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Abstract

We derive the optimal mechanism for a designer with products at each end of the
Hotelling line for sale. Buyers have linear transportation costs and private information
about their locations. These are independent draws from a commonly known distribu-
tion. Two independent auctions are optimal if and only if two independent auctions are
efficient. Otherwise, the problem exhibits countervailing incentives and worst-off types
that are endogenous to the allocation rule. Combining a saddle point property with an
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as a function of a single parameter and to derive associated comparative statics. The
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1 Introduction

From radio spectrum licenses to airport landing slots, search keywords and cloud computing,

sellers frequently sell multiple assets simultaneously, some of which may be homogeneous,

while others are horizontally differentiated. This raises two questions: Under what conditions

is it optimal to sell the homogeneous goods in independent auctions? If independent auctions

are not optimal, then what is the optimal selling mechanism?

In this paper, we answer these two questions for a general, yet conceptually simple

multi-product model based on Hotelling (1929). Specifically, we derive the mechanism that

maximizes the seller’s expected revenue subject to the buyers’ incentive compatibility and

interim individual rationality constraints, assuming that the seller has goods at each end of

the unit interval for sale. Buyers have single-unit demand, the same commonly known gross

valuation, linear transportation costs and are privately informed about their locations that

are independent draws from the same, commonly known distribution.

The Hotelling setup captures horizontal differentiation—agents disagree about which

product is the best even if their prices are the same—in a general way. For example,

telecommunications firms may have different values for two different radio spectrum licences

depending on their business model and on the portfolio of licenses they already hold. Like-

wise, airlines’ and users’ preferences over airport landing slots and cloud computing capacity

may differ as a function of the time of day, with some preferring mornings, some evenings and

others being largely indifferent. In search keyword auctions, airlines may have a strong pref-

erence for the keyword “flight” and hotels for the keyword “accommodation” while travel

agents’ preferences may lie somewhere in between. Each of these situations can be cap-

tured in a reduced-form fashion by varying the buyers’ locations on the unit interval in the

Hotelling model. From a mechanism design perspective, the model remains tractable because

each agent’s private information is one-dimensional.

We first show that the optimal selling mechanism reduces to running two independent

optimal auctions if and only if no type of buyer has a positive valuation for both goods

(and, consequently, horizontal differentiation plays no role). In terms of model parameters,

normalizing the maximum transportation cost to one, this occurs if and only if the buyers’

gross valuation is less than one half. This condition is independent of the distribution from

which buyers’ locations are drawn, the number of goods the seller has to sell at each location

and the number of buyers. An equivalent way of stating this result is that running two

independent auctions is optimal if and only if running two independent auctions is efficient.1

1This result has potentially important implications for market definitions in antitrust. For example, if
buyers’ locations are uniformly distributed, then two independent sellers that sell products from either end of
the Hotelling line (and have a constant marginal cost of production of zero) do not compete with each other
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We show that the optimal selling mechanism always involves ex post inefficiency. That is,

the final allocation is inefficient with positive probability even if all of the goods are always

sold or if all of the buyers are always served. The inefficiency arises from the randomization

that is part of the optimal selling mechanism when two independent auctions are not optimal

and from the positive reserve prices set under optimal auctions otherwise.

Notwithstanding the challenges involved in its derivation, the optimal selling mechanism

permits a simple two-stage clock auction implementation that endows the agents with domi-

nant strategies. The first stage of this auction provides buyers with a coarse bidding language

that allows them to express whether they have a strong preference for one of the goods for

sale, or whether they are more flexible in their preferences. The second stage is initiated if

and only if a good is over-demanded, in which case an ascending clock auction is used to

reduce demand. Agents who indicated that they have flexible preferences in the first stage

never take any subsequent actions; their final allocation is contingent on other agents’ bids

(as are their prices) and may involve a lottery. Intuitively, the “threat” of this lottery allows

the seller to extract higher payments from agents with strong preferences.

What makes the mechanism design problem challenging is that the Hotelling setup gives

rise to what has become known as countervailing incentives.2 Depending on their own

location, as well as those of the other agents, a buyer’s incentive compatibility constraint may

be upward or downward binding. For example, the dominant strategy payment for a buyer

allocated good 0 is determined by the largest location it could have reported without changing

its allocation, while the dominant strategy payment for a buyer who is allocated good 1 is

determined by the smallest location it could have reported without changing its allocation.

A consequence of this is that the interim worst-off type for each buyer is endogenous to the

allocation rule and typically in the interior of the type space. This contrasts with standard

mechanism design settings, defined as mechanism design problems in which it is a priori

known for which types the individual rationality constraint binds because the monotonicity

incentive compatibility imposes on the allocation rule pins these down.Standard mechanism

design settings include sales and procurement auctions, public good problems and two-sided

allocations problems à la Myerson and Satterthwaite (1983).

We handle the aforementioned challenges by developing an ironing procedure that pins

down the allocation rule as a function of a single parameter: a critical type for each agent. We

show that the optimal mechanisms satisfies a saddle point property: given the agents’ critical

if the gross valuation is less than one. Consequently, if the gross valuation is between a half and one, then an
outsider observing two independent sellers would conclude that the two products or markets are independent.
In contrast, the two markets are connected if the two products are sold by a single multi-product seller, which
would, for example, be the case if the two independent sellers merged.

2This is “countervailing incentives” in the sense of Lewis and Sappington (1989), who coined the term.
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types, the allocation rule maximizes the designer’s objective function (i.e. the virtual surplus

function) and given the allocation rule, the agents’ critical types are also worst-off types that

minimize the designer’s objective function. The saddle point property uniquely determines

the critical worst-off type that parameterizes our ironing procedure. The optimal mechanism

involves an interim allocation rule that assigns an equal probability of obtaining a good from

either end of the Hotelling line to all buyers located within an ironing interval that contains

the worst-off type. Consequently, all types within the ironing interval are entered into an

ex post lottery with positive probability. Another implication of countervailing incentives

and endogenous worst-off types is that, as we show, there is no equivalence between interim

and ex post individually rational mechanisms even with independent private values. This

contrasts with standard mechanism settings for which such an equivalence exists.3

The saddle point property of optimal mechanisms also permits us to derive a number of

intuitive comparative statics results. If there are fewer goods than agents, then an increase

in the number of goods changes the ironing interval of the optimal mechanism because the

mechanism is entirely pinned down by the feasibility constraints. If there are more goods

than agents but the supply of at least one good is less than the number of agents, then the

supply of at most one good constrains the ironing interval, and increasing the supply of the

other good does not change the ironing interval. Once there is a sufficient supply of both

goods, increasing the supply of either good no longer affects the ironing interval. This always

happens before the supply of both goods is equal to the number of agents. (Of course, the

allocation probabilities always vary with the number of goods.) In contrast to a standard

optimal auction with identical distributions, where the reserve price depends neither on the

number of units for sale nor on the number of bidders, the optimal mechanism in our setting

varies non-trivially with these parameters. In the case of scarcity, this is true even when the

ratios of bidders and the supply of each good are kept fixed.

The present paper relates to three strands of literature. First, starting with Cournot

(1838), the study of optimal selling strategies for a monopoly has a long tradition in eco-

nomics. The ironing procedure that is part of the optimal mechanism in our model is

reminiscent of the ironing that is required in settings such as Hotelling (1931), Mussa and

Rosen (1978), Myerson (1981), Bulow and Roberts (1989), Condorelli (2012), or Loertscher

and Muir (2022) when the underlying distributions or revenue functions fail to satisfy what

Myerson referred to as the regularity condition.4 However, in our setting the failure of the

pointwise maximizer to be monotone, which makes ironing necessary, is tied to the primitives

3See, for example, Manelli and Vincent (2011) and Gershkov et al. (2013).
4Similarly, in the problems analyzed by Dworczak et al. (2021) and Akbarpour et al. (2022), the optimality

of rationing hinges on the strength of the designer’s preference for redistribution and on properties of the
type distribution.
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of the model. It derives from the countervailing incentives of the agents and holds irrespec-

tive of the properties of the type distribution. Earlier work on problems with countervailing

incentives includes Lewis and Sappington (1989) and Jullien (2000), who study single-agent

problems, and Lu and Robert (2001) and Loertscher and Wasser (2019), who derive optimal

mechanisms for variants of partnership models.5

Second, our paper relates to papers that study multi-product monopoly pricing in the

Hotelling model (Hotelling, 1929) such as Jiang (2007), Fay and Xie (2008) and Balestrieri

et al. (2021), which all assume a uniform distribution and a single agent. Balestrieri et al.

show that the optimal selling mechanism involves lotteries regardless of whether the agent’s

transportation cost is linear or strictly concave or convex. Relative to these papers, our

analysis of the single-agent case represents a generalization with respect to the type distri-

bution and thereby clarifies that the lottery price is independent of the type distribution

while the prices of the pure goods and the lottery interval depend on the distribution. More

substantively, our paper generalizes the analysis beyond the single-agent case and solves for

the optimal selling mechanism on the Hotelling line when there is non-trivial interaction, i.e.

competition, between the agents.6

Last, the paper relates to a literature in auction design that emphasizes the importance

of simplified bidding languages along the lines of Milgrom (2009) and Klemperer (2010).

In particular, our two-stage clock auction in which the buyers submit coarse bids in the

first stage implements the allocation rule of the optimal mechanism in dominant strategies.

Moreover, the paper provides a simple test for a revenue-maximizing auctioneer who has

multiple differentiated assets for sale and wonders whether these assets should be auctioned

off independently or in an integrated auction: They should be auctioned off independently

if and only if independent auctions are efficient.

The remainder of this paper is organized as follows. Section 2 introduces the model,

mechanisms and constraints. In Section 3, we provide key mechanism design results, in-

cluding the saddle point characterization of optimal mechanisms and the ironing procedure.

Building on this, Section 4 then derives the optimal selling mechanism and its comparative

statics. Section 5 shows that the optimal mechanism has a two-stage clock auction imple-

mentation. The paper concludes with a brief discussion in Section 6. Proofs of the main

results are in the Appendix and the proofs of all other results can be found in the Online

5Much of the partnership literature, initiated by Cramton et al. (1987), has focused on ex post efficiency,
where countervailing incentives are less of an issue as the allocation rule is fixed.

6In this regard, the paper also shows that there is a fundamental difference in mechanism design between
models of vertical differentiation à la Mussa and Rosen (1978) and horizontal differentiation. With vertical
differentiation, the worst-off type is pinned down by incentive compatibility alone whereas with horizontal
differentiation it varies with the allocation rule. This contrasts with oligopoly models, for which Cremer and
Thisse (1991) established a strong equivalence result.
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Appendix. Online Appendix B shows that lotteries remain optimal if the designer maximizes

a convex combination of revenue and social surplus, if goods are optimally placed rather than

being exogenously placed at 0 and 1 and if transportation costs are not linear.

2 Setup

We study a variation of the Hotelling model in which a single seller (or designer) has K` ∈
{1, . . . , N} identical goods for sale at two locations ` ∈ {0, 1}. The seller faces N buyers (or

agents), which we index by the set N := {1, . . . , N}. Each buyer has demand for at most

one unit and an outside option of value 0. Given the single-unit demand assumption, the

restriction that K` ≤ N is without loss of generality. We assume that the seller’s commonly

known opportunity cost of selling any good is 0. Accordingly, the case with K0 = K1 = N

captures a multi-product monopoly pricing problem with constant marginal costs of zero. In

contrast, if K` < N for some ` ∈ {0, 1}, then there is non-trivial strategic interaction—or

competition—between the buyers. In this case, we refer to the seller’s problem as an auction

design problem.

Each buyer n ∈ N independently draws its location xn ∈ [0, 1] from a commonly known

absolutely continuous distribution F whose corresponding density f has full support on [0, 1].

We assume that buyers are privately informed about their realized locations and have a gross

valuation of v > 0 for each of the goods. Buyers have linear transportation costs, so that

the willingness to pay of a buyer at location x ∈ [0, 1] for the good at 0 is v − x while its

willingness to pay for the good at 1 is v − (1− x).

We assume that all agents are risk-neutral and have quasi-linear utility. The expected

payoff of an agent of type x ∈ [0, 1] that receives a single unit of good 0 with probability

q0 ∈ [0, 1] and receives a single unit of good 1 with probability q1 ∈ [0, 1], where q0+q1 ∈ [0, 1],

and makes a payment of t ∈ R to the seller is then

(v − x)q0 + (v − (1− x))q1 − t.

For ease of exposition, throughout the paper we assume that the virtual type functions

ψB(x) := x− 1− F (x)

f(x)
and ψS(x) := x+

F (x)

f(x)
(1)

are regular in the sense that they are strictly increasing in x. The virtual type function

ψB—which is associated with buyers in the setting of Myerson (1981)—arises when agents’
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downward local incentive compatibility constraints are used to compute virtual surplus and

the virtual type function ψS—which is associated with sellers in procurement auctions or

bilateral trade settings à la Myerson and Satterthwaite (1983)—arises when agents’ upward

local incentive compatibility constraints are used to compute virtual surplus. Notice that

for all x ∈ (0, 1) we have ψB(x) < x < ψS(x); this property will play an important role in

the analysis.

The regularity assumption simplifies the exposition by allowing us to proceed using stan-

dard inverses.7 It also provides conceptual clarity in the sense that it ensures that any

randomization that arises under the optimal mechanism is a general feature that is a direct

result of countervailing incentives and does not hinge on non-monotonicity of the functions

ψB and ψS (i.e. specific curvature properties of the distribution F ). Similarly, assuming

that all agents draw their locations from the same distribution rules out the possibility

that allocative inefficiencies of the optimal mechanism derive from discrimination based on

agent-specific distributions.

3 Mechanisms, saddle points and monotonicity

We now formally introduce direct mechanisms and the feasibility, incentive compatibility

and individual rationality constraints. We then analyze the implications of countervailing

incentives and show that any optimal mechanism satisfies a saddle point property. Finally,

we establish a strong monotonicity property and develop an associated iron procedure for

our multidimensional allocation rules.

3.1 Mechanisms and constraints

By the revelation principle, focusing on incentive compatible direct mechanisms is without

loss of generality. Since agents have single-unit demand, it is also without loss of generality

to focus on allocation rules that randomize over the set of outcomes {(0, 0), (0, 1), (1, 0)} for

each agent, where the outcome (a, b) represents the allocation that gives a given agent a

7To dispense with the regularity assumption, simply replace the virtual type functions ψB and ψS with

their ironed counterparts ψB and ψS and utilize the generalized inverses ψ
−1
B (z) = max{x ∈ [0, 1] : ψB(x) =

z} and ψ
−1
S (z) = min{x ∈ [0, 1] : ψS(x) = z}. The ironed virtual type functions can be computed as

follows. For q ∈ [0, 1], introduce a revenue function HB(q) = qF−1(1 − q) and a cost function HS(q) =
qF−1(q) associated with the distribution F (so that, as observed by Bulow and Roberts (1989), ψB(x) =
H ′B(q)|q=1−F (x) and ψS(x) = H ′S(q)|q=F (x)). Letting HB denote the concavification of the revenue function

HB (i.e. the smallest concave function that is weakly greater than HB at every point) and HS denote the
convexification of the cost function HS (i.e. the largest convex function that is weakly less than HS at

every point), the ironed virtual type functions are then given by ψB(x) = H
′
B(q)|q=1−F (x) and ψS(x) =

H
′
S(q)|q=F (x).
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units of good 0 and b units of good 1.8 Moreover, because the buyers’ locations are inde-

pendent and identically distributed, it is also without loss of generality to restrict attention

to direct mechanisms that are symmetric across the buyers. We therefore focus on incentive

compatible direct mechanisms 〈Q, T 〉, where Q = (Q0, Q1) denotes the allocation rule and

T denotes the transfer rule. The allocation rule

Q : [0, 1]N → ∆ ({(0, 0), (0, 1), (1, 0)})

maps the vector of agent reports to the set of probability measures over the set of outcomes

{(0, 0), (0, 1), (1, 0)}, so that Q`(xn,x−n) denotes the probability that agent n ∈ N is given

a unit of good ` ∈ {0, 1} upon reporting location xn ∈ [0, 1], when the other buyers report a

vector of locations x−n ∈ [0, 1]N−1. Accordingly, the probability of being allocated no good

at the reported type profile (xn,x−n) is 1−Q0(xn,x−n)−Q1(xn,x−n). The transfer rule

T : [0, 1]N → R

maps the vector of reports to payments made to the designer, where T (xn,x−n) is the

payment made by agent n ∈ N upon reporting location xn ∈ [0, 1], when the other buyers

report a vector of locations x−n ∈ [0, 1]N−1. By the Birkhoff–von Neumann theorem, a direct

allocation rule Q is feasible if and only if, for all ` ∈ {0, 1} and x ∈ [0, 1]N , we have∑
n∈N

Q`(xn,x−n) ≤ K`. (F)

Given a direct mechanism 〈Q, T 〉, we let

q`(xn) := Ex−n [Q`(xn,x−n)]

denote the interim probability that agent n ∈ N obtains a unit of good ` ∈ {0, 1} upon

reporting location xn ∈ [0, 1], assuming that all other agents report truthfully for all possible

realizations of their vector of types x−n ∈ [0, 1]N−1. Similarly, we let

t(xn) := Ex−n [T (xn,x−n)]

denote the interim expected payment made by agent n ∈ N upon reporting location xn ∈
[0, 1], assuming that all other agents report truthfully for all possible realizations of their

8This follows from the fact that an agent located at x who receives the allocation (1, 1) obtains the same
utility from the allocation (1, 0) if x ≤ 1

2 and the allocation (0, 1) if x ≥ 1
2 .
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vector of types x−n ∈ [0, 1]N−1. We also let U(x, x̂) := q0(x̂)(v − x) + q1(x̂)(v − 1 + x) −
t(x̂) denote the interim expected payoff of a buyer located at x ∈ [0, 1] who reports x̂ ∈
[0, 1], assuming that all other agents report truthfully. Letting U(x) := U(x, x) denote

the corresponding interim expected payoff under truthful reporting, the mechanism satisfies

(Bayesian) incentive compatibility (IC) if and only if, for all n ∈ N and all x, x̂ ∈ [0, 1],

U(x) ≥ U(x, x̂). (IC)

The mechanism satisfies (interim) individual rationality (IR) if and only if, for all x ∈ [0, 1],

U(x) ≥ 0. (IR)

3.2 Implications of countervailing incentives

Our task is to derive the direct selling mechanism that maximizes the designer’s ex ante

expected revenue, subject to the incentive compatibility, individual rationality and feasibility

constraints. We start by applying the envelope theorem (Milgrom and Segal, 2002), which

provides the second part of the following convenient characterization of the class of incentive

compatible direct mechanisms.

Lemma 1. A direct mechanism 〈Q, T 〉 is incentive compatible if and only if, for all x, x̂ ∈
[0, 1],

q1(x)− q0(x) is increasing in x (M)

and

U(x) = U(x̂) +

∫ x

x̂

(q1(y)− q0(y)) dy. (ICFOC)

Given an incentive compatible direct mechanism 〈Q, T 〉, we can combine (ICFOC) with

U(x) = q0(x)(v−x) + q1(v− (1−x))− t(x) and solve for t(x). For all x, x̂ ∈ [0, 1], this yields

t(x) = q0(x)(v − x) + q1(x)(v − (1− x))− U(x̂)−
∫ x

x̂

(q1(y)− q0(y)) dy. (2)

Using (2) we can then compute the designer’s ex ante expected revenue R(Q, T ) via

R(Q, T ) = NE[t(x)] = N

∫ 1

0

t(x) dF (x).
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Letting the virtual type functions Ψ0 and Ψ1 be given by

Ψ0(x, x̂) :=

v − ψS(x), x < x̂

v − ψB(x), x ≥ x̂
and Ψ1(x, x̂) :=

v − (1− ψS(x)), x ≤ x̂

v − (1− ψB(x)), x > x̂
, (3)

this then yields the following proposition.

Proposition 1. For every critical type x̂ ∈ [0, 1], the designer’s ex ante expected revenue

under any incentive compatible direct mechanism 〈Q, T 〉 is given by

R(Q, T ) = N

(∫ 1

0

[q0(x)Ψ0(x, x̂) + q1(x)Ψ1(x, x̂)] dF (x)− U(x̂)

)
.

Given an arbitrarily chosen critical type x̂ ∈ [0, 1] and following Bulow and Roberts

(1989) the virtual type Ψ0(x, x̂) can be interpreted as the marginal revenue associated with

selling a buyer at x ∈ [0, 1] a unit of the good at location 0 and the virtual type Ψ1(x, x̂) as the

marginal revenue associated with selling a buyer at x ∈ [0, 1] a unit of the good at location

1. These virtual type functions are piecewise-defined because the downward local incentive

compatibility constraints are used to compute the virtual type function for buyers located

to the right of the critical type x̂ and the upward local incentive compatibility constraints

are used to compute the virtual type function for buyers located to the left of the critical

type x̂.

