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Abstract

We describe the DeFi intermediation chain, the market structure emerging from

the use of proof-of-stake blockchain technology in DeFi, and highlight a new limit

to arbitrage that arises from the con�ict between arbitrageurs' privacy needs and the

transparency of Ethereum blockchain. We examine the e�ect of information asymmetry

on intermediation pro�ts using a unique dataset that di�erentiates private and public

transactions in this market. We �nd that a 1% increase in private information advan-

tage leads to a 1.4% increase in intermediaries' pro�t share, and develop a dynamic

bargaining model which illustrates how information market power stems from private

information. These �ndings show how blockchain technology can sustain arbitrage op-

portunities despite low entry barriers, o�ering new insights into the interplay between

transparency, privacy, and market power in digital asset markets.

1 Introduction

Intermediation is a prevalent feature in many �nancial markets. Intermediaries perform var-

ious crucial functions: they monitor borrowers' creditworthiness and project quality, make

markets, provide liquidity, improve risk sharing, and manage inventory. Moreover, the cre-

ation of �nancial assets often relies on complex intermediation chains. A prime example is the

production of mortgage-backed securities (MBS), which involves multiple intermediaries. In
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the MBS intermediation chain, capital �ows from investors through various �nancial institu-

tions�such as mortgage originators, securitizers, and investment banks�before ultimately

reaching homebuyers.

Understanding the factors that shape pro�t sharing along intermediation chains is crucial

for comprehending market e�ciency, the allocation of economic rents, and the incentives that

drive �nancial innovation. However, despite extensive theoretical work on intermediation

(Leland and Pyle, 1977; Diamond and Dybvig, 1983; Diamond, 1984; Allen and Gale, 1997;

Boot and Thakor, 1997; Diamond and Rajan, 2001), empirically identifying the determinants

of pro�t sharing has proven challenging in traditional �nancial markets. The di�culty in

answering this question stems from several factors. First, many �nancial intermediaries

operate as opaque institutions, making it hard to observe their internal operations and pro�t

structures. Second, the complex nature of multi-layered intermediation chains often obscures

the �ow of capital and fees. Third, the rapid execution of transactions and frequent changes

in market conditions make it challenging to isolate the impact of speci�c factors on pro�t

distributions. As a result, previous studies have largely focused on documenting the existence

of intermediation chains and rents (Green et al., 2007; Di Maggio et al., 2017; Holli�eld et

al., 2017; Li and Schürho�, 2019), but they do not provide a causal understanding of how

pro�t sharing is determined along the chain.

This paper addresses these challenges by examining a novel setting, the DeFi intermedia-

tion chain, the market structure that has organically emerged from the use of proof-of-stake

blockchain technology in DeFi that underlies the creation and distribution of ETH, the native

cryptocurrency of the Ethereum blockchain. This market structure introduces both riskless

arbitrage opportunities, as well as a unique limit to arbitrage: the need to execute trades on

a public blockchain while maintaining the privacy of arbitrageurs' information. This tension

has led to a multi-layered intermediation structure in DeFi, involving arbitrageurs, block

builders, block proposers, and ETH depositors, each playing a speci�c role in the process of

identifying and capitalizing on mispricing opportunities.

The transparent nature of Ethereum allows us to distinguish between intermediaries'

public and private information. All transactions in the Ethereum blockchain ultimately

become public, but there's a crucial temporal distinction in how they reach the network.

Public transactions are immediately broadcast to every block builder in the network, while

private transactions are initially sent directly to some block builders, becoming visible to

the broader network only when appended to the blockchain. Thus, we are able to observe

the value of private information that each intermediary possesses, and how this information

a�ects their pro�t share.
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In order to identify the impact of private information on the intermediaries' pro�t share,

we utilize two novel instruments: ecosystem-wide crises (such as the FTX or SVB bankrupt-

cies) that increase the value of all transactions, and crypto protocol hacks that di�erentially

increase the value of private transactions. Our empirical analysis reveals that a 1% increase

in the value of block builders' private information leads to a 1.4% increase in their pro�t

share. Furthermore, we �nd that intermediaries' market power stems exclusively from their

private information, not from the total value of transactions they process.

Finally, we develop a repeated bargaining model that illustrates how the source of in-

formation asymmetry a�ects pro�t sharing among intermediaries. The model predicts that

not every information advantage guarantees larger pro�t shares for better-informed inter-

mediaries; only private information advantages do. This prediction is consistent with our

empirical �ndings. These results not only shed light on the speci�c dynamics of DeFi mar-

kets but also o�er broader insights into how information asymmetry shapes pro�t sharing in

�nancial intermediation.

As DeFi becomes increasingly interconnected with traditional �nance, understanding this

market structure becomes crucial for both academics and practitioners. Multiple Ethereum

ETFs have been recently approved by the SEC, following the earlier approval of Bitcoin

ETFs�-which collectively hold tens of billions of dollars of Bitcoin.1 If Ethereum ETFs gain

as much traction as Bitcoin ETFs have, traditional asset managers would become crucial

participants in the DeFi intermediation chain that we study in this paper.

1.1 Intermediation and Privacy in a Public Blockchain

Ethereum, the largest platform for DeFi protocols, provides a unique setting to study

intermediation chains. Its decentralized structure allows for numerous competing DeFi

protocols�including decentralized exchanges, crypto-collateralized stablecoins, and lending

platforms. This multiplicity of protocols creates a constant stream of violations of the law

of one price, and ensuing arbitrage opportunities.

