (10), banks respond to a lower-quality pool by tightening their lending standards;

however, according to (9), tighter lending standards worsen the pool itself, creating an even bigger

incentive for banks to tighten their standards in the future. This reasoning rationalizes the existence

9As one might expect, if screening is very expensive or free, only a single steady state will exist. Multiple steady states
can also exist for nonlinear screening costs, see Appendix E.2.
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of the pooling and screening equilibria in Figure 1. A mixed steady state formally exists but will

turn out to be unstable and therefore play no role in the remainder of the analysis.

In the final part of the proposition, the unconditional expected NPV of a project is negative and

so no bank will lend without a tight lending standard. The dynamics here are uninteresting: from

any initial condition, the credit market converges to the screening steady state. Therefore, going

forward, our analysis considers the case of λrH + (1 − λ)rL ≥ 0, which is the basis of our statement

in the introduction that we focus on prime lending markets.

The pooling and screening steady states have different volumes of lending, credit spreads,

and default rates. First, because screening reduces the flow of borrowers that receive funding,

fewer projects are funded in the screening steady state—a flow of κx + κ(1 − x)(1 − z̄)—than in

the pooling steady state—a flow of κ projects. Second, credit spreads are higher in the screening

steady state because the lower pool quality and imposition of lending standards implies that banks’

have greater costs of originating loans. Banks charge higher credit spreads to cover these costs.

This is true even though banks choose tight lending standards.10 Finally, in the screening steady

state, the quality of funded borrowers is better, leading to a lower default rate, (1−xs)(1−z̄)
xs+(1−xs)(1−z̄) , in

the screening steady state than in the pooling steady state, where the default rate is 1 − xp. Key to

this result is that borrowers exogenously exit at rate δ > 0. Thus, a bank that screens and rejects

type-L borrowers reduces the probability that they are ever funded, increasing the average quality

of funded borrowers. If there was no exogenous exit, δ = 0, the default rate would equal 1 − λ in

any steady state, irrespective of the screening decision, as rejected type-L borrowers can remain in

the pool until funded.11

4 The dynamics of lending standards

The steady state characterization has already touched upon the dynamic strategic interactions that

lie at the heart of our paper. We now analyze the full dynamic predictions of our model, outside

steady states, beginning with predictions for lending standards zt and pool quality xt.

10Proposition 3 has a complete characterization of interest rate spreads.
11The results in this paragraph are proved in the Appendix, and are robust to alternative assumptions on the dynamics

of the borrower pool, e.g. assuming a constant inflow rate rather than a constant pool size. See Section 6.1.
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4.1 Lending standards, pool quality, and credit spreads

Figure 1 shows that at pool qualities greater than x̄ (and less than λ), banks choose normal lending

standards (solid line) and that tighter lending standards would be required to maintain pool quality

constant (dashed line). In this region, bank lending removes a higher share of type-L projects

than the share of type-L projects among borrowers entering the pool of borrowers, so pool quality

improves over time, ẋ > 0. A similar argument implies that pool quality is declining at lower pool

qualities above xs and below x̄.

For pool qualities below xs, banks impose tight lending standards. At very low levels of pool

quality, even the maximum loan rate does not make profits for a bank. Thus, Π(rH) = 0 defines an

x such that

θ(x) =


0 if x < x

> 0 if x = x
, where x ≡ 1 − z + cz

r∆ − z
. (11)

By Assumption 1, x is well-defined and strictly smaller than xs. Below x, banks are inactive, θ = 0,

and pool quality only improves over time due to the exogenous exit and entry of borrowers. Above

x, but below xs, pool quality is still sufficiently poor that it continues to improve over time despite

banks being active and imposing tight lending standards (see Figure 1).

The following proposition formally states the limiting steady state for each initial pool quality,

and along with Propositions 3 and 4 below, completely characterizes equilibrium dynamics.

Proposition 2 (Dynamics of lending standards). Suppose x0 ∈ [0, 1] is the initial fraction of type-H

borrowers in the pool. There is a unique equilibrium for {xt}t≥0 in which lending standards are given by (10)

and as t → ∞, the credit market converges to

(i) the screening steady state, xt → xs, if x0 < x.

(ii) the mixed steady state, xt → x, if x0 = x.

(iii) the pooling steady state, xt → xp, if x0 > x.

Figure 2 illustrates the state space of the credit market and highlights the transitional dynamics

(but not the speed of transition) in the three regions of bank behavior: the “no lending” region
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Figure 2: State space and banks’ optimal strategies.
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Mixed steady state

Pooling steady state

Normal lending standardsTight lending standardsNo lending

for low pool qualities, where banks are inactive (θt = 0) and pool quality improves only due

to exogenous exit and replacement; the “tight lending standards” region, where banks screen

borrowers zt = z and the market approaches the screening steady state; and the “normal lending

standards” region where banks choose zt = 0 and the market approaches the pooling steady state.12

A crucial part of the diagram is at x = x. This point represents a sharp boundary between the

regions with tight and normal lending standards, giving rise to an important model prediction—a

“bifurcation” property: when x0 lies above x, the credit market converges to the pooling steady state

with normal lending standards; and when x0 lies below x, the self-reinforcing nature of tight lending

standards pushes the market to the screening steady state. We further explore the implications of

this property in Section 4.3.

How do credit spreads vary over time? Lower xt implies higher default rates for any given

lending standard, suggesting higher credit spreads. But lower xt can also lead to tight lending

standards, which would suggest lower default rates and lower credit spreads, but also raise the

cost of lending c̃zt. As the following proposition shows, the credit spread rt is in fact uniformly

decreasing in pool quality xt.

Proposition 3 (Equlibrium credit spread). The equilibrium credit spread rt = r(xt) is decreasing in the

fraction of type-H borrowers, x, and is given by

rt = r(xt) =


∞ if xt < x

(−rL)x−1
t {cz + (1 − z)(1 − xt)} if x ≤ xt < x

(−rL)x−1
t {1 − xt} if xt ≥ x

. (12)

12Neither the results up to this point, nor the ones in the next section on efficiency rely on our assumptions on the
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Figure 3: Break-even credit spread as function of pool quality x.
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Note: Grey is the component of the credit spread that is due to default risk (the default spread). Hatched is the component
of the credit spread that is due to intermediation costs (the intermediation spread).

We can decompose the expression for r(x) in (12) into a default spread, −rLx−1(1− z(x))(1− x) >

0, where z(x) is the optimal screening choice given x, and an intermediation spread −rLx−1cz(x) ≥ 0.

Figure 3 plots the credit spread r(x) and these two components over the state space. The shaded

areas in Figure 3 highlight that the default spread changes discretely at x = x as banks switch

between tight and normal lending standards, but this change is offset by an equally large change

in the intermediation spread. The spread rises significantly due to intermediation costs at lower

pool qualities x. The decoupling of credit spreads and credit risk in this region of the state space

provides a rationale for why, at times, credit spreads may appear to be high given the credit risk.13

Together, Propositions 2 and 3 suggest that credit spreads increase over time as an economy

converges to the screening steady state from the right, x ↘ xs; and decrease over time as an

economy converges to the pooling steady state from the left, x ↗ xp. This gives rise an interesting

possibility: could a type-H borrower have an incentive to wait for lower credit spreads before

applying for loans? As we explore next, the answer is yes.

4.2 Slow thawing

A convenient simplification in our steady state analysis was that banks are always active in a steady

state, θ = 1. We already saw that this is no longer true in dynamic equilibria, where x < x leads to

inactive banks, θt = 0. We now show that a second region in which some banks remain inactive can

inflow of new borrowers that keep the pool size constant (see Appendix 6.1).
13Factors other than intermediation costs may of course also be at play, such as low liquidity (He and Milbradt, 2014),

or high effective risk aversion.
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also exist.

To see why, consider a pool quality x just above x. The pool is set to improve, credit spreads

are set to come down over time. If these dynamics are expected to occur sufficiently quickly, a

type-H borrower may have an incentive to wait, setting its loan application probability φH
t to zero.

This would make it unprofitable for banks to be active as they cannot turn a profit by financing the

negative NPV projects of type-L borrowers (see Definition 1). Any such reduction in bank activity,

pushing θt below 1, slows down convergence to the pooling steady state. This is why we refer to

these dynamics as slow thawing.

Our next proposition shows that in equilibrium, credit markets will thaw at exactly the speed

at which type-H borrowers are indifferent between applying and not applying; and at which the

marginal bank is indifferent between being active and being inactive.14

Proposition 4 (Slow thawing). Suppose the private benefit is small, u → 0, and x0 ∈ [0, 1] is the initial

fraction of type-H borrowers in the pool. There is a unique equilibrium, in which lending standards are given

by Proposition 2, all borrowers apply for loans, φH
t = φL

t = 1, banks’ activity policies satisfy (11), and there

exists a threshold x̂ ∈ (0, xp), such that:

(i) if x̂ ≤ x, then there is no slow thawing region and all banks are active, θ(x) = 1, for x >x.

(ii) if x̂ > x̄, then there is a slow thawing region. For x ∈ [x̄, x̂) a positive fraction of banks are inactive

θ(x) =
(ρ + δ) (rH − r(x))
−κr′(x)(λ − x)

− δκ−1 < 1 (13)

where r(x) = −rLx−1 (1 − x) > 0 and type-H borrowers are indifferent about applying for loans. For

x ≥ x̂, all banks are active, θ(x) = 1, and type-H borrowers strictly prefer to apply for loans.

The cutoff value, x̂, is the unique solution to θ(x̂) = 1 in (0, xp), and the transition speed ẋ is given by (7).

The intuition for the expression in (13) comes directly from the indifference condition of type-H

borrowers. The HJB of a type-H borrower is given by

ρJH
t = max

φH
t ∈[0,1]

κθt φH
t

{
rH − rt − JH

}
+ J̇H − δJH

14To keep the derivations and exposition clear, we focus on the case where the private benefit from running the project,
u, is vanishingly small, u → 0, in which case JL

t → 0.
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Figure 4: Slowly thawing credit markets.
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Note. This figure illustrates when there exists a region with “slow thawing” where credit markets recover only very
slowly from a crisis. The green solid line represents the speed at which the pool quality needs to improve for type-H
borrowers to be exactly indifferent between applying for loans (strictly preferred below the curve) and waiting (strictly
preferred above). The red dashed line represents the speed of improvement when all banks are active. The equilibrium
speed (black solid line) is the minimum of both curves.

with indifference between applying for a loan or not at pool quality x requiring that JH(x) =

rH − r(x). Substituting this back into the HJB yields an equation for the speed ẋ at which the pool

needs to improve for type-H borrowers to remain exactly indifferent,

−r′(x)ẋ︸ ︷︷ ︸
benefit of waiting

= (ρ + δ) (rH − r(x))︸ ︷︷ ︸
opportunity cost of waiting

. (14)

When is ẋ the equilibrium speed? Precisely when θt is such that ẋ satisfies the law of motion of x,

(7). Together, (14) and (7) give (13).