The seller’s problem is to determine the direct mechanism 〈Q, T 〉 that maximizes its

ex ante expected revenue R(Q, T ) subject to the individual rationality constraints given in

(IR), the feasibility constraints (F), and the monotonicity condition (M). This problem is

complicated by the fact the agents’ worst-off types are endogenous to the allocation rule,

which sets the problem apart from standard mechanism design problems. Formally, for an

incentive compatible direct mechanism 〈Q, T 〉, denoting by Ω(Q) := argminx∈[0,1]{U(x)} the

set of worst-off types, we have the following result:

Lemma 2. Suppose that 〈Q, T 〉 is an incentive compatible direct mechanism. Then we have

the following.

(i) If there exists an x ∈ [0, 1] such that q1(x) − q0(x) = 0, then Ω(Q) = {x ∈ [0, 1] :

q1(x)− q0(x) = 0}.

(ii) If there does not exist an x ∈ [0, 1] such that q1(x) − q0(x) = 0 but there exists an

x ∈ [0, 1] such that q1(x)− q0(x) > 0, then Ω(Q) = infx∈[0,1]{q1(x)− q0(x) > 0}.

(iii) If there does not exist an x ∈ [0, 1] such that q1(x) − q0(x) = 0 but there exists an

x ∈ [0, 1] such that q1(x)− q0(x) < 0, then Ω(Q) = supx∈[0,1]{q1(x)− q0(x) < 0}.
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Note that parts (ii) and (iii) of Lemma 2 imply that Ω(Q) = y if q1(x) − q0(x) < 0 for

all x ≤ y and q1(x)− q0(x) > 0 for all x > y. A consequence of Lemma 2 is that the seller’s

ex ante expected revenue R(Q, T ) depends on both the allocation rule Q and the transfer

rule T , which implicitly appears in the term U(x̂) in Proposition 1. It is thus not a priori

clear that, as in standard mechanism design problems, one can first solve for the allocation

rule of the optimal mechanism and then determine the transfer rule by using (2) and making

the constraint (IR) bind for the worst-off types. We next show that this standard procedure

can still be applied after first establishing that optimal mechanisms satisfy a saddle point

property that is independent of the transfer rule.

3.3 Saddle point theorem

We first show that R(Q, T ) can be decomposed into two components: a virtual surplus

function R̃(Q, x̂) that only depends on the allocation rule Q and the critical type x̂ and a

term U(x̂) that also implicitly depends on the transfer rule T . As we will see, the optimal

mechanism is a saddle point of R̃(Q, x̂). Specifically, we let

R̃(Q, x̂) :=

∫ 1

0

[q0(x)Ψ0(x, x̂) + q1(x)Ψ1(x, x̂)] dF (x)

denote the sum of the terms in the seller’s ex ante expected revenue that only depend on

the virtual type functions Ψ0 and Ψ1 and the allocation rule Q and are independent of

the transfer rule T . We refer to this function as the seller’s virtual surplus function. By

Proposition 1, the seller’s ex ante expected revenue can be rewritten as

R(Q, T ) = N
(
R̃(Q, x̂)− U(x̂)

)
. (4)

Given an incentive compatible direct mechanism 〈Q, T 〉, the following lemma identifies the

set of worst-off types for each buyer as the set of critical types that minimize the seller’s

virtual surplus function R̃(Q, ·).

Lemma 3. Given any incentive compatible direct mechanism 〈Q, T 〉, we have

Ω(Q) = arg min
x̂∈[0,1]

R̃(Q, x̂).

While Lemma 3 is not required to solve standard mechanism design problems, the result

still holds in these settings.9 As stated, under the optimal selling mechanism 〈Q∗, T ∗〉 we

9Consider, for example, an optimal auction problem à la Myerson (1981) in which bidders’ values are
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must have U(ω) = 0 for all ω ∈ Ω(Q∗). Moreover, if U(ω) = 0 holds for all ω ∈ Ω(Q∗), then

all the individual rationality constraints (IR) are satisfied. Using the decomposition from

(4), the designer can therefore focus on maximizing

R(Q, T ) = N
(
R̃(Q,ω)− U(ω)

)
= NR̃(Q, ω), (5)

subject to the constraint that ω ∈ Ω(Q), the feasibility constraints (F), and the monotonicity

condition (M). Let Q denote the set of feasible allocation rules such that the monotonicity

constraint (M) holds. Combining these observations with Lemma 3 then shows that the

revenue-maximizing allocation rule Q∗ satisfies

Q∗ ∈ arg max
Q∈Q

min
x̂∈[0,1]

R̃(Q, x̂).

However, instead of solving this maximin problem directly, the following theorem provides

a saddle point characterization of the optimal mechanism Q∗ and the corresponding critical

worst-off type ω∗.

Theorem 1. A saddle point (Q∗, ω∗) ∈ Q× [0, 1] of the virtual surplus function R̃ satisfies

Q∗ ∈ arg max
Q∈Q

R̃(Q, ω∗), (6)

ω∗ ∈ arg min
x̂∈[0,1]

R̃(Q∗, x̂). (7)

A saddle point (Q∗, ω∗) that characterizes the optimal selling mechanism exists and is unique

in the following sense: another allocation rule Q′ 6= Q∗ is optimal and satisfies

Q′ ∈ arg max
Q∈Q

min
x̂∈[0,1]

R̃(Q, x̂) (8)

if and only if (Q′, ω∗) is a saddle point.

In words, a saddle point (Q∗, ω∗) satisfies a consistency condition whereby the allocation

rule Q∗ maximizes the designer’s objective given the critical type ω∗, and the critical type ω∗

is a worst-off type with respect to the allocation rule Q∗. An analogous result to Theorem

distributed on [0, 1] according to a distribution F . This gives rise to the virtual type functions defined
in (1). For a given critical type x̂ ∈ [0, 1], we have Ψ(x, x̂) = ψS(x) for x < x̂ and Ψ(x, x̂) = ψB(x)

otherwise. Consequently, the virtual surplus is R̃(Q, x̂) = Ex[
∑N

n=1 Ψ(xn, x̂)Q(xn,x−n)], where Q(xn,x−n)
is the probability buyer n is allocated the good at type profile (xn,x−n). By IC, Q(xn,x−n) is increasing
in xn. Since ψS(x) > ψB(x) holds for all x ∈ [0, 1], this implies that if Q(xn,x−n) increasing in xn, then
R̃(Q, x̂) is increasing in x̂ and is therefore minimized at x̂ = 0. Since x = 0 is also the worst-off type for any
increasing allocation rule, the lemma then follows.
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1 also characterizes the solution of the optimal partnership dissolution problem studied by

Loertscher and Wasser (2019). As mentioned, the procedure to solve standard mechanism

design problems relies on the separability of the allocation and the transfer rule. One first

solves for the allocation rule of the optimal mechanism and then uses the envelope formula to

derive the associated transfers. In problems with countervailing incentives, it is not a priori

clear whether this standard procedure is valid because the allocation rule and worst-off types

are interdependent. In this regard, the virtue of the saddle point theorem is that it shows

that the aforementioned separability still applies because the allocation rule of the optimal

mechanism is independent of the transfer rule.10

3.4 Strong monotonicity and ironing

Theorem 1 simplifies our search for an optimal selling mechanism to a search for a saddle

point of the designer’s virtual surplus function R̃. However, for a fixed critical type x̂ ∈ [0, 1],

we still need to characterize the feasible, monotone allocation rules that maximize the virtual

surplus function

R̃(Q, x̂) :=

∫ 1

0

[q0(x)Ψ0(x, x̂) + q1(x)Ψ1(x, x̂)] dF (x). (9)

Recall that ψB(x) < x < ψS(x) holds for all x ∈ (0, 1) (with ψB(0) < ψS(0) = 0 and

ψS(1) > ψB(1) = 1). The definitions given in (3) then imply that, for all x̂ ∈ (0, 1),

the virtual type function Ψ0(x, x̂) increases discontinuously at x = x̂ and the virtual type

function Ψ1(x, x̂) decreases discontinuously at x = x̂. Consequently, we cannot provide a

general characterization of the optimal allocation rule by simply pointwise maximizing the

virtual surplus function, as this procedure may violate the monotonicity constraint. That is,

as a result of countervailing incentives, the underlying mechanism design problem is always

non-regular.

Suppose that full market coverage is feasible and optimal. That is, suppose that q0(x) +

q1(x) = 1 holds for all x ∈ [0, 1]. Then (9) becomes R̃(Q, x̂) =
∫ 1

0
q0(x)(Ψ0(x, x̂) −

Ψ1(x, x̂)) dF (x) + v − 1 + x̂ and (M) is equivalent to requiring that q0 is non-increasing.

Ironing the difference in the virtual type functions Ψ0(x, x̂) − Ψ1(x, x̂) then permits point-

wise maximization of the seller’s objective function—with Ψ0(x, x̂) − Ψ1(x, x̂) replaced by

its ironed counterpart—without violating (M). However, the conditions under which this

approach is always applicable are somewhat stringent as they require that both v and the

10Theorem 1 does not depend on the distributions being identical, the transportation costs being linear
or on the designer’s objective being profit. Any convex combination of social surplus and profit yields the
same result.
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total supply of goods K0 +K1 are sufficiently large. In particular, a sufficient condition for

full market coverage is K0 + K1 ≥ N and v ≥ 1 + max
{

1
f(0)

, 1
f(1)

}
.11 To solve the problem

in general an alternative approach is therefore required. We now formulate a more general

ironing procedure, which we then apply in Section 4 to explicitly characterize the optimal

selling mechanism.

As mentioned, (M) only requires that q0− q1 is decreasing. Although one may intuitively

expect q0 to be decreasing and q1 to be increasing under any optimal mechanism, (M) may

of course hold even if q0 and q1 are not independently monotone. We now show that it is

nevertheless without loss of generality to focus on allocation rules that satisfy this strong

monotonicity property and are such that

q1(x) and − q0(x) are increasing in x. (SM)

The significance of this result is that it allows us to independently iron the virtual type func-

tions Ψ0(·, x̂) and Ψ1(·, x̂), and pointwise maximize the seller’s objective without violating

(M). Lemma 4, where QSM ⊂ Q denotes the set of feasible allocation rules such that (SM)

holds, formally states that the focus on allocation rules satisfying strong monotonicity is

without loss of generality.

Lemma 4. Given any feasible and monotone allocation rule Q ∈ Q, there exists a feasible

and strongly monotone allocation rule Q̂ ∈ QSM such that: (i) q1 − q0 = q̂1 − q̂0, (ii)∫ 1

0
(q0(x)− q̂0(x)) dF (x) = 0 and (iii)

∫ 1

0
(q1(x)− q̂1(x)) dF (x) = 0. Consequently, we have

Ω(Q) = Ω(Q̂). Moreover, if we take any ω ∈ Ω(Q) and set U(ω) = 0, then the designer’s

revenue and the interim expected payoff of each buyer are invariant under the transformation

that replaces the allocation rule Q with the allocation rule Q̂.

With Lemma 4 at hand and given any critical type x̂ ∈ (0, 1), we can now independently

iron each of the virtual type functions Ψ0 and Ψ1. The appropriate ironed virtual type

functions are given by

Ψ0(x, x̂) =


v − ψS(x), x ∈ [0, x(x̂))

z0(x̂), x ∈ [x(x̂), x(x̂)]

v − ψB(x), x ∈ (x(x̂), 1]

(10)

11If v < 1 + 1
f(0) (v < 1 + 1

f(1) ) then there is a positive mass of types that would never be served by a

monopoly seller with units for sale at location 1 (0).
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and

Ψ1(x, x̂) =


v − (1− ψS(x)), x ∈ [0, x(x̂))

z1(x̂), x ∈ [x(x̂), x(x̂)]

v − (1− ψB(x)), x ∈ (x(x̂), 1]

. (11)

Here, each choice of critical type x̂ ∈ (0, 1) uniquely determines the ironing parameters

z0(x̂) ∈ (v − 1, v) and z1(x̂) ∈ (v − 1, v), as well as the corresponding ironing interval

[x(x̂), x(x̂)]. The ironing parameters z0(x̂) and z1(ẑ) and the ironing interval [x(x̂), x(x̂)] are

pinned down by the conditions∫ x̂

x(x̂)

(v − ψS(x)− z0(x̂)) dF (x) =

∫ x(x̂)

x̂

(z0(x̂)− (v − ψB(x))) dF (x), (12)∫ x̂

x(x̂)

(v − (1− ψS(x))− z1(x̂)) dF (x) =

∫ x(x̂)

x̂

(z1(x̂)− (v − (1− ψB(x)))) dF (x), (13)

x(x̂) = min
{

0, ψ−1S (v − z0(x̂))
}

= min
{

0, ψ−1S (1− v + z1(x̂))
}
, (14)

x(x̂) = max
{
ψ−1B (v − z0(x̂)) , 1

}
= max

{
ψ−1B (1− v + z1(x̂)) , 1

}
. (15)

Summing (12) and (13) we see that z0(x̂) + z1(x̂) = 2v − 1 holds. This shows why the

ironing intervals for the function Ψ0(·, x̂) and Ψ1(·, x̂) coincide and we have (14) and (15).

Notice that for all x̂ ∈ (0, 1), we also have x(x̂) < x̂ < x(x̂). Moreover, we have the

following comparative statics concerning the ironing parameters, which will prove useful for

establishing uniqueness of the critical worst-off type (Theorem 2) and comparative statics

concerning the optimal selling mechanism (Proposition 4).

Lemma 5. The ironing parameters z0(x̂) and z1(x̂) are continuous in x̂ and are decreasing

and increasing in x̂, respectively. Moreover, the endpoints x(x̂) and x(x̂) of the ironing

interval are continuous and increasing in x̂.

Combining the insights from this subsection with Theorem 1, for a given specification of

the problem laid out in Section 2 we can now characterize the optimal selling mechanism by

finding a saddle point of the ironed virtual surplus function

R(Q, x̂) :=

∫ 1

0

[
q0(x)Ψ0(x, x̂) + q1(x)Ψ1(x, x̂)

]
dF (x). (16)
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4 Optimal selling mechanisms

We now provide an explicit characterization of the optimal selling mechanisms. We first

show that v > 1
2

is necessary and sufficient for the optimal selling mechanism not to consist

of simply running two independent optimal auctions. Assuming v > 1
2
, we then characterize

the optimal selling mechanisms, which we refer to as lottery-augmented auctions. The section

concludes with comparative statics of these lottery-augmented auctions.

4.1 (Non)-optimality of independent auctions

Combining our ironing procedure with the saddle point condition allows us to provide the

necessary and sufficient condition for when the seller optimally runs independent auctions

at 0 and 1. Formally, we have the following proposition.

Proposition 2. The optimal selling mechanism involves running independent auctions for

goods 0 and 1 if and only if v ≤ 1
2
. If it is optimal for the seller to run two independent

auctions, then the seller optimally sets a reserve price of v−ψ−1S (v) for good 0 and a reserve

price of v − (1− ψ−1B (1− v)) for good 1. Consequently, if independent auctions are optimal,

then buyers with locations x ∈ [ψ−1S (v), 1− ψ−1B (1− v)] are never served.

Proposition 2 shows that whether or not the optimal mechanism reduces to simply run-

ning independent optimal auctions at 0 and 1 (and we essentially end up with two copies

of the problem of Myerson (1981)) only depends on v. In particular, it is independent of

the distribution F and of the endowment (K0, K1). As noted, the necessary and sufficient

condition for two independent auctions to be revenue maximizing, i.e. v ≤ 1
2
, is the same as

the necessary and sufficient condition for two independent auctions, with reserve prices of

zero, to induce an efficient allocation.

4.2 Lottery-augmented auctions

We now turn to the more challenging case where v > 1
2
. As Proposition 2 shows, in this case

the optimal selling mechanism does not simply reduce to running an independent optimal

auction for each good. As we will see, if v > 1
2
, then all types are served with positive

probability under the optimal selling mechanism. Moreover, types within the ironing interval

[x(ω∗), x(ω∗)], where ω∗ ∈ (0, 1) is the critical worst-off type, participate in an ex post lottery

with positive probability under the optimal selling mechanism.

This subsection is structured as follows. We first state two fundamental properties (lem-

mas 6 and 7) that the optimal mechanism has to satisfy whenever v > 1
2
. We then apply these
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properties to characterize the optimal mechanism, distinguishing between parameterizations

with scarcity, defined as K0 +K1 ≤ N , and abundance, defined as K0 +K1 > N .

We characterize the optimal selling mechanism by computing, for every critical type

x̂ ∈ [0, 1], the ex post allocation rules Q(·, x̂; γ) that pointwise maximize the ironed virtual

surplus function R(Q, x̂) defined in (16). Note that these pointwise maximizing ex post

allocation rules are not necessarily unique and we therefore introduce an arbitrary index

γ ∈ Γ in order to distinguish them. We then determine the corresponding interim alloca-

tion rules q(·, x̂; γ) and finally characterize the optimal selling mechanism by checking the

saddle point condition (i.e. determining which critical type x̂ ∈ (0, 1) is also a worst-off

type under one of the interim allocation rules that it generates). Abusing notation, we let

Q`(i, j, x̂; γ) denote the probability that a given buyer is allocated a unit of good ` ∈ {0, 1}
upon reporting x ∈ [x(x̂), x(x̂)] when i ≥ 0 other buyers report locations below x(x̂) and

j ≥ 0 other buyers report locations above x(x̂) under the pointwise-maximizing ex post

allocation rule Q(·, x̂; γ).12 Letting p(i, j, x̂) denote the probability of any feasible state

(i, j) ∈ {0, 1, . . . , N − 1}2 with i+ j ≤ N − 1, we have

p(i, j, x̂) =

(
N − 1

i, N − 1− i− j, j

)
(F (x(x̂)))i (F (x(x̂))− F (x(x̂)))N−1−i−j (1− F (x(x̂)))j ,

where
(

N−1
i,N−1−i−j,j

)
= (N−1)!

i!(N−1−i−j)!j! is a multinomial coefficient.13 The interim probability

that any buyer that reports a type x ∈ [x(x̂), x(x̂)] is allocated a unit of good ` ∈ {0, 1} is

then given by

q`(x̂; γ) =
N−1∑
i=0

N−1−i∑
j=0

p(i, j, x̂)Q`(i, j, x̂; γ). (17)

By construction, x̂ ∈ [x(x̂), x(x̂)] holds and all buyers within the ironing interval receive the

same allocation under any ex post allocation rule Q(·, x̂; γ) that pointwise maximizes (16).

It follows that (Q(·, x̂; γ), x̂) is a saddle point if and only if it satisfies the condition stated

in the following lemma.

Lemma 6. Whenever v > 1
2
, there exists a critical worst-off type ω∗ ∈ (0, 1) that satisfies

q0(ω
∗; γ) = q1(ω

∗; γ) for some index γ ∈ Γ.

The critical worst-off ω∗ identified in Lemma 6 parameterizes the optimal selling mech-

anism insofar as ω∗ pins down the ex post allocation rule as a pointwise maximizer of the

12Restricting attention to allocation rules that offer all types in the ironing interval the same ex post
allocation is without loss of generality.

13Adopting the standard combinatorial convention that 00 = 1 means that the expression for p(i, j, x̂) is
still valid when x̂ = 0, 1 and for critical types x̂ ∈ (0, 1) such that x(x̂) = 0 or x(x̂) = 1.
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ironed virtual surplus function R(·, ω∗) and the corresponding transfer rule can then be

computed by substituting the allocation rule, x̂ = ω∗ and U(ω∗) = 0 into (2).

For every critical type x̂ ∈ [0, 1] that is a candidate for a saddle point, we now systemat-

ically compute the corresponding pointwise maximizing ex post allocation rules Q`(i, j, x̂; γ)

for buyers in the ironing interval [x(x̂), x(x̂)]. The following lemma shows that without loss

of generality attention can be restricted to to critical types x̂ ∈ (0, 1) that fall within two

cases. Here and below, we use the notation −` for “not `”.

Lemma 7. Whenever v > 1
2

a critical worst-off type ω∗ ∈ (0, 1) is either such that: (i)

z0(ω
∗), z1(ω

∗) > 0, or (ii) z`(ω
∗) > 0 and z−`(ω

∗) = 0 for some ` ∈ {0, 1}.

Letting x̂0 := min
{

0, z−11 (0)
}

and x̂1 := max
{
z−10 (0), 1

}
, Lemma 7 immediately implies

that ω∗ ∈ [x̂0, x̂1].
14 Another critical type that will play an important role in the analysis

is x̂A ∈ [0, 1] such that z0(x̂A) = z1(x̂A).15 Note that for v > 1
2
, we have x̂A ∈ (x̂0, x̂1).