Importantly, Ethereum allows arbitrageurs who �nd price discrepancies to obtain a guar-

anteed non-negative pro�t by submitting groups of transactions atomically�either all trans-

actions are executed, or none of them are. As such, these transactions constitute risk-free

arbitrage opportunities.

However, the Ethereum ecosystem also introduces a novel limit to arbitrage in the spirit

of Shleifer and Vishny (1997): arbitrageurs with private information need a way to have their

trades appended to the public blockchain without alerting potential rivals. This tension be-

1https://www.theblock.co/post/296304/sec-approves-ethereum-etfs8 ETH etfs approved.

3

https://www.theblock.co/post/296304/sec-approves-ethereum-etfs


Source: Dune Analytics and Mempool Guru Project

Figure 1: Block builder's pro�t share as a function of the share of the block's revenue that is
due private information. There is a strong positive relationship between the two variables.
This �gure is generated with binscatter, using 20 bins.

tween the public nature of blockchain trades and the private needs of arbitrageurs shapes

the DeFi intermediation landscape, giving rise to a multi-layered structure: 1) arbitrageurs

identify mispricing across di�erent DeFi protocols or between centralized and decentralized

exchanges; 2) block builders aggregate transactions into blocks, acting as gatekeepers of

private information and potentially extracting rents in the process; 3) block proposers, se-

lected randomly via the proof-of-stake mechanism, choose one winning block among bids

from multiple builders; and 4) ETH depositors, including individual holders and central-

ized exchanges, participate in this process through delegating their stake to proposers, in

a process we call delegated staking. This introduces an additional layer of intermediation,

mirroring traditional �nancial structures in a decentralized context.

1.2 Impact of Private Information on Pro�t Sharing

We collect a novel dataset where we can observe both private and public transactions, as

well as the fees paid to di�erent intermediaries, to quantify how private information a�ects

pro�t distribution along this intermediation chain. Our analysis reveals new insights into

the limits to arbitrage in DeFi, showing how blockchain characteristics create persistent

arbitrage opportunities in spite of the market having low or no barriers to entry.

The level of transparency and granularity in the data allows us to causally identify the

impact of private information on pro�t sharing between block builders and block proposers.

Figure 1 depicts our main �nding. It illustrates that access to valuable private arbitrage

transactions by builders�i.e., those arbitrage transactions that are privately submitted to
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them by an arbitrageur� increase their pro�t share since they are e�ectively the gatekeeper

for the private arbitrage opportunity. On the other hand, the block revenue that is associated

with public arbitrage opportunities is widely accessible to the proposer through other block

builders. As such, none of the block builders can gain from the publicly available arbitrage

transactions and the proposers capture most of the corresponding revenue.

To address biases from simultaneity and omitted variables, we employ very stringent �xed

e�ects and introduce two novel instrumental variables: a dummy for major crypto market

crises and a dummy for hacks of exchanges and decentralized protocols. These instruments

are designed to capture variations in both total block revenue and the value of private

information. We identify crises as the FTX bankruptcy (November 8-12, 2022) and the

SVB run (March 9-12, 2023), which led to a large number of blockchain transactions. The

dummy corresponding to crypto hacks is set to 1 on days on which an Ethereum protocol

or exchange is hacked, according to data from De�Llama. As shown in Section 4, both

crises and hacks a�ect overall block value and private information value, but to di�erent

degrees. Crises tend to generate more public transactions, while hacks primarily increase

private information value. This di�erential impact allows these two instrumental variables

to e�ectively span our set of two explanatory variables.

Using this instrumental variable approach, we show in Section 4 that a 1% increase in

the value of private information leads to a 1.4% increase in the builder pro�t share. After

controlling for the value of private information, the e�ect of larger block revenue on the

builder pro�t share is negative. This indicates that the builder's market power is driven

exclusively from the value of their private information, and not from the total value of the

block they produce.

1.3 A Bargaining Model of DeFi Intermediation

We complement our empirical analysis with a dynamic bargaining model to shed light on

how information asymmetries in decentralized �nance contribute to the distribution of prof-

its along the DeFi intermediation chain. The core economic mechanism is the interaction

between the source of information asymmetry between block builders and proposers, the

market structure of the block builder segment of the market, and the randomness inherent

in the proof-of-stake technology.

Consider the bargaining process between the block builders and the proposer when adding

each block to the blockchain. Observe that the block builders are always better informed

than the proposer about the content and the value of the block that they built. However,

if the information advantage is common among all block builders, through public arbitrage
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opportunities, the competition among the block builders prevents them from exploiting it,

even if it is very valuable. On the other hand, if the information asymmetry between a block

builder and the proposer stems from transactions that are private to that speci�c builder,

through private arbitrage opportunities, it constitutes a �private information advantage.�

Unlike a public information advantage, the block builder is able to monetize their private

information advantage through the threat of withholding the information in this period and

selling it next period to the proposer randomly selected by the proof-of-stake mechanism

�who is not necessarily the current proposer.

In order to capture the above intuition, we propose a repeated bargaining model where

the outside option of the agents links the di�erent time periods. This simple economic

mechanism enables us to simultaneously explain both of our main empirical �ndings. First,

a higher value of private transactions in a block increases the pro�t share of the block builder.

However, controlling for the value of private transactions, higher block revenue increases the

pro�t share of the proposer while decreasing that of the block builder.

