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Abstract

We ask whether concentrated market power can emerge in environments designed
for perfect competition. Studying the Ethereum blockchain—a setting with permis-
sionless entry and transparent rules—we show that centralization arises endogenously
when information asymmetry interacts with risk-sharing. Using novel data distinguish-
ing private from public order flow, a 1 percent increase in private information value
causally increases intermediary profit shares by 0.57 percent. A dynamic bargaining
model explains this as an equilibrium response: informed intermediaries gain rents by
threatening to delay trade. Our results demonstrate how informational frictions alone
can generate persistent oligopoly in frictionless digital markets.
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1 Introduction

A central question in economics and finance concerns the determinants of market structure.
While canonical models suggest that environments with low barriers to entry and homo-
geneous products should lead to competitive outcomes, many markets exhibit persistent
concentration. Understanding the sources of market power that generate and sustain such
concentration is a foundational problem in industrial organization and finance. Is market
power primarily the result of explicit frictions—such as barriers to entry, technological stan-
dards, capital requirements, or regulation, or does it arise endogenously from more primitive
economic forces? It has been particularly challenging to answer this question empirically, as
it is difficult to find settings where confounding institutional factors are verifiably absent.

This paper documents the emergence of an endogenous market structure, dominated by
a few intermediaries who earn persistent information rents, in a novel setting that closely
approximates a frictionless ideal: the Ethereum blockchain. This environment provides a
unique real-world laboratory for studying the sources of market power as its core institu-
tional design is defined by three features that, in theory, should foster intense competition:
(1) permissionless entry, allowing any agent to become an intermediary without license;
(2)standardized protocols, which commoditize the process of transaction aggregation; and
(3) a transparent public ledger, where all transactions and resulting payoffs are universally
observable.

Our central hypothesis is that this concentrated market structure is driven by two forces:
information asymmetries and economies of scale. We argue that privileged access to private,
unobservable order flow constitutes a durable source of market power, allowing a small set of
intermediaries—known as block builders—to extract significant rents. Even in a system with
a public ledger, the ability to see and sequence transactions before they are executed creates
a valuable, excludable asset. This private information allows intermediaries to identify and
capture arbitrage opportunities that are invisible to competitors, conferring a decisive ad-
vantage that is self-reinforcing: superior information attracts more order flow, which in turn
solidifies the intermediary’s informational advantage and market position. At the same time,
risk-sharing forces and technological sophistication allow a second set of intermediaries—
known as block proposers—to concentrate Ethereum deposits. This concentration is the
second source of intermediation rents in this market.

We test this hypothesis using a comprehensive dataset of all transactions on the proof-of-
stake Ethereum blockchain, which allows us to precisely distinguish between revenue derived
from public versus private information. To establish causality, we develop an instrumental
variables strategy that exploits two sources of plausibly exogenous variation in the value of
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private information: major crypto-market crises and hacks of specific protocols. These events
create sharp, systemic shifts in the demand for intermediation and the composition of order
flow that are uncorrelated with individual intermediaries’ characteristics. Our two-stage
least squares estimates are unambiguous: a 1% increase in the value of a block builder’s
private information increases its profit share by 0.57%. In stark contrast, revenue from
public information—which is contestable by all block builders—is fully competed away and
captured by block proposers.

To formalize the economic mechanism, we develop a dynamic bargaining model that
captures how informed intermediaries can strategically leverage private information over
time to generate market power. In the model, a block builder holding a valuable private
arbitrage opportunity can threaten to withhold it from the assigned block proposer and
wait for a more favorable match in the future. This threat to delay constitutes a valuable
outside option, enabling the builder to extract rents in each bargaining round. The model’s
predictions align with our empirical findings, showing why only private, non-contestable
information can sustain rents for block builders, while public information is fully competed
away.

This paper’s primary contribution is to provide some of the cleanest empirical evidence
to date on the role of information as a fundamental determinant of market structure and
intermediation rents. Studying a setting where most traditional frictions are absent allows us
to isolate an economic force capable of producing a “natural oligopoly.” Our results show that
even in technologically advanced, ostensibly decentralized markets, information asymmetry
can drive significant and durable concentration—shaping financial intermediation.

Our analysis contributes directly to several foundational questions in market microstruc-
ture. The mechanism we identify provides direct evidence on the value of mitigating infor-
mation leakage, a central challenge for informed institutions (Kyle, 1985; Han et al., 2020).
Furthermore, our setting offers a transparent view of market segmentation. The public order
flow is analogous to a ‘lit’ exchange, while private order flow resembles opaque off-exchange
venues such as dark pools or payment-for-order-flow arrangements (Zhu, 2013; Battalio et
al., 2016; Barbon et al., 2019). These environments raise fundamental questions about rent
allocation when informed order flow is separated from public liquidity—questions that are
notoriously difficult to study empirically in fragmented traditional markets.

Our empirical and theoretical analysis of blockchain market structure is increasingly
relevant beyond academia. Blockchain-based markets are being woven into the core infras-
tructure of global finance, drawing the attention of policymakers and major firms. The SEC’s
approval of spot Bitcoin and Ethereum ETFs marked the first wave of institutional adop-
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Figure 1: Institutional Ethereum holdings (in Billions USD) from Q4 2020 to Q4 2024.
The charts show the dramatic increase in institutional investment across different types of
financial entities, with Investment Advisors and Research Firms dominating holdings by the
end of 2024.

tion, followed by tokenized money-market funds from firms such as BlackRock (Figure 1).
In 2025, the Guiding and Establishing National Innovation for U.S. Stablecoins (GENIUS)
Act created the first comprehensive federal framework for stablecoins, prompting traditional
financial institutions to explore issuing their own.1 As the boundary between decentralized
and traditional finance narrows, the concentration dynamics we study matter not only for
theory, but for those designing and regulating the next generation of financial systems.

1.1 The DeFi Intermediation Chain

The decentralized structure of Ethereum allows for numerous competing Decentralized Fi-
nance (DeFi) protocols—including decentralized exchanges, crypto-collateralized stablecoins,
and lending platforms. This multiplicity of protocols creates a constant stream of violations
of the law of one price, together with ensuing arbitrage opportunities. Importantly, Ethereum
allows arbitrageurs who find price discrepancies to obtain a guaranteed non-negative profit
by submitting groups of transactions atomically—either all transactions are executed, or
none of them are. These transactions therefore constitute risk-free arbitrage opportunities.

However, the Ethereum ecosystem also introduces a novel limit to arbitrage in the spirit
of Shleifer and Vishny (1997): arbitrageurs with private information need a way to have
their trades appended to the public blockchain without alerting potential rivals. This ten-

1Hannah Lang, 2025, “Companies plan stablecoins under new law, but experts say hurdles remain,"
Reuters, www.reuters.com (accessed August 18, 2025).
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sion between the public nature of blockchain trades and the private needs of arbitrageurs
shapes the DeFi intermediation chain, giving rise to a multi-layered structure: 1) arbitrageurs
identify mispricing across different DeFi protocols or between centralized and decentralized
exchanges; 2) block builders aggregate transactions into blocks, acting as gatekeepers of
private information and potentially extracting rents in the process; 3) block proposers, se-
lected randomly via the proof-of-stake mechanism, choose one winning block among bids
from multiple builders; and 4) ETH depositors, including individual holders and central-
ized exchanges, participate in this process through delegating their stake to proposers, in
a process we call delegated staking. This introduces an additional layer of intermediation,
mirroring traditional financial structures in a decentralized context.

1.2 Impact of Private Information on Profit Sharing

The level of transparency and granularity in the data allows us to causally identify the
impact of private information on profit sharing between block builders and block proposers.
Figure 2 depicts our main finding. It illustrates that access to valuable private arbitrage
transactions by builders—i.e., those arbitrage transactions that are privately submitted to
them by an arbitrageur— increase their profit share since they are effectively the gatekeeper
for the private arbitrage opportunity. On the other hand, the block revenue that is associated
with public arbitrage opportunities is widely accessible to the proposer through other block
builders. As such, none of the block builders can gain from the publicly available arbitrage
transactions and the proposers capture most of the corresponding revenue.

To address biases from simultaneity and omitted variables, we employ very stringent fixed
effects and introduce two novel instrumental variables: a dummy for major crypto market
crises and a dummy for hacks of exchanges and decentralized protocols. These instruments
are designed to capture variations in both total block revenue and the value of private
information. We identify crises as the FTX bankruptcy (November 8-12, 2022) and the
SVB run (March 9-12, 2023), which led to a large number of blockchain transactions. The
dummy corresponding to crypto hacks is set to 1 on days on which an Ethereum protocol
or exchange is hacked, according to data from DefiLlama. As shown in Section 4, both
crises and hacks affect overall block value and private information value, but to different
degrees. Crises tend to generate more public transactions, while hacks primarily increase
private information value. This differential impact allows these two instrumental variables
to effectively span our set of two explanatory variables.

Using this instrumental variable approach, we show in Section 4 that a 1% increase in
the value of private information leads to 0.57% increase in the builder profit share. After
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Source: Dune Analytics and Mempool Guru Project

Figure 2: Block builder’s profit share as a function of the share of the block’s revenue that is
due private information. There is a strong positive relationship between the two variables.
This figure is generated with binscatter, using 20 bins.

controlling for the value of private information, the effect of larger block revenue on the
builder profit share is negative. This indicates that the builder’s market power is driven
exclusively from the value of their private information, and not from the total value of the
block they produce.

1.3 A Bargaining Model of DeFi Intermediation

We complement our empirical analysis with a dynamic bargaining model to shed light on
how information asymmetries in decentralized finance contribute to the distribution of prof-
its along the DeFi intermediation chain. The core economic mechanism is the interaction
between the source of information asymmetry between block builders and proposers, the
market structure of the block builder segment of the market, and the randomness inherent
in the proof-of-stake technology.

Consider the bargaining process between the block builders and the proposer when adding
each block to the blockchain. Observe that the block builders are always better informed
than the proposer about the content and the value of the block that they built. However,
if the information advantage is common among all block builders, through public arbitrage
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opportunities, the competition among the block builders prevents them from exploiting it,
even if it is very valuable. On the other hand, if the information asymmetry between a block
builder and the proposer stems from transactions that are private to that specific builder,
through private arbitrage opportunities, it constitutes a “private information advantage.”
Unlike a public information advantage, the block builder is able to monetize their private
information advantage through the threat of withholding the information in this period and
selling it next period to the proposer randomly selected by the proof-of-stake mechanism
—who is not necessarily the current proposer.