Figure 1 provides an illustration of the ironed virtual type functions under the critical types

x̂ ∈ {x̂0, x̂A, x̂1}.

(a) x̂ = x̂0
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(b) x̂ = x̂A
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(c) x̂ = x̂1
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Figure 1: Assuming that buyer locations are uniformly distributed and v = 1, this figure
displays the ironed virtual type functions Ψ0(·, x̂) (red) and Ψ1(·, x̂) (blue) for three cases:
x̂ = x̂0, x̂ = x̂A and x̂ = x̂1.

With these fundamental properties at hand, we now turn to the characterization of the

optimal mechanisms, explicitly computing the pointwise maximizing ex post allocation rules

for cases involving scarcity, before then dealing with the cases involving abundance. Fixing a

critical type x̂ ∈ [x̂0, x̂1], we proceed by essentially reading the pointwise maximizing ex post

allocation rules off the ironed virtual type functions given any realization of reports x, and

14Note that if v > 1
2 then we have x̂1 > x̂0. Moreover, if v ≥ 1+1/f(0), then x̂0 = 0 and if v ≥ 1+1/f(1),

then x̂1 = 1.
15Note that such a critical type always exists and corresponds to an ironing interval with x(x̂A) > 0 and

x(x̂A) < 1 since, for all x̂ ∈ [0, 1], we have Ψ0(0, x̂) > Ψ1(0, x̂) and Ψ1(1, x̂) > Ψ0(1, x̂).
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thereby determining the ex post allocation for buyers in the ironing interval for every feasible

state (i, j). Interestingly, the problem with scarcity is slightly simpler because competition

among the buyers and the feasibility constraints (F) provide tighter constraints on the opti-

mal selling mechanism. The additional degrees of freedom associated with abundance make

the analysis slightly more involved.

Scarcity: K0 + K1 ≤ N . We begin with Case 1 from Lemma 7 and consider critical

types x̂ ∈ (x̂0, x̂1) (since this is the set of critical types such that z0(x̂), z1(x̂) > 0). In each

feasible state (i, j), the seller’s preferences, as encoded by the ironed virtual type functions

Ψ0 and Ψ1, together with the feasibility constraints then uniquely pin down the ex post

lottery offered to buyers that report a location in the ironing interval. In this case, the

seller’s preferences are such that it strictly prefers to serve buyers in the ironing interval

at either location whenever this is feasible, i.e. if any goods remain after first allocating

the units of good 0 to the i buyers that reported a location x < x(x̂) and the units of

good 1 to the j buyers that reported a location x > x(x̂). Moreover, whenever the buyers

in the ironing interval are entered into a non-trivial lottery (i.e. one involving goods from

both locations), there are always weakly fewer goods than buyers involved in the lottery.

Consequently, the pointwise maximizing ex post allocation rules are unique (up to a set of

measure zero) and we have Q0(i, j, x̂) = K0−i
N−i−j1(i < K0, j < N − K0) + 1(j ≥ N − K0)

and Q1(i, j, x̂) = K1−j
N−i−j1(i < N −K1, j < K1) + 1(i ≥ N −K1) (see Appendix B.10 for a

derivation).

Next, we deal with Case 2 from Lemma 7. For ` ∈ {0, 1}, we consider the critical

type x̂ = x̂` (which is such that z`(x̂) > 0 and z−`(x̂) = 0). Here, the seller allocates the

good at location ` to buyers in the ironing interval whenever this is feasible. However, the

seller is now indifferent between serving the buyers in the ironing interval at location −`
and not serving these buyers. For these cases the pointwise maximizing ex post allocation

rules are not unique. However, any ex post lottery offered by the seller to buyers in the

ironing interval under pointwise maximization can be characterized as a convex combination

of two extremal lotteries: one which allocates the good at location ` to as many buyers in

the ironing interval as possible and then serves none of the remaining buyers and one which

allocates the good at location ` to as many buyers in the ironing interval as possible and then

allocates the good at location −` to as many of the remaining buyers as possible. Utilizing

the expressions from the previous case, it is straightforward to compute the corresponding

set of pointwise maximizing ex post allocation rules. Since these ex post allocation rules

correspond to binary convex combinations, the index set Γ can be taken to be the set [0, 1]

without loss of generality.
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Putting all of this together, the following functions specify the set of pointwise maximizing

ex post allocation rules for each critical type x̂ that is a candidate for the critical worst-off

type ω∗ under scarcity. In particular, for all feasible states (i, j) ∈ {0, 1, . . . , N − 1}2 such

that i+ j ≤ N − 1, critical types x̂ ∈ [x̂0, x̂1] and γ ∈ [0, 1], we have

Q0(i, j, x̂; γ) =


K0−i
N−i−j1(i < K0, j < N −K0) + 1(j ≥ N −K0), x̂ ∈ [x̂0, x̂1)

γ
(

K0−i
N−i−j1(i < K0, j < N −K0) + 1(j ≥ N −K0)

)
, x̂ = x̂1

, (18)

Q1(i, j, x̂; γ) =

γ
(

K1−j
N−i−j1(i < N −K1, j < K1) + 1(i ≥ N −K1)

)
, x̂ = x̂0

K1−j
N−i−j1(i < N −K1, j < K1) + 1(i ≥ N −K1), x̂ ∈ (x̂0, x̂1]

. (19)

Abundance: K0 + K1 > N . As with scarcity, we begin with Case 1 from Lemma 7 and

consider critical types x̂ ∈ (x̂0, x̂1) (which is the set of critical types such that z0(x̂), z1(x̂) >

0). Combining Case 1 from Lemma 7 with the abundance condition K0 + K1 > N means

that the seller will optimally serve any buyer that reports a location within the ironing

interval. However, because there are more total units than agents, the feasibility constraints

do not immediately pin down the ex post lottery offered to these buyers. Therefore, we

must consider several further subcases. First, if z0(x̂) > z1(x̂) > 0 (or, equivalently, if

x̂ ∈ (x̂0, x̂A)), then the seller allocates the units of good 0 to as many buyers in the ironing

interval as possible (i.e. after first giving the i buyers that reported x < x(x̂) a unit of good

0), before then allocating units of good 1 to any remaining buyers. Consequently, there

is a unique ex post allocation rule that pointwise maximizes (16) subject to the feasibility

constraints, and we have Q0(i, j, x̂) = K0−i
N−i−j1(i < K0, j < N −K0) + 1(j ≥ N −K0) and

Q1(i, j, x̂) = 1−Q0(i, j, x̂) (see Appendix B.10 for a derivation). Second, if z1(x̂) > z0(x̂) > 0

(or, equivalently, if x̂ ∈ (x̂A, x̂1)), then the seller allocates the units of good 1 to as many

buyers in the ironing interval as possible (i.e. after first giving the j buyers that reported

x > x(x̂) a unit of good 1), before then allocating units of good 0 to any remaining buyers.

Consequently, there is again a unique ex post allocation rule that pointwise maximizes (16)

subject to the feasibility constraints, and we have Q0(i, j, x̂) = N−K1−i
N−i−j 1(i < N − K1, j <

K1)+1(j ≥ K1) and Q1(i, j, x̂) = 1−Q0(i, j, x̂) (see Appendix B.10 for a derivation). Finally,

if z0(x̂) = z1(x̂) (or, equivalently, if x̂ = x̂A), then the seller is indifferent between giving

buyers in the ironing interval a unit of good 0 and a unit of good 1. In contrast to the two

previous subcases, the seller’s preferences (as encoded by the ironed virtual type functions

Ψ0 and Ψ1) together with the feasibility constraints do not immediately pin down a unique

ex post allocation for buyers in the ironing interval. Nevertheless, without loss of generality

we can parameterize the continuum of ex post allocation rules that pointwise maximize (16)
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by taking convex combinations of two “extremal” lotteries: one where the seller allocates

the units of good 0 to as many buyers in the ironing interval as possible (which corresponds

to the lottery the seller constructs whenever z0(x̂) > z1(x̂) > 0) and one where the seller

allocates the units of good 1 to as many buyers in the ironing interval as possible (which

corresponds to the lottery the seller constructs whenever z1(x̂) > z0(x̂) > 0). Utilizing the

expressions from the previous subcases, we can compute the corresponding set of pointwise

maximizing ex post allocation rules by setting Γ = [0, 1]. For all γ ∈ [0, 1], we have

Q0(i, j, x̂A; γ) = γmin
{

K0−i
N−i−j , 1

}
1(i < K0)

+ (1− γ) min
{
N−K1−i
N−i−j , 1

}
1(i < N −K1)

(20)

(see Appendix B.10 for a derivation).16 Next, we deal with Case 2 from Lemma 7. Again, for

` ∈ {0, 1}, we consider the critical type x̂ = x̂` (which implies that z`(x̂) > 0 and z−`(x̂) = 0).

Here, the analysis is analogous to the case involving scarcity and any ex post lottery offered

by the seller to buyers in the ironing interval under pointwise maximization can, again, be

characterized as a convex combination of two extremal lotteries: one which allocates the

units of good ` to as many buyers in the ironing interval as possible and then serves none of

the remaining buyers and one which allocates the units of good ` to as many buyers in the

ironing interval as possible and then allocates units of the good −` to all remaining buyers.

Putting all of this together, the following functions specify the set of pointwise maximizing

ex post allocation rules for each critical type x̂ that is a candidate for the critical worst-off

type ω∗ under abundance. In particular, for all feasible states (i, j) ∈ {0, 1, . . . , N −1}2 such

16Note that the seller can implement the ex post allocation rule from (20) without violating the feasibility
constraints by randomizing over the two extremal lotteries and implementing the one that allocates a unit of
the good at location 0 to buyers in the ironing interval wherever possible with probability γ and the one that
allocates a unit of the good at location 1 to buyers in the ironing interval wherever possible with probability
1− γ.
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that i+ j ≤ N − 1, critical types x̂ ∈ [x̂0, x̂1] and γ ∈ [0, 1], we have

Q0(i, j, x̂; γ) =



K0−i
N−i−j1(i < K0, j < N −K0) + 1(j ≥ N −K0), x̂ ∈ [x̂0, x̂A)

Q0(i, j, x̂A; γ), x̂ = x̂A
N−K1−i
N−i−j 1(i < N −K1, j < K1) + 1(j ≥ K1), x̂ ∈ (x̂A, x̂1)

γ
(
N−K1−i
N−i−j 1(i < N −K1, j < K1) + 1(j ≥ K1)

)
, x̂ = x̂1

, (21)

Q1(i, j, x̂; γ) =



γ
(
1−Q0(i, j, x̂0; γ)

)
, x̂ = x̂0

1−Q0(i, j, x̂; γ), x̂ ∈ (x̂0, x̂A)

1−Q0(i, j, x̂A; γ), x̂ = x̂A

1−Q0(i, j, x̂; 1), x̂ ∈ (x̂A, x̂1]

, (22)

where Q0(i, j, x̂A; γ) is as defined in (20).

Having exhausted all possible cases, we are now in a position to summarize this analysis.

In particular, for all ` ∈ {0, 1}, feasible states (i, j) ∈ {0, 1, . . . , N−1}2 such that i+j ≤ N−1,

critical types x̂ ∈ (0, 1) and γ ∈ [0, 1], using the pointwise maximizing ex post allocation

rules Q`(i, j, x̂; γ) computed in (18), (19), (21) and (22), we can calculate the associated

interim allocations q`(x̂; γ) via (17). The following theorem then characterizes the optimal

selling mechanism and associated unique critical worst-off type ω∗.

Theorem 2. Suppose that v > 1
2
. Then the optimal selling mechanism is characterized

by the unique critical worst-off type ω∗ ∈ [x̂0, x̂1] such that q0(ω
∗; γ) = q1(ω

∗; γ) holds for

some γ ∈ [0, 1]. If ω∗ /∈ {x̂0, x̂A, x̂1}, then q0(ω
∗; γ) = q1(ω

∗; γ) holds for all γ ∈ [0, 1]. If

ω∗ ∈ {x̂0, x̂A, x̂1}, then there also exists a unique γ∗ such that q0(ω
∗; γ∗) = q1(ω

∗; γ∗).

4.2.1 Monopoly pricing problems

We conclude this subsection by considering the special case of monopoly pricing problems

such that v > 1
2

and K0 = K1 = N . Under monopoly pricing problems competition among

the buyers and the feasibility constraints (F) play no role in determining the optimal selling

mechanism. Consequently, for all xn ∈ [0, 1], x−n ∈ [0, 1]N−1 and ` ∈ {0, 1}, we have

Q`(xn,x−m) = q`(xn) and the derivation of the functions q0 and q1 simplifies substantially.

This allows us to both compute the correspondence ∆q(x̂) := {q0(x̂, x̂; γ)− q1(x̂, x̂; γ) : γ ∈
[0, 1]} and characterize the critical worst-off type x̂A more explicitly.

First, suppose that x̂ ∈ [x̂0, x̂A), which implies that z0(x̂) > z1(x̂) ≥ 0. The allocation

rules q0 and q1 that pointwise maximize (16) are then simply q0(x, x̂; γ) = 1(Ψ0(x, x̂) ≥
Ψ1(x, x̂)) = 1(x ≤ x(x̂A)) and q1(x, x̂; γ) = 1− q0(x, x̂) (see Panel (a) of Figure 2). Second,
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(a) x̂ ∈ (x̂0, x̂A)
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(c) x̂ ∈ (x̂A, x̂1)
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Figure 2: Assuming that buyer locations are uniformly distributed and v = 1, this figure
illustrates the allocation rules q0(·, x̂) (red) and q1(·, x̂) (blue) that pointwise maximizes the
ironed virtual type functions and the ironed virtual type functions Ψ0(·, x̂) (red) and Ψ1(·, x̂)
(blue) for three cases: x̂ ∈ (x̂0, x̂A), x̂ = x̂A and x̂ ∈ (x̂A, x̂1).

suppose that x̂ ∈ (x̂A, x̂1], which implies that z1(x̂) > z0(ẑ) ≥ 0. In this case the unique

pointwise maximizers are given by q(x, x̂; γ) = 1(Ψ1(x, x̂) ≥ Ψ0(x, x̂)) = 1(x ≤ x(x̂A)) and

q1(x, x̂) = 1 − q0(x, x̂) (see Panel (c) of Figure 2). Finally, suppose that x̂ = x̂A, which

implies that z0(x̂) = z1(x̂) > 0. In this case there are a continuum of allocation rules q0 and

q1 that pointwise maximize (16). For γ ∈ [0, 1] we have q0(x, x̂A; γ) = 1(x < x(x̂A))+γ1(x ∈
[x(x̂A), x(x̂A)]) and q1(x, x̂A, γ) = 1− q0(x, x̂A; γ) (see Panel (b) of Figure 2). Putting all of

this together, for all x̂ ∈ [x̂0, x̂1], the correspondence ∆q that we previously defined is given

by

∆q(x̂) =


1, x̂ ∈ [x̂0, x̂A)

[−1, 1], x̂ = x̂A

−1, x̂ ∈ (x̂A, x̂1]

.

The unique critical worst-off type that satisfies 0 ∈ ∆q(ω∗) and characterizes the optimal

selling mechanism corresponds to ω∗ = x̂A and γ∗ = 1
2
. Intuitively, an ironing parame-

ter of z(x̂A) = 0 makes the seller indifferent between giving types in the ironing interval

[x(x̂A), x(x̂A)] good 0 and good 1. Absent any binding feasibility constraints, this must

hold for any types that the seller enters in a non-trivial lottery. Summarizing, we have the

following proposition.

Proposition 3. If v > 1
2

and K0 = K1 = N , then the critical worst-off type is given by
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ω∗ = x̂A and the optimal selling mechanism is characterized by

q∗(x) =


1, x < x(x̂A)

1
2
, x ∈ [x(x̂A), x(x̂A)]

0, x > x(x̂A)

, t∗(x) =


v − ψ−1S

(
1
2

)
, x < x(x̂A)

v − 1
2
, x ∈ [x(x̂A), x(x̂A)]

v −
(
1− ψ−1B

(
1
2

))
, x > x(x̂A)

.
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(c) F (x) = x2, v = 2
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Figure 3: Panels (a) and (b) illustrate the correspondence ∆q for monopoly pricing problems
with F (x) = x and x̂A = 1

2
. In Panel (a) we have v = 2, which implies that x̂0 = 0 and x̂1 = 1

and the correspondence ∆q is defined for all x ∈ [0, 1]. In Panel (b) we have v = 1, which
implies that x̂0 = 1

4
and x̂1 = 3

4
and the correspondence ∆q is only defined for x̂ ∈

[
1
4
, 3
4

]
.

Panel (c) illustrates this correspondence for any monopoly pricing problem with F (x) = x2

and v = 2. Here, x̂0 ≈ 0.145, x̂1 = 1 and x̂A ≈ 0.578.

As Proposition 3 shows, the optimal selling mechanism for monopoly pricing problems

can be implemented by setting three prices: prices p0 and p1 for the “pure” goods 0 and 1,

respectively, and a price pL = v− 1
2

for the lottery that gives buyers a unit of goods 0 and 1

with probability 1
2

each. Notice that the lottery price is independent of the type distribution.

However, the “pure” good prices p0 and p1 and the subset of types that participate in the

lottery do depend on the type distribution. If buyer locations are uniformly distributed, then

we have a critical worst-off type of ω∗ = 1
2

(see panels (a) and (b) of Figure 3). The interval

of types that participate in the lottery is given by
[
1
4
, 3
4

]
and we have prices of p0 = p1 = v− 1

4

and pL = v − 1
2
. If F (x) = x2, then we have a critical worst-off type of ω∗ ≈ 0.578 (see

Panel (b) of Figure 3). The interval of types that participate in the lottery is approximately[
1
3
, 0.768

]
with prices p0 = v− 1

3
, p1 ≈ v− 0.232 and pL = v− 1

2
. Compared to the case with

the uniform distribution, there is a relatively high concentration of “captive” buyers close

to location 1 when F (x) = x2. Consequently, relative to the uniform distribution, the seller

sets a higher price for good 1 and serves a smaller interval of types at this location, while

still selling a larger quantity of 1− F (0.768) ≈ 0.411 of good 1 as a pure good.
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Beyond the monopoly pricing problems considered in this subsection, the interim allo-

cations for buyers located left and right of the ironing interval will generally vary with the

reports of other agents. Consequently, the seller cannot implement the optimal selling mech-

anism by simply posting a menu of three prices. However, as we will see in Section 5.2,

the seller can implement the optimal selling mechanism in dominant strategies by running a

two-stage clock auction that involves setting at most three prices.

4.3 Comparative statics

In this section we shed further light on the structure of the optimal selling mechanisms

by deriving a number of comparative statics. We begin with graphical illustrations of key

properties and then provide formal results.

4.3.1 Graphical illustrations

We begin by illustrating the correspondence ∆q(x̂) = {q0(x̂, x̂; γ)− q1(x̂, x̂; γ)} for a variety

of cases. Exploiting the fact that the critical worst-off type is uniquely pinned down by the

condition 0 ∈ ∆q(ω∗), we will then highlight a number of comparative statics relating to the

critical worst-off type ω∗. Section 4.3.2 then contains the formal analysis.

Balanced markets. We start by considering balanced markets, which are such that K0 +

K1 = N . If v ≥ 1 + max
{

1
f(0)

, 1
f(1)

}
also holds, then we have full market coverage under the

optimal selling mechanism (i.e. it is both feasible and optimal to serve all buyer types with

probability 1). Here, the feasibility constraints uniquely pin down the interim allocations for

buyers in the ironing interval and the correspondence ∆q is always a function (see Panel (a)

of Figure 4). If v ∈
(

1
2
, 1 + max

{
1

f(0)
, 1
f(1)

})
, then the feasibility constraints still uniquely

pin down the interim allocations for agents in the ironing interval, except for at the bound-

aries x̂ = x̂0 and x̂ = x̂1, where the correspondence ∆q exhibits a vertical segment.17 Panels

(b), (c) and (d) of Figure 4 provide an illustration. This figure also contains examples where

ω∗ ∈ {x̂0, x̂1}: this arises when v is sufficiently small and the endowment is sufficiently asym-

metric. As Figure 4 illustrates—and as we formally show in Section 4.3.2—under balanced

markets ω∗ increases monotonically in K0 (and, consequently, decreases monotonically in

K1). Intuitively, if K0 increases (and K1 decreases), then good 1 becomes relatively more

scarce. Consequently, ω∗ increases and the ironing interval moves toward 1 in order to main-

tain 0 ∈ ∆q(ω∗). When the seller faces a highly asymmetric endowment it may also only

17Recall from Section 4.2 that when ω∗ = x̂` we have z−`(ω
∗) = 0. Consequently, the seller is indifferent

between allocating units good −` to agents in the ironing interval and not serving them. As a result, there
are a continuum of pointwise maximizing ex post allocation rules.
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(c) F (x) = x, v = 3
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(d) F (x) = x, v = 1
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Figure 4: Panels (a), (c) and (d) illustrate the correspondence ∆q for a series of balanced
market with N = 10, F (x) = x and x̂S = 1

2
. In Panel (a) v = 2, in Panel (c) v = 3

2
and in

Panel (d) v = 1. Panel (b) illustrates the correspondence ∆q for a series of balanced markets
with N = 10, F (x) = x2, v = 2 and x̂S ≈ 0.700.

sell the abundant good as a “pure” good, and sell the entire endowment of the scarce good

via a lottery. For example, in Panel (a) of Figure 4, we have ω∗ ≤ 1
4

and x(ω∗) = 0 when

K0 ∈ {1, 2} and ω∗ ≥ 3
4

and x(ω∗) = 1 when K0 ∈ {8, 9}.