Figure 4 schematically illustrates the logic of slow thawing. The green solid line represents the

speed ẋ at which type-H borrowers are indifferent between borrowing now and waiting for the pool

to improve. This is an increasing line as the benefit of waiting declines the closer x is to the pooling

steady state. The red dashed line represents the speed at which the pool quality improves when all

banks choose to be active and all borrowers borrow. Clearly, where this line lies below the green

solid line of indifference, it is also equal to the equilibrium speed, shown as the black solid line.
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However, for x < x̂, the speed ẋ with all banks active lies above the solid green indifference curve.

In this region, type-H borrowers would prefer to wait if all banks are active, making it unprofitable

for banks to be active in the first place. Thus, a fraction 1 − θ(x) of banks choose to be inactive,

bringing down the equilibrium speed to match the one along the green solid indifference curve.

This leads to a hump-shaped thawing speed: initially little lending due to the threat of type-H

borrowers waiting; a period of slow thawing as lending volume and the pool quality accelerate;

and finally a period of normal convergence to the steady state.15

Slow thawing is thus a mechanism by which lending is slow to recover after crises, based on two

intuitive ideas. First, credit spreads rise when the pool of borrowers is temporarily poor, but decline

as the pool improves. Second, the more financially sound (type-H) borrowers have an incentive to

“wait out” crises until credit spreads come down, while low-quality borrowers choose not to do so.

These two ideas amplify each other, as banks increase credit spreads in response to a worse pool of

borrowers, further incentivizing type-H borrowers to delay borrowing.16

What determines how likely or how strong this period of slow thawing is? How could it be sped

up? The following corollary reveals the roles of project payoffs, meeting frequencies, and borrower

impatience.

Corollary 1 (Determinants of slow thawing). Fix a quality of the borrower pool x ∈ (x, xp) and let ẋ

denote the speed of improvement in the pool’s quality. Then in the interior of the slow thawing region:

1. Worse projects always slow down the recovery: ẋ falls with lower rL, rH.

2. Increasing the rate at which borrowers apply for loans does not speed up the recovery: for x < x̂, ẋ does

not rise with κ, while for x > x̂, ẋ rises with κ.

3. More patient borrowers slow down the recovery: ẋ falls with lower ρ (holding fixed rL, rH).

When the rate κ at which borrowers receive projects increases (part 2 of Corollary 1), the red line

in Figure 4 increases. This naturally increases the speed of the recovery towards the steady state

15Note that Figure 4 does not show ẋ just to the left of x̄ because it is negative. By Proposition 3, ẋ < 0 implies ṙ > 0.
With spreads rising over time, there is no incentive to delay and so no region of slow thawing.

16It is inessential for slow thawing that type-H borrowers and lenders are all indifferent. In a model in which banks
need to pay heterogeneous costs to be active, and in which borrowers have heterogeneous patience, there will, in general,
be both a positive mass of borrowers that strictly prefer to wait during slow thawing, as well as a positive mass of lenders
that strictly prefer to be inactive.
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Figure 5: The effect of slow thawing.
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Note. The plots compare two transitions back to the pooling steady state. Green solid is a transition without “slow
thawing”, where type-H borrowers always accept current loan offers and banks do not ration credit; red dashed is a
transition with slow thawing, where banks ration credit in equilibrium. The parameters used for this simulation are as
follows: ρ = δ = 0.05, λ = 0.95, rL = −0.27, rH = 0.13, c̃ = 0.035, κ = 2, z = 0.8.

outside the slow-thawing region. Inside that region, however, it has no effect. In fact, even when

the recovery is immediate outside the slow-thawing region, κ → ∞, the transition inside the region

is slow and entirely determined by the indifference condition (14). The reason for this is that banks

are not finding it profitable to lend more, as the pool is adversely selected, and are thus holding

back lending.

Greater patience, lower ρ, makes type-H borrowers more willing to wait, shifting down the

indifference curve in Figure 4 and slowing down the recovery. In practice, the patience parameter

reflects how timely the borrower’s need for funding is. Thus, paradoxically, when good borrowers

are less desperate for funding, the recovery takes longer.
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Figure 5 juxtaposes the transitional dynamics with slow thawing (dashed red line) and the

transitional dynamics without slow thawing (solid green line). The latter was computed by ruling

out slow thawing by assumption, imposing φH
t = θt = 1 and dropping equilibrium equation (8).

Instead we assume that borrowers are myopic in the sense that they mechanically always approach

the competitive banking sector and accept the loan rather than wait for their next project. As is

visible in the figure, slow thawing can greatly slow the transition back to the pooling steady state,

and lead to a relatively low lending volume as well as elevated credit spreads and default rates.17

4.3 Hysteresis

Propositions 1 and 2 imply that a tightening of lending standards can turn a temporary worsening

of credit market fundamentals into permanently lower lending volume, higher intermediation costs,

and higher interest rate spreads. To illustrate these dynamics, consider a temporary decline in the

size and quality of the pool of borrowers. From time 0 to time T′, we reduce the inflow of new

type-H borrowers into the pool by a fraction µ. In Appendix C, where we derive the equations for

this section, we show that the average quality of new borrowers entering the pool is now

λt ≡


(1 − µ (1 − xt)) λ t ≤ T′

λ t > T′
(15)

which is notably lower than λ before time T′. As a result, the fraction of type-H borrowers, xt,

evolves according to

ẋt = θtκ(1 − xt)(1 − zt)λt − θtκxt(1 − λt) + (λt − xt)
δ

Nt
(16)

The last term in (16) is adjusted for by the total pool size Nt, which falls temporarily during this

episode, in line with the law of motion

Ṅt = δ (1 − Nt)− 1{t≤T′}µλNt

(
δ

Nt
+ θtκxt + θtκ (1 − xt) (1 − zt)

)
(17)

17Note that a similar region with slow thawing can also appear in the region between x and xs and slow down the
convergence to the screening steady state from the left.
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Figure 6: Hysteresis.
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Note. This figure shows a credit market in response to a temporary reduction in the inflow of type-H borrowers: green
solid (1.25 periods long reduction), red dashed (2.25 periods long reduction). The parameters used for this simulation are
as follows: ρ = δ = 0.05, λ = 0.95, rL = −0.27, rH = 0.13, c̃ = 0.035, κ = 2, z = 0.8, µ = 0.70.

Figure 6 shows the credit market response when the decline in the quality of new pool entrants

is short-lived and when it is longer, for T′ = 1.25 and T′ = 2.25. As the solid green line shows,

the short-lived decline in pool quality is associated both with a slight decrease in lending volume,

as fewer borrowers enter the pool, and with an increase in interest rate spreads, as pool quality

declines and the ex-post default rate increases. When the downturn in fundamentals ends, the

increase in the demand for loans and the increase in the quality of borrowers both lead to increased

lending and decreased interest rate spreads. Ultimately, the credit market returns to its previous

equilibrium with normal lending standards after the short downturn.

By contrast, in the longer downturn (dashed red line) lending standards remain tight even

after the inflow of new projects rises back to its initial value. As a consequence, the credit market

continues to deteriorate even after the fundamental recovers. The longer period of decline in the
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average quality of borrowers leads to an abrupt decline in lending when banks tighten lending

standards roughly at t = 2. Following this tightening, pool quality deteriorates more rapidly,

credit spreads increase, and lending volumes continue to contract. Because lending standards are

tight, when the slowdown ends at T′ = 2.25 and more type-H borrowers start to enter the pool of

borrowers again, lending volumes increase, but interest rate spreads remain high and lending never

fully recovers. Such hysteresis does not follow from shorter or smaller downturns, consistent with

lending standards normalizing following the milder 2001 U.S. recession but not the 2008-2009 Great

Recession.

More generally, these dynamics match stylized facts about the pro-cyclicality of credit conditions

(e.g those discussed in Greenwood and Hanson, 2013) and evidence on the counter-cyclicality of the

use of private information in lending decisions (Lisowsky, Minnis and Sutherland, 2017; Bedayo,

Jimenez, Peydro and Vegas, 2020; Howes and Weitzner, 2023): credit contractions feature tighter

information-based lending standards, lower lending volumes, higher credit spreads conditional

on default probability, and lower default than implied by public information and stable lending

standards. Further, a salso noted in the Introduction, the model dynamics also match the negative

correlation between lending and (labor) productivity of financial institutions (Chen, Favilukis, Lin

and Zhao, 2023) because the collection of information associated with tighter lending standards

involves more cost per loan originated (which also then raises interest rate spreads).

Our finding of hysteresis is not limited to declines in borrower quality λ. Indeed, similar

dynamics would follow from a downturn in which recovery rates after loans default, rL, worsen

temporarily. In this case, banks would maintain normal lending standards for small declines in

rL, leading to no lasting damage to credit markets. In contrast, deep downturns, in which rL falls

enough to trigger tight lending standards, can cause permanent declines in lending volume and

increases in interest rate spreads as banks incur intermediation costs.

Is this permanent shift in lending standards efficient? In the next section, we show that while it

is individually optimal for banks to tighten lending standards during a long downturn, it can be

socially sub-optimal.18

18It turns out that in the long-downturn in Figure 6, optimal policy maintains normal lending standards (Appendix B).
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5 Socially optimal lending standards

Because one bank’s lending standard affects the future pool of borrowers for all banks, equilibrium

lending standards will, in general, not be efficient. The first-best allocation would allow the planner

to fund only type-H borrowers. However, such a policy requires the planner to observe individual

borrowers’ types. This section instead characterizes the constrained efficient allocation.

Our concept of constrained efficiency only allows the planner to control banks’ activity and

screening decisions, subject to borrowers’ application decisions, without having access to supe-

rior information relative to banks. The planner’s objective is to maximize the sum of all agents’

utilities.19 Throughout this section, we continue to focus on the algebraically simpler case where

u → 0. Further, we assume that the planner can set the path of market interest rates {rt}, and

therefore prevent type-H borrowers from waiting, avoiding slow thawing. We discuss relaxing this

assumption below.

The constrained efficient planning problem is then given by

max
zt∈[0,z],θt∈[0,1]

∫ ∞

0
e−ρtκθt {xtrH + (1 − zt)(1 − xt)rL − c̃zt} dt (18)

subject to the law of motion of xt, (7). The solution to this problem can be characterized as follows.

Proposition 5 (Second-best policy). There exists a threshold x∗ ∈ [0, x) such that the planner sets:

zt =


z if xt < x∗

0 if xt > x∗
(19)

For any xt ∈ (x∗, x), equilibrium lending standards are (second-best) inefficiently tight.