In order to capture the above intuition, we propose a repeated bargaining model where
the outside option of the agents links the different time periods. This simple economic
mechanism enables us to simultaneously explain both of our main empirical findings. First,
a higher value of private transactions in a block increases the profit share of the block builder.
However, controlling for the value of private transactions, higher block revenue increases the
profit share of the proposer while decreasing that of the block builder.

1.4 Related Literature

There is an extensive literature spanning different aspects of financial intermediation (see
Leland and Pyle (1977), Campbell and Kracaw (1980), Diamond and Dybvig (1983), Dia-
mond (1984), Allen (1990), Allen and Gale (1997), Boot and Thakor (1997), Diamond and
Rajan (2001), as well as Gorton and Winton (2003) and references therein). The prevalence
of intermediation rents in financial markets have been widely documented in the empirical
literature (Green et al., 2007; Di Maggio et al., 2017; Hollifield et al., 2017; Li and Schürhoff,
2018; Farboodi et al., 2025). However, identifying the source of these rents empirically has
proven challenging as the balance sheet of large financial intermediaries is opaque and it is
hard to acquire data about their comparative advantage. We contribute to this literature by
first distinguishing the role of financial intermediaries in blockchain systems, cryptocurrency
and DeFi, which represent the most recent developments in financial technology. Second, we
identify private information as a source of intermediation rents in this market.

The paper also speaks to foundational theories in the industrial organization of finan-
cial markets. Guerrieri et al. (2010) and Guerrieri and Shimer (2014) consider competitive
search models with adverse selection and analyze the impact of private information on bi-
lateral matching outcomes, probability and terms of trade, as well as market liquidity. Our
setting provides a transparent environment to test these predictions, cleanly isolating the
value of private information from other confounding frictions. In this respect, our work also
contributes to the literature on intangible capital as a source of firm value and market power
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(Crouzet et al., 2022; Terry et al., 2022). We show that privileged access to order flow func-
tions as a measurable, excludable intangible asset that generates persistent rents, providing
a specific microfoundation for how such advantages arise and are sustained.

Our paper contributes to a fast-growing literature on blockchain technology. Raskin and
Yermack (2018) provide a preliminary overview of financial systems built on blockchains.
Cong and He (2019), Abadi and Brunnermeier (2018) and Biais et al. (2019) expand on
consensus mechanisms, focusing on proof-of-work. There is a small but growing body of
work that studies the economics of Bitcoin, both theoretically and empirically. Athey et al.
(2016), Cong et al. (2021a), Pagnotta and Buraschi (2018) and Sockin and Xiong (2023)
develop alternative theoretical frameworks to study the decentralized Bitcoin network. Prat
and Walter (2021) provide an estimate of the computing power of Bitcoin network and Cong
et al. (2021b) study the effect of mining pools on energy consumption, which is a significant
input to proof-of-work consensus. Budish (2025) suggests lack of security facing external
attacks as a limit to economic viability of Bitcoin.

A number of papers consider the degree of decentralization in blockchain, focusing on
proof-of-work consensus protocols (Cong et al., 2023; Huberman et al., 2021; Ferreira et al.,
2023; Makarov and Schoar, 2021; Capponi et al., 2025; Cong et al., 2021b; Lehar and Parlour,
2023; Budish, 2018). In addition, some previous work studies staking systems, including the
game-theoretic properties of proof-of-stake consensus mechanisms (Saleh, 2021; Schwarz-
Schilling et al., 2023), the valuation of native tokens such as ETH (Fanti et al., 2021), and
the valuation of non-native tokens that can be staked in DeFi protocols (Cong et al., 2025).
In contrast to these papers, we focus on the emergence of intermediation in a financial
sector built on proof-of-stake technology and study the concentration of this intermediated
market. We emphasize the influence of arbitrage opportunities, as documented in Makarov
and Schoar (2020), on the degree of market concentration, and show that the combination
of proof-of-stake consensus and smart contracts can lead to a high degree of concentration
in the Ethereum crypto intermediation market.

The nature and type of arbitrage opportunities in a proof-of-stake blockchain is at the
core of our analysis. Daian et al. (2020); Gupta et al. (2023); Heimbach et al. (2024) provide
early empirical evidence and classification of MEV and private and public arbitrage oppor-
tunities in a blockchain network. Alternatively, Milionis et al. (2023) theoretically models
the relationship between public and private transactions and market volatility. Capponi et
al. (2024) provide a game-theoretic model of proposer-builder separation. We use a simpli-
fied definition of private transactions, where a transaction is private if it is not broadcast to
the network before it appears on the blockchain, a simple and intuitive definition that can
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be measured precisely in the data, in contrast with heuristic based definitions proposed by
Gupta et al. (2023) and Heimbach et al. (2024). In Section 6, we use their classification to
show the robustness of our empirical findings. Our instrumental variable approach relies on
the observation that crypto crises can be an exogenous shock that creates arbitrage oppor-
tunities (Liu et al., 2023). To the best of our knowledge, we are the first to use these crises
as instrumental variables in empirical analyses of DeFi.

The rest of the paper is organized as follows. Section 2 describes the institutional details
of the DeFi intermediation chain. Section 3 provides details of the block level data from
the Ethereum blockchain that we use for our empirical analysis. Section 4 describes the
instrumental variable approach and presents the main empirical results. Section 5 proposes
a model to provide the economic mechanism that underlies the empirical findings. Section
6 provides a number of robustness exercises. Section 7 concludes.

2 Origins of DeFi Intermediation: The Need for Privacy

The Ethereum blockchain handles two main types of transactions: simple payment transac-
tions and smart contract interactions. Simple transactions transfer ETH or tokens between
addresses. Smart contracts are blockchain-stored programs that execute when users send
transactions to their addresses, triggering predefined functions. For example, users can in-
teract with decentralized exchange contracts to swap tokens or with lending protocols to
deposit collateral. These contracts automatically execute complex financial operations, such
as updating inventories or calculating prices and interest rates, without a central operator.

Risk-free arbitrage. Ethereum’s diverse ecosystem of competing DeFi protocols creates
a large number of violations of the law of one price.2 Since Ethereum allows for transaction
batching, arbitrageurs can submit multiple transactions which are executed atomically—
either all together or not at all—–ensuring a guaranteed non-negative profit for the arbi-
trageur. The unique aspect of blockchain-based arbitrage, particularly in Ethereum’s DeFi
ecosystem, is the ability to execute truly risk-free arbitrage through atomic transactions that
have no execution risk. This feature, combined with the transparency of the blockchain, cre-
ates a novel environment for arbitrage that is not directly paralleled in traditional financial
systems.

The risk-free nature of these arbitrage opportunities makes them very attractive. Yet,
the nature of PoS blockchain technology introduces a novel limit to arbitrage: the possibility

2Most of these violations occur through differences in pricing across exchanges. However, some additional
arbitrages are due to automatic liquidations of collateral at fire sale prices, and its resale at market prices.

9



of front running. The key friction stems from arbitrageurs’ need to keep their transactions
private before they are appended to the blockchain if they want to appropriate the corre-
sponding profits. There are constant opportunities for arbitrageurs to identify mispricings
across different DeFi protocols or between centralized and decentralized exchanges. How-
ever, to capitalize on these opportunities, arbitrageurs require a mechanism to have their
transactions approved without broadcasting them to the entire network, thus avoiding the
risk of being front-run or having their arbitrage opportunity stolen by competitors. 3

This privacy requirement is the limit to arbitrage faced by each individual arbitrageur. It
introduces unique challenges in exploiting arbitrage opportunities on the Ethereum blockchain
and shapes the structure of DeFi intermediation. Moreover, it gives rise to a specific form of
information rent captured by some intermediaries in the process of creating the Ethereum
blockchain. In this section, we focus on the emergence of the DeFi intermediation chain as
a consequence of the need for privacy. Sections 4 and 5 explain the information rents in the
DeFi intermediation chain, both empirically and theoretically.

DeFi intermediation chain. We define the “DeFi intermediation chain” to be the market
structure that underlies the creation and distribution of ETH, the native cryptocurrency of
Ethereum. It consists of four groups of agents who interact with each other through an
intermediation chain. Arbitrageurs form the initial segment of the chain. These are typically
high-frequency trading algorithms or bots that continuously scan for profitable transactions,
including both arbitrage and non-arbitrage opportunities, to be submitted to the Ethereum
blockchain.

The need for privacy by arbitrageurs, as explained above, leads to the rise of block builders
as intermediaries. Arbitrageurs who find an arbitrage can send their transactions directly to a
block builder, who incorporates them into an aggregate block. If these arbitrage transactions
are valuable, arbitrageurs usually pay an additional fee or direct payment to the builder in
order to make sure the builders incorporate their transactions into blocks. The total value
that is generated by adding a block to the blockchain—colloquially known as the block’s
Maximum Extractable Value (MEV)—is the sum of arbitrageur profits, transaction fees
paid to the block builders, and any direct payments sent by arbitrageurs to builders in order
to incentivize them to add their transactions to the block.

The next layer of intermediaries are block proposers, who are selected at random via the
proof-of-stake (PoS) consensus mechanism—with probability proportional to their stake of

3The risk of having a transaction stolen is not only real, but ubiquitous due to the commodification of
AI-driven front-running bots (Robinson and Konstantopoulos, 2020).
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ETH—to select a single block to be appended to the blockchain in a given round.4 Block
builders compete with each other to create the most valuable block they can. They then
submit a cryptographic commitment to the block along with a bid to the block proposer,
who chooses one winning (block, bid) pair without being able to view the block’s contents.
To prevent the proposer from front-running arbitrageurs’ transactions, the encrypted block
is only decrypted and revealed once the proposer has accepted the bid.5

Because block proposers are selected at random with probability proportional to their
stake, proposers who have larger amounts of ETH obtain a much more consistent stream of
revenue than proposers with a very small amount of ETH. This leads to the final layer of
the intermediation chain, where ETH depositors pool their assets together into large staking
pools, and get a share of the profits that these pools obtain from proposing blocks.