1.4 Related Literature

There is an extensive literature spanning di�erent aspects of �nancial intermediation (see

Leland and Pyle (1977), Campbell and Kracaw (1980), Diamond and Dybvig (1983), Dia-

mond (1984), Allen (1990), Allen and Gale (1997), Boot and Thakor (1997), Diamond and

Rajan (2001), as well as Gorton and Winton (2003) and references therein). The prevalence

of intermediation rents in �nancial markets have been widely documented in the empirical

literature (Green et al., 2007; Di Maggio et al., 2017; Holli�eld et al., 2017; Li and Schürho�,

2019; Farboodi et al., 2017). However, identifying the source of these rents empirically has

proven challenging as the balance sheet of large �nancial intermediaries is opaque and it is

hard to acquire data about their comparative advantage. We contribute to this literature by

�rst distinguishing the role of �nancial intermediaries in blockchain systems, crypto currency

and DeFi, which represent the most recent developments in �nancial technology. Second, we

identify private information as a source of intermediation rents in this market.

Our paper contributes to a fast-growing literature on blockchain technology. Raskin and

Yermack (2018) provide a preliminary overview of �nancial systems built on blockchains.

Cong and He (2019), Abadi and Brunnermeier (2018) and Biais et al. (2019) expand on

consensus mechanisms, focusing on proof-of-work. There is a small but growing body of

work that studies the economics of Bitcoin, both theoretically and empirically. Athey et al.

(2016), Cong et al. (2021a), Pagnotta and Buraschi (2018) and Sockin and Xiong (2020)

develop alternative theoretical frameworks to study the decentralized Bitcoin network. Prat
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and Walter (2021) provide an estimate of the computing power of Bitcoin network and Cong

et al. (2021b) study the e�ect of mining pools on energy consumption, which is a signi�cant

input to proof-of-work consensus.

A number of papers consider the degree of decentralization in blockchain, focusing on

proof-of-work consensus protocols (Cong et al., 2023; Huberman et al., 2021; Ferreira et

al., 2023; Makarov and Schoar, 2021; Capponi et al., 2023; Cong et al., 2021b; Lehar and

Parlour, 2023). In addition, some previous work studies staking systems, including the game-

theoretic properties of proof-of-stake consensus mechanisms (Saleh, 2020), the valuation of

native tokens such as ETH (Fanti et al., 2019), and the valuation of non-native tokens that

can be staked in DeFi protocols (Cong et al., 2022). In contrast to these papers, we focus

on the emergence of intermediation in a �nancial sector built on proof-of-stake technology

and study the concentration of this intermediated market. We emphasize the in�uence of

arbitrage opportunities, as documented in Makarov and Schoar (2020), on the degree of

market concentration, and show that the combination of proof-of-stake consensus and smart

contracts can lead to a high degree of concentration in the Ethereum crypto intermediation

market.

The nature and type of arbitrage opportunities in a proof-of-stake blockchain is at the

core of our analysis. Daian et al. (2020); Gupta et al. (2023); Heimbach et al. (2024) provide

early empirical evidence and classi�cation of MEV and private and public arbitrage oppor-

tunities in a blockchain network. Alternatively, Milionis et al. (2023) theoretically models

the relationship between public and private transactions and market volatility. Capponi et

al. (2024) provide a game-theoretic model of proposer-builder separation. We use a simpli-

�ed de�nition of private transactions, where a transaction is private if it is not broadcast to

the network before it appears on the blockchain, a simple and intuitive de�nition that can

be measured precisely in the data, in contrast with heuristic based de�nitions proposed by

Gupta et al. (2023) and Heimbach et al. (2024). In Section 6, we use their classi�cation to

show the robustness of our empirical �ndings. Our instrumental variable approach relies on

the observation that crypto crises can be an exogenous shock that creates arbitrage oppor-

tunities (Liu et al., 2023). To the best of our knowledge, we are the �rst to use these crises

as instrumental variables in empirical analyses of DeFi.

The rest of the paper is organized as follows. Section 2 describes the institutional de-

tails of the DeFi interemediation chain. Section 3 provides details of the block level data

from Ethereum blockchain that we use for our empirical analysis. Section 4 describes the

instrumental variable approach and presents the main empirical results. Section 5 proposes

a model to provide the economic mechanism that underlies the empirical �ndings. Section
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6 provides a number of robustness exercises. Section 7 concludes.

2 Origins of DeFi Intermediation: The Need for Privacy

The Ethereum blockchain handles two main types of transactions: simple payment transac-

tions and smart contract interactions. Simple transactions transfer ETH or tokens between

addresses. Smart contracts are blockchain-stored programs that execute when users send

transactions to their addresses, triggering prede�ned functions. For example, users can in-

teract with decentralized exchange contracts to swap tokens or with lending protocols to

deposit collateral. These contracts automatically execute complex �nancial operations, such

as updating inventories or calculating prices and interest rates, without a central operator.

Risk-free arbitrage. Ethereum's diverse ecosystem of competing DeFi protocols creates

a large number of violations of the law of one price.2 Since Ethereum allows for transaction

batching, arbitrageurs can submit multiple transactions which are executed atomically�

either all together or not at all��ensuring a guaranteed non-negative pro�t for the arbi-

trageur. The unique aspect of blockchain-based arbitrage, particularly in Ethereum's DeFi

ecosystem, is the ability to execute truly risk-free arbitrage through atomic transactions that

have no execution risk. This feature, combined with the transparency of the blockchain, cre-

ates a novel environment for arbitrage that is not directly paralleled in traditional �nancial

systems.