For any x∗ > xs, the optimal policy for bank activity is given by

θt =


0 if xt < x∗

1 if xt > x∗

for some x∗ ∈ [0, x∗).
19Since borrowers and banks are risk-neutral, this is without loss when transfers between agents are feasible.
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Figure 7: Constrained efficient vs. equilibrium lending standards.
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Proposition 5 shows that the constrained efficient lending standard takes a similar form to

the privately-optimal policy: when the pool quality is relatively high, x > x∗, normal lending

standards, z = 0, are optimal; and when x < x∗, tight lending standards, z = z̄, are optimal. But the

cutoffs for the optimal policy and for the market equilibrium differ: there exists a region in the state

space, (x∗, x), where equilibrium lending standards are too tight relative to the constrained-efficient

outcome.20 The private and social thresholds are shown in Figure 7.

We discuss policies that implement the constrained optimum in Appendix B. For example, the

constrained optimum can be implemented in practice using a government-funded loan insurance

program.

The result in Proposition 5 does not imply that tight lending standards should always be

prevented. In fact, tight lending standards are constrained optimal whenever the pool quality is

sufficiently poor, as normal standards would involve lending to all type-L borrowers that have

accumulated in the pool, and thus be very costly. This result holds despite the fact that all projects

are ex ante positive expected NPV, and is an important implication of our dynamic perspective that

would be lost in a static context. Despite this, the welfare in the screening steady state is always

lower than welfare in the pooling steady state.

Corollary 2. When both steady states exist (a result of Assumption 1), the screening steady state has strictly

lower welfare than the pooling steady state.

If δ = 0, this result would be a simple consequence of the fact that screening borrowers is costly

and the quality of funded borrowers is independent of the steady state (see the discussion following

Proposition 1). But with δ > 0, screening borrowers has a social benefit because a share of them are

20The logic that lending standards are only inefficiently tight in the region (x∗, x) follows from the linearity of the cost
function. If banks’ screening costs were nonlinear such that the optimal z∗(x) were continuous and strictly decreasing,
then lending standards could be generically too tight.
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Figure 8: Early interventions dominate late ones.
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Note. Figure shows how an intervention implementing normal lending standards affects a credit market that is transi-
tioning towards the screening steady state. Horizontal axis: time at which the intervention starts (0 corresponds to the
immediate, constrained efficient intervention). The parameters used for this simulation are as follows: ρ = δ = 0.05,
λ = 0.95, rL = −0.27, rH = 0.30, c̃ = 0.035, κ = 1, z = 0.8.

never funded. Still, the corollary shows that welfare in the pooling steady state is higher.

There are two important dynamic implications that follow from the existence of a non-empty

interval (x∗, x) where the market equilibrium diverges from the constrained optimum.

1. Intervention timing matters. Figure 8 illustrates the welfare consequences of intervening

in a credit market that starts at a given x0 ∈ (x∗, x) for various intervention start times (on the

horizontal axis). An intervention is assumed to require banks to set normal, rather than tight,

lending standards. As Figure 8 shows, the later the time of intervention is, the lower is the quality

of the pool of borrowers when the policy switches from screening to pooling (left panel). Later

intervention times thus increase the short-run losses incurred at the start of the intervention and are

therefore welfare-inferior to early interventions. In fact, after a sufficiently long time, if xt has fallen

below x∗, intervening may even be welfare-dominated by not intervening at all. In this situation,

it would be socially optimal to allow the credit market to converge to the screening steady state,

despite its having lower steady-state welfare than the pooling steady state (Corollary 2).

2. Better screening technology may be detrimental to welfare. Consider a decline in the cost c̃ of

operating tight lending standards. Such a cost reduction necessarily raises efficiency in any steady-

state equilibrium. In a dynamic equilibrium, however, it can decrease welfare as it raises both

the privately optimal (x) and socially optimal (x∗) thresholds between tight and normal lending

standards. If, for example, a market is just recovering from a crisis, with x0 just above x, such a
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technological improvement may cause x to rise above x0, thereby preventing a recovery and leading

to a reduction in welfare. If x∗ also rises above x0 then it is too costly for policy to mitigate this

decline in welfare.

A decrease in cost c̃ represents an improvement in private information technology. What

happens if instead public information technology (e.g. credit reporting) improves? A crude way

to capture such a change is as an increase in δ, the probability that borrowers exit. While the exit

of borrowers who have never been rejected has no effect on equilibrium as they are replaced in

the pool by an equal measure of new identical borrowers, a greater exit rate of rejected borrowers

does matter for equilibrium. A larger exit rate δ unambiguously improves pool quality at every

point in time and is therefore beneficial for welfare. Thus, the welfare effects of improving public

information are positive (see Appendix F for a discussion of credit bureaus).

6 Extensions

We now show how our core model can serve as the basis for richer analyses of lending market

dynamics by extending our analysis in three ways. First, we relax our assumption that the pool size

is constant, and instead assume a constant inflow rate. This allows for a richer description of booms

and busts in lending volumes. Aside from this added feature, we show that all our main results are

robust to this modification. The second extension builds on the first by introducing an additional

channel through which borrower pool quality is endogenous: the quality of new borrowers who

enter the pool is lower when future lending standards are expected to be less tight. In this case,

optimal policy can involve setting a minimum lending standard. The third extension introduces

a positive cost to a bank of making a loan, motivated by the idea that banks’ balance sheets may

be constrained, especially during periods of heightened financial distress. The extension shows

that such a cost of lending can give rise to high and persistent credit spreads, as in the dynamics in

Section 4.3.
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6.1 Non-constant pool size

In our first extension, we illustrate that our baseline model does not require a constant pool size and,

in fact, gives rise to the same steady states and dynamics when instead inflow rates are assumed to

be constant at δ. We endogenize inflow rates in the subsequent extension. For simplicity, we focus

on the case of active banks, θt = 1, throughout this section.

Without a constant pool size, there are two state variables: mHt, the number of type-H borrowers

in the pool and mLt, the number of type-L borrowers in the pool. The laws of motion of the state

variables are given by

ṁHt = δλ − δmHt − κmHt (20)

ṁLt = δ(1 − λ)− δmLt − κ(1 − zt)mLt. (21)

The first term in both laws of motion reflects the constant inflow of δλ type-H borrowers and

δ(1 − λ) type-L borrowers. The second term captures the constant exit probability of borrowers in

the pool. The final term is the flow rate of borrowers who receive a loan.

Since the first equation is independent of zt, mHt converges to a steady state that is independent

of lending standards,

m∗
H =

δλ

δ + κ
. (22)

We make the natural assumption that mH starts out at this steady state initially, and thus remains

there forever, mH = m∗
H. We continue to denote the share of type-H borrowers in the pool by

xt ≡ mH/(mH + mLt). Given (22), the law of motion of xt can easily be shown to be given by

ẋt

xt/λ
= κ(1 − xt)(1 − zt)λ − κxt(1 − λ) + δ(λ − xt). (23)

Observe that the right hand side of (23) is identical to the one of (7) after substituting out κHt and

κLt and setting θt = 1. Thus, the only difference between our baseline constant-pool-size model

and the constant-inflow one in this section is that the speed here is altered by a factor xt/λ on the

left hand side of (23). In particular, our results on steady states and transitions between them carry
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over one-for-one to the model in this section.21 In Appendix D, we show that steady state welfare

considerations are also similar in the two models.

6.2 Endogenous borrower quality and lending standards that are too loose

So far in the model, looser lending standards lead to an unambiguously better pool quality over

time. This is the case because, with looser lending standards, low types are more likely to obtain

funding and leave the pool, improving its quality. One could imagine, however, that the ease of

finding financing might attract more low-quality borrowers into the pool. We introduce this idea

via an “entry margin” in our model and show that the relationship between efficiency and lending

standards becomes non-monotonic. In particular, it can be constrained optimal for a planner to set a

minimum lending standard z, in which case the pooling steady state no longer has z = 0.

Except for one addition, we work with the model introduced in the previous subsection. While

we leave the inflow rate δλ of high type borrowers unchanged, we assume that there is a fringe of

low type borrowers with positive and heterogeneous entry costs, measured in units of the utility

benefit u.22 We denote by ψi · u > 0 the entry cost of low type borrower i, and assume that ψi has a

cdf Ψ(x). An individual borrower i then enters at date t if

JL
t > ψi · u

and the overall mass of low-type entrants is Ψ(JL
t /u). The term Ψ(JL

t /u) replaces the term δ(1 − λ)

in (21), changing the law of motion for xt is from (23) to

ẋt

xt/λ
= −Ψ(JL

t /u)
δ + κ

δ
xt + λ(1 − xt)(δ + κ(1 − zt)). (24)

The law of motion (24) captures that when the value of being a low type, JL
t , is higher, there is more

entry of low type borrowers, consequently reducing pool quality. We next analyze how this changes

the steady states of the model, relative to the ones shown in Figure 1, as well as the transitional

21What becomes harder to analyze with a non-constant pool size is slow thawing, since θt < 1 affects both type-H and
type-L borrowers, that is, mH is no longer constant at m∗

H .
22Allowing for endogenous entry of high type borrowers would only amplify the mechanisms in our paper, as high

type borrowers would then be less likely to enter when pool quality is low, which further reduces pool quality. In that
sense, our assumption of only allowing low type borrowers to enter endogenously can be viewed as conservative.
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Figure 9: Steady state equilibria in the model with entry.
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Steady states. In steady state, the value of being a low type borrower is

JL =
(1 − z) κ

ρ + δ + (1 − z) κ
u,

which is strictly decreasing in z. Thus, looser lending standards raise the value of JL and draw in

more low type borrowers. Solving for the law of motion locus, for which ẋt = 0, we now find

x(z) =
λδ(1 − κz

δ+κ )

λδ(1 − κz
δ+κ ) + Ψ(JL/u)

(25)

rather than (9). In Figure 9 we illustrate how this affects the steady states in our model. Now the

law of motion locus (25) can be backward bending, with the exact shape depending on the shape of

Ψ(x).

While the screening steady state is unchanged, a positive lending standard z can be optimal in

the pooling steady state. In this case, when lending standards are loose, that is, z is low, rapid entry

of low types pollutes the pool and reduces steady state pool quality x. This shifts the pooling steady

state to the left. Starting at the pooling steady state, a backward bending locus implies that a policy

that requires banks to modestly tighten lending standards can raise pool quality. Requiring banks to
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tighten lending standards by too much, however, reduces pool quality again. As we show below,

this is crucial when thinking about welfare.

Transitions. We demonstrate in Appendix D that the model with entry can be analyzed using a

traditional phase diagram in (x, JL) space. We obtain that the pooling and screening steady states,

whenever they exist, are still stable, while the middle steady state is unstable.

Efficiency. Assuming all banks set lending standards to z, steady state welfare W(z) is given by23

κ−1W(z) =
m∗

H
x(z)

(x(z)rH + (1 − z) (1 − x(z)) rL − c̃z)

where, compared to expression (18) in the constant-pool-size model, an extra factor m∗
H

x(z) appears.