Figure 3 illustrates the market structure of the Ethereum blockchain’s production net-
work, highlighting the DeFi intermediation chain. The diagram shows four key participant
groups: arbitrageurs, block builders, proposers, and depositors. Arbitrageurs and depositors
are represented by multiple icons, indicating their larger numbers and diverse nature. Block
builders and proposers have fewer icons, reflecting their more concentrated roles. The arrows
between groups represent the flow of transactions within the DeFi intermediation chain. Im-
portantly, the arrow from Depositors to Proposers reflects that depositors choose proposers
to stake their ETH with, influencing the distribution of staking power.

The solid red arrows indicate the selected paths during the matching process in each time
slot, to build a single block. Furthermore, in each time slot the Proof-of-Stake consensus
mechanism selects the proposer for each single block (dashed red arrow pointing to the red
proposer), who in turn adds a block to the Ethereum blockchain (dashed red arrow pointing
from the proposer to the blockchain).

Delegated Staking Many ETH holders do not participate in the above protocols directly,
but rather through intermediaries such as centralized exchanges or liquid staking smart con-
tracts. A centralized exchange is a company such as Coinbase, Binance, or Kraken, which
takes depositors’ ETH and uses it to participate in the proof-of-stake Ethereum consensus
protocol. By staking their depositors’ ETH, these centralized exchanges earn returns, which

4As a brief note on terminology, we note here that the term block proposer is related to the technical
architecture of the Ethereum blockchain. Once proposers select a block, they propose it to a random small
group of attesters, who verify that all transactions in the block are valid and there is no double spending
in a block. From an economic point of view, the attesters do not receive any revenue related to DeFi
intermediation, and therefore we do not study them in this paper. We also highlight that the case where
a proposer’s selected block is not accepted by the attesters is extremely rare, and the attester mechanism
exists solely to ensure honest behavior by the proposer.

5We provide more details of this procedure in the Appendix.
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Figure 3: Market structure of the DeFi intermediation chain, Ethereum blockchain’s pro-
duction network.

Notes: The figure depicts the proof-of-stake consensus protocol (bottom row), the key participants of the
DeFi intermediation chain: arbitrageurs, block builders, proposers and depositors (middle row),and the
produced Ethereum blockchain (top row). The interactions at each time period t (time slot of 12 second)
are depicted in red. The red arrows among the market participants indicate the selected paths in the DeFi
intermediation chain required to produce each block, while the black signify alternative paths that were not
selected. The dashed red arrow from the consensus protocol to the proposers indicates that at each time t,
the random outcome of the proof-of-stake consensus protocol is a proposer, with the red diamond displaying
the randomly selected proposer. Finally, the dashed red arrow from proposer to the blockchain at the top
represents the block proposal process. The blockchain is the outcome of these repeated interactions.

they then pass on to their customers after taking a spread.6 These intermediaries arise
because they have the technological sophistication to participate in the proof-of-stake pro-
tocol.7 ETH holders who do not have this level of sophistication may still earn returns by
buying ETH from a centralized exchange, and asking the exchange to stake their ETH for
them. As such, proposers are delegated stakers in the DeFi intermediation chain.

Figure 4 shows these delegated stakers’ market shares over time. We can see that the
overall shares do not change significantly, indicating that the relationship between depositors
and their delegated proposers remains stable over time.

6Recently, the SEC has reached a settlement with Kraken to prevent it from acting as such an interme-
diary for American customers.

7In particular, participants need to continuously run a server which listens for transactions, engages
with block builders, proposes valid blocks when called upon to do so, and verifies other proposers’ blocks.
Any deviation from the protocol, due for example to a software bug, a hardware failure or a network
outage, is penalized by debiting ETH from the participants’ account—a process known as slashing. In
equilibrium, sophisticated agents can easily satisfy these requirements, so slashing is extremely rare, with
only 0.04% of participants having been slashed according to CoinTelegraph https://cointelegraph.com/
news/only-0-04-of-ethereum-proposers-have-been-slashed-since-2020-says-core-dev.
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Figure 4: This figure shows how validator shares have evolved over time. The shares are
relatively stable, showing that the overall market structure of delegated staking has not
significantly shifted over time.

Throughout the chain, each node receives a payoff for their service. Arbitrageurs keep a
large amount of their arbitrage profits, but pay transaction fees to the builders. The builders
pay the block proposers to ensure their blocks are added to the blockchain. As such, the
block proposer’s net revenue is equal to the bid of the winning bidder, while the winning
block builder’s net revenue consists of all transaction fees and direct payments to them,
minus the bid that they pay to the block proposer. Finally, block proposers who represent
staking pools pay a large share of their revenues to the individual investors who pooled their
ETH with them.

Even though the Ethereum blockchain is permissionless and there is near free-entry into
intermediation, informational frictions and risk-sharing in DeFi lead to concentration among
intermediaries as demonstrated in Table 1. Of the 108 known builders, 3 capture more than
50% of all the builder revenue and blocks proposed. Similarly, even though there are more
than a hundred thousand block proposers, 5 large staking pools capture more than 50% of
all the proposer revenue and blocks proposed.
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Number of Builders Number of Proposers

108 189,126

Builder Share of Total Revenue Share of Total Blocks

beaverbuild.org 34.25 32.3
Titan Builder 33.41 15.11
rsync-builder.xyz 7.93 16.28

Proposer Share of Total Revenue Share of Total Blocks

Lido 31.14 29.81
Coinbase 11.56 11.59
Binance 4.74 5.01
Kraken 4.68 4.64
Figment 3.32 3.59

Source: Dune Analytics

Table 1: The first panel reports the total number of block builders and proposers. The second
panel shows that the largest 3 block builders account for more than 50% of aggregate builder
revenue, and more than 50% of the number of blocks added to the Ethereum blockchain. The
third panel shows that the largest 5 block proposers account for more than 50% of aggregate
proposer revenue, and more than 50% of the blocks added to the Ethereum blockchain.

3 Data

We use Dune Analytics8 to obtain block-level data, the identity of the builder and proposer,
the MEV revenue for the block, and the revenue split between the builder and the proposer.
We use data from the Secure Decentralized Systems Lab’s Mempool Guru project (Yang et
al., 2024) to keep track of which transactions were broadcast to the network before being
appended to the blockchain, and which were not broadcast to the network. We classify
transactions broadcast to the network as public, and transactions not broadcast as private.

Let Bt denote the block added to the blockchain at time slot t. We consider the block to
be an MEV block if two conditions hold. First, the block builder is different than the block
proposer. Second, the last transaction of the block is issued from the block builder to the
block proposer. In our sample—which spans from the switch to proof-of-stake in September
15, 2022, to September 30, 2024—77.6% of the blocks satisfy both of these conditions, and
are considered MEV blocks.9

8https://www.dune.com
9The total number of blocks in our sample is 5,326,069, and the number of blocks satisfying the MEV
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The key independent variable in our analysis is the value of private transactions in the
block generated at time t. We define private and public transactions as follows.

Definition 1.
Public Transaction A transaction in the block added at time t is public if is broadcast
to the network before time t, and is not a direct payment to the builder who built the block
generated at time t.
Private Transaction A transaction in the block added at time t is private if either it is not
broadcast to the network before time t or it is a direct payment addressed to the builder who
built the block generated at time t.

The key concept behind this definition is that public transactions are non-exclusive: any
builder can collect their value if they are chosen as the block builder at time t. Private
transactions, however, are exclusive: only the builders that know about them, or the builder
whom the payment is addressed to, can collect the value of these transactions.

Let Revt denote the total revenue from block t. Moreover, let ΠB,t and ΠP,t denote the
net profit of the block builder and proposer, respectively. The net profit for the builder,
ΠB,t, consists of the sum of direct payments they receive and priority gas fees,10 minus the
payment to the proposer at the end of the block. The net profit for the proposer, ΠP,t, is
the value of the block’s final transaction. The key dependent variables in our analysis are
the profit shares of the builder and proposer are denoted as θB,t =

ΠB,t

Revt
and θP,t =

ΠP,t

Revt
,

respectively.
Table 2 presents the summary statistics of the key variables. It shows that all profits

are highly skewed to the right, with the majority of blocks generating minimal revenue. On
average, a block generates 0.14 ETH in revenue, more than 85% of which is captured by the
proposer.

There are many blocks where the builder makes negative profits. This behavior is likely
to ensure that the builder’s block is chosen and is adopted as strategy to build market share:
by subsidizing proposers during regular periods, builders aim to dominate the market share
of proposed blocks, attracting arbitrageurs with lucrative arbitrage opportunities when they
arise, thereby securing blocks that yield positive profits.11 Our main analysis considers only
blocks where the builder profit share is greater than −10%, which represent 94.9% of the

conditions is 4,132,184.
10Any Ethereum transaction must pay a base gas fee FeeBase to be included in the block. This fee is

always “burnt” and removed from the system, and is not part of the builder’s revenue. However, if the
transaction is valuable or important, the user who submits the transaction may choose to pay the builder
an excess gas fee FeeExcess, which is part of the builder’s revenue.

11Primarily empirical evidence support the outcome of this strategy. Results are available upon request.
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Mean Std. Dev. Min 5th Median 95th 99th Max Skewness Kurtosis

Revt 0.14 1.49 0.00 0.02 0.05 0.35 1.27 802.79 228.41 83247.25
ΠB,t 0.02 0.66 -0.30 -0.00 0.00 0.03 0.17 791.74 616.15 615521.41
ΠP,t 0.12 1.22 0.00 0.02 0.05 0.32 1.09 691.96 260.66 108839.84
θB,t 0.05 0.12 -0.10 -0.04 0.01 0.29 0.58 1.00 3.23 15.94
θP,t 0.95 0.12 0.00 0.71 0.99 1.04 1.08 1.10 -3.23 15.94
logPrivatet 0.08 0.17 0.00 0.00 0.03 0.27 0.78 6.69 8.82 128.29
logPublict 0.02 0.05 0.00 0.01 0.02 0.06 0.14 5.20 26.73 1295.27
Hack Dummy 0.07 0.25 0.00 0.00 0.00 1.00 1.00 1.00 3.42 12.71
Crisis Dummy 0.01 0.11 0.00 0.00 0.00 0.00 1.00 1.00 8.58 74.63

Observations 3924921

Source: Dune Analytics and Mempool Guru Project

Table 2: Summary Statistics

MEV blocks in our sample.12

4 Information Rents in Ethereum Intermediation Chain

In this section, we estimate how a block’s share of private revenue affects the builder’s profit
share. The simplest specification would be a regression of the form

θB,t = α + β logPrivatet + ϵt.