The risk-free nature of these arbitrage opportunities makes them very attractive. Yet,

the nature of PoS blockchain technology introduces a novel limit to arbitrage: the possibility

of front running. The key friction stems from arbitrageurs' need to keep their transactions

private before they are appended to the blockchain if they want to appropriate the corre-

sponding pro�ts. There are constant opportunities for arbitrageurs to identify mispricings

across di�erent DeFi protocols or between centralized and decentralized exchanges. How-

ever, to capitalize on these opportunities, arbitrageurs require a mechanism to have their

transactions approved without broadcasting them to the entire network, thus avoiding the

risk of being frontrun or having their arbitrage opportunity stolen by competitors. 3

This privacy requirement is the limit to arbitrage faced by each individual arbitrageur. It

introduces unique challenges in exploiting arbitrage opportunities on the Ethereum blockchain

2Most of these violations occur through di�erences in pricing across exchanges. However, some additional
arbitrages are due to automatic liquidations of collateral at �re sale prices, and its resale at market prices.

3The risk of having a transaction stolen is not only real, but ubiquitous due to the commodi�cation of
AI-driven frontrunning bots (Robinson and Konstantopoulos, 2020).
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and shapes the structure of DeFi intermediation. Moreover, it gives rise to a speci�c form of

information rent captured by some intermediaries in the process of creating the Ethereum

blockchain. In this section, we focus on the emergence of the DeFi intermediation chain as

a consequence of the need for privacy. Sections 4 and 5 explain the information rents in the

DeFi intermediation chain, both empirically and theoretically.

DeFi intermediation chain. We de�ne the �DeFi intermediation chain� to be the market

structure that underlies the creation and distribution of ETH, the native cryptocurrency of

Ethereum. It consists of four groups of agents who interact with each other through an

intermediation chain. Arbitrageurs form the initial segment of the chain. These are typically

high-frequency trading algorithms or bots that continuously scan for pro�table transactions,

including both arbitrage and non-arbitrage opportunities, to be submitted to the Ethereum

blockchain.

The need for privacy by arbitrageurs, as explained above, leads to the rise of block builders

as intermediaries. Arbitrageurs who �nd an arbitrage can send their transactions directly to a

block builder, who incorporates them into an aggregate block. If these arbitrage transactions

are valuable, arbitrageurs usually pay an additional fee or direct payment to the builder in

order to make sure the builders incorporate their transactions into blocks. The total value

that is generated by adding a block to the blockchain�colloquially known as the block's

Maximum Extractable Value (MEV)�is the sum of arbitrageur pro�ts, transaction fees

paid to the block builders, and any direct payments sent by arbitrageurs to builders in order

to incentivize them to add their transactions to the block.

The next layer of intermediaries are block proposers, who are selected at random via the

proof-of-stake (PoS) consensus mechanism�with probability proportional to their stake of

ETH�to select a single block to be appended to the blockchain in a given round.4 Block

builders compete with each other to create the most valuable block they can. They then

submit a cryptographic commitment to the block along with a bid to the block proposer,

who chooses one winning (block, bid) pair without being able to view the block's contents.

To prevent the proposer from front-running arbitrageurs' transactions, the encrypted block

is only decrypted and revealed once the proposer has accepted the bid.5

4As a brief note on terminology, we note here that the term block proposer is related to the technical
architecture of the Ethereum blockchain. Once proposers select a block, they propose it to a random small
group of attesters, who verify that all transactions in the block are valid and there is no double spending
in a block. From an economic point of view, the attesters do not receive any revenue related to DeFi
intermediation, and therefore we do not study them in this paper. We also highlight that the case where
a proposer's selected block is not accepted by the attesters is extremely rare, and the attester mechanism
exists solely to ensure honest behavior by the proposer.

5We provide more details of this procedure in the Appendix.
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Figure 2: Market structure of the DeFi intermediation chain, Ethereum blockchain's pro-
duction network.

Notes: The �gure depicts the proof-of-stake consensus protocol (bottom row), the key participants of the
DeFi intermediation chain: arbitrageurs, block builders, proposers and depositors (middle row),and the
produced Ethereum blockchain (top row). The interactions at each time period t (time slot of 12 second)
are depicted in red. The red arrows among the market participants indicate the selected paths in the DeFi
intermediation chain required to produce each block, while the black signify alternative paths that were not
selected. The dashed red arrow from the consensus protocol to the proposers indicates that at each time t,
the random outcome of the proof-of-stake consensus protocol is a proposer, with the red diamond displaying
the randomly selected proposer. Finally, the dashed red arrow from proposer to the blockchain at the top
represents the block proposal process. The blockchain is the outcome of these interactions repeatedly.

Because block proposers are selected at random with probability proportional to their

stake, proposers who have larger amounts of ETH obtain a much more consistent stream of

revenue than proposers with a very small amount of ETH. This leads to the �nal layer of

the intermediation chain, where ETH depositors pool their assets together into large staking

pools, and get a share of the pro�ts that these pools obtain from proposing blocks.

Figure 2 illustrates the market structure of the Ethereum blockchain's production net-

work, highlighting the DeFi intermediation chain. The diagram shows four key participant

groups: arbitrageurs, block builders, proposers, and depositors. Arbitrageurs and depositors

are represented by multiple icons, indicating their larger numbers and diverse nature. Block

builders and proposers have fewer icons, re�ecting their more concentrated roles. The arrows

between groups represent the �ow of transactions within the DeFi intermediation chain. Im-

portantly, the arrow from Depositors to Proposers re�ects that depositors choose proposers

to stake their ETH with, in�uencing the distribution of staking power.