Where is W(z) is maximized? The first order condition W ′(z) = 0 is equivalent to

1 − x(z) + [(1 − z) + cz]
x′(z)
x(z)

= c

When the law of motion locus is downward sloping, just like before, x′(z) < 0. Then, the pooling

steady state, which exists if c > 1 − x(0), must be the steady state with the highest welfare, as the

left hand side is strictly below the right hand side, or, W ′(0) < 0. When the law of motion locus is

backward bending, however, x′(z) can be positive. In that case, it is possible that W ′(0) > 0 and

that there is an interior maximum of W(z).

To illustrate this case, we numerically plot W(z) for a model without endogenous entry (dashed

line) and one with endogenous entry (solid line) in Figure 10. In the baseline model without

endogenous entry, it is most efficient to have z = 0. In the model with endogenous entry, by

contrast, the socially optimal lending standard can be positive.

23For simplicity, we again consider the limit u → 0 here.
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Figure 10: Steady state welfare W(z) with and without entry.
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6.3 Balance sheet costs and lending standards

In this section, we explore how regulatory or market-based imposed costs that constrain lending,

henceforth “balance sheet costs,” interact with equilibrium lending standards.24 To simplify the

math, we work in the limit u → 0 and assume no slow thawing, φL
t = φH

t = θt = 1 and Kt = κ.

Without loss, we assume for this section that the total mass of banks J is equal to κ. Thus, each

(infinitesimal) bank meets on average one (infinitesimal) borrower per instant.

We do not derive balance sheet costs from first principles. Rather, for simplicity, we model

balance sheet costs as an additional cost ω > 0 imposed per loan a bank makes. Given lending

standard zt and pool quality xt, each bank makes on average xt + (1 − xt)(1 − zt) loans per instant.

If a bank pools, zt = 0, the bank makes exactly one loan. Imposing tighter lending standards, zt > 0,

reduces the average number of loans made.

The presence of balance sheet costs alters the optimal choice of lending standards for banks.

Indeed, banks now solve the modified problem

Πt(rt) ≡ max
z∈[0,z]

xtrt + (1 − xt) (1 − z)rL − c̃z − ω (xt + (1 − xt)(1 − z)) (26)

where the last term highlights captures the balance sheet cost. As the next proposition shows, this

24The 2020 working-paper version of this paper contains an analysis of the dynamics of lending and credit spreads
when banks face a binding constraint on market-wide lending that relaxes exogenously over time.
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modifies the optimal screening threshold.

Proposition 6. Balance sheet costs lead to tighter lending standards. For ω > 0, banks impose tight lending

standards for all xt < xc and set normal lending standards, z = 0, for all xt > xc where the cutoff pool

quality xc is strictly greater than the cutoff value with ω = 0:

xc = 1 − c
1 + ω/|rL|

> x

For xt = xc, banks are indifferent over lending standards.

Proposition 6 highlights a fundamental effect of balance sheet costs, whether they are direct

monetary costs or indirect costs of financial regulation: they incentivize banks to impose tighter

lending standards in order to avoid costs and preserve balance sheet capacity. This result does not

require assumptions that discourage loans to type-L borrowers or penalize future losses on bad

loans; in fact, our cost is simply on the loan volume at origination. Proposition 6 shows that the

result still follows as with ω > 0, greater scrutiny when lending reduces balance sheet costs as a

side benefit.

The fact that xc > 1 − c = x whenever ω > 0 means that there is now a greater range of pool

qualities over which dynamics lead towards the screening steady state. Thus, even temporarily

increased balance sheet costs can have long-lasting effects on the economy.

6.4 Discussion of modeling assumptions

Appendix E discusses several modeling assumptions. Appendix E.1 considers the possibility that in

addition to mistakenly lending to type-L borrowers—the assumption in our baseline model,—banks

can also mistakenly reject type-H borrowers. Appendix E.2 considers the case with a strictly convex

cost of screening, rather than a linear cost. Appendix E.3 discusses the introduction of collateral.

Appendix E.5 discusses miscellaneous other assumptions.
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7 Concluding remarks

We develop a dynamic theory of lending standards, based on two intuitive features of credit markets.

First, tighter lending standards lead to the rejection of unprofitable loan applications. Second, it

is not costless for banks to identify unprofitable applicants, even those previously rejected by

other banks. These two features give rise both to a dynamic strategic complementarity in lending

standards, which leads to more persistence in lending standards than in fundamentals; and to

negative externalities from tight lending standards, implying that lending standards can be too

tight for too long after negative shocks.

These two central features provide guidance regarding which markets our theory applies to.

The first feature is likely true for any lending standard. The second, however, focuses our model

on markets in which borrowers likely shop for loans from multiple lenders and in which lenders

can, at some cost, gather soft or private information about the default probability or the loss in the

event of default. By contrast, markets in which borrowers have limited ability or need to approach

multiple banks, in which the outcome of lending depends purely on public information, or in which

the borrower can be forced to bear significant losses in the event of default are unlikely to be subject

to the conclusions from our theory.
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A Dynamic Theory of Lending Standards — Appendix

A Proofs and derivations

A.1 Steady state equilibria: Proof of Proposition 1

The three pairs (x, z) mentioned in Proposition 1 are solutions to (9) and (10) if λ > x, xs < x,
and λ−x

λ−λx

(
1 + δκ−1) < z. The first two of these hold by Assumption 1 and the third is a straight

consequence of the second.
We claim that the three pairs indeed constitute equilibria, with θ = 1, φa = φr = 1 and with r

pinned down by Proposition 3. To prove this, first note that the law of motion (7) as well as the
bank’s maximization problem (4) are satisfied due to (9) and (10). The zero profit condition (6)
pins down the interest rate (see our proof to Proposition 3). Finally, in any steady state a type-H
borrower strictly prefers a loan today, that is,

rH − r + u − JH > 0,

and since r ≤ rH (which holds since xs ≥ x with x as in (11) due to Assumption 1) we have that
θ = 1 and φa = φr = 1.

A.2 Proof of claims in text following Proposition 1

The flow of projects being funded in the pooling steady state is κ, compared to κxs + κ(1− xs)(1− z)
in the screening steady state. The credit spread result follows directly from Proposition 3 and the
fact that r(x) is strictly decreasing in x. The equilibrium default rate is given by

κ(1 − x)(1 − z)
κ(1 − x)(1 − z) + κx

=

(
1 +

x
(1 − x)(1 − z)

)−1

which can further be simplified to

(1 − λ)

(
1 +

λzδκ−1

(1 + δκ−1)(1 − z)

)−1

.

Thus, when δ = 0, the equilibrium default rate is always equal to 1 − λ, irrespective of the steady
state.

A.3 Proof of Proposition 2

Begin with x0 ∈ (x, λ]. In that case, z = 0 is is the optimal bank strategy (see (4)). Conjecture that
θ = 1 and all borrowers apply for loans. Therefore the law of motion of x, (7), reads

ẋt = κ(1 − xt)λ − κxt(1 − λ) + δ(λ − xt) = (κ + δ)(λ − xt) > 0

which is positive for any xt < λ, implying convergence to the pooling steady state. This is the speed
outside of any slow thawing region. However, if at the conjectured θ = 1, ẋ is large enough, then
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type−H borrowers would prefer to apply for loans rather than waiting. If this is the case, then θ
is lower so that ẋ is such that type−H borrowers are indifferent between applying for loans and
waiting. Importantly, because discounting is positive, ẋ is still positive at this indifference condition,
as can be verified using the indifference condition as stated in the proof of the Proposition 4

Next turn to x0 ∈ [x, x). In that case, z = z is the optimal bank strategy (see (4)), and therefore
the law of motion of x, (7), reads

ẋt = κ(1 − xt)(1 − z)λ − κxt(1 − λ) + δ(λ − xt) = (δ − κzλ + κ) (xs − xt)

implying convergence to the screening steady state.
For x0 < x, note that θt = 0 and so

ẋt = δ(λ − xt) > 0

implying that the pool quality improves until it crosses x and thereafter converges to the screening
steady state.

The case of x0 = x is straightforward as x is already a steady state.

A.4 Proof of Proposition 3

The zero profit condition (6) implies that

Π(R) = κHr + κL(1 − z)rL − (κH + κL)c̃z = 0.

Reformulating this we obtain

κxr/rL + κ(1 − x)(1 − z) + κcz = 0

r = −rL
cz + (1 − x)(1 − z)

x
which proves Proposition 3.

A.5 Proof of Proposition 4

Define θ(x) as in (13) and define x̂ implicitly as the unique value of x < λ with θ(x) = 1. Such
a value exists since θ(x) is strictly increasing and continuous in x with θ(0) = −δκ−1 < 0 and
limx→λ θ(x) = ∞.

Assume x̂ > x. Conjecture for any x0 ∈ [x, x̂) that the equilibrium is one with θt = θ(xt). To
verify the conjecture, we need to show that type-H borrowers are indifferent between taking a loan
and waiting. Assuming u → 0 in (5a), this is equivalent to

JH
t = rH − r(xt)

with
ρJH

t = J̇H
t − δJH

t .

Putting the two together, we obtain (14),

−r′(x)ẋ = (ρ + δ) (rH − r(x)) .
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The law of motion for x with θ < 1 is ẋt = (κθ + δ)(λ − x), which, together with (14) yields (13)
and therefore confirms that type-H borrowers are, by construction, precisely indifferent.

A.6 Proof of Proposition 5

We prove Proposition 5 in two steps. First, we determine the efficient screening policy z∗(x)
conditional on banks operating. Then we determine the optimal behavior for banks to operate
θ∗(x).

A.6.1 Optimal screening policy z∗(x)

To do so, let V(x, z) denote the present value of welfare if the current state of the market is x and
the screening policy is z from hereafter, that is,

V(x, z) ≡ ρx + αzxz

ρ + αz rH + (1 − z)
(

1 − ρx + αzxz

ρ + αz

)
rL − c̃z. (A.1)

where αz ≡ κ + δ − λκz and xz ≡ λ − λ (1−λ)z
(1−λz)+δκ−1 . Also, denote by

v(x, z) ≡ ρ {xrH + (1 − z)(1 − x)rL − c̃z} (A.2)

the flow value of policy z at state x. Finally, we call

d(x, z) ≡ κ(1 − x)(1 − z)λ − κx(1 − λ) + δ(λ − x) (A.3)

the derivative of x at state x under policy z (see the law of motion in (7)). Observe that

ρV(x, z) = v(x, z) + Vx(x, z)d(x, z) (A.4)

as well as
d(xs, z) = 0 d(xp, 0) = 0. (A.5)

We first prove the following helpful lemma.