However, estimating this regression with OLS would introduce biases in three ways. First,
there is an omitted variable bias because there are many characteristics of the block which
can affect θB,t which are not captured in the specification. The most important variable that
is missing from the specification is the other transactions included in the block, Publict.
Second, the specification above does not capture any relationships between builders and
proposers which may lead the builders to treat some proposers more or less favorably.

To address the potential for omitted variable bias and pre-existing relationships between
builders and proposers, we estimate the slightly more complicated regression (1):

θB,t = β logPrivatet + γ logPublict + ψi(t) + ηj(t) + ϕi(t),j(t) + ϵt. (1)

12Section 6 and Appendix C report the results for the full sample and show that they are even stronger
than the restricted sample. We limit ourselves to blocks with small subsidies in the main text to ensure that
the results are not driven by subsidies.
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As Revt = Privatet + Publict, including the Publict allows us to capture the effect of
both private information as well as the total revenue of the block. The fixed effects terms
ψi(t), ηj(t), ϕi(t),j(t) capture relations between the builders and proposers. Because the proposer
shares of ETH staked are relatively stable over time, these fixed effects capture the relative
market power of different proposers.

Finally, there is simultaneity bias because the block builder simultaneously decides their
payment to the proposer (determining θB,t) and the transactions that they want to insert
into the block. That is, the builder has to decide how much of their private information they
want to capitalize in during this block, and how much of that value they want to share with
the proposer.

To address simultaneity, we use an instrumental variables approach with two instruments,
both of which are dummy variables. The first dummy, Hackedt, is equal to 1 if block t is
appended to the blockchain on a day where there is a crypto protocol hack, and 0 otherwise.13

The second dummy, Crisist is equal to 1 if block t is appended to the blockchain during
either the FTX or SVB crises.14 The first-stage specification is given by

logPrivatet = β̂1Hackedt + γ̂1Crisist + ψ̂1,i(t) + η̂1,j(t) + ̂ϕ1,i(t),j(t) + ϵ̂1,t;

logPublict = β̂2Hackedt + γ̂2Crisist + ψ̂2,i(t) + η̂2,j(t) + ̂ϕ2,i(t),j(t) + ϵ̂2,t.

The exclusion restriction for our two instruments — crypto hacks and major market
crises — is that these events influence the builder share exclusively through their impact on
the composition of blocks, particularly the balance between private and public transactions,
rather than through any direct effect on the builder-proposer negotiation process. Further-
more, the instruments are exogenous, since both hacks and crypto crises are unexpected and
not caused by the bargaining process between builders and proposers.

These two instruments span our two explanatory variables, due to the distinct ways in
which hacks and crises affect the DeFi ecosystem. Crypto crises, such as the FTX collapse
or the SVB crisis, impact the entire crypto market in a broad, systemic manner. This is
reflected in our first-stage results shown in Table 3. During crises, both private and public
revenue increase, with coefficients of approximately 0.12 for log private revenue and 0.01
for log public revenue. In contrast, hacks typically affect individual protocols or platforms
within the Ethereum ecosystem. These events are more likely to generate private revenue

13The list of hacks is obtained from DefiLlama (https://defillama.com), and we keep only hacks which
affected only the Ethereum chain.

14The FTX crises occurred between November 8 2022, and November 12 2022. The SVB crisis unfolded
between March 9 2023, and March 12 2023. Other crypto crises, such as the Terra crash, occurred before
the transition to proof-of-stake and are therefore not in our sample.
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Figure 5: Effect of the instrumental variables on an average block’s private and total revenue.
Crypto crises increase private and total revenue by similar amounts, while Hacks tend to
increase private revenue disproportionately—spanning our space of explanatory variables.

opportunities for insiders or those with early knowledge of the hack. This is evidenced by the
differential impact of hacks in our first-stage results: the coefficient on log private revenue
is positive, while the coefficient on log public revenue is a precise 0. Figure 5 illustrates the
differential impact of the two instruments, and shows how they span the space of explanatory
variables.

Results Table 4 shows the results of OLS and 2SLS regressions where θB,t is the dependent
variable, and logPrivatet, logPublict are the independent variables. Columns (1) and (2)
show the OLS results without and with builder × proposer fixed effects. Columns (3) and
(4) show the results from the instrumental variable regressions using the Hacks and Crises
dummies as instruments—again without and with builder × proposer fixed effects.15 The
results using instrumental variables and fixed effects are very strong, showing that a 1%
increase in the value of private arbitrages increases the builder’s revenue share by 0.57%.
We highlight that the coefficient on the revenue control is negative. This follows from a
simple economic intuition: since a block can contain multiple sources of revenue, many of
which are public, a larger revenue after accounting for private arbitrages will shift market
power to the proposer, and away from the builder.

15We use the commands reg, reghdfe, ivreg2 and ivreghdfe to compute each of these four columns. Note
that when using reghdfe or using ivreghdfe the constant is not reported because it is a normalization factor
chosen algorithmically to ensure all fixed effects have zero mean.
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(1) (2) (3) (4)
logPrivatet logPrivatet logPublict logPublict

Hack Dummy 0.0107∗∗∗ 0.0094∗∗∗ -0.0011∗∗∗ -0.0001
(0.0006) (0.0007) (0.0003) (0.0002)

Crisis Dummy 0.1187∗∗∗ 0.1230∗∗∗ 0.0219∗∗∗ 0.0139∗∗∗
(0.0095) (0.0098) (0.0015) (0.0014)

Constant 0.0732∗∗∗ 0.0243∗∗∗
(0.0015) (0.0008)

Observations 3924921 3419294 3924921 3419294
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows the first stage estimation results for our different 2SLS specifications. Columns (1)
and (2) show how logPrivate is affected by our instrumental variables, without and with builder, proposer,
and builder × proposer fixed effects. Columns (3) and (4) show analogous results for logPublic. All
standard errors are clustered at the builder × proposer level.

Table 3: First Stage Regression Results

5 Model: Information-Driven Market Power

In this section, we develop a stylized model to formalize the central economic mechanism
driving our empirical results: the process by which private information confers market power.
The DeFi intermediation chain involves three key relationships: between arbitrageurs and
block builders, builders and proposers, and proposers and ETH depositors. Our formal
model abstracts from the first and third of these relationships to focus squarely on the core
bargaining game between builders and proposers, where the rents from private information
are ultimately divided. The market structures of the other two relationships, while im-
portant for the overall ecosystem, can be understood through the lens of more standard
economic forces—namely vertical integration, coordination externalities, risk-sharing, and
delegation—which we discuss at the end of this section.

We model the construction of the blockchain as the stationary steady state of an infinitely
repeated game between two types of agents— proposers and block builders. Time is indexed
by t ∈ {0, 1, 2, ..., }.There are N proposers, indexed by n ∈ {1, ..., N}, each with stake wn.
Motivated by the empirical observation that proposers’ market shares of staked ETH are
very stable over time, we assume that proposers’ stake is constant. There are M block
builders, indexed by m ∈ {1, ...,M}. Agents are profit maximizers and they do not discount
the future.
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(1) (2) (3) (4)
OLS No FE OLS FE IV No FE IV FE

logPrivatet 0.155∗∗∗ 0.141∗∗∗ 0.422∗∗∗ 0.575∗∗∗
(0.0149) (0.0187) (0.0709) (0.138)

logPublict -0.126∗∗∗ -0.0448∗∗∗ -3.048∗∗∗ -4.787∗∗∗
(0.0118) (0.0113) (0.363) (1.106)

Constant 0.0390∗∗∗ 0.0906∗∗∗
(0.00318) (0.00588)

N 3924921 3419294 3924921 3419294
F Statistic 417.05 65.16
Robust F Statistic 106.549 12.886
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows our multivariate estimation results when the builder profit share is the dependent
variable. Columns (1) and (2) show OLS results, without and with builder, proposer, and builder ×
proposer fixed effects. Columns (3) and (4) show 2SLS results, without and with builder, proposer, and
builder × proposer fixed effects. All standard errors are clustered at the builder × proposer level. The
instrumental variables are Hackedt and Crisist.

Table 4: OLS and Two-Stage Least Squares Results

In each period t, a proposer n is chosen among the N proposers via the proof-of-stake
consensus mechanism with probability ψn = wn∑N

i=1 wi
to add the next block to the blockchain.

Let Bm,t denote the block built by builder m at time t with total value Rm,t.16 We denote
the set of all the blocks created at time t by Bt = {Bm,t}m∈{1,...,M}.

At each time t, blocks are made up of three type of transactions: regular transactions,
which have a low payoff and arise every period, and two types of arbitrage transactions that
are high payoff but arise rarely. Thus, the majority of time periods are regular periods with
no arbitrage opportunities. An arbitrage opportunity arises at small Poisson rate ρ ≪ 1

per period. The arbitrage opportunity is public with i.i.d. probability πu and private with
complementary probability πr = 1 − πu. Public arbitrage transactions are known by all
block builders while each private arbitrage transaction is known by a single block builder.
A private arbitrage opportunity becomes publicly known at Poisson rate ρd < 1 per period,
where ρd ≫ ρ. As all block builders know each public arbitrage transaction, they all include
it in their respective block. As such, a arbitrage transaction in period t is included in every
Bm,t ∈ Bt.

16One can assume that there is fixed cost c > 0 associated with building a block. It does not change any
of the results and does not add any intuition, thus we set c = 0.
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For expositional purposes, we assume a very simple process for transaction payoffs. We
assume that the payoff of all arbitrage transactions, public or private, comes from the same
distribution. The payoff of regular transactions come from of a different distribution that has
a significantly lower support. More precisely, assume all blocks that include the arbitrage
transaction in period t have the same high revenue, R̄t and all the other blocks at time t
have the same low revenue, Rt, and Rt = R and R̄t = R̄, ∀t.17 Table 2 documents that the
distribution of block revenue is strongly skewed to the right. Motivated by this empirical
evidence, we assume R̄ ≫ R.