The solid red arrows indicate the selected paths during the matching process in each time
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slot, to build a single block. Furthermore, in each time slot the Proof-of-Stake consensus

mechanism selects the proposer for each single block (dashed red arrow pointing to the red

proposer), who in turn adds a block to the Ethereum blockchain (dashed red arrow pointing

from the proposer to the blockchain).

Delegated Staking Many ETH holders do not participate in the above protocols directly,

but rather through intermediaries such as centralized exchanges or liquid staking smart con-

tracts. A centralized exchange is a company such as Coinbase, Binance, or Kraken, which

takes depositors' ETH and uses it to participate in the proof-of-stake Ethereum consensus

protocol. By staking their depositors' ETH, these centralized exchanges earn returns, which

they then pass on to their customers after taking a spread.6 These intermediaries arise

because they have the technological sophistication to participate in the proof-of-stake pro-

tocol.7 ETH holders who do not have this level of sophistication may still earn returns by

buying ETH from a centralized exchange, and asking the exchange to stake their ETH for

them. As such, proposers are delegated stakers in the DeFi intermediation chain.

Throughout the chain, each node receives a payo� for their service. Arbitrageurs keep a

large amount of their arbitrage pro�ts, but pay transaction fees to the builders. The builders

pay the block proposers to ensure their blocks are added to the blockchain. As such, the

block proposer's net revenue is equal to the bid of the winning bidder, while the winning

block builder's net revenue consists of all transaction fees and direct payments to them,

minus the bid that they pay to the block proposer. Finally, block proposers who represent

staking pools pay a large share of their revenues to the individual investors who pooled their

ETH with them.

Even though the Ethereum blockchain is permissionless and there is near free-entry into

intermediation, informational frictions and risk-sharing in DeFi lead to concentration among

intermediaries as demonstrated in Table 1. Of the 108 known builders, 3 capture more than

50% of all the builder revenue and blocks proposed. Similarly, even though there are more

than a hundred thousand block proposers, 4 large staking pools capture more than 50% of

all the proposer revenue and blocks proposed.

6Recently, the SEC has reached a settlement with Kraken to prevent it from acting as such an interme-
diary for American customers.

7In particular, participants need to continuously run a server which listens for transactions, engages
with block builders, proposes valid blocks when called upon to do so, and veri�es other proposers' blocks.
Any deviation from the protocol, due for example to a software bug, a hardware failure or a network
outage, is penalized by debiting ETH from the participants' account�a process known as slashing. In
equilibrium, sophisticated agents can easily satisfy these requirements, so slashing is extremely rare, with
only 0.04% of participants having been slashed according to CoinTelegraph https://cointelegraph.com/

news/only-0-04-of-ethereum-proposers-have-been-slashed-since-2020-says-core-dev.
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Number of Builders Number of Proposers

108 189,126

Builder Share of Total Revenue Share of Total Blocks

beaverbuild.org 42.58% 22.98%
builder0x69 13.66% 15.76%
rsync-builder.xyz 12.06% 19.08%

Proposer Share of Total Revenue Share of Total Blocks

Lido 32.09% 31.35%
Coinbase 10.19% 10.01%
Kraken 5.46% 5.48%
Binance 5.15% 5.65%

Source: Dune Analytics

Table 1: The �rst panel reports the total number of block builders and proposers. The second
panel shows that the largest 3 block builders account for more than 50% of aggregate builder
revenue, and more than 50% of the number of blocks added to the Ethereum blockchain. The
third panel shows that the largest 4 block proposers account for more than 50% of aggregate
proposer revenue, and more than 50% of the blocks added to the Ethereum blockchain.

3 Data

We use Dune Analytics8 to obtain block-level data, the identity of the builder and proposer,

the MEV revenue for the block, and the revenue split between the builder and the proposer.

We use data from the Secure Decentralized Systems Lab's Mempool Guru project (Yang et

al., 2023) to keep track of which transactions were broadcast to the network before being

appended to the blockchain, and which were not broadcast to the network. We classify

transactions broadcast to the network as public, and transactions not broadcast as private.

Let Bt denote the block added to the blockchain at time slot t. We consider the block to

be an MEV block if two conditions hold. First, the block builder is di�erent than the block

proposer. Second, the last transaction of the block is issued from the block builder to the

block proposer. In our sample�which spans from the switch to proof-of-stake in September

15, 2022, to January 31, 2024�75.9% of the blocks satisfy both of these conditions, and are

considered MEV blocks.9

8https://www.dune.com
9The total number of blocks in our sample is 3,588,414, and the number of blocks satisfying the MEV

conditions is 2,723,653. Of these, we remove 138 blocks that have zero revenue, to end up with 2,723,585
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The key independent variable in our analysis is the value of private transactions in the

block generated at time t. We de�ne private and public transactions as follows.

De�nition 1.

Public Transaction A transaction in the block added at time t is public if is broadcast

to the network before time t, and is not a direct payment to the builder who built the block

generated at time t.

Private Transaction A transaction in the block added at time t is private if either it is not

broadcast to the network before time t or it is a direct payment addressed to the builder who

built the block generated at time t.

The key concept behind this de�nition is that public transactions are non-exclusive: any

builder can collect their value if they are chosen as the block builder at time t. Private

transactions, however, are exclusive: only the builders that know about them, or the builder

whom the payment is addressed to, can collect the value of these transactions.