Symmetric endowments. We now consider parameterizations involving symmetric en-

dowments such that K0 = K1 = K ∈ {1, . . . , N}. The following lemma will prove useful.

Lemma 8. There exists a unique x̂S ∈ [0, 1] satisfying F (x(x̂S)) = 1− F (x(x̂S)).

Under the critical type x̂S introduced in Lemma 8, buyers are equally likely to be located

left and right of the ironing interval. Consequently, if v is sufficiently large (so that x̂S ∈
(x̂0, x̂1)) and if we have scarcity and a symmetric endowment, then under the critical type x̂S
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(a) F (x) = x, v = 2

0.2 0.4 0.6 0.8 1.0
x


1.0

0.5

0.5

1.0

Δq

K=10 K=8 K=7 K=6 K=5

K=4 K=3 K=2 K=1

(b) F (x) = x2, v = 2
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Figure 5: This figure illustrates comparative statics under symmetric endowments. Panel (a)
illustrates the correspondence ∆q for F (x) = x, v = 2 and N = 10 and a series of markets
with symmetric endowments such that K0 = K1 = K. Panel (b) sets F (x) = x2, v = 2 and
N = 10 and considers the same set of symmetric endowments.

buyers are equally likely to be allocated either good upon reporting a location in the ironing

interval, which implies that ω∗ = x̂S.

Panel (a) in Figure 5 illustrates a series of examples involving symmetric endowments

for F (x) = x and v = 2 (which implies that x̂0 = 0 and x̂1 = 1). For the parameterizations

involving scarcity (i.e. K ≤ bN
2
c = 5) we see that the correspondence ∆q is always a

function as the feasibility constraints uniquely pin down the allocation for agents in the

ironing interval and we have ω∗ = x̂S = 1
2
. However, in the region involving abundance (i.e.

K > bN
2
c) the feasibility constraints do not necessarily uniquely pin down the allocation

for buyers in the ironing interval and the correspondence ∆q exhibits a vertical section at

x̂ = x̂A = 1
2
. Panel (a) of Figure 5 also shows that as the number of goods available at each

` ∈ {0, 1} increases from K = 1 to K = N , the correspondence ∆q converges to the step

function illustrated in Panel (a) of Figure 3. Panel (b) of Figure 5 exhibits similar features.

However, this panel, which assumes F (x) = x2 and v = 2, shows that ω∗ = x̂S ≈ 0.700 holds

for K ≤ bN
2
c and that ω∗ monotonically converges from x̂S to x̂A ≈ 0.578 as K increases

from 1 to N .18

Asymmetric endowments. Figure 6 provides additional parameterizations that illus-

trate the convergence of ω∗ to x̂A (the critical worst-off type associated with monopoly

pricing problems) once the feasibility constraints are sufficiently slack. In fact, figures 5 and

6 illustrate a more general phenomenon: as K0 and K1 increase, ω∗ typically converges to x̂A

18This convergence is trivial for the uniform distribution where x̂S = x̂A.

27



(a) F (x) = x, v = 2

0.2 0.4 0.6 0.8 1.0
x


1.0

0.5

0.5

1.0

Δq

K0=10 K0=8 K0=7 K0=6 K0=5

K0=4 K0=3 K0=2 K0=1

(b) F (x) = x2, v = 2
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Figure 6: This figure illustrates behavior under asymmetric endowments. Panel (a) illustrates
the correspondence ∆q for a series of markets with asymmetric endowments and N = 10
and K0 = K1 = K. Panel (b) illustrates this correspondence for a series of markets with
asymmetric endowments and N = K1 = 10.

before we reach the monopoly pricing case of K0 = K1 = N . The analysis in the following

subsection provides a tight theoretical characterization of this phenomenon.

4.3.2 Formal results

We now show to what extent the properties illustrated above are general properties of the

optimal mechanism. We begin with the case v ≥ 1 + max
{

1
f(0)

, 1
f(1)

}
, which implies that

the critical worst-off type—which we denote by x̂(K0, K1) for this case—is independent of v.

Throughout the analysis, we keep N ≥ 2 fixed.19 Note that while the results in this section

are true as stated when N = 2, some of the statements are vacuous in this case as (among

other things) there is no scarcity region with K0+K1 < N and only a single balanced market

parameterization such that K0 +K1 = N .

Proposition 4. Suppose that v ≥ 1 + max
{

1
f(0)

, 1
f(1)

}
and N ≥ 2. In the scarcity region

with K0+K1 < N we always have x̂(K0, K1) < x̂(K0+1, K1) and x̂(K0, K1) > x̂(K0, K1+1).

We now restrict attention to the abundance region and assume that K0 + K1 ≥ N . In this

region there exists a point (KA
0 , K

A
1 ) with KA

0 +KA
1 ∈ {N,N + 1} such that x̂(K0, K1) = x̂A

if and only if K0 ≥ KA
0 and K1 ≥ KA

1 . Moreover, we have x̂(K0, K1) < x̂(K0 + 1, K1) ≤ x̂A

if K0 < KA
0 , x̂(K0, K1) = x̂(K0 + 1, K1) if K0 ≥ KA

0 , x̂(K0, K1) > x̂(K0, K1 + 1) ≥ x̂A if

K1 < KA
1 and x̂(K0, K1) = x̂(K0, K1 + 1) if K1 ≥ KA

1 .

Proposition 4 immediately implies the following additional comparative statics.

19If K0 = K1 = N = 1 then the monopoly pricing analysis from Section 4.2.1 applies.
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Figure 7: This figure illustrates the comparative statics stated in Proposition 4 for N = 10
with F (x) = x in Panel (a) and F (x) = x2 in Panel (b). In both panels the scarcity
region is shaded in pink and the abundance region is shaded in blue. Gray dots indicate
that x̂(K0, K1) = x̂A, red dots indicate that x̂(K0, K1) < x̂A and blue dots indicate that
x̂(K0, K1) > x̂A. Similarly, gray arrows indicate steps in the parameter space such that
x̂(K0, K1) is constant, red arrows indicate steps such that x̂(K0, K1) decreases and blue
arrow indicate steps such that x̂(K0, K1) increases.

Corollary 1. Suppose that v ≥ 1 + max
{

1
f(0)

, 1
f(1)

}
and N ≥ 2. Then the critical worst-

off type x̂(K0, K1) increases monotonically in the ratio K0

K1
. Moreover, if K0 = K1 = K ∈

{1, . . . , N}, then the critical worst-off type x̂(K,K) varies monotonically in K, and is such

that x̂(K,K) = x̂S for K ≤ bN
2
c and x̂(K,K) = x̂A for K ≥ max{KA

0 , K
A
1 }.

As shown by Corollary 2 below, studying balanced markets allows us to identify the point

(KA
0 , K

A
1 ) from Proposition 4. Once we compute (KA

0 , K
A
1 ) for a given value of N and type

distribution F , then the results of Proposition 4 provide us with sufficient information to

fully construct the abundance region in figures such as those displayed in Figure 7.

Corollary 2. Suppose that v ≥ 1 + max
{

1
f(0)

, 1
f(1)

}
and N ≥ 2 and consider balanced

markets such that K0 +K1 = N . Then one of four cases applies:

(i) If there exists K ∈ {1, . . . , N − 1} with K0 = K, K1 = N −K and x̂(K,N −K) = x̂A,

then we have KA
0 = K and KA

1 = N −K.

(ii) If there exists K ∈ {1, . . . , N − 2} with K0 = K, K1 = N −K and x̂A ∈ (x̂(K,N −
K), x̂(K + 1, N −K − 1)), then we have KA

0 = K + 1 and KA
1 = N −K.
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(iii) If x̂(1, N − 1) > x̂A, then we have KA
0 = 1 and KA

1 = N .

(iv) If x̂(N − 1, 1) < x̂A, then we have KA
0 = N and KA

1 = 1.

Figure 7 provides a graphical illustration of our comparative statics results. In the scarcity

region the feasibility constraints for both goods are binding and uniquely pin down the critical

worst-off type, which mechanically adjusts in response to changes in the supply of each good

in order to maintain the saddle point condition. However, the feasibility constraints are less

tight and bind for at most one of the goods once we are in the abundance region. Our analysis

of monopoly pricing problems showed that we must have x̂(N,N) = x̂A. Moreover, in the

previous section, we saw that x̂(K0, K1) = x̂A applies in the abundance region for numerous

other parameterizations where the feasibility constraints are sufficiently slack. Proposition 4

and Corollary 2 together provide a sharp characterization of when there is sufficient supply of

each good so that the designer can achieve its “ideal” critical worst-off type x̂A. In particular,

there is a “rectangle” in the abundance region with K0 + K1 ≥ N such that x̂(K0, K1) if

and only if (K0, K1) lies within the rectangle. Moreover, the bottom-left corner of this

rectangle—(KA
0 , K

A
1 )—is either such that KA

0 +KA
1 = N or such that KA

0 +KA
1 = N + 1.

With all of these comparative statics at hand, it is straightforward to generalize the anal-

ysis and allow for the possibility that v ∈
(

1
2
, 1 + max

{
1

f(0)
, 1
f(1)

})
. Fixing N ≥ 2, we now

denote the critical worst-off type by ω∗(K0, K1, v). Naturally, if v ≥ 1 + max
{

1
f(0)

, 1
f(1)

}
,

then ω∗(K0, K1, v) = x̂(K0, K1). Moreover, since x̂A ∈ (x̂0, x̂1) holds for all v > 1
2
, if

x̂(K0, K1) = x̂A, then we also have ω∗(K0, K1, v) = x̂A. However, in general ω∗(K0, K1, v) =

max{min{x̂(K0, K1), x̂1}, x̂0}, where x̂0 is decreasing in v and x̂1 is increasing in v. Using

this expression for ω∗(K0, K1, v) we can generalize our comparative statics results. Specifi-

cally, if we replace x̂(K0, K1, v) with ω∗(K0, K1, v) and x̂S with max{min{x̂S, x̂1}, x̂0}, then

corollaries 1 and 2 are true as stated for any v > 1
2
. Proposition 4 is also true as stated for

any v > 1
2

if we additionally replace any strict inequalities involving critical types with weak

inequalities.

In Section 4.1 we provided a necessary and sufficient condition (v ≤ 1
2
) for the opti-

mal selling mechanism to reduce to running two independent auctions. When v > 1
2

we

asymptotically recover this case, as well as the optimality of a single auction (since a critical

worst-off type of ω∗ = 0 corresponds to running a single optimal auction at location 1 and a

critical worst-off type of ω∗ = 1 corresponds to running a single optimal auction at location

0).

Proposition 5. If K0 and K1 vary with N in such a way that K0(N)
N
→ 0 and K1(N)

N
→ 1

as N →∞, then limN→∞ ω
∗(K0, K1, v) = 0. Similarly, if K0 and K1 vary with N in such a

way that K1(N)
N
→ 0 and K0(N)

N
→ 1 as N →∞, then limN→∞ ω

∗(K0, K1, v) = 1. Moreover,
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suppose that K0 and K1 vary with N in such a way that K0(N)
N
→ µ0 and K1(N)

N
→ µ1 and let

x̂ = limN→∞ ω
∗(K0(N), K1(N), v). Then if µ0 ≤ F (x(x̂)) and µ1 ≤ 1−F (x(x̂)), the optimal

selling mechanism converges to running two independent auctions as N →∞.

5 Clock auction implementation

In this section, we first study the implementation of the optimal selling mechanisms in

dominant strategies, with and without ex post individual rationality constraints. Then we

describe a clock auction that implements the optimal mechanisms in dominant strategies.

5.1 Dominant strategies

We first introduce the formal definitions of dominant strategy incentive compatibility (DIC)

and ex post individual rationality (EIR) and complete the description of the ex post allo-

cation rules of the optimal mechanism. We then derive the dominant strategy prices that

satisfy EIR with equality for the ex post worst-off types and show that the countervailing

incentives of our problem give rise to a revenue difference between mechanisms satisfying IR

and those satisfying EIR.

5.1.1 DIC and EIR

Given a direct mechanism 〈Q, T 〉, we let

U(xn, yn,x−n) := Q0(yn,x−n)(v − xn) +Q1(yn,x−n)(v − (1− xn))− T (yn,x−n)

denote the ex post payoff of agent n upon reporting yn at type profile x = (xn,x−n), where ex

post means that the agent’s payoff is evaluated after all reports are submitted but before any

randomization performed by the designer (as a function of the agents’ reports) has occurred.

We also let U(xn,x−n) := U(xn, xn,x−n) denote agent n’s ex post payoff upon truthfully

reporting xn at type profile x = (xn,x−n). A direct mechanism 〈Q, T 〉 then satisfies DIC if

and only if, for all yn ∈ [0, 1] and all x ∈ [0, 1]N , we have

U(xn,x−n) ≥ U(xn, yn,x−n). (DIC)

It satisfies EIR if and only if, for all x ∈ [0, 1]N , we have

U(xn,x−n) ≥ 0. (EIR)

31



5.1.2 Optimal ex post allocation rules

We now complete the description of the ex post allocation rule under the optimal mechanism

(in the previous section this was only done for agents within the ironing interval). Given a

type profile x ∈ [0, 1]N , we let x(i) denote its i-th highest element and x[i] denote its i-th

lowest element. For example, x[K0] is then the K0-th lowest reported location and x(K1) is

the K1-th highest reported location. For ease of exposition we abstract from the possibility

of ties by assuming that no two elements of x are the same.20 For i > N we employ the

convention of setting x[i] = 1 and x(i) = 0. We will also use the notation x−n[i] and x−n(i) to

denote, respectively, the i-th lowest and i-th highest element of the vector x−n ∈ [0, 1]N−1,

and we similarly set x−n[N ] = 1 and x−n(N) = 0.

We first consider the case v ≤ 1
2
. Here, the optimal mechanism consists of two inde-

pendent, optimal auctions, and the corresponding optimal allocation rule is Q0(xn,x−n) =

1(xn ≤ min{x[K0], ψ
−1
S (v)}) and Q1(xn,x−n) = 1(xn ≥ max{x(K1), ψ

−1
B (1 − v)}). Next, we

consider the case where v > 1
2

and lotteries are part of the optimal mechanism, which is

characterized by the parameters (ω∗, γ∗).21

For ω∗ 6= x̂A, let x̃ ∈ (0, 1) denote the unique point of intersection of Ψ0(x, ω
∗) and

Ψ1(x, ω
∗) so that x̃ is such that Ψ0(x̃, ω

∗) = Ψ1(x̃, ω
∗). Either (a) x̃ < x or (b) x̃ > x will

hold, corresponding to ω∗ ∈ (x̂A, x̂1) and ω∗ ∈ (x̂0, x̂A), respectively. The designer then

prioritizes allocating good 0 for x < x̃ and good 1 for x > x̃.

Assume first that ω∗ 6= x̂A. For xn < min{x(ω∗), x̃}, we have

Q0(xn,x−n) = 1(xn ≤ x[K0]),

Q1(xn,x−n) = 1(xn > x[K0], xn ≥ max{x(K1), ψ
−1
S (1− v)}),

(23)

where we let ψ−1S (1 − v) = 0 for v > 1.22 If x̃ < xn < x(ω∗), then we have Q0(xn,x−n) =

1(xn < x(K1), xn ≤ x[K0]) and Q1(xn,x−n) = 1(xn ≥ x(K1)). If xn > max{x(ω∗), x̃}, then

similarly

Q0(xn,x−n) = 1(xn < x(K1), xn ≤ min{x[K0], ψ
−1
B (v)}),

Q1(xn,x−n) = 1(xn ≥ x(K1)),
(24)

where we let ψ−1B (v) = 1 for v > 1,23 while for x(ω∗) < xn < x̃, the ex post allocation is

20Of course, ties can always be accommodated by augmenting the allocation rule with an arbitrary tie-
breaking rule. However, the exposition is simpler if we preclude these zero probability events.

21By Theorem 2, whenever γ is not uniquely pinned down, without loss of generality we can set γ = 0.
22Note that when xn < x(ω∗) we necessarily have Ψ0(xn, ω

∗) > 0. However, we may have Ψ1(xn, ω
∗) =

v − (1− ψS(xn)) < 0, in which case the designer will never allocate good 1 to agent n.
23When xn > x(ω∗), Ψ1(xn, ω

∗) > 0 always holds but we may have Ψ0(xn, ω
∗) = v − ψB(xn) < 0, in

which case the designer will never allocation good 0 to agent n.

32



Q0(xn,x−n) = 1(xn ≤ x[K0]) and Q1(xn,x−n) = 1(xn > x[K0], xn ≥ x(K1)). If ω∗ = x̂A, the

ex post allocation is given by (23) for xn < x(ω∗) and (24) for xn > x(ω∗).

Finally, for xn ∈ [x(ω∗), x(ω∗)], the ex post allocation Q`(xn,x−n) is given by applying the

expressions forQ` derived in Section 4.2. In particular, for all x satisfying xn ∈ [x(ω∗), x(ω∗)],

x−n[i] < x(ω∗) ≤ x−n[i+1] and x−n(j+1) ≤ x(ω∗) < x−n(j) , we have Q`(xn,x−n) = Q`(i, j, ω
∗; γ∗), where

Q`(i, j, ω
∗; γ∗) is defined in (18) and (19) when K0 + K1 ≤ N and in (21) and (22) when

K0 +K1 > N .

5.1.3 Dominant strategy prices

We are now in a position to derive the dominant strategy prices that implement the optimal

allocation rule and satisfy EIR with equality for the ex post worst-off types.24

Throughout the rest of this section we let s0 := v − x(ω∗) and s1 := v − (1 − x(ω∗)).

These are the prices offered to an agent for goods 0 and 1 under monopoly pricing problems,

that is K0 = K1 = N , and will serve as starting prices in the clock auction implementation

in Section 5.2. For ` ∈ {0, 1}, we let also p`(x−n) denote the price agent n ∈ N has to

pay to obtain good ` with certainty at type profile x−n ∈ [0, 1]N−1 and pL(x−n) denote the

price agent n has to pay when participating in the lottery. In slight abuse of notation, we

let Q`(x−n) denote the probability that agent n ∈ N is allocated good ` ∈ {0, 1} upon

reporting xn ∈ [x(ω∗), x(ω∗)] at type profile x−n ∈ [0, 1]N−1.25 The following lemma then

specifies the prices that provide the DIC-EIR implementation of the allocation rule of the

optimal mechanism and satisfy (EIR) with equality for the ex post worst-off types. For

the sake of notational brevity, we write x and x instead of x(ω∗) and x(ω∗) in the lemma

statement. The lemma also uses our convention that ψ−1S (1 − v) = 0 and ψ−1B (v) = 1 for

v > 1.

Lemma 9. If v ≤ 1
2
, then the dominant strategy prices for agent n are p0(x−n) = max{v −

x−n[K0]
, v − ψ−1S (v)} and p1(x−n) = max{v − (1− x−n(K1)

), v − (1− ψ−1B (1− v))}.
If v > 1

2
and Q`(x−n) ∈ [0, 1) holds for all ` ∈ {0, 1}, then the dominant strategy prices

24A well-known property of DIC is that agent n’s transfer T (xn,x−n) must not vary with its reported
type whenever its allocation remains the same. Consequently, any DIC allocation rule can be implemented
by posting a menu of prices with associated consumption choices for each agent.

25Here, Q`(x−n) = Q`(i, j, ω
∗; γ∗) where i and j are the indices such that x−n[i] < x(ω∗) ≤ x−n[i+1] and

x−n(j+1) ≤ x(ω∗) < x−n(j) and Q`(i, j, ω
∗; γ∗) is defined in (18) and (19) when K0 + K1 ≤ N and in (21) and

(22) when K0 +K1 > N .
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for agent n are

p0(x−n) = max{s0, v − x−n[K0]
} −max{Q0(x−n)−Q1(x−n), 0}(x− x),

p1(x−n) = max{s1, v − (1− x−n(K1)
)} −max{Q1(x−n)−Q0(x−n), 0}(x− x),

pL(x−n) = Q0(x−n)(v − x) +Q1(x−n)(v − (1− x))−max{Q0(x−n), Q1(x−n)}(x− x).