Let “public blocks” denote all the blocks in a regular period or in a period with public
arbitrages, with the same value R̂t. The value R̂t varies across periods— low in regular
periods, R, and high in periods with publicly known arbitrages, R̄. Thus, R̂t ∈ {R, R̄}.

Alternatively, a “private block” includes a private arbitrage transaction. Recall that a
private arbitrage that arrives in period t is picked up by a single builder, m̃, who incorpo-
rates it in his block Bm̃,t.18 In that sense, the private arbitrage opportunity is the “private
information” of builder m̃, thus, we call Bm̃,t the “private block” at time t. The low Poisson
arrival rate of arbitrage transactions imply that every other block at time t is a public block
with low total revenue, i.e., ∀ Bm,t ∈ Bt,m ̸= m̃, we have Rm,t = R.

With a slight abuse of notation, let pt denote the proposer selected, bt the block builder, Bt

the block added to the blockchain, and Rt denote the block’s revenue, in period t. Proposer
pt and block builder bt trade and divide the net block value with exogenous bargaining powers
(ξP , ξB) = (1− δ, δ),and endogenous outside options ΥP,t and ΥB,t for the proposer and the
block builder, respectively. The asymmetric bargaining powers can be simply derived from
a variation of an alternating-offer bargaining game a la Rubinstein (1982) played by the
proposer and block builder in virtual time within each period.19

17In general, Rt and R̄t can be random variables themselves with different supports, as long as the upper
bound of support of Rt is sufficiently smaller than the lower bound of support of R̄t. The extreme skewness
of block revenue distribution documented in Table 2 supports this assumption.

18The assumption that an arbitrageur with a private arbitrage offers his block to a single block builder
is consistent with the empirical pattern that block builders try to build market share in order to capture
arbitrageurs. It is also the optimal strategy for the arbitrageur, as it ensures a high profit for him while
almost certainly being added to the chain by safeguarding his information advantage.

19To be precise, assume the proposer and the block builder play an alternating-offer bargaining game a
la Rubinstein (1982) in virtual time in each period t, and the block builder always makes the first offer.
The proposer and the block builder face probabilities of within-period trade-breakdown 1 − δ1 and 1 − δ2,
respectively. This implies δ = δ2(1−δ1)

1−δ1δ2
. Thus, in equilibrium, the initial block builder’s offer, i.e. the

observed bid of the block builder for each block, is set to achieve the profits implied by the bargaining game
with bargaining powers (ξP , ξB) = (1− δ, δ) and endogenous outside options (ΥP,t,ΥB,t).

The alternating-offer game of Rubinstein (1982) is a game of public information between the two bargaining
parties. Note that the block builders and proposers play this game infinitely many times and after each block
is added its information become public. Furthermore, within each period, the proposer has the monopoly to
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The net value from adding block Bt to the blockchain is given by Rt, the total value
generated by block Bt, minus the sum of outside options of the block proposer and the
block builder, St = Rt − ΥP,t − ΥB,t. Consistent with the notation in Section 3, let ΠP,t

(θP,t) and ΠB,t (θB,t) denote the profit (profit share) of the proposer and builder in period t,
respectively. They are given by:

ΠB,t = δSt +ΥB,t,

ΠP,t = (1− δ)St +ΥP,t.

Table 2 shows that the mean block builder’s profit is very low, close to zero. As such, we
are particularly interested in the case where δ → 0,20 in which case ΠB,t and ΠP,t simplify to

ΠB,t = ΥB,t, (2)

ΠP,t = Rt −ΥB,t (3)

which in turn imply

θB,t =
ΥB,t

Rt

, (4)

θP,t =
Rt −ΥB,t

Rt

= 1− ΥB,t

Rt

(5)

Recall that block builder and proposer outside options, ΥB,t and ΥP,t, are equilibrium
outcomes that are determined endogenously. In turn, they determine the profit levels and
profit shares of the block builder and the proposer. Equations (2), (3), (4) and (5) highlight
the main intuition of the model— that the source of block builders’ revenue is their outside
option.

Proposition 1 summarizes the main theoretical results of the model that rely on this
intuition and tightly connect to the empirical patterns documented in Section 4.

Proposition 1 (Information-Driven Market Power). If arbitrage transactions are suf-
ficiently more profitable than regular transactions, the following two statements hold

1. Higher value of private transactions in a given block increases the profit share of the
block builder and decreases that of the proposer.

choose the block of his choice and can punish any block builder who has not bid truthfully in a prior period.
As such, we assume that the proposer can infer the true value of block Bt perfectly from the bid he observes
at period t and thus we can use the alternating-offer game of Rubinstein (1982) within each period.

20This assumption is made for expositional purposes only. Proposition 1 holds for general δ < 1. The
proof is available upon request.
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2. Higher value of public transactions in a given block, controlling for the value of private
transactions, has the opposite impact. It decreases the profit share of the block builder
and increases that of the proposer.

The proof of proposition 1 shows that block builders’ outside option is governed by their
private information. We call this the information-driven market power of block builders. In
order to get some intuition for this result, it is most insightful to consider the determination
of the outside options.

First, assume period t is a period with only public blocks, i.e., with no private arbitrage
transactions. In this case, the selected proposer pt can choose any Bm,t ∈ Bt and none
of them has an advantage over the others. On the other hand, block builders cannot do
anything other than offering their block to proposer pt only in period t. In particular, any
block that is chosen as Bt and is added to the blockchain at time t includes the same set of
transactions. As such, all the other blocks in Bt lose their value as soon as Bt is added to
the blockchain. This implies that the block builder bt’s outside option is zero. Thus, for the
public blocks added to the blockchain Equations (2) and (3) reduce to

Πpublic
B,t = 0 (6)

Πpublic
P,t = R̂t (7)

Next, consider a period t when there is a builder m̃ with a private block, Bm̃,t. Let n
denote the index of the proposer who is chosen in period t, and let ψn = wn∑N

i=1 wi
denote their

share of the stake. The proposer pt has the choice to pick the block Bm̃,t and add it to the
blockchain at time t to have Bt = Bm̃,t, or not.

Let X denote the expected profit that proposer pt obtains from the private block Bm̃,t if
he does not choose to add Bm̃,t at time t, i.e., Bt ̸= Bm̃,t. The proposer pt can extract X
from the total revenue of the private arbitrage block Bm̃,t at time t if he decides to choose it
at time t and have Bt = Bm̃,t.

If proposer pt does not choose the private block Bm̃,t in period t to add to the blockchain,
the private arbitrage transaction will not be exploited at time t. In each following period, it
will turn public with probability ρd, in which case it will be added to the blockchain right
away and exploited. Otherwise it will stay part of a private block that builder m̃ creates in
the future periods until another proposer accepts the bid and adds the private block to the
blockchain.

Proposer pt = n has an i.i.d. probability ψn to be chosen by the proof-of-stake consensus
mechanism in each period t. In each future period τ > t that he is the proposer, pτ = pt,
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there are three contingencies. First, the private arbitrage transaction is still private and
unexploited, in which case it is included in block Bm̃,τ and proposer pt can obtain X from
choosing Bτ = Bm̃,t. Second, the private arbitrage just turned public, in which case it is
included in every block at period τ and proposer pt obtains R̄ from it. Third, the private
arbitrage has already turned public in period τ ′, t < τ ′ < τ and is already exploited by the
proposer in that period, in which case proposer pt gains nothing from it in period τ .21

As such, an upper bound for X is:

X̄ =
1− (1− ψn)(1− ρd)

ρd
R + ψnR̄

which is increasing in ψn and decreasing in ρd. These comparative statistics are intuitive: A
higher stake share ψn implies that it is more likely for pn to be the proposer next period and
add this block. Alternatively, an increase in ρd implies that it is more likely that this private
arbitrage transaction turns to a public one before proposer pt is chosen again, in which case
it is exploited by some other proposer. Put differently, 1

ψn
and ρd act as the effective discount

rate for proposer pt.
For any pair (ψn, ρd) such that ψn < 1 and ρd > 0, R < ρd(1−ψn)

ρd(1−ψn)+ψn
R̄ guarantees X̄ < R̄.

In other words, when R ≪ R̄ proposer n is willing to leave profit R̄ − X̄ for block builder
m̃ in order to be able to add the block Bm̃,t in period t to the blockchain. Thus, using
Equations (2) and (3), for a private block we have

Πprivate
B,t ≥ (1− ψn)R̄t −

1− (1− ψn)(1− ρd)

ρd
R > 0 ⇒ θprivate

B,t > 0 (8)

Πprivate
P,t ≤ 1− (1− ψn)(1− ρd)

ρd
R + ψnR̄ < R̄ ⇒ θprivate

P,t < 1 (9)

Comparing Equation (6) with (8) and (7) with (9) clearly illustrates the opposite impact of
the private arbitrage opportunities on profit shares of block builders and proposers. It also
shows that higher block revenue leads to a higher share for the block builder only if the block
revenue comes from private arbitrages. All the rest of the block revenue is captured by the
proposer and thus increases his profit share, while decreasing the profit share of the block
builder. As such, Proposition 1 provides a consistent mechanism for the empirical findings
of Table 4.

Equation (8) also implies that a private arbitrage transaction which remains private
21To be precise, this calculation gives an upper bound on X as it assumes that if the private arbitrage

transaction is still private at time τ , in the interim periods τ ′, t < τ ′ < τ , none of the proposers have added
the block Bm̃,τ ′ to the blockchain, so the private arbitrage opportunity remains unexploited until time τ .
This only strengthens the result as we need X < R̄, which is true if an upper bound in X is less than R̄.
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longer leads to a higher profit share for the block builder. This is intuitive as it corresponds
to a longer duration for the limited availability of the arbitrage transaction, which in turn
makes the private information of the block builder more valuable and improves his bargaining
position.22

5.1 Market Structure Beyond the Core Bargaining Game

Our model restricts attention to the economic mechanism that leads to the rent sharing
patterns between block builders and block proposers, as documented in Table 4. In what
follows, we explain how standard economic forces give rise to the remaining relationships that
our core model above abstracts away from—those between arbitrageurs and block builders
and between block proposers and ETH depositors.