Lemma 1. We have:

1. If λκr∆ ≥ ρ + κ + δ, pooling is strictly optimal for any state x, i.e. z∗(x) = 0.

2. If λκr∆ < ρ + κ + δ, V(x, z) has negative cross-partials, Vxz < 0.

3. If λκr∆ < ρ + κ + δ and V(x, 0) > V(x, z1) for some z1 > 0, then also V(x, 0) > V(x, z2) for
any z2 ∈ (0, z1).

Proof. Assume λκr∆ ≥ ρ + κ + δ. Suppose pooling were not strictly optimal for every state x. First,
if d(x, z∗(x)) is ever negative for some x < λ, there must be a steady state at some x0 ∈ [0, λ) with
some z0 = z∗(x0) > 0. This cannot be optimal since

V(x0, z0) < V(x0, 0)

is equivalent to (after a few lines of algebra)

−
(
ρ + (1 − λ)αp − ρx0) (r∆κλ − (ρ + κ + δ)

)
< (ρ + αs)(ρ + αp)c
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which is true since the left hand side is negative. Second, assume d(x, z∗(x)) is positive everywhere.
Then, xp = λ is still the unique steady state. Let V(x) be the optimal value function. It has to hold
that

rV(x) = v(x, z∗(x)) + V′(x)d(x, z∗(x)). (A.6)

Rearranging,

V′(x) =
rV(x)− v(x, z∗(x))

d(x, z∗(x))
≡ F(V(x), x).

Compare this to the ODE describing the value of pooling,

Vx(x, 0) =
rV(x, 0)− v(x, 0)

d(x, 0)
= F0(V(x, 0), x)

Observe that F(V, x) > F0(V, x) for any x for which z∗(x) > 0.A-1 Since V(xp) = V(xp, 0), it must
be that V(x) < V(x, 0) for some x if there is a positive measure where z∗ > 0. This contradicts our
assumption that V(x) is the optimal value function. Thus, pooling is optimal for every state.

Assume λκr∆ < ρ + κ + δ. Simple algebra based on (A.1) implies that

Vx =
ρ

ρ + αz rH + (1 − z)
r

ρ + αz rL > 0

and

Vxz = ρ
λκr∆ − (ρ + κ + δ)

(ρ + αz)2rL
< 0.

For point 3 in the lemma, fix x ∈ [0, λ]. Define the positive constants

c0 ≡ ρx + λκ + λδ

λκ
, c1 ≡ ρ + κ + δ

λκ
, c2 ≡ r∆, c3 = −rL

Then, after some algebra, we can write

V(x, z) = (1 − z)rL − c̃z + c3
c0 − z
c1 − z

(c2 − z)

= rL − c̃z + c3 (c0 + c2 − c1) + c3
(c1 − c2) (c1 − c0)

c1 − z

c1 is always greater than c0. Also, given λκr∆ < ρ + κ + δ, c1 is greater than c2. Therefore, V(x, z)
is a convex function in z, and thus in particularly quasi-convex, from which the stated property
follows.

In the next lemma, we narrow down the set of optimal policies using the necessary (but not
sufficient) first order conditions of (18).

Lemma 2. Describe an efficient screening policy z∗(x) by the following general form: Let I1, I2, I3 ⊂ [0, λ]
be (possibly empty) connected intervals such that I1 ≤ I2 ≤ I3, I1 ∪ I2 ∪ I3 = [0, λ], and

• z∗(x) = z for x ∈ I1

• z∗(x) ∈ [0, z] for x ∈ I2

A-1Note that V′(x) > 0 by a simple envelope argument.
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Figure A.1: Phase diagram for constrained efficient problem
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• z∗(x) = 0 for x ∈ I3

where we construct I1 to be the largest connected interval where z∗(x) = z, and similarly I3 for z∗(x) = 0.
Then: If I2 is non-empty (and thus z∗(x) not bang-bang), there exists a x0 ∈ I2 with d(x0, z∗(x0)) = 0.

Proof. We begin by writing down the necessary first order conditions of (18). Denoting by η the
costate of x, we have the law of motion

η̇ = ρη − κ {rH − (1 − zt)rL}

as well as the first order condition for z, showing that zt = z if

κ {−(1 − xt)rL − c̃} − η (κ(1 − xt)λ) > 0 (A.7)

and zt = 0 if (A.7) hold with “<” inequality; with equality, zt can be anywhere in [0, z].
Together with the law of motion of x in (7), this gives a system of two ODEs. We first note that

there are three possible steady states. The two steady states for z = 0 and z = z, as well as a third
one, z = z0 pinned down by η̇ = ẋ = 0 and (A.7) holding with equality,

−rL

λ
− c̃/λ

1 − x0 =
κ

ρ

{
rH − (1 − z0)rL

}
(A.8)

where

x0 = λ
1 − z0 + δκ−1

(1 − λz0) + δκ−1 . (A.9)

Observe that, after substituting (A.9) into (A.8), the left hand side of (A.8) is increasing in z0, while
the right hand side is decreasing, so there is at most a single solution to (A.8).

Now consider the phase diagram in Figure A.1. As can be seen, there are 3 types of candidate
optimal paths. Type 1 converges to xs, with z = z along the path and constant η; Type 3 converges to
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xp, with z = 0 along the path and constant η; and finally type 2 converges to x0 as in (A.9). Observe
that the second type of paths only works if z0, x0 exist, solving (A.8) and (A.9).

This implies that, unless the optimal policy z∗(x) is bang-bang, there has to exist a x0 with
d(x0, z∗(x0)) = 0.

With this result in mind, we assume in the following that λκr∆ < ρ + κ + δ and characterize
z∗(x).

Lemma 3. Assume λκr∆ < ρ + κ + δ. The efficient screening policy z∗(x) is to screen if x < x∗ and to
pool if x > x∗, where

V(x∗, 0) = V(x∗, z) (A.10)

as long as the solution to that equation is greater or equal to xs. Otherwise, x∗ is determined by

vz(x∗, 0) + Vx(x∗, 0)dz(x∗, 0) = 0. (A.11)

Proof. First, notice that x∗ is indeed well-defined, in that if the solution to (A.10) is xs, then (A.11) is
also solved by xs. Assume

V(xs, 0) = V(xs, z).

Combining (A.4) and (A.5), we can rewrite V(xs, 0) and V(xs, z) and obtain

v(xs, 0) + Vx(xs, 0)d(xs, 0) = v(xs, z) + Vx(xs, z)d(xs, z).

Since d(xs, z) = 0, this can be combined into

v(xs, z)− v(xs, 0) + Vx(xs, 0) (d(xs, z)− d(xs, 0)) = 0 (A.12)

which is equivalent to (A.11) as v and d are linear in z. Moreover, going these steps backwards, if
x∗ < xs, then (A.12) holds with inequality and therefore

V(xs, 0) > V(xs, z). (A.13)

Now we proceed to our main argument, a proof by contradiction. We distinguish four possible
cases.

Case 1: There exists x > x∗ with x ≥ xs where pooling is not optimal. If true, by Lemma 2, this
would require there to be at least one point x0 ∈ [x∗, λ) where the planner strictly prefers to remain
at x0 forever (by choosing strategy z0 ∈ (0, z] such that d(x0, z0) = 0) over pooling. In math,

V(x0, z0) > V(x0, 0).

Since V has a negative cross-partial Vxz < 0 (Lemma 1), this implies that V(x∗, z0) > V(x∗, 0) and
V(xs, z0) > V(xs, 0), which, by point 3 in Lemma 1, is contradicting either (A.10) or (A.13).

Case 2: There exists x < x∗ with x ≥ xs where screening is not optimal. If true, by Lemma 2, this
would require there to be at least one point x0 ∈ (xs, x∗] where the planner strictly prefers to remain
at x0 forever (by choosing strategy z0 ∈ [0, z) such that d(x0, z0) = 0) over screening. In math,

V(x0, z0) > V(x0, z).
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Since V has a negative cross-partial Vxz < 0 (Lemma 1), this implies that V(x∗, z0) > V(x∗, z),
which by point 3 in Lemma 1, contradicts (A.10).

Case 3: There exists x > x∗ with x ≤ xs where screening is optimal. If true, this would require
there to be at least one point x0 ∈ [x∗, xs] where the planner strictly prefers to screen with some
intensity z0 > 0 in the current instant while pooling is chosen thereafter. That is,

v(x0, z0) + Vx(x0, 0)d(x0, z0) > v(x0, 0) + Vx(x0, 0)d(x0, 0).

Due to linearity of this equation, it also has to hold with z0 = z, and therefore also expressed as
derivative,

vz(x0, 0) + Vx(x0, 0)dz(x0, 0) > 0. (A.14)

Since this is a linear equation in x0, to be consistent with (A.11), it must be that (A.14) in fact
holds for any x0 > x∗, including x0 = xp = λ. In that case, however, (A.14) simplifies to
vz(xp, 0) + Vx(xp, 0)dz(xp, 0) > 0, which is false, since Vx(x, 0) > 0, dz(x, 0) < 0 and vz(xp, 0) =
−κrL (c − (1 − λ)) < 0 by Assumption 1.

Case 4: There exists x < x∗ ≤ xs where pooling is optimal. Let V(x) be our conjectured value
function left of x∗. By design, V(x) solves

ρV(x) = v(x, z) + V′(x)d(x, z)

where d(x, z) = αz(xs − x) and V′(x) solves

(r + αz)V′(x) = vx(x, z) + V′′(x)d(x, z).

This ODE can be solved explicitly, givingA-2

V′(x) = ρrL

(
r∆

ρ + αp − r∆ − z
ρ + αz

)(
xs − x
xs − x∗

)−β

+ ρrL
r∆ − z
ρ + αz

where β = 1 + ρ
αz . The coefficient on the first term is positive, since we assumed r∆λκ < ρ + κ + δ.

Thus, V′(x) is bounded above by

V′(x) ≤ V′(x∗) = r(1 − RL)
r∆

ρ + αp . (A.15)

Could it ever be that the planner prefers pooling in this region? If so, we would have an x < x∗

with
vz(x, 0) + V′(x)dz(x, 0) < 0

which due to (A.15) and the fact that dz(x, 0) = −κλ(1 − x) < 0 implies that

vz(x, 0) + V′(x∗)dz(x, 0) < 0.

A-2Note that vx(x, z) is a constant in x.
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Using the expressions in (A.2) and (A.3) we then see that this cannot hold as the left hand side is
zero at x∗ (by definition), and has a negative slope throughout,

vxz + V′(x∗)dxz = ρrL

[
−1 +

r∆λκ

ρ + αp

]
< 0

where again we used r∆λκ < ρ + κ + δ. This is a contradiction: there cannot be an x < x∗ where
pooling is optimal.

A.6.2 Optimal bank operation policy θ∗(x)

Next we focus on the optimal policy θ∗(x) for banks to operate. We prove the following result.

Lemma 4. If it is strictly optimal to have banks operate at x∗, the optimal policy describing when banks
operate is bang-bang, that is,

θ∗(x) =

{
0 x < x∗

1 x > x∗
(A.16)

The threshold x∗ is the supremum of all x ∈ [0, λ] that solve

v(x, z∗(x)) + V′(x) (κ (λ − x)− κ(1 − x)z∗(x)λ) < 0 (A.17)

where V(x) is the value function associated with the optimal screening policy z∗(x).