If v > 1
2

and Q`(x−n) = 1 holds for some ` ∈ {0, 1}, then several cases are possible. First,

suppose that K0 + K1 < N . The dominant strategy prices are then p0(x−n) = max{v −
x−n[K0]

, v − ψ−1B (v)} and p1(x−n) = max{v − (1 − x−n(K1)
), v − (1 − ψ−1S (1 − v))}. Second,

suppose that K0 +K1 ≥ N . Then several further subcases are possible. If x−n[K0]
< min{x̃, x}

or if Q0 = 1 and if x−n[K0]
< x̃, then the dominant strategy prices are p0 = v − x−n[K0]

and

p1 = max{v−(1−x−n[K0]
), v−(1−ψ−1S (1−v)}. If x−n(K1)

> max{x, x̃} or if Q1 = 1 and x−n(K1)
> x̃,

then p0(x−n) = v − x−n(K1)
and p1(x−n) = v − (1− x−n(K1)

). Finally, if x−n(K1)
≤ x̃ ≤ x−n[K0]

, then

p0(x−n) = v − x̃ and p1(x−n) = v − (1− x̃), where we set x̃ = x if ω∗ = x̂A and Q1 = 1 and

x̃ = x if ω∗ = x̂A and Q0 = 1.

If the ironing interval is extremal (i.e. if either x(ω∗) = 0 or x(ω∗) = 1 holds), then only

one pure price is required whenever Q`(x−n) ∈ [0, 1) for ` ∈ {0, 1}. The dominant strategy

prices in Lemma 9 still implement the desired allocation as no agent would elect to purchase

good 1 at the price p1 when x(ω∗) = 1 or good 0 at the price p0 when x(ω∗) = 0.

With Lemma 9 at hand, we are now in a position to state the necessary and sufficient

conditions for the expected revenue of the seller to remain the same irrespective of whether

the mechanism has to respect IR or EIR. As we will see, there is no difference if and only if

v ≤ 1
2

or K0 = K1 = N . Otherwise, the expected revenue under IR is strictly larger than

under EIR. This divergence is due to the countervailing incentives inherent to our setting.

It does not arise in standard settings.

Proposition 6. The DIC-EIR implementation of the optimal allocation rule generates strictly

less expected revenue than its IC-IR implementation unless v ≤ 1
2

or K0 = K1 = N . In con-

trast, there is a DIC-IR implementation of the optimal allocation rule that generates the

same expected revenue as the IC-IR implementation.

The first part of Proposition 6 highlights a difference in expected revenue that alternative

notions of individual rationality make in our setting with countervailing incentives. The

proof consists of showing that the interim expected payoff of the type ω∗ under EIR, denoted

uEIR(ω∗), is strictly positive whenever the optimal mechanism involves using a lottery, unless

K0 = K1 = N (i.e. we have a monopoly pricing problem). Adding the constant uEIR(ω∗)

to all the DIC-EIR prices from Lemma 9 yields a DIC-IR implementation that generates
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the same expected revenue as its IC-IR implementation, which proves the second part of

Proposition 6. By construction, that implementation violates EIR. The divergence arises

precisely because of countervailing incentives: If K0 < N and the K0-lowest element of

x−n is less than x(ω∗) or if K1 < N and the K1-highest element is larger than x(ω∗), then

any DIC-EIR implementation gives the interim worst-off type ω∗ a positive payoff. This

cannot occur in mechanism design settings without countervailing incentives because there

any interim worst-off type is then also always ex post worst-off.26

5.2 Two-stage clock auction

Clock auctions have long been recognized as having a variety of advantages over static (di-

rect) allocation mechanisms, including the preservation of winner privacy; see, for example,

Ausubel (2004), Milgrom (2017), Milgrom and Segal (2020) and Loertscher and Marx (2020).

With that in mind, we now construct a clock auction that implements the optimal mechanism

in dominant strategies.

If v ≤ 1
2
, then the optimal mechanism never uses a lottery, and two standard clock

auctions with reserve prices v − x(x̂a) and v − (1 − x(x̂a)) for goods 0 and 1, respectively,

implement the optimal mechanism.27 Similarly, if K0 = K1 = N , then there are no strategic

interactions between the agents and the optimal mechanism can be implemented with the

prices pL(x−n) = v− 1/2, p0(x−n) = v− x(ω∗) and p1(x−n) = v− (1− x(ω∗)). So from here

onward, we assume that v > 1
2

and min{K0, K1} < N .

Consider first the case where the ironing interval is interior, that is, x(ω∗) > 0 and

x(ω∗) < 1. This implies that both goods are sold as pure goods for some type realizations.

The two-stage clock auction posts reserve or—more accurately—starting prices s` for each

good ` ∈ {0, 1}. In the first stage, called the coarse bidding stage, the action set for each

agent is to bid on good 0, bid on good 1 or not to bid on either. Let D`(p
CA
` ) be the

number of bidders who demand good ` at the clock-auction price pCA` . The number of

bidders who choose not to bid on any good is then N − D0(s0) − D1(s1). Agents who

choose not to bid subsequently take no action. Their allocation probabilities are given

by Q0(D0(s0), D1(s1), ω
∗) and Q1(D0(s0), D1(s1), ω

∗) and they pay the relevant dominant

strategy price.

26Manelli and Vincent (2011) and Gershkov et al. (2013) establish the equivalence of IC-IR and DIC-
EIR implementation for mechanism design settings involving independent private values. However, the
environments studied in these papers rule out the possibility of countervailing incentives. Interestingly, in
partnership models à la Cramton et al. (1987), which exhibit countervailing incentives, the result that ex
post efficiency is possible with an appropriate ownership structure also requires individual rationality to hold
at the interim stage. Under EIR, their mechanism would almost surely run a deficit.

27See Milgrom and Segal (2020) for a formal definition of clock auctions.
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Consider now agents who bid on good 0 or good 1 in the first stage. If D`(s`) ≤ K`, then

all agents who bid on good ` ∈ {0, 1} are immediately allocated good `. If D`(s`) = K`,

then they pay s` and if D`(s`) < K`, then they pay the relevant dominant strategy price p`.

At this point, the two-stage clock auction for good ` ends (that is, the second stage is not

activated).

In contrast, if D`(s`) > K`, the second stage, called the ascending auction stage, is

activated for good ` ∈ {0, 1} . In this case, the clock auction price pCA` for good ` increases

continuously. At each point in the auction, the bidders who initially bid on good ` indicate

whether they continue to demand that good or not. Once a bidder stops demanding the

good, the bidder becomes irreversibly inactive and takes no further action. For ` = 0, if

v − pCA0 < ψ−1S (1 − v), then the clock auction stops at the price pCA0 at which demand D0

decreases from K0+1 to K0 and if v−pCA0 ≥ ψ−1S (1−v), then it continues to the price p
CA
0 at

which demand decreases from K0 to K0−1. Analogously, for ` = 1, if v−(1−pCA1 ) > ψ−1B (v),

then the clock auction stops at the price pCA1 at which demand D1 decreases from K1 + 1

to K1 and if v − (1 − pCA1 ) ≤ ψ−1B (v), then it continues to the price p
CA
1 at which demand

decreases from K1 to K1 − 1. All K` agents who are active at the price pCA` are allocated

good ` and pay pCA` . All the other agents who initially bid on good ` ∈ {0, 1} (and became

inactive by the time the price reached pCA` ) are allocated no good and make no payments

if the clock auction stopped at the price pCA` . Otherwise, they are allocated good −`, for

which they pay 2v − 1− pCA` .28

Similar to the case of “no bid information” in Ausubel (2004), the only information

available to bidders in the clock auction phase is whether the auction price is increasing or

has stopped increasing (or always stayed at s`). We say that agent n bids sincerely if: for

v−xn > s0, n bids on good 0 and then becomes inactive at pCA0 = v−xn; for v−(1−xn) > s1,

n bids on good 1 and then becomes inactive at pCA1 = v − (1− xn); and for v − xn ≤ s0 and

v − (1− xn) ≤ s1, n does not bid on good 0 or good 1.

The two-stage clock auction for cases involving an extremal ironing interval with either

x(ω∗) = 0 or x(ω∗) = 1 is encompassed as a special case of the clock auction we just described

since the starting prices for goods 1 and 0 simply become s1 = v and s0 = v, respectively.

In summary, we have the following theorem.

Theorem 3. The two-stage clock auction makes sincere bidding a weakly dominant strategy

for every agent and the equilibrium in weakly dominant strategies implements the allocation

rule of the optimal mechanism. If every agent pays an upfront fee of uEIR(ω∗) to participate,

28Note that if v − x0 = p
CA
0 , then v − (1 − x0) = 2v − 1 − p

CA
0 and if v − (1 − x1) = p

CA
1 , then

v − x1 = 2v − 1− pCA
1 .
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then the two-stage clock auction implements the optimal mechanism in weakly dominant

strategies subject to IR.

The two-stage clock auction fails to preserve the privacy of the winners whenever the

ascending auction phase ends at a price p
CA
` . This always occurs if v ≥ 1 + max

{
1

f(0)
, 1
f(1)

}
and if good ` is over-demanded at s`, as this implies that ψ−1S (1 − v) = 0 and ψ−1B (v) = 1.

Eliciting the marginal winner’s location is then necessary to determine the dominant strategy

price for all the agents who obtain the other good. Yet, there is a sense in which the two-stage

clock auction maximizes the privacy of all the agents, subject to DIC and implementing the

allocation rule of the optimal mechanism. First, agents with types inside the ironing interval

never reveal their types. Second, if D`(s`) ≤ K`, then the types of agents who bid on good `

are not revealed either. Only if one of the two pure goods is over-demanded will the privacy

of some agents be violated, but this violation is necessary to obtain the dominant strategy

prices. Finally, notice that in the first stage of the two-stage clock auction, bidders only

submit coarse or simple bids (“good 0”, “good 1”, “indifferent”). “Finer” bidding via an

ascending auction is only required if one of the pure goods is over-demanded in the coarse

bidding stage.

6 Conclusions

We derive the optimal selling mechanism for a multi-product seller who has goods at each

end of the Hotelling line for sale, and faces buyers with linear transportation costs who are

privately informed about their locations, which are independently and identically distributed.

Unless the buyers’ gross valuation is so small that it is efficient to sell the goods via two

independent auctions, the optimal selling mechanism always involves lotteries and random

allocation. An implication of this is that the optimal selling mechanism is always ex post

inefficient, even if all buyers are served.

While the paper focuses on revenue maximization, one can show that lotteries remain

part of the optimal selling mechanism for any designer whose objective consists of a non-

trivial convex combination of revenue and social surplus. The reason underlying this robust

optimality of lotteries is that they increase the marginal revenue that can be extracted from

all buyers. Since the designer can always select a small interval over which randomization

occurs and include the midpoint of the Hotelling line (where consuming either good is effi-

cient) in this interval, the loss in social surplus from the inefficient random allocation remains

second order even when the weight on revenue is small.29

29See Online Appendix B for background and details. It might also appear that lotteries are an artefact of
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The paper offers many avenues for further research. Natural yet non-trivial generaliza-

tions include allowing for heterogeneity in gross valuations across the two locations (thereby

introducing vertical differentiation) and across agents, as well as heterogeneity in the agents’

type distributions. The analysis could also be generalized by allowing the designer to have

a network of goods for sale, with goods being represented as nodes and buyers being dis-

tributed along edges of the network. Allowing the buyers to have demand for more than one

good would also permit an analysis of optimal bundling. Another aspect that could be ex-

plored in future work relates to the observation that our setup gives rise to merger synergies

without imposing contractual restrictions or introducing increasing returns to scale.30 Fi-

nally, building on the clock auction implementation, one could investigate when there exists

an asymptotically optimal prior-free clock auction.31
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A Proofs of main results

A.1 Proof of Theorem 1

Proof. Suppose that there exists a saddle point (Q∗, ω∗) satisfying (6) and (7). First, we

show that Q∗ satisfies (8) and solves the designer’s revenue-maximization problem. To that

end, for all Q ∈ Q we have

min
x̂∈[0,1]

R̃(Q∗, x̂) = R̃(Q∗, ω∗) ≥ R̃(Q, ω∗) ≥ min
x̂∈[0,1]

R̃(Q, x̂), (25)

where the first equality follows from (7) and the second inequality from (6). Thus, Q∗ satisfies

(8) as required. Second, we show that if Q′ satisfies (8) then (Q′, ω∗) is a saddle point. Since

Q′ satisfies (8) we have minx̂∈[0,1] R̃(Q′, x̂) ≥ minx̂∈[0,1] R̃(Q∗, x̂), while setting Q = Q′ in

(25) yields minx̂∈[0,1] R̃(Q∗, x̂) = R̃(Q∗, ω∗) ≥ R̃(Q′, ω∗) ≥ minx̂∈[0,1] R̃(Q′, x̂). Combining

these, we have R̃(Q′, ω∗) = minx̂∈[0,1] R̃(Q′, x̂), which implies that ω∗ ∈ arg min
x̂∈[0,1]

R̃(Q′, x̂).

Combining this with (8) we also have Q′ ∈ arg max
Q∈Q

R̃(Q, ω∗), and (Q′, ω∗) is thus a saddle

point as required.

It only remains to show that a saddle point exists. Since Q is compact in the product

topology32, R̃(Q, x̂) is linear in Q for all x̂ ∈ [0, 1] and R̃(Q, x̂) is concave in x̂ for all

Q ∈ Q33, by Sion’s minimax theorem a solution Q∗ to (8) exists and we have

max
Q∈Q

min
x̂∈[0,1]

R̃(Q, x̂) = min
x̂∈[0,1]

max
Q∈Q

R̃(Q, x̂) = min
x̂∈[0,1]

R̃(Q∗, x̂). (26)

Suppose every ω ∈ arg minx̂∈[0,1] R̃(Q∗, x̂) is such that (Q∗, ω) is not a saddle point (i.e. does

not satisfy (6)). This then implies that

max
Q∈Q

R̃(Q, ω) > R̃(Q∗, ω)

holds for all ω ∈ arg minx̂∈[0,1] R̃(Q∗, x̂), which contradicts (26). Consequently, there exists

ω∗ ∈ minx̂∈[0,1] R̃(Q∗, x̂) such that (Q∗, ω∗) is a saddle point.

32Since ∆({(0, 0), (0, 1), (1, 0)}) is compact in the product topology,
∏

x∈[0,1] ∆({(0, 0), (0, 1), (1, 0)}) is also

compact in the product topology by Tychonoff’s theorem. Since Q ⊂
∏

x∈[0,1] ∆({(0, 0), (0, 1), (1, 0)}) and

the feasibility constraints (F) and monotonicity condition (M) are weak constraints that are linear in the
allocation rule Q, it follows that Q is also compact in the product topology.

33Differentiating R̃(Q, x̂) with respect to x̂ using the Leibniz integral rule yields ∂R̃(Q,x̂)
∂x̂ =

[q0(x̂) (v − ψS(x̂)) + q1(x̂) (v − (1− ψS(x̂)))− q0(x̂) (v − ψB(x̂))− q1(x) (v − (1− ψB(x̂)))] f(x̂). Simplify-

ing this expression reveals that ∂R̃(Q,x̂)
∂x̂ = (q0(x̂) − q1(x̂))(ψB(x̂) − ψS(x̂))f(x̂) = q0(x̂) − q1(x̂). Since

all Q ∈ Q are such that q0(x̂)− q1(x̂) is decreasing in x̂, R̃(Q, ·) is concave in x̂ for all Q ∈ Q.
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A.2 Proof of Theorem 2

Proof. Theorem 2 is largely proven in the body of the paper; combining the construction of

the functions q` with Lemma 6, it only remains to prove the uniqueness claims. To that end,

for x̂ ∈ [x̂0, x̂1], it is useful to introduce the correspondence

∆q(x̂) := {q0(x̂; γ)− q1(x̂; γ) : γ ∈ [0, 1]},

since the critical worst-off type ω∗ is then such that 0 ∈ ∆q(ω∗). Combining the comparative

statics from Lemma 5 with continuity and monotonicity of the functions Ψ0 and Ψ1 and the

definitions of the functions q0 and q1 shows that ∆q is an upper hemicontinuous correspon-

dence with a closed graph (see figures 3, 4, 5 and 6 for some examples). Moreover, ∆q is de-

creasing (in the sense of set inclusion) on [x̂0, x̂1]. In fact, ∆q is strictly decreasing on [x̂0, x̂A]

unless K0 = N , in which case ∆q(x̂) = 1 for all x̂ ∈ [x̂0, x̂A), and ∆q is strictly decreasing

on [x̂A, x̂0] unless K1 = N , in which case ∆q(x̂) = −1 for all x̂ ∈ (x̂A, x̂1]. Putting all of this

together shows that there is most one ω∗ ∈ [x̂0, x̂1] satisfying 0 ∈ ∆q(ω∗). Moreover, since

the ex post maximizing allocation rules are uniquely defined for all x̂ ∈ (x̂0, x̂A) ∪ (x̂A, x̂1),

if ω∗ ∈ (x̂0, x̂A) ∪ (x̂A, x̂1) then q0(ω
∗; γ) = q1(ω

∗; γ) holds for all γ ∈ [0, 1]. Otherwise, if

ω∗ ∈ {x̂0, x̂A, x̂1}, then by construction q0(ω
∗; γ) − q1(ω∗; γ) is strictly monotone in γ and,

consequently, there is a unique γ ∈ [0, 1] satisfying q0(ω
∗; γ∗) = q1(ω

∗; γ∗).

A.3 Proof of Theorem 3

Proof. The theorem statement follows immediately from combining the proof of Proposition

6 with the description of the two-stage clock auction provided in Section 5.2.

B Proofs of auxiliary results

B.1 Proof of Lemma 1

Proof. Suppose we have an incentive compatible direct mechanism 〈Q, T 〉. We start by

showing that q1(x) − q0(x) is non-decreasing in x. To see this, notice that the incentive

compatibility constraints for the types x, x̂ ∈ [0, 1] require that q0(x)(v − x) + q1(x)(v −
(1− x))− t(x) ≥ q0(x̂)(v − x) + q1(x̂)(v − (1− x))− t(x̂) and q0(x)(v − x̂) + q1(x)(v − (1−
x̂))− t(x) ≤ q0(x̂)(v − x̂) + q1(x̂)(v − (1− x̂))− t(x̂). Subtracting the latter inequality from

the former inequality then yields (q1(x) − q0(x))(x − x̂) ≥ (q1(x̂) − q0(x̂))(x − x̂). Without

loss of generality we can assume that x > x̂. The last inequality then holds if and only if
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q1(x) − q0(x) ≥ q1(x̂) − q0(x̂). Since x, x̂ ∈ [0, 1] were arbitrarily chosen, this shows that

incentive compatible also implies q1(x)− q0(x) is non-decreasing in x.

Incentive compatibility also implies that U(x) = maxx∈[0,1]{q0(x̂)(v − x) + q1(x̂)(v − 1 +

x)− t(x̂)}. Applying the envelope theorem we then have that U(x) is differentiable almost

everywhere and at any point x ∈ [0, 1] such that U(x) is differentiable its derivative U ′(x)

satisfies U ′(x) = q1(x) − q0(x). Since q1(x) − q0(x) is non-decreasing in x, this also implies

that U is a convex function. Moreover, for any x, x̂ ∈ [0, 1] we have U(x) = U(x̂)+
∫ x
x̂

(q1(y)−
q0(y)) dy. Combining this last equation with U(x) = q0(x)(v− x) + q1(x)(v− (1− x))− t(x)

and solving for t(x) shows that, for any x, x̂ ∈ [0, 1],

t(x) = q0(x)(v − x) + q1(x)(v − (1− x))− U(x̂)−
∫ x

x̂

(q1(y)− q0(y)) dy. (27)

Conversely, if we arbitrarily choose a critical type x̂ ∈ [0, 1] and a sufficiently high value

for U(x̂) (so that individual rationality is satisfied for all types), then using (27) we can

construct transfers that implement any allocation rule Q such that q1(x) − q0(x) is non-

decreasing in x. This completes the proof.

B.2 Proof of Proposition 1

Proof. Given an incentive compatible direct mechanism 〈Q, T 〉 and using (2), the ex ante

expected payment made by each buyer to the seller is given by E[t(x)] =
∫ 1

0
t(x) dF (x).

Using (2) we have, for all x̂ ∈ [0, 1],

E[t(x)] =

∫ 1

0

[q0(x)(v−x)+q1(x)(v−(1−x))] dF (x)−
∫ 1

0

∫ x

x̂

(q1(y)−q0(y)) dy dF (x)−U(x̂).