Let Revt denote the total revenue from block t. Moreover, let ΠB,t and ΠP,t denote the

net pro�t of the block builder and proposer, respectively. The net pro�t for the builder,

ΠB,t, consists of the sum of direct payments they receive and priority gas fees,10 minus the

payment to the proposer at the end of the block. The net pro�t for the proposer, ΠP,t, is

the value of the block's �nal transaction. The key dependent variables in our analysis are

the pro�t shares of the builder and proposer are denoted as θB,t =
ΠB,t

Revt
and θP,t =

ΠP,t

Revt
,

respectively.

Table 2 presents the summary statistics of the key variables. It shows that all pro�ts

are highly skewed to the right, with the majority of blocks generating minimal revenue. On

average, a block generates 0.14 ETH in revenue, more than 90% of which is captured by the

proposer.

There are many blocks where the builder makes negative pro�ts. This behavior is likely

to ensure that the builder's block is chosen and is adopted as strategy to build market share:

by subsidizing proposers during regular periods, builders aim to dominate the market share

of proposed blocks, attracting arbitrageurs with lucrative arbitrage opportunities when they

arise, thereby securing blocks that yield positive pro�ts.11 Our main analysis considers only

blocks where the builder pro�t share is greater than −10%, which represent 96.5% of the

positive-revenue MEV blocks.
10Any Ethereum transaction must pay a base gas fee FeeBase to be included in the block. This fee is

always �burnt� and removed from the system, and is not part of the builder's revenue. However, if the
transaction is valuable or important, the user who submits the transaction may choose to pay the builder
an excess gas fee FeeExcess, which is part of the builder's revenue.

11Primarily empirical evidence support the outcome of this strategy. Results are available upon request.
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Mean Std. Dev. Min 5th Median 95th Max Skewness Kurtosis

Revt 0.14 1.52 0.00 0.02 0.06 0.37 691.96 225.07 76506.49
ΠB,t 0.01 0.40 -0.30 -0.00 0.00 0.02 386.27 474.65 366718.03
ΠP,t 0.13 1.39 0.00 0.02 0.05 0.35 691.96 254.00 95968.37
θB,t 0.03 0.08 -0.10 -0.02 0.01 0.16 1.00 4.66 32.36
θP,t 0.97 0.08 0.00 0.84 0.99 1.02 1.10 -4.66 32.36
logPrivatet 0.07 0.17 0.00 0.00 0.03 0.27 6.54 8.44 119.52
logPublict 0.03 0.05 0.00 0.01 0.02 0.07 5.20 24.48 1115.99
Hack Dummy 0.07 0.26 0.00 0.00 0.00 1.00 1.00 3.23 11.46
Crisis Dummy 0.02 0.14 0.00 0.00 0.00 0.00 1.00 6.95 49.32

Observations 2627618

Source: Dune Analytics and Mempool Guru Project

Table 2: Summary Statistics

blocks in our sample.12

4 Market Power in the Ethereum Intermediation Chain

In this section, we estimate how a block's share of private revenue a�ects the builder's pro�t

share. The simplest speci�cation would be a regression of the form

θB,t = α + β logPrivatet + ϵt.

However, estimating this regression with OLS would introduce biases in three ways. First,

there is simultaneity bias because the block builder simultaneously decides their payment

to the proposer (determining θB,t) and the transactions that they want to insert into the

block. That is, the builder has to decide how much of their private information they want

to capitalize in during this block, and how much of that value they want to share with the

proposer. Second, there is an omitted variable bias because there are many characteristics

of the block which can a�ect θB,t which are not captured in the speci�cation. The most

important variable that is missing from the speci�cation is the revenue Revt of the block.

Finally, the speci�cation above does not capture any relationships between builders and

proposers which may lead the builders to treat some proposers more or less favorably.

To address the potential for omitted variable bias and pre-existing relationships between

12In Section 6, we show that our results also hold for the full sample, as well as a further restricted sample
that contains only blocks where the builder makes non-negative pro�ts.
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Figure 3: E�ect of the instrumental variables on an average block's private and total revenue.
Crypto crises increase private and total revenue by similar amounts, while Hacks tend to
increase private revenue disproportionately�spanning our space of explanatory variables.

builders and proposers, we estimate the slightly more complicated regression (1):

θB,t = β logPrivatet + γ logRevt + ψi(t) + ηj(t) + ϕi(t),j(t) + ϵt. (1)

Including the revenue term allows us to capture the e�ect of both private information, as well

as the total revenue of the block. The �xed e�ects terms ψi(t), ηj(t), ϕi(t),j(t) capture relations

between the builders and proposers.

Finally, to address simultaneity, we use an instrumental variables approach with two

instruments, both of which are dummy variables. The �rst dummy, Hackedt, is equal to

1 if block t is appended to the blockchain on a day where there is a crypto protocol hack,

and 0 otherwise.13 The second dummy, Crisist is equal to 1 if block t is appended to the

blockchain during either the FTX or SVB crises.14 The �rst-stage speci�cation is given by

logPrivatet = β̂1Hackedt + γ̂1Crisist + ψ̂1,i(t) + η̂1,j(t) + ̂ϕ1,i(t),j(t) + ϵ̂1,t;

logRevenuet = β̂2Hackedt + γ̂2Crisist + ψ̂2,i(t) + η̂2,j(t) + ̂ϕ2,i(t),j(t) + ϵ̂2,t.

The exclusion restriction for our two instruments � crypto hacks and major market crises

� assumes that these events in�uence the builder share exclusively through their impact on

13The list of hacks is obtained from De�Llama (https://defillama.com), and we keep only hacks which
a�ected only the Ethereum chain.