Proof. Let x∗ be defined as in (A.17) and let V(x) be the value function conditional on banks
operating with screening policy z∗(x). If it is optimal for the planner to follow the bang-bang policy
(A.16), then its value function for x ≥ x∗ is given by V(x), whereas for x < x∗ the value function
solves

ρV(x) = V′(x)δ(λ − x)

which can be solved to express the marginal value in state x as

V′(x) = V′(x∗)
(

λ − x
λ − x∗

)−1−ρ/δ

.

Observe that this is increasing in x. To prove that the bang-bang policy (A.16) is indeed optimal, we
need to prove that

max
z∈[0,z]

v(x, z) + V′(x)d(x, z, 1) ≤ max
z∈[0,z]

V′(x)d(x, z, 0) (A.18)

for x < x∗, where

d(x, z, θ) ≡ θκ(1 − x)(1 − z)λ − θκx(1 − λ) + δ(λ − x)

is the speed at which the pool improves given (x, z, θ). Simplifying (A.18), we obtain

max
z∈[0,z]

v(x, z) + V′(x) [κλ(1 − z)− κx(1 − zλ)] ≤ 0.

The left hand side of this inequality has a negative cross-partial in (x, z), since vxz < 0 and
V′(x)(1 − x) ∝ (λ − x)−ρ/δ 1−x

λ−x increases in x. Thus, given that z = z is optimal for x = x∗, it is also
optimal for any x < x∗.
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The problem then reduces from (A.18) to showing that for x < x∗

F(λ − x) ≡ v(x, z) + V′(x) [κλ(1 − z)− κx(1 − zλ)] < 0. (A.19)

To see this, we first show that F(y) is quasi-concave (only has a single local maximum) and therefore
can at most have two roots. F(y) is of the form

F(y) = −F0y + F1y−α−1(y − y0) + const

where α = ρ/δ > 0, F0 = ρrH + ρ(1 − z)rL > 0, F1 = κ(1 − λz)V′(x∗)(λ − x∗)1+α > 0 , y0 =
λ − xs > 0. F can only ever have a single local maximum as long as these parameters are positive:

F′(y) = 0 ⇔ y−α−2 [(1 + α)y0 − αy] = F1/F0

The left hand side of this equation is strictly decreasing for y ∈ (0, (1 + α)y0/α) with range (0, ∞)
and thus admits a unique solution for any F1/F0 > 0. This establishes that F(y) is quasi-concave.

Since F(y) is quasi-concave, it admits at most two roots, y1 < y2, in between which F(y) is
positive, and negative outside of [y1, y2]. Root y2 must correspond to λ− x∗: if y1 were to correspond
to λ − x∗, x∗ would not be the supremum of x with F(λ − x) < 0 since for any ϵ > 0 small enough,
F(λ − (x∗ − ϵ)) > 0. But if y2 = λ − x∗, then F(λ − x) < 0 for any x < x∗, which proves (A.19).

A.7 Proof of Corollary 2

By Assumption 1, c ≥ 1 − λ. Therefore, welfare in the screening steady state is bounded above,A-3

Ws = xsrH − (1 − z) (1 − xs) rL − c̃z = xs rH

−rL
− (1 − z) (1 − xs) rL − cz

≤ xs rH

−rL
− (1 − xs) (1 − z̄)− (1 − λ)z = xs

(
rH

−rL
+ 1 − z

)
− (1 − λz)

Welfare in the pooling steady state is Wp = λ( rH
−rL

+ 1)− 1. Observe that Ws increases in xs, so Ws

can only ever be above Wp if xs is as large as possible. Clearly, given the formula for xs, xs is largest
as a function of δ if δ = ∞ where xs = λ. In that case, we find

Ws ≤ xs
(

rH

−rL
+ 1 − z

)
− (1 − λz) < λ

(
rH

−rL
+ 1 − z

)
− (1 − λz) = λ

(
rH

−rL
+ 1

)
− 1 = Wp

Therefore, welfare of the pooling steady state always dominates that of the screening steady state.

A.8 Proof of Proposition 6

This proposition follows directly from noticing that the problem (26) is still linear in z, so that z = z
is strictly preferred if and only if

(1 − xt) (−rL) + ω (1 − xt)− c̃ > 0

Rearranging yields

xt < 1 − c
1 + ω/(−rL)

≡ xc

A-3We define all welfare expressions here as multiples of κ, for expositional clarity. κ multiplies both Ws and Wp equally.
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where the threshold xc always strictly exceeds x = 1 − c. This proves Proposition 6.

B Implementing the constrained optimum

Optimal policy implements normal lending standards only when x ∈ (x∗, x). While, there are
several ways a government or a regulator could implement the constrained efficient outcome, we
focus on a temporary government-funded loan insurance program. Since such an intervention
entails short-run losses and the model’s banking sector is competitive, either the government or
type-H borrowers have to bear these losses. An example of such a policy is a government-funded
loan insurance program in which the government provides an insurance benefit b > 0 (in present
value) to be paid to a bank when a borrower defaults. This policy incentivizes banks to use normal
lending standards as long as

b
−rL

> 1 − c
1 − x

.

This condition is satisfied for b = 0 in the region x > x where pooling is privately optimal. It
requires nonzero insurance benefits b = b(x) > 0 when x < x. As a function of the pool quality,
b(x) is decreasing in x. This means a typical intervention starting from some x0 < x requires large
insurance benefits early on, which are then phased out over time.A-4

Shadow Banks and limits to implementation. In practice, policies like government-funded loan
subsidies or insurance programs are rarely undertaken for the entire financial sector, but instead
usually apply only to certain types of institutions, such as traditional banks but not shadow banks
for example. So consider a setting where the government can affect the lending decisions of only a
fraction η ∈ [0, 1) of financial institutions. What is the optimal policy under such circumstances? We
focus on the case without bank inactivity, θ = 1. We further assume that the share η of traditional
banks always charge the same interest rates as their shadow bank competitors. This setting implies
that the planner can no longer set the lending standard zt to any number in [0, z]. Instead, zt needs
to lie in [(1 − η)z(xt), (1 − η)z(xt) + ηz], where z(xt) is the privately optimal lending standard (10).

The new constraint makes optimal policy. In particular, there is now a threshold x∗(η) that
depends on η above which the planner desires to set normal lending standards. Crucially, for low
levels η, x∗(η) will be equal to x, implying the planner prefers not to intervene at all. To see this,
observe that for any x < x, shadow banks apply tight lending standards, pushing the quality x
down, towards the screening steady state. Even if the traditional banks are made to apply normal
lending standards, it may not be possible to achieve ẋ > 0. Even if ẋ > 0 is possible, with z = 0 in
the traditional banking sector, it make take so long to reach x that the policy is too costly to be worth
implementing.. Thus, the government can lack the “firepower” to get to pooling and optimally
choose not to intervene at all. In this way, a large shadow banking sector can constrain optimal
government policy.A-5

A-4Another way to implement the constrained optimum that does not have a dynamic aspect to policy would be to
require that, whenever x ∈ (x∗, x), all loans made at each point in time are placed into a common pool from which
each bank receives a proportionate payout as the loans mature. Such mandated securitization requires only that a loan
origination is observable and contractible, not that a rejection is observable. Under this policy, no individual bank has the
incentive to tighten lending standards when x ∈ (x∗, x) since they receive no benefits from placing a higher-quality loan
into the securitized pool.

A-5If the government intervenes for low η, it is forced to cover increasingly large losses as shadow banks impose tight
lending standards, reducing the pool quality. Traditional banks then face a more adversely selected pool. This point may
have been relevant for the failure of the government sponsored mortgage agencies in the U.S. in 2008.
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Returning to the example of the credit market downturn in Section 4, the parameters in Figure 6
are such that optimal policy in the long downturn is to maintain normal lending standards. Such a
policy can be implemented, for example, with a loan guarantee program, as just described. Under
optimal policy, the long downturn in Figure 6 would instead look like an extended version of the
short one. With no tightening of lending standards at t = 3, the lending volume would continue its
smooth decline during the fourth year and then slowly rise back to one following the end of the
recession, like a longer version of the two-year downturn. Similarly, the rise in credit spreads and
(ex post) defaults continues to slow, and starts to recover rapidly at the end of year 4. In short, the
credit market deteriorates by less and recovers more quickly.

C Appendix to Section 4.3

In this section, we derive equations (15), (16) and (17), used in Section 4.3. We use the notation mHt
for the mass of type-H borrowers in the pool at time t; mLt for the mass of type-L borrowers; and
kt ≡ θtκmHt + θtκ (1 − zt)mLt for the mass of borrowers that receive a loan at date t. Moreover, we
let µt be the time-varying reduction in the inflow of type-H borrowers,

µt =

{
µ t ≤ T′

0 t > T′ .

The law of motion for mHt is then given by

ṁHt = (1 − µt) (δλ + ktλ)− δmHt − θtκmHt. (A.20)

The first two terms capture exogenous entry as well as endogenous entry to replenish funded
borrowers. The terms are reduced by a factor 1 − µt due to the shock. The last two terms are
exogenous exit and endogenous exit due to being funded. The law of motion for mLt is similar,

ṁLt = δ(1 − λ) + kt (1 − λ)− δmLt − θtκ(1 − zt)mLt. (A.21)

With (A.20), (A.21), the total size of the pool Nt ≡ mHt + mLt evolves according to

Ṅt = (1 − µt) (δλ + kλ)− δmHt − κmHt + δ(1 − λ) + k (1 − λ)− δmLt − κ(1 − zt)mLt

which we can simplify to

Ṅt = δ (1 − Nt)− µtλNt

(
δ

Nt
+ θtκxt + θtκ (1 − xt) (1 − zt)

)
The law of motion for pool quality, xt ≡ mHt

mHt+mLt
, can be computed as

ẋt =
ṁHt

mHt
xt −

Ṅt

Nt
xt

which, after some algebra, ends up simplifying to

ẋt = κθt (1 − zt) (1 − xt) λt − κθtxt (1 − λt) + (λt − xt)
δ

Nt
.
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Figure D.1: Phase diagram for the transitional dynamics in the model with entry.

The entry quality parameter λt is given by

λt = (1 − µt (1 − x)) λ.

D Appendix to Section 6

D.1 Transitions in the model with entry

The dynamic equilibrium of the model with entry is characterized by the following three equations:
(i) the HJB (5b) for JL

t

(ρ + δ + κ (1 − zt)) JL
t = κ(1 − zt)u + J̇t

L, (A.22)

(ii) the evolution of pool quality (24),

ẋt

xt/λ
= κ(1 − xt)(1 − zt)λ − κxt(1 − λ) + δ(1 − xt)− Ψ(JL

t /u), (A.23)

(iii) and bank optimality (10)

zt =

{
0 if xt > x
z if xt < x

.

We can write bank optimality as zt = z1{xt>x} and substitute it into the HJB (A.22) and the law of
motion (A.23) to arrive at a system of two ODEs. We illustrate the dynamics in a standard phase
diagram in Figure D.1.

We see that there is a unique saddle path to one of the two stable steady state equilibria (screening
and pooling) at every point in the state space. The middle steady state equilibrium is unstable, as
expected.