Applying Fubini’s theorem yields
∫ 1

0

∫ x
x̂

(q1(y) − q0(y)) dy dF (x) =
∫ 1

x̂
(q1(y) − q0(y))(1 −

F (y)) dy −
∫ x̂
0

(q1(y) − q0(y))F (y) dy. Substituting this into our expression for E[t(x)] we

have

E[t(x)] =

∫ x̂

0

[
q0(x)

(
v − x− F (x)

f(x)

)
+ q1(x)

(
v − (1− x) +

F (x)

f(x)

)]
dF (x)

+

∫ 1

x̂

[
q0(x)

(
v − x+

1− F (x)

f(x)

)
+ q1(x)

(
v − (1− x)− 1− F (x)

f(x)

)]
dF (x)− U(x̂).
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Introducing the virtual type functions ψB and ψS as defined in (1), this is equivalent to

E[t(x)] =

∫ x̂

0

[q0(x) (v − ψS(x)) + q1(x) (v − (1− ψS(x)))] dF (x)

+

∫ 1

x̂

[q0(x) (v − ψB(x)) + q1(x) (v − (1− ψB(x)))] dF (x)− U(x̂).

Finally, introducing the virtual type functions Ψ0 and Ψ1 as defined in the statement

of Proposition 1, the ex ante expected payment made by each buyer becomes E[t(x)] =∫ 1

0
[q0(x)Ψ0(x, x̂) + q1(x)Ψ1(x, x̂)] dF (x)−U(x̂). Summing up over each of the buyers finally

yields the expression for R(Q, T ) from the proposition statement.

B.3 Proof of Lemma 2

Proof. As noted in the proof of Lemma 1, under any incentive compatible direct mechanism,

the interim payoff function U is a convex with U ′(x) = q1(x) − q0(x) almost everywhere.

This implies that U(x) ≥ U(ω) holds for any x ∈ [0, 1] and ω ∈ {x ∈ [0, 1] : q1 − q0 =

0}∪ inf{x ∈ [0, 1] : q1(x)− q0(x) > 0}∪ sup{x ∈ [0, 1] : q1(x)− q0(x) < 0}. Consequently, we

have Ω(Q) = {x ∈ [0, 1] : q1 − q0 = 0} ∪ sup{x ∈ [0, 1] : q1(x)− q0(x) > 0} ∪ inf{x ∈ [0, 1] :

q1(x)− q0(x) < 0}; the lemma statement immediately follows.

B.4 Proof of Lemma 3

Proof. Given any ω ∈ Ω(Q) and x̂ ∈ [0, 1] and using (4), we have

R̃(Q, x̂)− U(x̂) = R̃(Q, ω)− U(ω)⇒ R̃(Q, x̂)− R̃(Q, ω) = U(x̂)− U(ω). (28)

By assumption we have U(x̂) ≥ U(ω). If x̂ ∈ Ω(Q), then U(x̂)− U(ω) = 0 and (28) implies

that R̃(Q, x̂) = R̃(Q, ω). If x̂ /∈ Ω(Q), then U(x̂) > U(ω) and (28) then implies that

R̃(Q, x̂) > R̃(Q, ω). Combining these cases then together shows that we have Ω(Q) =

arg minx̂∈[0,1]R̃(Q, x̂) as required.

B.5 Proof of Lemma 4

Proof. Broadly speaking, our proof strategy involves performing an “ironing” procedure on

the interim allocation rules q0(x) and q1(x).

We start by taking the interim allocation rule q1 for location 1 and computing its in-

creasing “ironed” counterpart, which we denote by q1.
34 We then perform a transformation

34Specifically, we introduce a function Q1(x) :=
∫ x

0
q1(y) dF (y), compute its convexification, which we
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where we replace q1 with q1 and q0 with q̃0 := q0 + q1 − q1. By construction we have∫ 1

0
(q1(x)− q1(x)) dF (x) = 0,

∫ 1

0
(q0(x)− q̃1(x)) dF (x) and q1 − q0 = q1 − q̃0.

Next, we take the transformed interim allocation rule q̃0 for location 0 and consider

its decreasing “ironed” counterpart, which we denote by q̂0.
35 We now perform a second

transformation where we replace q̃0 with q̂0 and q1 with q̂1 := q1 + q̂0 − q̃0. By construction

we again have
∫ 1

0
(q1(x)− q̂1(x)) dF (x) = 0,

∫ 1

0
(q0(x)− q̂0(x)) dF (x) = 0 and q1−q0 = q̂1− q̂0.

Moreover, the transformed allocation rule q̂0 is decreasing by construction. We now argue

that the allocation rule q̂1 is increasing. Since q1 is increasing by construction, it suffices to

check this condition for any x′ ∈ [0, 1] such that q̂0(x
′) 6= q̃0(x

′). However, q̂0 is necessarily

constant at such an x′ ∈ [0, 1]. Consequently, if q̂1 was strictly decreasing at such an x′ ∈ [0, 1]

then this would contradict the monotonicity of the original allocation rule (which requires

that q1 − q0 = q̂1 − q̂0 is increasing). Thus, q̂1 is increasing as required.

Summarizing, the transformed allocation rule Q̂ and the original allocation rule Q both

allocate the same expected quantity of each good and satisfy the monotonicity condition,

and the transformed allocation rule additionally satisfies strong monotonicity. We therefore

have Q̂ ∈ QSM as required provided the transformed allocation rule is feasible. That is, we

must check that q̂0(x) ≥ 0, q̂1(x) ≥ 0 and q̂1(x) + q̂0(x) ≤ 1 hold for each type x ∈ [0, 1].

We first address the non-negativity constraints. We start by showing that q̃0(x) ≥ 0

and q1(x) ≥ 0 hold for all x ∈ [0, 1] (that is, the first step of our transformation does not

lead to a violation of the non-negativity constraints). To that end, we only need to consider

types x ∈ [0, 1] such that q1(x) ≥ q1(x). By construction, for any such type there exists

another type x′ ∈ [0, 1] such that x′ > x and q1(x) ≥ q1(x
′). Since q1(x

′) ≥ 0 holds by

assumption this shows that q1(x) ≥ 0. Moreover, by monotonicity we have q1(x
′)− q0(x′) ≥

q1(x) − q0(x). Rearranging this and using q1(x) ≥ q1(x
′) and q0(x

′) ≥ 0 yields q0(x) ≥
q1(x) + q0(x

′)− q1(x′) ≥ q1(x)− q1(x). We therefore have q̃0(x) = q0(x)− (q1(x)− q1(x)) ≥ 0

as required, and q̃0(x) ≥ 0 and q1(x) ≥ 0 hold for all x ∈ [0, 1]. We now show that q̂0(x) ≥ 0

and q̂1(x) ≥ 0 hold for all x ∈ [0, 1] (that is, the second step of our transformation does

not lead to a violation of the non-negativity constraints). To that end, we only need to

consider types x ∈ [0, 1] such that q̃0(x) ≥ q0(x). By construction, for any such type there

exists another type x′ ∈ [0, 1] such that x > x′ and q0(x) ≥ q̃0(x
′). Since q̃0(x

′) ≥ 0

holds by our previous argument, this shows that q0(x) ≥ 0. Moreover, by monotonicity

we have q1(x) − q̃0(x) ≥ q1(x
′) − q̃0(x

′). Rearranging this and using q0(x) ≥ q̃0(x
′) and

q1(x
′) ≥ 0 yields q1(x) ≥ q1(x

′) + q̃0(x)− q̃0(x′) ≥ q̃0(x)− q̂0(x). We therefore have q̂1(x) =

denote by Q1, and then set q1(x) = Q
′
1(x); see also Footnote 7.

35Specifically, we introduce a function Q̃0(x) :=
∫ x

0
q̃0(y) dF (y), compute its concavification, which we

denote by Q̂0, and then set q̂0(x) = Q̂′0(x); see also Footnote 7.
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q1(x
′)− (q̃0(x)− q̂0(x)) ≥ 0 as required and q̂0(x) ≥ 0 and q̂1(x) ≥ 0 hold for all x ∈ [0, 1].

We now address the unit demand constraints. We start by showing that q̃0(x)+q1(x) ≤ 1

holds for all x ∈ [0, 1] (that is, the first transformation cannot result a violation of the unit

demand constraints). To that end, we only need to consider types x ∈ [0, 1] such that

q1(x) − q1(x) > 0. By construction, for any such type there exists another type x′ ∈ [0, 1]

such that x′ < x and q1(x) ≤ q1(x
′). Monotonicity implies that q1(x

′)−q0(x′) ≤ q1(x)−q0(x).

Rearranging this inequality and adding q1(x
′) to both sides then yields

q0(x) + q1(x
′)− q1(x) + q1(x

′) ≤ q0(x
′) + q1(x

′). (29)

Combining (29) with q1(x) ≤ q1(x
′), as well as the fact that q0(x

′) + q1(x
′) ≤ 1 holds

by assumption, we have q0(x) + q1(x) − q1(x) + q1(x) ≤ 1. Finally, noting that q̃0(x) =

q0(x) + q1(x
′) − q1(x), shows that we have q̃0(x) + q1(x) ≤ 1 as required. We now show

that q̂1(x) + q̂0(x) ≤ 1 holds for all x ∈ [0, 1] (that is, the second transformation also cannot

result in such a violation of the unit demand constraints). To that end, we again only need

to consider types x ∈ [0, 1] such that q̂0(x) − q̃0(x) > 0. For any such type there exists

another type x′ ∈ [0, 1] such that x′ > x and q̂0(x) ≤ q̃0(x
′). Monotonicity implies that

q1(x)− q̃0(x) ≤ q1(x
′)− q̃0(x′). Rearranging this inequality and adding q̃0(x

′) to both sides

yields

q1(x) + q̃0(x
′)− q̃0(x) + q̃0(x

′) ≤ q1(x
′) + q̃0(x

′). (30)

Combining (30) with q̂0(x) ≤ q̃0(x
′), as well as the fact that q1(x

′) + q̃0(x
′) ≤ 1 holds by

our previous argument, we have q1(x) + q̂0(x) − q̃0(x) + q̂0(x) ≤ 1. Finally, noting that

q̂1(x) = q1(x) + q̂0(x) − q̃0(x), shows that q̂1(x) + q̂0(x) ≤ 1 holds for all x ∈ [0, 1] and the

transformed allocation rule does not violate the unit demand constraint for any type.

To complete the proof, it only remains to verify the final statement of the lemma. Note

that since we have q1− q0 = q̂1− q̂0, Lemma 2 then immediately implies that Ω(Q) = Ω(Q̂).

If we then take any ω ∈ Ω(Q) and set U(ω) = 0, (ICFOC) immediately implies that the

interim expected payoff of each agent is invariant under the transformation that replaces the

allocation rule Q with the allocation rule Q̂. Moreover, by (2) the change in the payment

made by type x ∈ [0, 1] under this transformation is given by

t̂(x)− t(x) = (q̂0(x)− q0(x))(v − x) + (q̂1(x)− q1(x))(v − 1 + x)

= (q̂0(x)− q0(x))(2v − 1),

where the second inequality follows from the fact that q̂0(x) − q0(x) = q̂1(x) − q1(x) holds
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by construction. The corresponding change in the designer’s revenue is then given by

N

∫ 1

0

(t̂(x)− t(x))dx = (2v − 1)N(q̂0(x)− q0(x))dx = 0

as required.

B.6 Proof of Lemma 5

Proof. Continuity of z0(x̂) and z1(x̂) in x̂ follows immediately from (12) and (13), as well

as the fact that ψS and ψB are continuous functions and F is an absolutely continuous

distribution. That z0(x̂) and z1(x̂) are respectively decreasing and increasing in x̂ follows

directly from (12) and (13) and the fact that ψS and ψB are increasing functions. That x(x̂)

and x(x̂) are continuous in x̂ follows immediately from (14) and (15), and continuity of ψB,

ψS, z0 and z1. That x(x̂) and x(x̂) are increasing in x̂ follows immediately from (14) and

(15), that z0(x̂) and z1(x̂) are respectively decreasing and increasing in x̂ and that ψ−1B and

ψ−1S are increasing functions.

B.7 Proof of Proposition 2

The following proof utilizes a critical type x̂A ∈ (0, 1) that is first introduce in Section 4.2 and

is such that z0(x̂A) = z1(x̂A). As is noted in Footnote 15, such an critical type necessarily

exists and is such that x(x̂A) > 0 and x(x̂A) < 1. By construction, the critical type x̂A

also satisfies x̂A = minx∈[0,1]{max{z0(x̂), z1(x̂)}}. Moreover, setting x̂ = x̂A in (12) and (13),

summing these equations and simplifying reveals that z0(x̂A) = z1(x̂A) = v − 1
2
.

Proof. By Theorem 1, the optimal selling mechanism involves running two independent auc-

tions if and only if there exists x̂ ∈ (0, 1) with x(x̂) > 0 and x(x̂) < 1 satisfying z0(x̂), z1(x̂) ≤
0. Combining this with x̂A = minx∈[0,1]{max{z0(x̂), z1(x̂)}} shows that the optimal mecha-

nism involves running two independent auctions if and only if z0(x̂A) = z1(x̂A) ≤ 0. Finally,

using z0(x̂A) = z1(x̂A) = v − 1
2

shows that the optimal mechanism involves running two

independent auctions if and only if v ≤ 1
2
.

B.8 Proof of Lemma 6

Proof. Lemma 6 is largely proven in the body of the paper, and it only remains to show

that ω∗ /∈ {0, 1}. To that end, setting x̂ = 0 we have Ψ0(x, 0) = v − ψB(x) and Ψ1(x, 0) =

v−(1−ψB(x)) almost everywhere. Since Ψ0(x, 0) is decreasing in x with Ψ0(0, 0) = v+ 1
f(0)

>

Ψ1(0, 0) = v−1− 1
f(0)

and Ψ1(x, 0) is increasing in x with Ψ1(1, 0) = v > Ψ0(1, 0) = v−1− 1
f(0)

,
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the worst-off type ω under the corresponding pointwise maximizing ex post allocation rule

must be such that ω ∈ (0, 1). Consequently, ω 6= 0 and x̂ = 0 does not satisfy the saddle

point condition from Theorem 1. The argument showing that ω∗ 6= 1 is similar.

B.9 Proof of Lemma 7

Proof. From the proof of Proposition 2, we know that whenever v > 1
2
, there is no critical

type x̂ such that z0(x̂), z1(x̂) ≤ 0. It therefore suffices to show that any critical type x̂ with

z`(x̂) > 0 and z−`(x̂) < 0 for some ` ∈ {0, 1} cannot satisfy the saddle point condition from

Theorem 1. The statement of the lemma then follows.

Suppose that x̂ is such that z0(x̂) > 0 and z1(x̂) < 0. Then given a sufficiently small

ε > 0 we have Ψ0(x(x̂), x̂) > Ψ0(x(x̂) + ε, x̂) > 0 and Ψ1(x(x̂), x̂) < Ψ1(x(x̂) + ε, x̂) <

0. Consequently, under the ex post allocation rule Q(·, x̂) that pointwise maximizes the

designer’s ironed virtual surplus function R(·, x̂) (and breaks any ties uniformly at random),

buyers located at x(x̂) and x(x̂) + ε are only ever allocated a unit of the good at location 0.

Moreover, buyers at x(x̂) have higher priority than buyers at x(x̂) + ε for a unit of the good

at location 0 and, consequently, the interim allocation probability and the interim expected

payoff is higher for buyers at location x(x̂) than location x(x̂) + ε under Q(·, x̂). Since

x̂ ∈ [x(x̂), x(x̂)] and all buyers located in the ironing interval must have the same interim

expected payoff, this implies that x̂ is not a worst-off type under Q(·, x̂) and hence we cannot

have a saddle point involving the critical type x̂. The argument for the case where x̂ is such

that z0(x̂) < 0 and z1(x̂) > 0 is analogous.

B.10 Derivation of (18), (19), (20), (21) and (22)

Proof. We begin by considering cases with K0 + K1 ≤ N that involve scarcity. For these

cases, we have weakly fewer goods than agents. Consequently, we can independently com-

pute the pointwise maximizing allocation rules Q0 and Q1 by allocating units of each good

to the agents in a positive assortative fashion (breaking ties that arise in the ironing inter-

val uniformly at random) because (unlike cases where K0 + K1 > N) under scarcity this

procedure cannot result in the designer attempting to allocate two goods to a single agent.

Consider critical types x̂ ∈ (x̂0, x̂1) that produce a unique pointwise maximizing ex post

allocation rule. We then have Q0(i, j, x̂) > 0 provided the state isn’t such that all units of

good 0 are allocated to buyers with x < x(x̂). Consequently, we have Q0(i, j, x̂) > 0 if and

only if i < K0. Moreover, we have Q0(i, j, x̂) = 1 if and only if i+N − i− j < K0 (that is,

if and only if there is a sufficient supply of good 0 to serve all buyers x ≤ x(x̂) with units

from this location). Combining these results, we have Q0(i, j, x̂) = K0−i
N−i−j ∈ (0, 1) if and
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only if i < K0 and j < N −K0. Putting all of this together yields Q0(i, j, x̂) = K0−i
N−i−j1(j <

N −K0, i < K0) + 1(j ≥ N −K0). A similar argument shows that Q1(i, j, x̂) = K1−j
N−i−j1(i <

N − K1, j < K1) + 1(i ≥ N − K1). With these equations at hand, the derivation of the

general expressions for Q0 and Q1 that apply for any x̂ ∈ [x0, x1] is provided in the body of

the paper and culminates in (18) and (19).

We now move on to considering cases with K0 +K1 > N that involve abundance. Since

these cases are such that the designer has more goods than agents, the pointwise maximizing

allocation rules Q0 and Q1 cannot be computed independently. Instead, we can exploit the

fact that Q0(i, j, x̂) + Q1(i, j, x̂) = 1 holds for all feasible states (i, j) and critical types

x̂ ∈ (x̂0, x̂1).

We start by considering critical types such that x̂ ∈ (x̂0, x̂A), which implies that z0(x̂) >

z1(x̂) > 0. In this case the seller strictly prefers to allocate the agents in the ironing interval

a unit at location 0 whenever this is feasible. Since the feasibility constraint for good 0

then uniquely pin down Q0, and—just as we saw for the scarcity case—we have Q0(i, j, x̂) =
K0−i
N−i−j1(i < K0, j < N −K0) + 1(j ≥ N −K0). However, unlike under the case involving

scarcity, we now have Q1(i, j, x̂) = 1−Q0(i, j, x̂). A similar argument shows that for critical

types such that x̂ ∈ (x̂A, x̂1) we have Q1(i, j, x̂) = K1−j
N−i−j1(i < N − K1, j < K1) + 1(i ≥

N − K1) and Q0(i, j, x̂) = 1 − Q1(i, j, x̂) = N−K1−i
N−i−j 1(i < N − K1, j < K1) + 1(j ≥ K1).

Finally, we consider the case where x̂ = x̂A (which implies that z0(x̂) = z1(x̂) > 0) and derive

(20). As we argue in the body of the paper, for this case the set of pointwise maximizing

ex post allocation rules can be constructed by taking convex combinations of the extremal

lottery that allocates units of the good at location 0 to agents in the ironing interval to

wherever possible and the extremal lottery that allocates units of the good at location 1 to

agents in the ironing interval to wherever possible. We let

Q0(i, j, x̂A; 1) = K0−i
N−i−j1(i < K0, j < N −K0) + 1(j ≥ N −K0)

=

0, i ≥ K0

min
{

K0−i
N−i−j , 1

}
, i < K0

and

Q0(i, j, x̂A; 0) = N−K1−i
N−i−j 1(i < N −K1, j < K1) + 1(j ≥ K1)

=

0, i ≥ N −K1

min
{
N−K1−i
N−i−j , 1

}
, i < N −K1

respectively denote the ex post probabilities that buyers in the ironing interval are allocated
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a unit of the good at location 0 under these extremal lotteries. Taking Q0(i, j, x̂A; γ) =

γQ0(i, j, x̂A; 1) + (1 − γ)Q1(i, j, x̂A; 0) then yields (20) as required. Similar to what we saw

for the cases involving scarcity, with all of these expressions at hand, the derivation of the

general expressions for Q0 and Q1 that apply for any x̂ ∈ [x0, x1] is provided in the body of

the paper and culminates in (21) and (22).

B.11 Proof of Proposition 3

Proof. The derivation of q∗ is provided in the body of the paper and the corresponding

transfer rule t∗ can be computed by setting x̂ = x̂A, U(x̂A) = 0 and q = q∗ in (2). Under t∗

all worst-off types x ∈ [x(x̂A), x(x̂)] in the ironing interval pay a lottery price of v − 1
2

that

ensures they receive an interim expected payoff of 0. The price v − ψ−1S
(
1
2

)
paid by buyers

with locations x < x(x̂A) is such that buyers at x = x(x̂A) are indifferent between paying

to receiving a unit at location 0 with certainty and paying to enter the lottery. The price

v−
(
1− ψ−1B

(
1
2

))
paid by buyers with locations x > x(x̂A) is such that buyers at x = x(x̂A)

are indifferent between paying to receiving a unit at location 1 with certainty and paying to

enter the lottery.