14The FTX crises occured between November 8 2022, and November 12 2022. The SVB crisis unfolded
between March 9 2023, and March 12 2023. Other crypto crises, such as the Terra crash, occurred before
the transition to proof of stake and are therefore not in our sample.
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(1) (2) (3) (4)
logPrivatet logPrivatet logRevt logRevt

Hack Dummy 0.0072∗∗∗ 0.0059∗∗∗ 0.0039∗∗∗ 0.0043∗∗∗

(0.0007) (0.0006) (0.0007) (0.0007)

Crisis Dummy 0.1208∗∗∗ 0.1236∗∗∗ 0.1300∗∗∗ 0.1289∗∗∗

(0.0092) (0.0099) (0.0093) (0.0100)

Constant 0.0715∗∗∗ 0.0985∗∗∗

(0.0022) (0.0020)

Observations 2607730 2277574 2607730 2277574

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows the �rst stage estimation results for our di�erent 2SLS speci�cations. Columns (1)
and (2) show how logPrivate is a�ected by our instrumental variables, without and with builder, proposer,
and builder × proposer �xed e�ects. Columns (3) and (4) show analogous results for logRev. All standard
errors are clustered at the builder × proposer level.

Table 3: First Stage Regression Results

the composition of blocks, particularly the balance between private and public transactions,

rather than through any direct e�ect on the builder-proposer negotiation process. Further-

more, the instruments are exogenous, since both hacks and crypto crises are unexpected and

not caused by the bargaining process between builders and proposers.

These two instruments span our two explanatory variables, due to the distinct ways in

which hacks and crises a�ect the DeFi ecosystem. Crypto crises, such as the FTX collapse

or the SVB crisis, impact the entire crypto market in a broad, systemic manner. This is

re�ected in our �rst-stage results shown in Table 3. During crises, both overall revenue and

private revenue increase proportionally, with coe�cients of approximately 0.12 for both log

revenue and log private revenue. In contrast, hacks typically a�ect individual protocols or

platforms within the Ethereum ecosystem. These events are more likely to generate private

revenue opportunities for insiders or those with early knowledge of the hack, rather than

increasing overall transaction volume uniformly. This is evidenced by the di�erential impact

of hacks in our �rst-stage results: the coe�cient on log private revenue (0.006) is notably

higher than the coe�cient on log revenue (0.004). Figure 3 illustrates the di�erential impact

of the two instruments, and shows how they span the space of explanatory variables.

Results Table 4 shows the results of OLS and 2SLS regressions where θB,t is the dependent

variable, and logPrivatet, logRevt are the independent variables. Columns (1) and (2) show
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(1) (2) (3) (4)
OLS No FE OLS FE IV No FE IV FE

logPrivatet 0.143∗∗∗ 0.111∗∗∗ 1.367∗∗∗ 1.484∗∗∗

(0.0138) (0.0149) (0.177) (0.235)

logRevt -0.0713∗∗∗ -0.0511∗∗∗ -1.240∗∗∗ -1.360∗∗∗

(0.00906) (0.00950) (0.175) (0.223)

Constant 0.0237∗∗∗ 0.0511∗∗∗

(0.00244) (0.00535)

N 2607730 2277574 2607730 2277574
F Statistic 583.25 127.22
Robust F Statistic 220.937 26.100

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows our multivariate estimation results when the builder pro�t share is the dependent
variable. Columns (1) and (2) show OLS results, without and with builder, proposer, and builder ×
proposer �xed e�ects. Columns (3) and (4) show 2SLS results, without and with builder, proposer, and
builder × proposer �xed e�ects. All standard errors are clustered at the builder × proposer level. The
instrumental variables are Hackedt and Crisist.

Table 4: OLS and Two-Stage Least Squares Results

the OLS results without and with builder × proposer �xed e�ects. Columns (3) and (4) show

the results from the instrumental variable regressions using the Hacks and Crises dummies

as instruments�again without and with builder × proposer �xed e�ects.15 The results

using instrumental variables and �xed e�ects are very strong, showing that a 1% increase in

the value of private arbitrages increases the builder's revenue share by 1.4%. We highlight

that the coe�cient on the revenue control is negative. This follows from a simple economic

intuition: since a block can contain multiple sources of revenue, many of which are public, a

larger revenue after accounting for private arbitrages will shift market power to the proposer,

and away from the builder.

5 Model: Information-Driven Market Power

In this section we provide a stylized model to illustrate the determination of pro�t shares

of the proposers and block builders in the DeFi intermediation chain. Our main result in

15We use the commands reg, reghdfe, ivreg2 and ivreghdfe to compute each of these four columns. Note
that when using reghdfe or using ivreghdfe the constant is not reported because it is a normalization factor
chosen algorithmically to ensure all �xed e�ects have zero mean.
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this section matches our empirical �ndings: private arbitrages increase builders' pro�t share,

while public arbitrage opportunities decrease it. In order to clarify the mechanism, we will

abstract away from the rest of the DeFi intermediation chain and restrict attention to the

bargaining game between the proposers and block builders in the process of building the

blockchain.

We model the construction of the blockchain as the stationary steady state of an in�nitely

repeated game between two types of agents� proposers and block builders. Time is indexed

by t ∈ {0, 1, 2, ..., }.There are N proposers, indexed by n ∈ {1, ..., N}, each with stake wn.