A-12



D.2 Welfare with non-constant pool size

The social planning problem in the constant-inflow-rate model is

max
zt∈[0,z]

∫ ∞

0
e−ρtκ {m∗

HrH + (1 − zt)mLrL − c̃zt(mL + mH)} dt

subject to the law of motion for mL, (21). One can show that it has the exact same properties as
the planning problem in Section 5. Relative to the privately optimal threshold x = 1 − c, which
corresponds to

mL =
λ

1 + κδ−1
c

1 − c

there exists a socially optimal threshold x∗ ≡ m∗
H

m∗
H+m∗

L
where m∗

L is determined by

(1 − z + cz)
ρm∗

L + αsms
L

ρ + αs + czm∗
H︸ ︷︷ ︸

Average social cost from lending to type-L when screening

=
ρm∗

L + αpmp
L

ρ + αp︸ ︷︷ ︸
Average social cost from lending to type-L when pooling

(A.24)

Here, we define the transition speeds for mL under pooling and screening by αp ≡ κ + δ and
αs ≡ κ(1 − z) + δ. The associated steady state values for mL are given by mp

L = δ(1−λ)
δ+κ and

ms
L = δ(1−λ)

δ+κ(1−z) . Similar to Section 5, one can show here, too, that the social planner marginally
prefers more pooling, that is,

m∗
L > mL

The reason is identical to that in Section 5.
An especially simple welfare result is the comparison of steady state welfares across steady

states. Here, the question is whether it is the case that welfare in the pooling steady state exceeds
that in the screening steady state. In the context of this model, this is satisfied if

(1 − z + cz)ms
L + czm∗

H > mp
L

After some algebra, this simplifies to

1 + δ−1κ > (1 − λ)c−1 + λδ−1κz

which is necessarily the case given our Assumption 1: c > 1 − λ. Thus, Corollary 2 also carries over
to this model.

E Discussion of modeling assumptions

E.1 Misidentifying type-H borrowers as type-L borrowers

In our baseline model, the screening technology is asymmetric: a type-L borrower may be incorrectly
identified as a type-H but a type-H is always correctly identified. Suppose, instead, that both types
of errors are possible. In particular, assume that a bank setting a lending standard z ∈ [0, z], at cost
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c̃z as before, allows it to obtain a binary signal with values “h” and “l”, distributed as follows:

Prob(signal = l|type-L) = p + z (1 − p) (A.25)
Prob(signal = l|type-H) = p − zp (A.26)

This signal structure is chosen such that: (a) with z = 0, no information is revealed by the signal, as
its distribution is independent of the borrower type; (b) our baseline model is nested with p = 0, in
which case type-H borrowers are never misidentified; and (c) any p > 0 allows an arbitrary degree
of misidentification of type-H borrowers—in fact, p = 0.5 treats both types of borrowers entirely
symmetrically.A-6

Given this signal structure, the probability of observing type-H and type-L with signal realization
“h” given some pool quality x isA-7

Prob (type-H and signal = h) = (1 − p (1 − z)) x
Prob (type-L and signal = h) = (1 − p) (1 − z) (1 − x)

In the special case p = 0, which we considered earlier, these expressions collapse to probabilities x
and (1 − z)(1 − x). In the special case of no lending standards, z = 0, the expressions collapse to
(1 − p) x and (1 − p) (1 − x) as the signal reveals no information.

Conditional on being active, banks make two choices now: first, they decide whether to screen
at all; second, if they screen, they decide the screening intensity z, after which they lend if signal
realization is “h”. The bank profit maximization problem (4) then turns into

Πt(rt) ≡
{

κHtrt + κLtrL if not screen
maxz∈[0,z] (1 − p (1 − z)) κHtrt + (1 − p) (1 − z) κLtrL − (κHt + κLt)c̃z if screen

.

It is straightforward to see that due to linearity, banks effectively choose either not to screen or to
screen with intensity z = z. The relevant condition for screening is then

(1 − p (1 − z)) κHtrt + (1 − p) (1 − z) κLtrL − (κHt + κLt)c̃z > κHtrt + κLtrL (A.27)

Moreover, the equilibrium interest rate at the point of indifference is pinned down by the zero profit
condition

κHtrt + κLtrL = 0

which, as before, simplifies to
rt = (−rL)x−1

t {1 − xt} (A.28)

Combining (A.27) and (A.28), we find that screening at z = z is still optimal when

xt < x = 1 − c (A.29)

which is the same threshold as before. In particular, it is independent of p (and z) and hence
independent of how much misidentification of type-H borrowers there is.

How is this possible? The intuition for this surprising result is that what matters for the
informativeness of the signal is not how well type-H borrowers are identified in absolute terms; or

A-6For any informative binary signal, we can label the signal realization with the greater conditional probability for type
L as “l” and express the signal structure as in (A.25)–(A.26).

A-7In this section we assume for simplicity that φH
t = φL

t = θt = 1.

A-14



how well type-L borrowers are identified in absolute terms. What matters instead is that the signal
distributions conditional on type-H differs from that conditional on type-L by a certain amount. In
equations (A.25) and (A.26), a natural measure of the distance between the two conditional signal
distributions is the difference between the probabilities in (A.25) and (A.26). That distance is z,
independent of p, which is why threshold (A.29) continues to apply here unchanged.

With an aggregate lending standard zt ∈ [0, z], a fraction zt/z of banks screen, while the rest do
not. This means that a flow of

zt

z
(1 − p (1 − z)) κHt +

(
1 − zt

z

)
κHt

type-H borrowers and a flow of

zt

z
(1 − p) (1 − z) κLt +

(
1 − zt

z

)
κLt

type-L borrowers all get funded. The law of motion of pool quality xt, (7), in this economy is then
slightly different,

ẋt =
[ zt

z
(1 − p) (1 − z) +

(
1 − zt

z

)]
κLtλ −

[ zt

z
(1 − p (1 − z)) +

(
1 − zt

z

)]
κHt(1− λ) + δ(λ − xt).

At a steady state, ẋt = 0, and we find the steady state pool quality as

x = λ − z(1 − λ)λ

δκ−1 + ζ(z) + z(1 − λ)

where
ζ(z) =

z
z
(1 − p) (1 − z) +

(
1 − z

z

)
.

In particular, the screening steady state has pool quality

xs = λ − λ
(1 − λ)z

δκ−1 + (1 − p) (1 − z) + z(1 − λ)
. (A.30)

Greater p has two effects on pool quality. More type-H borrowers are misidentified, which
increases pool quality when banks are screening, all else equal. On the other hand, more type-L
borrowers are correctly identified (holding z constant). This lowers pool quality. If we want to
separate out the first effect, we write

xs = λ − λ
(1 − λ) (qL − qH)

δκ−1 + 1 − qL + (qL − qH) (1 − λ)
(A.31)

where we defined
qj ≡ Prob(signal = l|type-j)

As (A.31) shows, xs is decreasing in the ability to screen out type-L borrowers, qL. xs increases,
however, in the misidentification qH of type-H borrowers.

Our approach in this section generalizes to arbitrary signal structures. Whenever banks can
pay for an informative signal about their potential borrowers, it leads them to select, on average,
type-H borrowers. This, however, directly implies that the borrower pool is, on average, worsened
by the signal acquisition of banks. The steady state with signal acquisition, which in our paper
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corresponds to the screening steady state xs, always has a worse pool quality than the steady state
without signal acquisition.

E.2 Lending standards with convex costs

Our main results rely on intermediate costs of lending standards. Neither too low, so that the
banks always screen, nor too high, so that banks never screen. While it is natural to assume that
the costs of lending standards are linear the same way it is natural to assume constant returns to
scale in production at an industry level, in this section we show that the main implications of our
model continue to hold when lending standards have increasing marginal cost of an intermediate
size. Instead of linear cost c̃z, we now assume that banks have to pay a strictly convex cost c̃(z).
As before, we write normalized cost as c(z) ≡ c̃(z)

−rL
. We continue to assume, for simplicity, that

φH
t = φL

t = θt = 1. A bank’s optimization problem is now given by

max
z∈[0,1]

κHtrt + (1 − z) κLtrL − (κHt + κLt)c̃(z). (A.32)

The first order condition now pins down an interior value for the optimal screening intensity zt,

c′(zt) = 1 − xt. (A.33)

Given that c(z) is strictly convex, the optimal screening intensity zt falls in pool quality xt. This
corresponds to a downward sloping line in Figure 1, instead of a step function. Figure E.1 illustrates
the new steady state diagram. Since both (A.33) and (9) slope downward, there is the potential for
multiple intersections. Each intersection’s lending standard z is a solution to the equation

c′(z) = (1 − λ)
1 + δκ−1

(1 − λz) + δκ−1 (A.34)

which follows directly from combining (A.33) with (9).
The law of motion of pool quality is now given by

ẋt = κ (1 − xt)
(

1 −
(
c′
)−1

(1 − xt)
)

λ − κxt(1 − λ) + δ(λ − xt).

This differential equation predicts that ẋt > 0, that is pool quality improves whenever the solid
line lies below the dashed one in Figure E.1; and vice versa, it predicts pool quality to deteriorate,
ẋt < 0, whenever the solid line lies above the dashed one in Figure E.1.

In the example shown in Figure E.1, we denote by x the last intersection of (A.33) and (9). To the
right of x, no screening is optimal, and pool quality improves, ultimately converging to xp. To the
left of x, screening is optimal and pool quality converges to xs.

E.3 Screening with collateral

Our modeling assumptions imply that banks cannot use contract terms like fees or covenants to
screen out type-L borrowers. Consider instead a situation in which banks use collateral requirements
to screen borrowers. Let borrowers be endowed with a collateral asset and suppose banks require
borrowers to post their collateral to receive a loan. As long as the value of the collateral exceeds the
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Figure E.1: Steady-state equilibria with convex screening cost.
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Note: This figure shows two curves whose intersections yield the steady-state pool quality x and the steady-state lending
standard z. The solid line represents the optimal choice of the lending standard, (A.33). The dashed line represents the
pool quality x that is caused by any given lending standard z through the law of motion. The cost chosen for this example
is of the form c(z) = c0z + c1 (z − z)c2 + c3 with c1 > 1, c2 > 1, c0 > c1c2zc2−1, c3 = −c1zc2 .

private benefits, type-L borrowers would not apply for loans if all banks require collateral. In this
situation, the strategic complementarity remains, but the negative externality is eliminated.

However, in practice, several issues arise. First, when private benefits are unknown to banks, as
long as the private value is greater than the collateral value for some type-L borrowers, they still
apply for loans. In this case, collateral does not resolve the negative externality. Second, collateral
values vary, and banks may be able to acquire costly private information about this value (e.g.
appraise the collateral). In this case, the share of borrowers with good collateral would determine
whether banks applied normal or tight lending standards to the collateral of borrowers, and these
lending standards would act much like those in our model, exhibiting strategic complementarities
and negative externalities among banks.