The Arbitrageur-Builder Relationship. The concentration observed in the block builder
market is sustained by two distinct economic forces that segment arbitrageurs. First, for
large, sophisticated trading firms, the optimal strategy is vertical integration. Firms such
as Symbolic Capital Partners and Wintermute, which generate substantial high-value, pri-
vate order flow, operate their own exclusive builders (BeaverBuild and RSync, respectively).
This structure allows them to internalize the full value of their information, avoid leakage
to competitors, and ensure their transactions are prioritized. By directing their proprietary
flow to an in-house builder, they solve a fundamental commitment problem and maximize
the probability of their arbitrage’s execution.

Second, for smaller, independent arbitrageurs who lack the scale to operate their own
builder, the market resembles a coordination game with network externalities. These ar-
bitrageurs face a strong incentive to route their transactions to a single, dominant public
builder (e.g., Titan). A builder’s probability of winning the block auction is increasing in
the total value of the transactions it aggregates. Consequently, by coordinating on a single
builder, small arbitrageurs collectively increase the value of that builder’s blocks, enhancing
their own execution probability and expected profits. In equilibrium, it is not rational for
an individual small arbitrageur to deviate to a less popular builder, as doing so would place

22It is worth mentioning that we have abstracted away from any relationship building between proposers
and block builders, which is what gives rise to the negative builder profit shares. Furthermore, this simplified
model does not address the determination of stakes of the proposers and the detailed interaction between
block builders and arbitrageurs. These simplifications are crucial to highlight the main mechanism that
gives rise to information-driven market power for block builders. We plan to incorporate the stylized model
in a full model of the DeFi Intermediation chain that includes arbitrageurs, block builders, proposers and
depositors and features inter-period dependencies. The full model includes optimal strategy of arbitrageurs
as well as depositors and determines M,N and {w1, · · · , wn} endogenously.
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their transaction in a block with a lower probability of being selected, stranding their capital
and arbitrage opportunity.

The Proposer-Depositor Relationship. The proposer market exhibits a similar pattern
of concentration, driven by the classic mechanisms of risk-sharing and delegation. The proof-
of-stake consensus algorithm allocates the right to propose a block probabilistically, based on
the amount of staked capital. For an individual depositor, this creates a high-variance return
profile: long periods of no income punctuated by rare, large rewards. Risk-averse depositors,
who prefer a smooth consumption path, have a clear incentive to pool their capital with large,
professional proposers. These staking pools can absorb the idiosyncratic risk of the selection
lottery and provide depositors with a stable, predictable stream of income in exchange for a
fee. These incentives are strongly amplified by the fat-tailed distribution of block revenue.

Furthermore, participating as a proposer requires significant technical expertise and oper-
ational security to run and maintain the necessary software and hardware without interrup-
tion. Deviations from the protocol, even if accidental, can be penalized through ‘slashing,’
resulting in a loss of staked capital. This creates a strong motive for delegation. Depositors
can avoid these operational burdens and risks by entrusting their assets to specialized firms
that benefit from economies of scale in technology, security, and expertise. The resulting
market structure is a natural oligopoly of large, trusted proposers who act as delegated asset
managers for a diffuse base of capital holders.

In addition—as shown in Figure 4—we observe that the empirical market shares of pro-
posers are relatively stable over time, so that the proposer fixed effects in our regressions
account for the relative market power that different proposers may have due to their large
concentrations of ETH deposits.

6 Robustness

In our main analysis, we removed blocks where the builder profit share was less than −10%,
consisting of about 5% of the sample, to prevent outliers from skewing the results. In this
section, we show our results hold—in fact they are stronger—when we don’t remove these
blocks. We also show that the results hold when we condition on the builder profit share
being non-negative, and when we use alternative definitions of private transactions.

Appendix C presents the results of these robustness exercises. Importantly, in each of
these robustness checks, we obtain a significant positive effect for the value of the builder’s
private information on their profit share. Furthermore, our instrumental variables based on
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crypto crises and cyber-attacks remain strong throughout all our alternative specifications.

6.1 Blocks With And Without Subsidies

Table 5 in Appendix C displays the summary statistics of the full sample. It shows that
there are blocks where the builder gives a very large subsidy to the proposer, with the largest
subsidy being 56.13 ETH. This subsidy skews the builder profit share θP,t heavily, with the
share being highly negative for blocks with large subsidies. In the main text, we restrict
ourselves to blocks with a builder profit share θB,t ≥ −0.1. In this section, we show that our
findings are robust to including all the blocks in the sample.

Tables 6 and 7 in Appendix C present the first and second stage estimation results for
the full sample, including blocks that contain transactions with large proposer subsidies.
The instruments stay strongly significant and the effect of private information is amplified
around three folds.

6.2 Alternative Definition of Private Information

In the main analysis, we use a simple definition of private information, where a transaction
is private if and only if it is not broadcast to the network before being appended to the
blockchain. We use this definition in order to be able to utilize the classification of private
versus public transactions provided by a third party, Secure Decentralized Systems Lab’s
Mempool Guru project (Yang et al., 2024).

However, there may be many arbitrage opportunities trades—while sent privately to a
builder—are observed by many entrepreneurs. For example, any price discrepancies be-
tween decentralized exchanges (DEXs) on the blockchain may be observed by multiple en-
trepreneurs who have algorithms scanning the blockchain for such trades. Even if we observe
an arbitrageur sending such transactions privately to a builder, it is possible that other ar-
bitrageurs have sent them to other builders, making the arbitrage essentially public.

Because we know the details of these arbitrages, we can apply a number of heuristics
which identifies them as essentially public albeit having been sent privately. Such an arbitrage
meets all of the following criteria. First, these arbitrages consist of at least two transactions:
one which is intended to buy low and another to sell high. Second, the gross position of this
strategy must be greater than or equal to zero. Finally, the net position of all but the first
and last transaction must net to zero, so that the strategy forms a loop. These heuristics are
akin to those used by research teams such as EigenPhi to detect atomic arbitrages. These
transactions are then labeled as public and excluded from the pool of private transactions.
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The intuition for this heuristic is that an arbitrage is private if it can only be discovered
using some private, off-chain signal. The vast majority of private arbitrages are arbitrages
between centralized exchanges (CEXs) and decentralized exchanges. A CEX-DEX arbitrage
takes advantage of mispricings quoted between two or more exchanges, but one is a central-
ized exchange whose prices and orders are off-chain. In contrast to DEX-DEX arbitrages,
its legs are not executed simultaneously, so there is inventory risk as the arbitrageur holds
the off-chain position. For this reason, an arbitrageur wants their public position to execute
as soon as possible and exclusively, so they will certainly include a direct payment to a
block builder and do so privately. Moreover, as only the on-chain leg is observable on the
blockchain, the strategy looks like a swap between two tokens, one of which is traded on a
centralized exchange.

Appendix C present the first and second stage estimation results using the alternative
definition of private information. The instruments stay strongly significant and the effect of
private information is amplified more than six folds.

It is worth noting that an interesting qualitative difference surfaces with the alternative
definition of private information. While in all other specification, OLS and IV, value of
public transactions negatively impact the profit share of the block builder, in Table 9 the
OLS coefficient for logPublict is positive and becomes negative only when using instrumental
variables. We believe the reason is that as the definition of private arbitrage is much more
restrictive, many transactions which would have been classified as private in our main analysis
are no longer classified as such in this specification. Therefore, a block with a large number
of transactions has many other sources of revenue for the builder that are not covered in the
alternate definition of logPrivatet.

7 Conclusion

We examine the emergence of centralization in markets that are specifically designed to be
decentralized by considering the impact of private information on the profit shares of financial
intermediaries in Decentralized Finance (DeFi). Using novel DeFi transaction data, we find
that the combination of depositor risk sharing and arbitrageurs’ need for privacy leads to the
emergence of block proposers and block builders as respective intermediaries in the Ethereum
blockchain. Furthermore, we quantify the intermediation profits generated by block builders’
access to valuable private information.

Employing an instrumental variable approach using crypto crises and thefts of funds from
crypto institutions and protocols as instruments, we find that a 1% increase in the value of
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private information leads to a 0.57% increase in the block builder profit share. We propose
a repeated bargaining model to provide an economic mechanism for our empirical findings.
This evidence highlights the crucial role of private information in determining the revenue
shares of intermediaries in decentralized financial markets. As traditional and decentralized
finance become increasingly interconnected, understanding the dynamics of intermediation
in decentralized markets becomes increasingly relevant for both academics and practitioners.
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Appendix

A Institutional Details

The Bitcoin Blockchain and Proof-of-Work The bitcoin blockchain (Nakamoto (2008))
is both the first blockchain ever created, and the largest by market capitalization. The goal
of the blockchain is to achieve consensus about who owns how many units of a digital asset,
the bitcoin cryptocurrency (BTC). This consensus is established by a proof-of-work pro-
tocol, where (approximately) every 10 minutes a new block of transactions is “mined” and
appended to the blockchain. As a payment for their service, the miner receives both a mining
reward—reflected by the minting of new bitcoin which are credited to the miner’s balance—
and transaction fees paid by users who want their transactions included in the block. In
every one of these 10 minute intervals, there is competition among users to be the miner
and collect the rewards. In the most simple terms, the miner is the first user who can solve
a cryptographic puzzle—the solution of which can be verified by all other participants.23

Because there is a competition to mine the next block, the bitcoin blockchain essentially
has an all-pay auction every 10 minutes, where prospective miners perform trillions of com-
putations attempting to be the first to solve the cryptographic puzzle. This competition
is very wasteful and does not allow for high throughput of transactions. In addition, the
bitcoin blockchain has a drawback in that it only keeps track of bitcoin balances, but does
not have provisions for generating consensus on the balances of other assets.

The Ethereum Blockchain and Smart Contracts The Ethereum blockchain is the
second largest blockchain by market capitalization, and the largest blockchain that allows
the execution of general smart contracts (Buterin (2014)).24 The native cryptocurrency of
the Ethereum blockchain is Ether, or ETH for short.