B.12 Proof of Lemma 8

Proof. By Lemma 5, x(x̂) and x(x̂) are continuous and increasing in x̂. Moreover, by (14)

and (15) we have F (x(0)) = F (x(0)) = 0 and F (x(1)) = F (x(1)) = 1. The lemma statement

then immediately follows from continuity and monotonicity of F .

B.13 Proof of Proposition 4

In the following proof we augment our Section 4.2 notation by writing q`(x̂, K0, K1; γ) in order

to make explicit the dependence of these interim allocations on the parameters (K0, K1).

Proof. We start by proving the comparative statics for the scarcity region and fix any

(K0, K1) such that K0 + K1 < N . Since v ≥ 1 + max
{

1
f(0)

, 1
f(1)

}
(which implies that

x̂0 = 0 and x̂1 = 1) the pointwise maximizing ex post allocation rules are uniquely defined

for all x̂ ∈ (0, 1) and we can drop any dependence of the associated interim allocation rules

on the index parameter γ.

We start by showing that x̂(K0, K1) < x̂(K0 + 1, K1). Fixing the critical type x̂(K0, K1),

we consider how the allocation rule that pointwise maximizes the designer’s ironed vir-

tual objective function R(·, x̂(K0, K1)) varies as the endowment increases from (K0, K1) to

(K0 + 1, K1). In particular, for any feasible state (i, j) such that i ≥ N −K1 or j ≥ N −K0,
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increasing the supply of good 0 by one unit will not change the deterministic ex post allo-

cation for buyers in the ironing interval.36 However, for any feasible state (i, j) such that

i < N −K1 and j < N −K0, buyers in the ironing interval are rationed with positive proba-

bility because K0 +K1 < N . Consequently, for any feasible state (i, j) such that i < N −K1

and j < N−K0, increasing the supply of good 0 by one unit ensures that the ex post lottery

offered to buyers in the ironing interval includes one additional unit of good 0. Putting all of

this together—and using the fact that q0(x̂(K0, K1), K0, K1) = q1(x̂(K0, K1), K0, K1) holds

by construction—we have q0(x̂(K0, K1), K0 +1, K1) > q1(x̂(K0, K1), K0 +1, K1). Combining

the comparative statics concerning the ironing parameters from Lemma 5 with the conti-

nuity and monotonicity of the functions Ψ0 and Ψ1 and the definitions of the functions q0

and q1 shows that these interim allocations are decreasing and increasing in x̂, respectively.

Consequently, combining q0(x̂(K0, K1), K0 + 1, K1) > q1(x̂(K0, K1), K0 + 1, K1) with the

fact that q0(x̂(K0 + 1, K1), K0 + 1, K1) = q1(x̂(K0 + 1, K1), K0 + 1, K1) also holds by con-

struction, shows that x̂(K0, K1) < x̂(K0 + 1, K1), as required. The argument proving that

x̂(K0, K1) > x̂(K0, K1 + 1) is analogous.

The following figures modify the panels of Figure 7 to include only the information that

has been established up to this point of the proof.
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We now move onto the abundance region. In this region the balanced markets such that

K0 + K1 = N play an important role. So we start by studying these markets, which we

parameterize by (K,N −K), where K ∈ {1, . . . , N − 1}.
We first show that x̂(K,N − K) is strictly increasing in K ∈ {1, . . . , N − 1} and, con-

sequently, there is at most one value of K such that x̂(K,N − K) = x̂A. For the proof of

36Since we have K0 + K1 + 1 ≤ N , buyers in the ironing interval will be allocated a unit of good 0 (1)
before and after the endowment change, regardless of the relative values of the ironing parameters z0(x̂) and
z1(x̂) whenever j ≥ N −K0 (i ≥ N −K1).
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this result only, we restrict attention to the case where N ≥ 3, since this result is vacuous

if N = 2 (and K0 = K1 = 1 is then the only balanced market parameterization). The

desired result then follows immediately from the comparative statics we just derived con-

cerning the scarcity region. In particular, we have x̂(K,N − K) < x̂(K,N − K − 1) and

x̂(K,N−K−1) < x̂(K+1, N−K−1) and combining these comparative statics then shows

that x̂(K,N −K) < x̂(K + 1, N −K − 1) as required.

Next, starting from a balanced market we consider the effect of unilaterally increasing

the supply of one good. Specifically, we show that whenever K ∈ {1, . . . , N −1} is such that

x̂(K,N −K) < x̂A, we have x̂(K,K1) = x̂(K,N −K) for all K1 ∈ {N −K, . . . , N}. Fixing

the critical type x̂(K,N −K), we consider how the allocation rule that pointwise maximizes

the designer’s ironed virtual objective function R(·, x̂(K,N −K)) varies as the endowment

increases from (K,N − K) to (K,K1). Notice that the critical type x̂(K,N − K) is such

that z0(x̂(K,N − K)) > z1(x̂(K,N − K)) and under the endowment (K,N − K) buyers

in the ironing interval are served with probability 1. Consequently, for any feasible state

(i, j) such that i > K0 or j ≥ N − K0, increasing the supply of good 1 does not change

the deterministic ex post allocation for buyers in the ironing interval.37 Moreover, for any

feasible state (i, j) such that i ≤ K0 and j < N −K0, increasing the supply of good 1 has no

effect on the ex post lottery offered to buyers in the ironing interval. While increasing the

supply of good 1 makes it feasible for the seller to include more units of good 1 in the lottery

offered to buyers in the ironing interval, this is not consistent with pointwise maximization

as z0(K,N − K) > z1(K,N − K). Putting all of this together—and using the fact that

q0(x̂(K,N −K), K,N −K) = q1(x̂(K,N −K), K,N −K) holds by construction—we have

q0(x̂(K,N − K), K,K1) = q1(x̂(K,N − K), K,K1).
38 Applying Theorem 2, we then have

x̂(K,K1) = x̂(K,N −K) as required.

We conclude our balanced market analysis by noting that whenever K ∈ {1, . . . , N − 1}
is such that x̂(K,N − K) > x̂A we also have x̂(K0, N − K) = x̂(K,N − K) for all K0 ∈
{K, . . . , N}; the proof is analogous to the argument for the case where x̂(K,N − K) <

x̂A. The figures at the top of the following page update our modification of the panels of

Figure 7 to include the new information concerning the abundance region that has now been

established.

As these figures illustrate, at this point, we are left with a “rectangle” of parameterizations

(K0, K1) in the abundance region that have not already been identified as being such that

x̂(K0, K1) < x̂A or x̂(K0, K1) > x̂A. Letting (KA
0 , K

A
1 ) denote the bottom-left corner of this

37If i > K0 (j ≥ N −K0) all buyers in the ironing interval are allocated a unit of good 1 (0) before and
after the endowment change.

38Here, the pointwise maximizing ex post allocation rules and the induced interim allocation rules are
again uniquely defined so we omit their dependence on the index parameter γ.
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“rectangle”, one of four cases applies:

(i) If there exists K ∈ {1, . . . , N − 1} with K0 = K, K1 = N −K and x̂(K,N −K) = x̂A,

then we have KA
0 = K and KA

1 = N −K.

(ii) If there exists K ∈ {1, . . . , N − 2} with K0 = K, K1 = N −K and x̂A ∈ (x̂(K,N −
K), x̂(K + 1, N −K − 1)), then we have KA

0 = K + 1 and KA
1 = N −K.

(iii) If x̂(1, N − 1) > x̂A, then we have KA
0 = 1 and KA

1 = N .

(iv) If x̂(N − 1, 1) < x̂A, then we have KA
0 = N and KA

1 = 1.

Notice that Panel (a) of Figure 7 provides an example of case (i) and Panel (b) of Figure

7 provides an example of case (ii). An illustration of cases (iii) and (iv) is provided in the

figures at the top of the following page.39

We have the following lemma.

Lemma B.1. The endowment (KA
0 , K

A
1 ) is such that x̂(KA

0 , K
A
1 ) = x̂A.

Proof. For case (i) this holds by construction and the proof for case (iv) is analogous to the

proof for case (iii). So we focus cases (ii) and (iii).

Suppose that case (ii) applies and there exists KA
0 ∈ {2, . . . , N−1} and KA

1 ∈ {2, . . . , N−
1} with KA

0 +KA
1 = N +1 such that x̂A ∈ (x̂(KA

0 −1, KA
1 ), x̂(KA

0 , K
A
1 −1)). In what follows,

we refer to an critical type x̌ as feasible under the endowment (K0, K1) if it is possible

to construct an ex post allocation rule Q(xn,x−n, x̌) that pointwise maximizes the ironed

virtual surplus function R(·, x̌) on the domain xn ∈ [0, x(x̌))∪ (x(x̌), 1] and yields an interim

allocation of q0(xn, x̌) = q1(xn, x̌) = 1
2

for all xn ∈ [x(x̌), x(x̌)]. Intuitively, the proof that

39For a given distribution F , cases (iii) or (iv) can only arise if N is sufficiently small.
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x̂(KA
0 , K

A
1 ) = x̂A then proceeds as follows. First, since x̂(KA

0 − 1, KA
1 ) is a feasible critical

type under the endowment (KA
0 − 1, KA

1 ) and x̂(KA
0 , K

A
1 − 1) is a feasible critical type under

the endowment (KA
0 , K

A
1 −1), any critical type in the range [x̂(KA

0 −1, KA
1 ), x̂(KA

0 , K
A
1 −1)]

must be feasible if we relax the feasibility constraints by taking the join (KA
0 , K

A
1 ) of these

endowments. Consequently, x̂A ∈ [x̂(KA
0 − 1, KA

1 ), x̂(KA
0 , K

A
1 − 1)] is a feasible critical type

under the endowment (KA
0 , K

A
1 ). Moreover, the ex post allocation rule that ensures x̂A is

feasible under the endowment (KA
0 , K

A
1 ) is also consistent with pointwise maximizing the

ironed virtual surplus function R(·, x̂A) subject to the feasibility constraints. Consequently,

x̂A satisfies the saddle point condition and we have x̂(KA
0 , K

A
1 ) = x̂A.

More formally, suppose the seller’s endowment is (KA
0 , K

A
1 ) and take any x̌ ∈ [x̂(KA

0 −
1, KA

1 ), x̂(KA
0 , K

A
1 − 1)]. Consider the ex post allocation rule Q(xn,x−n, x̌; γ) that pointwise

maximizes the ironed virtual surplus function R(·, x̌) for all xn ∈ [0, x(x̌)) ∪ (x(x̌), 1] and

serves all types xn ∈ [x(x̌), x(x̌)] with probability 1, allocating them a unit of the good at

location 0 wherever possible with probability γ, and allocating them a unit of the good at

location 1 wherever possible with probability 1− γ.40 Let q`(x̌; γ) denote the corresponding

interim allocation for buyers in the ironing interval. Since x̂(KA
0 −1, KA

1 ) is feasible under the

endowment (KA
0 −1, KA

1 ) and x̂(KA
0 , K

A
1 −1) is feasible under the endowment (KA

0 , K
A
1 −1),

any critical type x̌ ∈ [x̂(KA
0 − 1, KA

1 ), x̂(KA
0 , K

A
1 − 1)] is feasible under the given endowment

(KA
0 , K

A
1 ). Consequently, for all x̌ ∈ [x̂(KA

0 − 1, KA
1 ), x̂(KA

0 , K
A
1 − 1)], there exists γ ∈ (0, 1)

such that q0(x̌; γ) = q1(x̌; γ) = 1
2
. Moreover, whenever x̌ = x̂A the corresponding ex post

allocation rule is consistent with pointwise maximizing the ironed virtual surplus function

R(·, x̂A) subject to the feasibility constraints. This implies that there exists γ∗ ∈ (0, 1) such

40Notice that whenever γ ∈ (0, 1), this allocation rule is consistent with pointwise maximizing the designer’s
ironed objective function subject to the feasibility constraints if and only if x̌ = x̂A.
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that q0(x̂A; γ∗) = q1(x̂A; γ∗) and by Theorem 2 we have x̂(KA
0 , K

A
1 ) = x̂A as required.

We now suppose case (iii) applies and we have KA
0 = 1 and KA

1 = N with x̂(1, N −
1) > x̂A. Notice that whenever K1 = N , q1(x̂; γ) = 1 must hold for any x̂ > x̂A and,

consequently, we must have x̂(1, N) ≤ x̂A. Assume, seeking a contradiction, that x̂(1, N) <

x̂A. Then leveraging the arguments we just introduced for case (ii), we have that any

critical type x̌ ∈ [x̂(1, N), x̂(1, N − 1)] is feasible under the endowment (1, N). Since x̂A ∈
[x̂(1, N), x̂(1, N − 1)] holds by construction, this implies that the critical type x̂A is feasible

under the endowment (1, N). Moreover, the ex post allocation rule that ensures the feasibility

of x̂A under the endowment (1, N) is also consistent with pointwise maximizing the ironed

virtual type function R(·, x̂A) subject to the feasibility constraints and, consequently, x̂A is a

critical worst-off type under the endowment (1, N). Since the critical worst-off type is unique

by Theorem 2, this contradicts our initial assumption that x̂(1, N) < x̂A. Consequently, we

have x̂(1, N) = x̂(KA
0 , K

A
1 ) = x̂A as required.

As the next lemma shows, the entire “rectangle” of parameterizations (K0, K1) in the

abundance region (where the bottom-left corner of this rectangle is given by (KA
0 , K

A
1 )) that

haven’t been identified as being such that x̂(K0, K1) < x̂A or x̂(K0, K1) > x̂A are in fact

such that x̂(K0, K1) = x̂A.

Lemma B.2. In the abundance region with K0 + K1 ≥ N , x̂(K0, K1) = x̂A if and only if

K0 ≥ KA
0 and K1 ≥ KA

1 .

Proof. We have already shown that for any (K0, K1) in the abundance region that does not

satisfy K0 ≥ KA
0 and K1 ≥ KA

1 , we either have (K0, K1) < x̂A or (K0, K1) > x̂A. So it

only remains to show that x̂(K0, K1) = x̂A holds whenever K0 ≥ KA
0 and K1 ≥ KA

1 . From

Lemma B.1 we know that x̂(KA
0 , K

A
1 ) = x̂A. Utilizing the machinery introduced in the proof

of Lemma B.1, we now show that this in turn implies that x̂(K0, K1) = x̂A holds whenever

K0 ≥ KA
0 and K1 ≥ KA

1 . In particular, since x̂A is a feasible ironing parameter under the

endowment (KA
0 , K

A
1 ), it is necessarily a feasible ironing parameter under the endowment

(K0, K1) with K0 ≥ KA
0 and K1 ≥ KA

1 as increasing the seller’s endowment can only make

the feasibility constraints less tight. Moreover, the ex post allocation rule that ensures the

feasibility of x̂A under the endowment (K0, K1) is also consistent with pointwise maximizing

the ironed virtual type function R(·, x̂A) subject to the feasibility constraints. Thus, x̂A is

a critical worst-off type under the endowment (K0, K1) and we have x̂(K0, K1) = x̂A, which

concludes the proof.

Notice that Lemma B.2 immediately implies that x̂(K0, K1) = x̂(K0 + 1, K1) if K0 ≥ KA
0

and x̂(K0, K1) = x̂(K0, K1 + 1) if K1 ≥ KA
1 .
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The figures below modify the panels of Figure 7 to include the information that has now

been established up to this point. It only remains to show that x̂(K0, K1) < x̂(K0 +1, K1) ≤
x̂A if K0 < KA

0 and x̂(K0, K1) > x̂(K0, K1 + 1) ≥ x̂A if K1 < KA
1 .
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We now conclude the proof by establishing that we have x̂(K0, K1) < x̂(K0 + 1, K1) ≤
x̂A if K0 < KA

0 . The argument showing that we have x̂(K0, K1) > x̂(K0, K1 + 1) ≥ x̂A

whenever K1 < KA
1 is analogous. We have already established that x̂(K0, K1) < x̂A and

x̂(K0 +1, K1) ≤ x̂A holds in the abundance region whenever K0 < KA
0 . So it only remains to

show that x̂(K0, K1) < x̂(K0 + 1, K1). Fixing the critical type x̂(K0, K1) < x̂A, we consider

how the allocation rule that pointwise maximizes the designer’s ironed virtual objective

function R(·, x̂(K0, K1)) varies as the endowment increases from (K0, K1) to (K0 + 1, K1).

Notice that the critical type x̂(K0, K1) is such that z0(x̂(K0, K1)) > z1(x̂(K0, K1)) and

under the endowment (K0, K1) buyers in the ironing interval are served with probability 1.

Consequently, for any feasible state (i, j) such that i > K0 or j ≥ N − K0, increasing the

supply of good 0 by one unit does not change the deterministic ex post allocation for buyers

in the ironing interval. However, for any feasible state (i, j) such that i ≤ K0 and j ≥ N−K0,

increasing the supply of good 0 by one unit ensures that the ex post lottery offered to buyers in

the ironing interval includes one less unit of good 1 and one additional unit of good 0. Putting

all of this together—and using the fact that q0(x̂(K0, K1), K0, K1) = q1(x̂(K0, K1), K0, K1)

holds by construction—we have q0(x̂(K0, K1), K0 + 1, K1) > q1(x̂(K0, K1), K0 + 1, K1). As

we noted earlier in the proof, the functions q0 and q1 are decreasing and increasing in x̂,

respectively. Consequently, taking q0(x̂(K0, K1), K0 + 1, K1) > q1(x̂(K0, K1), K0 + 1, K1)

together with the fact that q0(x̂(K0 + 1, K1), K0 + 1, K1) = q1(x̂(K0 + 1, K1), K0 + 1, K1)

also holds by construction, we have x̂(K0, K1) < x̂(K0 + 1, K1), as required.

This finally concludes the proof.
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For completeness, the figures below modify the panels of Figure 7 to include only the

information that can be inferred from the statement of Proposition 4, contingent on knowing

the point (KA
0 , K

A
1 ) (which can of course be determined by computing the critical worst-

off types for the set of balanced markets (K0, K1) such that K0 + K1 = N). The value

of the critical worst-off type relative to the critical type x̂A cannot be inferred for any

parameterizations in the scarcity region purely on the basis of the information provided in

Proposition 4.
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B.14 Proof of Corollary 1

Proof. In light of the results of Proposition 4, it only remains to show that x̂(K,K) = x̂S for

K ≤ bN
2
c. Since these cases involve scarcity and v ≥ max

{
1

f(0)
, 1
f(1)

}
(which implies that

z0(x̂S) > 0 and z1(x̂S) > 1), we have a unique pointwise maximizing ex post allocation rule.

Consequently, dropping the γ argument, (18) and (19) become

Q0(i, j, x̂S) =


0, i ≥ K

1, j ≥ N −K
N−i
N−i−j , i < K, j < N −K

, Q1(i, j, x̂S) =


0, j ≥ K

1, i ≥ N −K
N−j
N−i−j , j < K, i < N −K

.

Notice that, for all (i, j) ∈ {0, 1, . . . , N − 1}2 such that i+ j ≤ N − 1, we have Q0(i, j, x̂S) =

Q1(j, i, x̂S). Moreover, by the definition of x̂S we also have p(i, j, x̂S) = p(j, i, x̂S). Putting
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all of this together yields

q0(x̂S) =
N−1∑
i=0

N−1−j∑
j=0

p(i, j, x̂S)Q0(i, j, x̂S) =
N−1∑
i=0

N−1−j∑
j=0

p(j, i, x̂S)Q1(j, i, x̂S) = q1(x̂S)

and by Theorem 2, we then have ω∗ = x̂S as required.

B.15 Proof of Corollary 2

Proof. See proof of Lemma B.1 in the proof of Proposition 4.

B.16 Proof of Proposition 5

Proof. We start by proving the first statement of Proposition 5 and suppose K0 and K1

vary with N in such a way that K0(N)
N
→ 0 and K1(N)

N
→ 1 as N →∞. Then in the limit as

N →∞, the seller faces the problem of Myerson (1981) at location 1 and the optimal selling

mechanism reduces to running a single optimal auction at location 1. Consequently, since

the worst-off type under the mechanism is located at 0, we have limN→∞ ω
∗(K0, K1, v) = 0.