E.4 Positive bargaining weight of banks

In this section, we briefly describe what happens if we assume that there is a positive probability β
with which banks are able to make a take-it-or-leave-it offer, rather than borrowers.

If banks make a take-it-or-leave-it offer, they pick the credit spread rt in order to maximize
Πt(rt) subject to type-H’s participation constraint,

rH − rt + u = JH
t .

This means,
rt = rH + u − JH

t .

Type-L borrowers always accept a loan, under any credit spread rt. Thus, with probability β > 0,
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banks obtain the entire extractable surplus,

Πt(rt) = St = max
z

κHt

Kt

{
rH + u − JH

t

}
+

κLt

Kt
{(1 − z)rL} − c̃z

Thus, from an ex-ante perspective, a bank entering a meeting expects a profit of

Πante
t (rt) = βSt.

This means that banks strictly prefer to be active, Jt = J , whenever St > 0, and are indifferent
about being active, Jt ∈ [0,J ], whenever St = 0.

Observe that the optimal lending standard is unaffected by the value of β. This leaves our
results in Sections 4.3, 5, 6.1, and 6.2 unaffected by β > 0. The analyses in Sections 4.2 and 6.3 have
to be adjusted somewhat whenever β > 0 (though by very little if β is small). We leave such an
adjustment for future work.

E.5 Further non-essential assumptions

We simplified the analysis by assuming that the banking sector is competitive so that banks make
zero profits. We conjecture that the qualitative features of the steady-states, dynamics and welfare
results would remain if banks shared the surplus of a match with a given borrower.

Other changes to the screening technology are less consequential. There is also the possibility
of more than two stable steady states, which would occur when the optimal lending standards
line in Figure 1 decreases more smoothly and so has more intersections with the ẋ = 0 line. We
assumed that screening produces a binary signal, and it would be inconsequential to instead assume
a continuous signal as banks would simply choose a cutoff value for their binary lending decision.
Lastly, if, when lending standards are tight, the probability that a given type-L borrower is funded
by any bank were correlated across banks, then the dynamic strategic complementarity at the heart
of our model would be stronger. This would occur because when one bank screens and rejects a
borrower, such a correlation would make it easier for the next bank to detect that borrower as bad
and so would raise the private value to screening.

Finally, our model has debt contracts. But because the model has only two borrower types, an
equity contract can deliver the same payoffs to banks and borrowers of each type. With more types,
our model could become significantly more complex. While the degree of complexity would depend
on how well the screening technology detected different types, the extensions we have considered
have all involved more state variables, which raises the possibility of non-linear dynamics that can
occur in such systems.

F Credit bureaus

One reason underlying the negative externality from tight lending standards is the assumption that
information on previous rejections is unobservable and non-verifiable. Does this mean our model is
inapplicable to credit markets in which credit bureaus track borrowers?

First, note that our model applies to information above and beyond publicly available informa-
tion. As we described, it applies to borrowers within a given credit score bracket, which summarizes
the past credit information contained in the credit bureau. Second, credit bureaus typically do not
track much of the information that lenders might investigate prior to making a loan, and that might
be uncovered by tight lending standards in our model. Appendix F contains extensive details about
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the prevalence, coverage, and information provided by credit bureaus around the world. None of
the countries that we investigated have credit bureaus that report whether credit was denied or
instead turned down by the borrower. While many credit bureaus, like consumer bureaus in the
U.S., delineate whether a credit check is hard, meaning associated with an application for credit,
or soft, due to account review, marketing, or possibly hiring, only about half of the credit bureaus
report the purpose of previous credit checks. Even with information on hard credit checks, lenders
typically cannot tell whether a borrower who recently applied for a loan, applied for a mortgage, a
car loan, or a credit card (again, see Appendix F for details).A-8

Finally, we note that our model may apply even in situations in which credit bureaus accurately
track borrowers if lending standards are applied to collateral instead of borrowers. That is, if
tight lending standards evaluate and reject on the basis of collateral (e.g. an appraisal of a house),
then credit bureaus do not address the externality of tight lending standards because they track
borrowers, not the assets they wish to fund.

Given the negative externality in our model, why don’t credit bureaus track rejections? Our
model suggests that bureaus do not track credit rejections because it is not incentive compatible
for a bank-borrower pair to report a negative evaluation or to report a rejection.A-9 Statements
from credit bureaus are consistent with this reasoning and suggest that credit bureaus are unable to
enforce the reporting of soft information that it is not privately optimal to report (see Appendix F).

While mature credit markets in legal environments with low-cost enforcement mechanisms
may track information about borrowers that mitigates the negative externality associated with tight
lending standards, we conclude that this tracking appears to be insufficient to eliminate the key
externality in most countries’ credit markets.

This appendix provides additional information on credit bureaus around the world. The on-line
Appendix D provides the data that underlie this Appendix.

Credit bureaus, as opposed to credit registries, track borrowers and provide information about
them to lenders.A-10 When a borrower approaches a lender that is a member of a credit bureau, the
lender can perform a credit check before making a loan, which involves getting a credit report from
the bureau. Credit reports provide information on borrowers including existing credit and payment
histories. In addition, many credit bureaus keep track of information about past credit checks and
include this information on credit reports. Table F.1 describes credit reports for credit bureaus in
different countries around the world (underlying data sources are provided in on-line Appendix D).

A-8Further, a past credit check without a subsequent loan does not indicate that a given borrower failed a past lending
standard. The borrower may have applied for a job, or may have simply decided not to take the loan (decided not to buy
that house or car, or decided to pick a different credit card). Importantly, in practice, lenders can evaluate borrowers
before verifying their information via a credit report and leave no trail of credit checks for rejected borrowers. That is, as
is common in mortgage markets for example, banks can fully apply their lending standards on the basis of information
reported by the borrower and additional information gathered by the bank, and only verify information with a credit
report for borrowers that pass the lending standard. Thus many applications are not recorded.

A-9Other models suggest different reasons. For example Axelson and Makarov (2020) show the striking result that
introducing a credit registry that tracks borrowers’ loan application histories but not the borrowing rates offered can lead
to more adverse selection and quicker market breakdown. In that model, acquiring information on a borrower is costless
and the result follows from the fact that a lender who knows that a borrower’s offer was rejected does not know whether
the borrower was bad or whether the borrower demanded a too-low interest rate.
A-10Credit registries are more widespread than credit bureaus, but registries only track the history of outstanding credit
and/or loan payments and delinquencies. In our model, and probably in reality, outstanding loans do not assist banks in
discriminating among borrowers who have recently been rejected. Credit registries seem to serve the purpose of providing
information to assist a bank in setting loan terms, such as loan amount and interest rate based on payments-to-income
ratio and/or pre-existing liens on collateral.
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Table F.1: Data captured by credit bureaus

Credit checks

Coverage? Reporting On report for Hard check Who Rejections
(consumers/firms) required? ≤ months labeled? requested? Purpose? reported?

Advanced Economies
Australia Both 60 Yes Yes Yes No
Canada Both 72 Yes Yes No No
European Union (AnaCredit) Firms By law 0 NA No No No
France Firms By law 0 NA No No No
Germany Both For access 12 Yes No No No
Ireland Both By law 60 Yes Yes Yes No
Italy Both 6 Yes Yes No
Japan Consumers For access 6 Yes Yes Yes No
Singapore Both 24 Yes Yes Yes No
South Korea Both 0 NA No No No
Taiwan Both 3 Yes Yes Yes No
United Kingdom Both 24 Yes Yes Yes No
United States Both Voluntary 24 Yes Yes Yes No
Emerging Economies
China Both By law 24 Yes Yes Yes No
India Both 24 Hard only Yes Yes No
Malaysia Both 12 Hard only Yes No No

Blank cells are missing data.
Note: All information is from consumer credit reports and Bureau FAQs, except for EU and France, see Appendix for sources.

In most countries, a bank that conducts a credit check can generally observe past credit checks
and whether the borrower subsequently did or did not receive a loan. The information in the
bureaus tends to be available only to entities in the bureau’s network, although some countries’
bureaus sell the information to entities outside the credit market. In some countries like Japan and
Germany, bureau members are required to report in exchange for access, but in other countries
reporting is voluntary or only required by bureau members (second column of Table 1, ). Most
credit bureaus, like consumer bureaus in the US, delineate whether a credit check is hard, meaning
associated with an application for credit, or soft, due to account review, marketing, or possibly
hiring. Records of credit inquiries stay in credit report from 2 months in Taiwan to 24 months in the
U.S. to 60 months in Ireland.

Importantly, however, none of the countries that we investigated have credit bureaus that report
whether credit was denied or turned down by the borrower (final column of Table 1).A-11 Further,
credit bureaus generally contain only rudimentary information about the initiator of previous
credit checks, such as whether they were banks, mortgage brokers, utilities, etc., and some in some
countries, such as South Korea, France, and Germany, even this information is not recorded (fifth
column). And only about half of the credit bureaus report the purpose of previous credit checks
(sixth column), so that a credit card issuer for example does not know if a previous credit check was
associated with an application for a credit card, mortgage, car loan or job.

A past credit check without a subsequent loan does not indicate that a given borrower failed a
past lending standard. The borrower may have simply decided not to take the loan (decided not to
buy that house or car, or decided to pick a different credit card). Importantly in practice, lenders
can evaluate borrowers before verifying their information via a credit report and leave no trail of
credit checks for rejected borrowers. That is, as is common in mortgage markets for example, banks
can fully apply their lending standards on the basis of information reported by the borrower and
additional information gathered by the bank, and only verify information with a credit report for

A-11For example, Experian UK states “Here’s what our role doesn’t involve: - We aren’t told which applications are
successful or refused. - We don’t know why you may have been refused credit.”A possible exception is Experian Italy.
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borrowers that pass the lending standard. Thus many applications are not recorded.
As noted, our theoretical model suggests that bureaus do not track credit rejections because

it is not incentive compatible for banks to report rejections. Statements from credit bureaus are
consistent with this reasoning and suggest that credit bureaus are not able to enforce the reporting
of soft information that it is not privately optimal to report. First, bureaus state that they want to
avoid arbitrating arguments over rejections. Rejection is easy to hide (e.g. just offer unfavorable loan
terms) and hard to verify (consistent with our assumptions). Second, bureaus store only verifiable
information due to privacy and legal concerns. Credit checks are hard information, rejections are
not. Every credit bureau lists data verification and correction measures on their website.

Finally, we re-emphasize that our model may apply even in situations in which credit bureaus
accurately track borrowers if lending standards are applied to collateral instead of borrowers. That
is, if tight lending standard evaluate and reject on the basis of collateral (e.g. an appraisal of a
house), then credit bureaus do not address the externality of tight lending standards because they
track borrowers not the assets they wish to fund.

We conclude that mature credit markets in legal environments with low-cost enforcement
mechanisms may exhibit various mechanisms for mitigating, but maybe not eliminating, the
negative externality associated with tight lending standards.
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