Up until September 2022, Ethereum achieved consensus through a proof-of-work algo-
rithm, which immediately led to challenges for operating smart contracts at scale. Since
proof-of-work algorithms have very low throughput, the demand for smart contract oper-
ations was much larger than the available computing power of the Ethereum Virtual Ma-
chine,25 leading to high transaction fees and very volatile congestion charges.

23The consensus algorithm of bitcoin is more complex than described in this short paragraph, with
incentives designed to prevent participants from re-mining a block. Interested readers are directed to the
original bitcoin whitepaper in Nakamoto (2008).

24The Bitcoin blockchain allows the execution of a restricted set of smart contracts through bitcoin script,
but the feasible operations are very limited compared to the Turing-Complete Ethereum Virtual Machine.

25The bottleneck here is not the raw computing power of an individual node, but rather the amount of
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Proof-Of-Stake Consensus One way to address these challenges is a proof-of-stake al-
gorithm, where block proposers get chosen randomly with probability proportional to their
stake.26 To prevent a rogue block proposer from appending an invalid block to the blockchain
(e.g. one that has double spending), a small group of verifiers is also chosen at random. The
verifiers attest to the block’s validity. As long as the stake is sufficiently distributed, the
block proposer and verifiers will be independent with very high probability, and a valid
block will be added to the chain. Since only a very small fraction of participants needs to
be sampled to ensure the correctness of each new block, the amount of computation needed
to obtain consensus is vastly reduced.

Consensus Layer Yield In Ethereum, all participants who stake their ETH receive some
yield for accurately executing the consensus protocol. For every block, both the block pro-
poser and verifiers receive some reward (in ETH) for accurately participating in the protocol.
This reward varies depending on how much aggregate ETH has been staked, the time it takes
for the verifiers to produce their attestation of correctness, and of course, the correctness
of the proposed block. We define the Consensus Layer Reward as the expected payment
(in ETH) to the block proposer and verifiers for correctly participating in the consensus
protocol.

Rconsensus = E[Reward from Participating in Consensus]

Since the probability of being chosen as a proposer or verifier is proportional to the
amount of ETH staked, the expected reward that one obtains from participating in the
protocol is also proportional to the amount of ETH one has staked. Therefore, this reward
can be interpreted as a yield on the staked Ether.

yconsensus =
E[Rconsensus]

Amount of ETH staked
.

Execution Layer Yield The most popular smart contracts on Ethereum are decentralized
finance applications, including Crypto-Collateralized stablecoins such as MakerDAO, and de-
centralized exchanges such as Uniswap and Curve. Any user of the Ethereum blockchain
can attempt to find arbitrage opportunities arising from these protocols. For example, an
underwater MakerDAO loan can be liquidated at fire sale prices, and the collateral can be

computing power needed to agree on the state of the blockchain at any given time, including the state of all
the smart contracts being executed.

26In practice, the participants in proof-of-stake algorithms use a decentralized pseudorandom number
generator, which is implemented with cryptographic tools to prevent any coalition below a given size from
biasing the random number generation process.
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immediately sold in a decentralized exchange at a higher price, yielding an instant arbi-
trage in two transactions.27 Similarly, price discrepancies among the hundreds of different
decentralized exchanges can lead to arbitrage opportunities.

Since the data on these applications is public, there can be many arbitrageurs competing
to exploit all of these arbitrage opportunities. This gives Ethereum block proposers some
power to decide who obtains these arbitrage profits. When determining the order of transac-
tions in a block, the block proposer can prioritize some arbitrageurs over others. The extreme
case of this is when the block proposer observes the incoming transactions and front-runs
arbitrage opportunities that are suggested to them by potential arbitrageurs. In the long
run, this would dissuade the arbitrageurs from operating, or would lead to vertical integra-
tion between arbitrageurs and block proposers. In the data we don’t observe this vertical
integration. Instead, we see that there are specialized arbitrageurs—called block builders,
who share some of their surplus with the block proposers. This sharing of the surplus of
the execution layer reward gives the block proposers some expected income per block from
arbitrage opportunities. We define the Execution Layer Reward as the expected payment
to the block proposer (in ETH) from arbitrageurs for incorporating their transactions into
a block.

Rexecution = E[Block Proposer Reward from Arbitrage Opportunities]

Since the probability of being a block proposer is proportion the amount of ETH staked,
we can interpret this as a yield

yexecution =
E[Rexecution]

Amount of ETH staked
.

Maximal Extractable Value (MEV) The Maximal Extractable Value of a block repre-
sents the revenue that can be extracted from the ordering of transactions in a block, which
is in excess of revenue from the value of transactions alone. Figure 6 shows the time series
of MEV since the merge. We observe that the execution layer component is more volatile
than the consensus layer component.

MEV Searchers MEV searchers are automated arbitrageurs who identify mispricings
and the potential for near-riskless profit and bundle together transactions that, upon being
incorporated into the blockchain, execute their arbitrage strategy. The success of these

27The arbitrage is instant because the transaction that buys the collateral at fire sale prices and the one
that sells the purchased collateral in decentralized exchanges occur in the same block.
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Source: Dune Analytics

Figure 6: Daily Gas and MEV Revenue

strategies is contingent on immediately capitalizing on public and private information, so
their transactions carry high priority fees and even direct payments to builders in order to
guarantee their incorporation towards the front of the next block. Because the immediacy
and position of these transactions matter, their value is considered MEV.

The Market Inefficiencies of MEV The arbitrage opportunities in decentralized fi-
nance, combined with the decentralized consensus protocol of the Ethereum blockchain,
create economic inefficiencies. First, there may be competition among arbitrageurs to get
their transactions incorporated into blocks—and to prevent competitors from placing their
transactions. For example, an arbitrageur may pay transaction fees high enough to buy the
entire space in a block, preventing anybody else from interfering in their trades. Addition-
ally, there is a problem with front-running. If an arbitrageur finds a profitable trade and
submits it directly to a block proposer, there is no inherent reason besides reputation for
why the proposer can’t just clone the transaction and submit it themselves to collect the
profit. In the long run, this discourages arbitrageurs from participating in the market.

Proposer-Builder Separation To prevent front-running, members of the Ethereum com-
munity advocated for the principle of Proposer-Builder Separation (PBS). Under this princi-
ple, the builder who collects all the transactions in a block, including the profitable arbitrage
opportunities, is not the same as the block proposer who is chosen by the consensus protocol
to propose the next block. Instead, there are multiple builders—in essence arbitrageurs—
who compete to build the most profitable block of transactions. The builders will collect all
the MEV of the block, and split this revenue with the proposer through a proposer fee—
essentially a bid that incentivizes the proposer to choose the builder’s block over all others.
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In order to prevent front-running, the process through which these blocks are proposed is as
follows

• Block Builder’s Action Block builder i creates a block Bi. She submits a pair
(Bi, pi) to a relay, where pi is the proposed payment to the proposer.

• Relayer’s Action The relay j receives multiple pairs (Bi1 , pi1), ..., (Bin , pin). The relay
verifies that the blocks are valid (and potentially, that they don’t have transactions
from sanctioned Ethereum accounts), and chooses the highest bid (B∗

j , p
∗
j) among the

valid block proposals.

Each relay j communicates (H∗
j , p

∗
j) to the block proposer, where H∗

j = H(B∗
j ) is a

hash function of the block B∗
j . Since the block proposer only observes a hash of the

block—and hash functions are essentially random—28 the block proposer at this time
learns nothing which would allow her to front-run the arbitrage opportunities collected
in the block.

• Block Proposer’s Action The block proposer may either

1. choose a relay j∗ who “wins” the round—in which case the relay j∗ reveals the
block B∗

j to the block proposer; or

2. the block proposer rejects all bids and proposes some “outside-option” block Bout

that they construct themselves.

• Payoffs The payoffs of the game are as follows

1. If the block proposer accepts the bid (H∗
j , p

∗
j), she will receive a payoff of p∗j . The

block builder will receive both the consensus layer and execution layer reward.
We assume the relay is competitive, and receives zero payoff.29

2. If the block proposer rejects all bids, she receives both the consensus layer and
execution layer rewards associated with Bout. In this case, the payoff to the block

28The technical term here is that a hash function is computationally hiding. Under widely accepted
computational assumptions such as the existence of one-way functions, the receiver of a message H∗

j would
have to do an astronomical amount of computation to recover an input B∗

j such that H(B∗
j ) = H∗

j . This is
also true if the received wanted to partially recover some bits from the input B∗

j .
29The assumption that relays are competitive seems to line up with the observed data. There are multiple

relays, and both block builders and block proposers can connect to more than one relay. Furthermore,
the code for relays is open-source, and therefore non-exclusive and non-rival. In practice, there is some
vertical integration between relayers and block builders, with flashbots and Bloxroute operating both block
builder bots as well as relays. Since the builders have to trust the relays not to front-run them, there is an
informational advantage for block builders to operate their own relaying software.
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builder is 0. In addition—as in the previous case—the relayer is assumed to be
competitive and has 0 payoff.

MEV-Boost In practice, there is open source software, called MEV-Boost, which imple-
ments this proposer-builder separation. After the transition to proof-of-stake, MEV-Boost
gained widespread adoption, with around 90% of blocks in Ethereum being selected through
MEV-Boost, and around 75% of all blocks having different builders and proposers. 30 The
most popular relay is the flashbots relay. However, it has recently faced increased compe-
tition from other relays. The main difference between flashbots and their competitors is
that flashbots will not accept any block that contains transactions with accounts sanctioned
by the Treasury’s Office of Foreign Asset Control (OFAC). Many other relays, including
Bloxroute-Max-Profit, do not take OFAC regulations into account when deciding which
blocks to accept.

B Proofs

Proof Proposition 1. It is sufficient to characterize ΥB,t across different periods.
Classify periods into two groups: First, periods where all transactions are public, (whether

a public arbitrage opportunity is present or not), and second, periods where a private arbi-
trage transaction happens. Note that as arbitrage opportunities arise with a small Poisson
rate independently, the probability that two arbitrage opportunities of any kind happen in
the same period is vanishingly small.