The proof of the second statement of Proposition 5 is analogous. We conclude the proof by

moving onto the final statement of Proposition 5 and suppose that K0 and K1 vary with

N in such a way that K0(N)
N
→ µ0 and K1(N)

N
→ µ1 and let x̂ = limN→∞ ω

∗(K0, K1, v). If

µ0 ≤ F (x(x̂)) and µ1 ≤ 1− F (x(x̂)), then in the limit as N →∞, no buyers in the ironing

interval [x(x̂), x(x̂)] are served. Consequently, the optimal selling mechanism converges to

running two independent auctions as N →∞.

B.17 Proof of Lemma 9

For the sake of notational brevity, we drop the dependence of prices and allocations on x−n

throughout this proof.

Proof. For the case where the optimal mechanism consists of two independent optimal auc-

tions, i.e. for v ≤ 1
2
, the dominant strategy prices are familiar from generalized second-price

auctions (with multi-unit supply but single-unit demands), in which case the optimal reserve

prices are v−ψ−1S (v) for good 0 and v− (1−ψ−1B (1− v)) for good 1. So we are left to derive

the dominant strategy prices for v > 1
2
.

We begin with the case where v > 1
2

and Q` ∈ [0, 1) for all ` ∈ {0, 1}. We first derive the

lottery price pL. We proceed by determining the type for which EIR binds, which pins down

the price for the worst-off type (i.e. the lottery price). DIC then pins down the two other
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prices (i.e. the two pure good prices). The utility from the lottery, excluding payments, as

a function of xn is Q0(v − xn) +Q1(v − (1− xn)), which is decreasing in xn if Q0 ≥ Q1 and

strictly increasing in xn if Q1 > Q0. Consequently, if Q0 ≥ Q1, then x is ex post worst off and

obtains a utility of Q0(v− x) +Q1(v− (1− x)), which is also the lottery price pL. Similarly,

if Q0 < Q1, then x is ex post worst off and obtains a utility Q0(v − x) + Q1(v − (1 − x)),

which is also the lottery price pL. Combining these cases then yields the expression for pL

from the lemma, as required.

Next, we derive the pure prices p` when Q` ∈ [0, 1) holds for all ` ∈ {0, 1}. We start

with good 0. Notice that if Q0 = 0, then we simply have p0 = v − x−n[K0]
, so we suppose

that Q0 ∈ (0, 1). For this case, if agent n reports any type xn < x, then n will obtain a

unit of good 0 with certainty. Consequently, DIC requires that when agent n’s type is x,

agent n is indifferent between reporting x and any type arbitrarily close to but less than

x. Therefore, if x is ex post worst-off, then p0 = s0 must hold. If x is ex post worst-off,

then v − x − p0 = (Q0 − Q1)(x − x) must hold, where the right-hand side is the utility

of the type x minus the lottery price pL = Q0(v − x) + Q1(v − (1 − x)). Simplifying, if

x is ex post worst-off, then p0 = s0 − (Q0 − Q1)(x − x) must hold. We now move onto

good 1. Notice that if Q1 = 0, then we simply have p1 = v − (1 − x−n(K1)
), so we suppose

that Q1 ∈ (0, 1). For this case, if agent n reports any type xn > x, then n will obtain a

unit of good 1 with certainty. Consequently, DIC requires that when agent n’s type is x,

agent n is indifferent between reporting x and any type arbitrarily close to but above x.

Consequently, if x is ex post worst-off, then p1 = s1 must hold. If x is ex post worst-off, then

v − (1 − x) − p1 = (Q0 − Q1)(x − x) must hold, where the right-hand side is the utility of

the type x minus the lottery price pL = Q0(v − x) +Q1(v − (1− x)). Simplifying, if x is ex

post worst-off, then p1 = s1− (Q1−Q0)(x−x) must hold. Combining all of these cases (and

noting that if Q0 ∈ (0, 1), then s0 > v − x−n[K0]
and if Q1 ∈ (0, 1), then s1 > v − (1− x−n(K1)

))

yields the expressions for p0 and p1 from the lemma, as required.

We are now left to consider the case where v > 1
2

and Q` = 1 holds for some ` ∈ {0, 1}.
First, assume that K0+K1 < N . If Q1 = 1, which implies that x−n(K1)

< x, then p0 = v−x−n[K0]

and p1 = max{v − (1 − x−n(K1)
), v − (1 − ψ−1S (1 − v))} because xn must be larger than both

x−n(K1)
and ψ−1S (1− v) for n to obtain a unit of good 1. Conversely, if Q0 = 1, which implies

that x−n[K0]
> x, then p0 = max{v − x−n[K0]

, v − ψ−1B (v)} and p1 = v − (1 − x−n(K1)
) because xn

must be less than both x−n[K0]
and ψ−1B (v) for n to obtain a unit of good 0.

Second, suppose that K0 + K1 ≥ N , which implies that x−n(K1)
≤ x−n[K0]

. We now need to

carefully distinguish for which locations x ∈ [0, x) and x ∈ (x, 1] the designer prioritizes the

good at location 0 and the good at location 1 because units of both goods may be available.

We begin with the case Q1 = 1. Suppose that ω∗ < x̂A (in which case we have Ψ0(x, ω
∗) >
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Ψ1(x, ω
∗) for all x < x and x̃ > x) or ω∗ = x̂A and γ∗ > 0. Here, Q1 = 1 implies that

x−n(K1)
≤ x−n[K0]

< x because the designer would allocate units of the good 0 to agents in the

ironing interval with positive probability if any were available. The dominant strategy prices

are p0 = v − x−n[K0]
and p1 = max{v − (1 − x−n[K0]

), v − (1 − ψ−1S (1 − v)}. Next, suppose that

ω∗ > x̂A or ω∗ = x̂A and γ∗ = 0. For these cases we have Ψ1(x, ω
∗) ≥ Ψ0(x, ω

∗) for all

x ∈ [x, x] and x̃ ≤ x, where we set x̃ = x if ω∗ = x̂A and γ∗ = 0. Here, while Q1 = 1 implies

that x−n(K1)
< x, it does not necessarily imply that x−n[K0]

< x. Three relevant subcases can

occur: (i) x̃ < x−n(K1)
≤ x−n[K0]

; (ii) x−n(K1)
≤ x̃ ≤ x−n[K0]

; or (iii) x−n(K1)
≤ x−n[K0]

< x̃. In subcase (i)

the dominant strategy prices are p0 = v− x−n(K1)
and p1 = v− (1− x−n(K1)

) and in subcase (iii)

they are p0 = v−x−n[K0]
and p1 = max{v− (1−x−n[K0]

), v− (1−ψ−1S (1− v)}, which is the same

as the case with ω∗ < x̂A or ω∗ = x̂A and γ∗ > 0. For subcase (ii) the dominant strategy

prices are p0 = v − x̃ and p1 = v − (1− x̃).

To wrap up, we need to consider the case Q0 = 1, which mirrors the Q1 = 1 case. Suppose

that ω∗ > x̂A (in which case we have Ψ1(x, ω
∗) > Ψ0(x, ω

∗) for all x > x and x̃ < x) or

ω∗ = x̂A and γ∗ < 1. Here, Q0 = 1 implies that x < x−n(K1)
≤ x−n[K0]

because the designer

would allocate units of good 1 to agents in the ironing interval with positive probability

if any were available. The dominant strategy prices are p0 = max{v − x−n(K1)
, v − ψ−1B (v)}

and p1 = v − (1 − x−n(K1)
). Next, suppose that ω∗ < x̂A or ω∗ = x̂A and γ∗ = 1. For these

cases we have Ψ0(x, ω
∗) ≥ Ψ1(x, ω

∗) for all x ∈ [x, x] and x̃ ≥ x, where we set x̃ = x if

ω∗ = x̂A and γ∗ = 1. Here, while Q0 = 1 implies that x−n[K0]
> x, it does not necessarily

imply that x−n(K1)
> x. Three relevant subcases can occur: (i) x̃ < x−n(K1)

≤ x−n[K0]
; (ii)

x−n(K1)
≤ x̃ ≤ x−n[K0]

; or (iii) x−n(K1)
≤ x−n[K0]

< x̃. In subcase (i) the dominant strategy prices

are p0 = max{v − x−n(K1)
, v − ψ−1B (v)} and p1 = v − (1 − x−n(K1)

)—which is the same as the

case with ω∗ > x̂A or ω∗ = x̂A and γ∗ < 1—and in subcase (iii) they are p0 = v − x−n[K0]

and p1 = v − (1 − x−n[K0]
). For subcase (ii) the dominant strategy prices are p0 = v − x̃ and

p1 = v − (1− x̃).

Putting all of this together yields the prices stated in the lemma, as required.

B.18 Proof of Proposition 6

Proof. The second statement is proven in the body of the paper following the proposition

itself, so we confine attention to the first statement. By (EIR), we have U(xn,x−n) ≥ 0 for all

xn ∈ [0, 1] and all x−n ∈ [0, 1]N−1, including for xn = ω∗. Taking expectations, the interim

expected payoff under EIR, denoted uEIR(ω∗) := Ex−n [U(ω∗,x−n)], is thus non-negative,

meaning that EIR (unsurprisingly) implies IR. To prove the result, we need to show that

if the optimal mechanism involves a lottery and K0 < N or K1 < N , then uEIR(ω∗) > 0

59



(by the payoff equivalence theorem this then proves the result for the case where v > 1
2

two

independent auctions are not optimal). To see that this holds, observe that U(ω∗,x−n) > 0

holds for a set of type profiles x−n with positive measure. Indeed, we have U(ω∗,x−n) > 0

whenever either the K0-lowest element of x−n is smaller than x(ω∗) or its K1-highest element

is larger than x(ω∗). Thus, uEIR(ω∗) > 0. When two independent auctions are optimal,

then uEIR(ω∗) = 0, implying that there is no difference in expected revenue. Similarly, in

a monopoly pricing problem with K0 = K1 = N , an agent’s ex post allocation and DIC

payment is independent of the other agents’ reports, implying that uEIR(ω∗) = 0 and that

there is no difference in expected revenue.

B Robustness of lotteries

In this appendix, we show that lotteries remain part of the optimal mechanism if the designer

maximizes a convex combination of revenue and social surplus, if goods are optimally placed

rather than exogenously placed at 0 and 1 and if transportation costs are not linear. For

simplicity, all extensions assume that v ≥ 1 + max
{

1
f(0)

, 1
f(1)

}
and K0 + K1 ≥ N so that

we have full market coverage under the optimal selling mechanism. The final two extensions

further assume that N = K0 = K1 = 1 and F (x) = x.

Preliminaries: Full market coverage. To simplify the analysis, we assume that v ≥
1+max

{
1

f(0)
, 1
f(1)

}
and K0+K1 ≥ N so that we have full market coverage under the optimal

selling mechanism. (For the setting with quadratic transportation costs, we will assume v >

3.) Let q(x) := q0(x) and q1(x) = 1− q(x) (and Q(x) = Q0(x) and Q1(x) = 1−Q(x)). The

monotonicity constraint implied by incentive compatibility then reduces to the requirement

that q be decreasing, and expected revenue then becomes

R(Q, T ) = N

[∫ 1

0

q(x)Ψ(x, x̂) dF (x) + x̂+ v − 1− U(x̂)

]
, (31)

where x̂ ∈ [0, 1] is an arbitrarily chosen critical type and the virtual type function Ψ(x, x̂) :=

ψ0(x, x̂) − ψ1(x, x̂) = (1 − 2ψS(x))1(x ≤ x̂) + (1 − 2ψB(x))1(x > x̂) captures net revenue

gain from allocating an agent a unit of good 0 rather than a unit of good 1. Accordingly,
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the ironed virtual type function associated with Ψ is given by

olΨ(x; x̂) =


1− 2ψS(x), x ∈ [0, x(x̂))

z, x ∈ [x(x̂), x(x̂)]

1− 2ψB(x), x ∈ (x(x̂), 1]

.

Ramsey objective. We now provide a sketch of the arguments for why lotteries remain

part of the optimal mechanism for a designer who maximizes a weighted sum of revenue

and social surplus, provided the weight on revenue is greater than 0. To that end, under

full market coverage expected social surplus SS(Q, T ) under any direct incentive compatible

mechanism (Q, T ) is given by SS(Q, T ) = N
∫ 1

0
q(x)(v−x) + (1− q(x))(v− (1−x))dF (x) =

N
(
v − 1 + E[x] +

∫ 1

0
q(x)(1− 2x)dF (x)

)
. Expected revenue R(Q, T ) is computed in (31).

For α ∈ [0, 1], the designer’s problem is to then maximize over (Q, T ) the Ramsey objective

Wα(Q, T ) := αR(Q, T ) + (1− α)SS(Q, T ).

Letting ψαS(x) := x + αF (x)
f(x)

, ψαB(x) := x − α 1−F (x)
f(x)

and Ψα(x, x̂) := (1 − 2ψαS(x))1(x ≤
x̂) + (1− 2ψαB(x))1(x > x̂), we have

Wα(Q, T ) = N

(
v − 1 + (1− α)E[x] + α(x̂− U(x̂)) +

∫ 1

0

q(x)Ψα(x, x̂)dF (x)

)
.

All the preceding analysis then carries over to this generalization, with Ψ(x, x̂) replaced by

Ψα(x, x̂). Observe in particular that for any α > 0, Ψα(x, x̂) increases at x = x̂, implying

that there is a need for ironing for any α > 0. Notice also that ψαS(x) increases in α and

ψαB(x) decreases in α and, consequently, 1 − 2ψαS(x) decreases and 1 − 2ψαB(x) increases in

α. This in turn implies that, as α decreases, the ironing interval [xα(x̂), xα(x̂)] shrinks in a

set inclusion sense. So although the lottery interval shrinks in a set-inclusion sense as the

designer places less weight on revenue, there is still a lottery involving a positive measure of

types under the optimal selling mechanism whenever α > 0.

Optimal placement of the goods. Consider the case with N = K0 = K1 = 1, F (x) = x

and v ≥ 2 and suppose the seller can place one product at location a ∈ [0, 1] and one at

location b ∈ [0, 1]. Without loss, assume b ≥ a. If the seller does not use lotteries, it is

optimal to place the products so as to minimize the buyer’s expected transportation costs

and then to compensate for the reduction in costs by increasing the prices. Thus, the optimal

locations under posted prices are aPP = 1/4 and bPP = 3/4 and the optimal prices for the
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two products are v − 1/4, which is also the seller’s profit.

Now assume the seller places the two goods at aL = 3/16 and bL = 13/16. A fifty-fifty

lottery for types x ∈ [aL, bL] generates a utility of v − (bL − aL)/2 = v − 5/16, which is also

the optimal lottery price. To cover the fully market, the seller can charge the price v− 3/16

for each of the two pure goods. This implies that the buyer participates in the lottery for all

x ∈ [3/8, 5/8]. Accordingly, the seller’s expected profit is 3
4

(
v − 3

16

)
+ 1

4

(
v − 5

16

)
= v − 7

32
.

This is larger than its profit with transportation cost minimizing placements of 1/4 and 3/4

and posted prices v − 1/4, and shows that for this case the optimal selling mechanism must

continue to involve a lottery when the locations are optimally placed.

Non-linear transportation costs. We are now going to show that the optimality of

lotteries also doesn’t depend on the assumption that buyers’ transportation costs are linear

by studying a model with quadratic transportation costs. As we will see, the behavior of

this model is, perhaps surprisingly, similar to that with linear transportation costs. The

only essential change is that the allocation rule in the ironing interval is no longer a constant

fifty-fifty lottery. Rather, the probability of obtaining good 1 is increasing in the type.

Specifically, we now assume quadratic transportation costs, uniformly distributed types,

N = 1 = K0 = K1 and that v ≥ 3 (which ensures optimality of full market coverage). To

apply standard results such as single-crossing without relabelling types, we now let q0(x) =

1− q1(x). We then have

V (q1, x) = (1− q1)(v − x2) + q1(v − (1− x)2) = q1(2x− 1) + v − x2.

Incentive compatibility requires that q1(x)(2x−1)+v−x2−t(x) ≥ q1(x̂)(2x−1)+v−x2−t(x̂)

and q1(x)(2x̂ − 1) + v − x̂2 − t(x) ≤ q1(x̂)(2x̂ − 1) + v − x̂2 − t(x̂). Subtracting the latter

inequality from the former yields q1(x)(2x−1)−q1(x)(2x̂−1) ≥ q1(x̂)(2x−1)−q1(x̂)(2x̂−1).

Rearranging, we have 2q1(x)(x− x̂) ≥ 2q1(x̂)(x− x̂). This inequality is satisfied if and only if

q1 is (weakly) increasing. Notice also that V (q1,x)
∂q1∂x

= 2 > 0. Consequently, the Spence-Mirrlees

single crossing property holds and q1 can be implemented using an incentive compatible direct

mechanism if and only if q1 is increasing. Let U(x, x̂) = q1(x̂)(2x − 1) + v − x2 − t(x̂) and

U(x) = U(x, x). Applying the envelope theorem, we have

U(x) = U(x̂) +

∫ x

x̂

(2q1(y)− 2y) dy, (32)

where x̂ ∈ [0, 1] is an arbitrarily chosen critical type. By definition we also have U(x) =

q1(x)(2x − 1) + v − x2 − t(x). Combining this with (32) and solving for t(x) then yields
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t(x) = q1(x)(2x− 1) + v−x2−U(x̂)−
∫ x
x̂

(2q1(y)− 2y) dy. The designer’s revenue under any

direct mechanism 〈q1, t〉 is therefore

R(q1, t) =

∫ 1

0

(
q1(x)(2x− 1) + v − x2 − U(x̂)−

∫ x

x̂

(2q1(y)− 2y) dy

)
dx

=

∫ 1

0

(
q1(x)(2x− 1)− 2

∫ x

x̂

q1(y) dy

)
dx+ v − x̂2 − U(x̂)

Using
∫ 1

0

∫ x
x̂
q1(y) dy dx =

∫ 1

x̂
q1(y)(1 − y) dy −

∫ x̂
0
q1(y)y dy, the designer’s revenue becomes

R(q1, t) =
∫ 1

x̂
(2x− 1− 2(1− x)) q1(x) dx +

∫ x̂
0

(2x − 1 + 2x)q1(x) dx + v − x̂2 − U(x̂) =∫ 1

x̂
(4x − 3)q1(x) dx +

∫ x̂
0

(4x − 1)q1(x) dx + v − x̂2 − U(x̂). Introducing the virtual type

function Ψ(x, x̂) = (4x − 1)1(x < x̂) + (4x − 3)1(x ≥ x̂) we can rewrite this as R(q1, t) =∫ 1

0
Ψ(x, x̂)q1(x) dx+ v − x̂2 − U(x̂). Once again we have a non-regular problem and we iron

the virtual type function. For any x̂ ∈ (0, 1). We have

Ψ(x, x̂) =


4x− 1, x ∈ [0, x(x̂))

z(x̂), x ∈ [x(x̂), x(x̂)]

4x− 3, x ∈ (x(x̂), 1]

,

where x(x̂) = max
{

1−z(x̂)
4

, 0
}

, x(x̂) = min
{

3−z(x̂)
4

, 1
}

and

z(x̂) =


4
√
x− 3, x̂ ∈

[
0, 1

4

)
4x̂− 2, x̂ ∈

[
1
4
, 3
4

]
3− 4

√
1− x̂, x̂ ∈

(
3
4
, 1
] .

The saddle point theorem still applies to this problem, and we can use it to show that

ω∗ = 1
2
. In particular, if we set x̂ < 1

2
so that z(x̂) > 0 and pointwise maximize the

ironed virtual surplus function, then we have a worst-off type of ω = 3
4
6= x̂. So setting

x̂ < 1
2

cannot satisfy the saddle point condition. Similarly, if we set x̂ > 1
2

then we have

z(x̂) < 0 which yields a worst-off type of ω = 1
4
6= x̂ under pointwise maximization of

the designer’s ironed virtual surplus function. So we must have a critical worst-off type

of ω∗ = 1
2
. Setting x̂ = 1

2
in our expression for the ironed virtual type function we have

Ψ
(
x, 1

2

)
= (4x− 1)1(x ∈

[
0, 1

4

)
) + (4x− 3)(x ∈

(
3
4
, 1
]
). Since z

(
1
2

)
= 0, any allocation rule

q (x) = q`(x)1(x ∈
[
1
4
, 3
4

]
) + 1(x ∈

(
3
4
, 1
]
),

with q` :
[
1
4
, 3
4

]
→ [0, 1] increasing pointwise maximizes the designer’s ironed virtual surplus
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function. The pointwise maximizing allocation rule that makes all types in the ironing

interval worst-off satisfies U ′(x) = 2q`(x) − 2x = 0, which yields q`(x) = x. Clearly, this

allocation rule satisfies the saddle point condition since ω∗ = 1
2

is then a worst-off type.

In summary, this analysis shows that the optimality of lotteries does not reply on the

assumption of linear transportation costs and that, moreover, our saddle point and ironing

machinery apply beyond the case of linear transportation costs.
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