In a public period, every block has the exact same value. As such, all block builders
act as perfect competitors and undercut each other. Therefore, all the profits from adding
a block to the blockchain in this period are appropriated by the proposer chosen by the
proof-of-stake consensus mechanism. As such, ΥB,t = θB,t = 0, θP,t = 1.

Next, consider a private period t. We would like to show that ΥB,t > 0 in private
periods. Let Bm̃,t denote the private block and n denote the chosen proposer (i.e., pt = n).
When δ → 0, the builder and proposer profit shares are given by Equations (4) and (5),
respectively. Let X be the profit proposer n can obtain from the existence of the private
arbitrage transaction which is in block Bm̃,t, if he doesn’t choose Bt = Bm̃,t in period t.

In order to show that ΥB,t > 0, it is more convenient to characterize X and prove that
it is smaller than R̄. To characterize X, consider the following observations. First, if n

30The data on MEV-Boost, including relay and block builder market shares, is obtained from Toni
Wahrstätter’s website https://mevboost.pics/, and is augmented with data from the individual relays’
websites.
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doesn’t choose Bm̃,t now, he chooses a public block with value Rt in period t. Second, in the
stationary steady state, in each future period τ > t , he will be the proposer with probability
ψn. In each such period, there are three contingencies: 1) the private arbitrage transaction
is still private and unexploited, in which case it is included in block Bm̃,τ and proposer n
adds it and obtains X from choosing Bτ = Bm̃,t; 2) the private arbitrage just turned public,
in which case it is included in every block at period τ and proposer n obtains R̄ from it; or
3) the private arbitrage has already turned public in period τ ′, t < τ ′ < τ and is already
exploited by the proposer n′ who was chosen in that period, in which case proposer pt gains
nothing from it in period τ .

Thus, the expected value that n gets from not adding block Bm̃,t to the blockchain at
time t is given by:

X ≤R

+ ψn
[
ρdR̄ + (1− ρd)X

]
+ (1− ψn)ψn

[
ρd × 0 + (1− ρd)

[
ρdR̄ + (1− ρd)X

]]
+ (1− ψn)

2ψn
[
ρd × 0 + (1− ρd)ρd × 0 + (1− ρd)

2
[
ρdR̄ + (1− ρd)X

]]
+ · · ·

The first term, R, is what proposer n gets from adding any other block at time t. Each
line j that follows corresponds to proposer n payoff if he is chosen as the proposer at time
τ = t + j for the first time after time t. If in any period τ ′ = t + j′, j′ ∈ {1, · · · j − 1}, this
private arbitrage transactions has become public, it is exploited already and proposer n gets
nothing. If the arbitrage transaction is still private until period j− 1, proposer n can obtain
ρdR̄+(1−ρd)X from it at time τ = t+ j assuming that no interim proposers have exploited
it.31 Either the arbitrage turns public with probability ρd, in which case proposer n gets all
the surplus R̄, or it remains private in which case proposer n gets R. As such, we have

X ≤R + ψn
[
ρdR̄ + (1− ρd)X

] ∞∑
τ=t+1

((1− ψn)(1− ρd))
τ−t−1

= Rt + ψn
[
ρdR̄ + (1− ρd)X

] 1

1− (1− ψn)(1− ρd)

31The assumption of no exploitation of the private arbitrage by interim proposers implies the inequality,
which provides an upper bound on X as explained in the text.
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Thus

X

(
1− ψn(1− ρd)

1− (1− ψn)(1− ρd)

)
≤ R +

ψnρd
1− (1− ψn)(1− ρd)

R̄

X
ρd

1− (1− ψn)(1− ρd)
≤ R +

ψnρd
1− (1− ψn)(1− ρd)

R̄

Thus, an upper bound for X is:

X̄ =
1− (1− ψn)(1− ρd)

ρd
R + ψnR̄

For any pair (ψn, ρd) such that ψn < 1 and ρd > 0, let

Rmax =
ρd(1− ψn)

ρd(1− ψn) + ψn
R̄.

If R < Rmax, then X̄ < R̄ and thus X < R̄. Thus assumption R ≪ R̄ guarantees that
X < R̄. As such, proposer n is willing to leave profit R̄− X̄ for block builder m̃ to add Bm̃,t

to the blockchain in period t, ΥB,t ≥ R̄− X̄ > 0.
Substituting the lower bound for ΥB,t in Equations (2) and (3) leads to Equations (8) and

(9), where the last inequality in each equation is satisfied if R < Rmax. These inequalities
directly imply θprivate

B,t > 0 and θprivate
P,t < 1.

C Robustness Regression Tables

In this Appendix, we show the robustness regression Tables described in Section 6. Table 5
shows summary statistics for the full sample. Tables 6 through 7 show our regressions using
the full sample. Tables 8 and 9 show the regressions using an alternative definition of private
information.
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Mean Std. Dev. Min 5th Median 95th 99th Max Skewness Kurtosis

Revt 0.13 1.45 0.00 0.02 0.05 0.34 1.22 802.79 234.22 87570.02
ΠB,t 0.01 0.64 -56.13 -0.00 0.00 0.03 0.16 791.74 628.64 643411.84
ΠP,t 0.12 1.19 0.00 0.02 0.05 0.31 1.05 691.96 266.84 114216.68
θB,t 0.02 0.77 -947.07 -0.10 0.01 0.28 0.57 1.00 -585.59 591582.47
θP,t 0.98 0.77 0.00 0.72 0.99 1.10 1.37 948.07 585.59 591582.46
logPrivatet 0.07 0.17 0.00 0.00 0.03 0.26 0.75 6.69 8.98 133.29
logPublict 0.02 0.05 0.00 0.01 0.02 0.06 0.14 5.20 27.20 1346.59
Hack Dummy 0.07 0.25 0.00 0.00 0.00 1.00 1.00 1.00 3.46 12.94
Crisis Dummy 0.01 0.11 0.00 0.00 0.00 0.00 1.00 1.00 8.57 74.44

Observations 4132184

Source: Dune Analytics and Mempool Guru Project

Table 5: Summary Statistics for the Full Sample

(1) (2) (3) (4)
logPrivatet logPrivatet logPublict logPublict

Hack Dummy 0.0116∗∗∗ 0.0104∗∗∗ -0.0008∗∗∗ 0.0001
(0.0006) (0.0007) (0.0002) (0.0002)

Crisis Dummy 0.1136∗∗∗ 0.1158∗∗∗ 0.0213∗∗∗ 0.0134∗∗∗
(0.0095) (0.0099) (0.0013) (0.0012)

Constant 0.0700∗∗∗ 0.0237∗∗∗
(0.0015) (0.0008)

Observations 4132184 3604011 4132184 3604011
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows the first stage estimation results with our full sample. Columns (1) and (2) show
how logPrivate is affected by our instrumental variables, without and with builder, proposer, and builder
× proposer fixed effects. Columns (3) and (4) show analogous results for logPublic. All standard errors
are clustered at the builder × proposer level.

Table 6: First Stage Regression Results For The Full Sample

43



(1) (2) (3) (4)
OLS No FE OLS FE IV No FE IV FE

logPrivatet 0.205∗∗∗ 0.184∗∗∗ 0.562∗∗∗ 1.180∗∗∗
(0.0163) (0.0203) (0.140) (0.400)

logPublict -0.0722∗∗∗ -0.0275 -7.161∗∗∗ -16.28∗∗∗
(0.0242) (0.0278) (1.469) (4.062)

Constant 0.0106∗∗∗ 0.155∗∗∗
(0.00256) (0.0303)

N 4132184 3604011 4132184 3604011
F Statistic 415.75 61.45
Robust F Statistic 111.961 10.649
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows our multivariate estimation results with our full sample. Columns (1) and (2) show
OLS results, without and with builder, proposer and builder × proposer fixed effects. Columns (3) and (4)
show 2SLS results, without and with builder, proposer, and builder × proposer fixed effects. All standard
errors are clustered at the builder × proposer level. The instrumental variables are Hackedt and Crisist.

Table 7: OLS and Two-Stage Least Squares Results For The Full Sample

(1) (2) (3) (4)
logPrivatet logPrivatet logPublict logPublict

Hack Dummy 0.0105∗∗∗ 0.0093∗∗∗ 0.0012∗∗∗ 0.0020∗∗∗
(0.0006) (0.0007) (0.0003) (0.0003)

Crisis Dummy 0.0995∗∗∗ 0.1022∗∗∗ 0.0493∗∗∗ 0.0408∗∗∗
(0.0082) (0.0084) (0.0041) (0.0046)

Constant 0.0671∗∗∗ 0.0280∗∗∗
(0.0015) (0.0009)

Observations 4132184 3604011 4132184 3604011
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows the first stage estimation results for our different 2SLS specifications using an
alternative definition of public and private information. Columns (1) and (2) show how logPrivate is
affected by our instrumental variables, without and with builder, proposer, and builder × proposer fixed
effects. Columns (3) and (4) show analogous results for logPublic. All standard errors are clustered at the
builder × proposer level.

Table 8: First Stage Regression Results Using Alternative Definition of Private and Public
Information
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(1) (2) (3) (4)
OLS No FE OLS FE IV No FE IV FE

logPrivatet 0.201∗∗∗ 0.180∗∗∗ 1.785∗∗∗ 3.423∗∗∗
(0.0166) (0.0204) (0.283) (0.796)

logPublict 0.0259∗∗∗ 0.0375∗∗∗ -5.405∗∗∗ -10.59∗∗∗
(0.00822) (0.00838) (1.102) (2.593)

Constant 0.00905∗∗∗ 0.0555∗∗∗
(0.00238) (0.0168)

N 4132184 3604011 4132184 3604011
F Statistic 204.59 40.22
Robust F Statistic 86.589 11.137
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows our multivariate estimation results when the builder profit share is the dependent
variable, using an alternative definition of private and public information. Columns (1) and (2) show OLS
results, without and with builder, proposer and builder × proposer fixed effects. Columns (3) and (4) show
2SLS results, without and with builder, proposer, and builder × proposer fixed effects, respectively. All
standard errors are clustered at the builder × proposer level. The instrumental variables are Hackedt and
Crisist.

Table 9: OLS and Two-Stage Least-Squares Results Using Alternative Definition of Private
and Public Information.
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