Motivated by the empirical observation that proposers' market shares of staked ETH are

very stable over time, we assume that proposers' stake is constant. There are M block

builders, indexed by m ∈ {1, ...,M}. Agents are pro�t maximizers and they do not discount

the future.

In each period t, a proposer n is chosen among the N proposers via the proof-of-stake

consensus mechanism with probability ψn = wn∑N
i=1 wi

to add the next block to the blockchain.

Let Bm,t denote the block built by builder m at time t with total value Rm,t.
16 We denote

the set of all the blocks created at time t by Bt = {Bm,t}m∈{1,...,M}.

At each time t, blocks are made up of three type of transactions: regular transactions,

which have a low payo� and arise every period, and two types of arbitrage transactions that

are high payo� but arise rarely. Thus, the majority of time periods are regular periods with

no arbitrage opportunities. An arbitrage opportunity arises at small Poisson rate ρ ≪ 1

per period. The arbitrage opportunity is public with i.i.d. probability πu and private with

complementary probability πr = 1 − πu. Public arbitrage transactions are known by all

block builders while each private arbitrage transaction is known by a single block builder.

A private arbitrage opportunity becomes publicly known at Poisson rate ρd < 1 per period,

where ρd ≫ ρ. As all block builders know each public arbitrage transaction, they all include

it in their respective block. As such, a public arbitrage transaction in period t is included in

every Bm,t ∈ Bt.
For expositional purposes, we assume a very simple process for transaction payo�s. We

assume that the payo� of all arbitrage transactions, public or private, comes from the same

distribution. The payo� of regular transactions come from of a di�erent distribution that has

a signi�cantly lower support. More precisely, assume all blocks that include the arbitrage

transaction in period t have the same high revenue, R̄t and all the other blocks at time t

have the same low revenue, Rt, and Rt = R and R̄t = R̄, ∀t.17 Table 2 documents that the

16One can assume that there is �xed cost c > 0 associated with building a block. It does not change any
of the results and does not add any intuition, thus we set c = 0.

17In general, Rt and R̄t can be random variables themselves with di�erent supports, as long as the upper
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distribution of block revenue is strongly skewed to the right. Motivated by this empirical

evidence, we assume R̄ ≫ R.

Let �public blocks� denote all the blocks in a regular period or in a period with public

arbitrages, with the same value R̂t. The value R̂t varies across periods� low in regular

periods, R, and high in periods with publicly known arbitrages, R̄. Thus, R̂t ∈ {R, R̄}.
Alternatively, a �private block� includes a private arbitrage transaction. Recall that a

private arbitrage that arrives in period t is picked up by a single builder, m̃, who incorpo-

rates it in his block Bm̃,t.
18 In that sense, the private arbitrage opportunity is the �private

information� of builder m̃, thus, we call Bm̃,t the �private block� at time t. The low Poisson

arrival rate of arbitrage transactions imply that every other block at time t is a public block

with low total revenue, i.e., ∀ Bm,t ∈ Bt,m ̸= m̃, we have Rm,t = R.

With a slight abuse of notation, let pt denote the proposer selected, bt the block builder, Bt

the block added to the blockchain, and Rt denote the block's revenue, in period t. Proposer

pt and block builder bt trade and divide the net block value with exogenous bargaining powers

(ξP , ξB) = (1− δ, δ),and endogenous outside options ΥP,t and ΥB,t for the proposer and the

block builder, respectively. The asymmetric bargaining powers can be simply derived from

a variation of an alternating-o�er bargaining game a la Rubinstein (1982) played by the

proposer and block builder in virtual time within each period.19

The net value from adding block Bt to the blockchain is given by Rt, the total value

generated by block Bt, minus the sum of outside options of the block proposer and the

block builder, St = Rt − ΥP,t − ΥB,t. Consistent with the notation in Section 3, let ΠP,t

(θP,t) and ΠB,t (θB,t) denote the pro�t (pro�t share) of the proposer and builder in period t,

bound of support of Rt is su�ciently smaller than the lower bound of support of R̄t. The extreme skewness
of block revenue distribution documented in Table 2 supports this assumption.

18The assumption that an arbitrageur with a private arbitrage o�ers his block to a single block builder
is consistent with the empirical pattern that block builders try to build market share in order to capture
arbitrageurs. It is also the optimal strategy for the arbitrageur, as it ensures a high pro�t for him while
almost certainly being added to the chain by safeguarding his information advantage.

19To be precise, assume the proposer and the block builder play an alternating-o�er bargaining game a
la Rubinstein (1982) in virtual time in each period t, and the block builder always makes the �rst o�er.
The proposer and the block builder face probabilities of within-period trade-breakdown 1 − δ1 and 1 − δ2,

respectively. This implies δ = δ2(1−δ1)
1−δ1δ2

. Thus, in equilibrium, the initial block builder's o�er, i.e. the
observed bid of the block builder for each block, is set to achieve the pro�ts implied by the bargaining game
with bargaining powers (ξP , ξB) = (1− δ, δ) and endogenous outside options (ΥP,t,ΥB,t).
The alternating-o�er game of Rubinstein (1982) is a game of public information between the two bargaining

parties. Note that the block builders and proposers play this game in�nitely many times and after each block
is added its information become public. Furthermore, within each period, the proposer has the monopoly to
choose the block of his choice and can punish any block builder who has not bid truthfully in a prior period.
As such, we assume that the proposer can infer the true value of block Bt perfectly from the bid he observes
at period t and thus we can use the alternating-o�er game of Rubinstein (1982) within each period.
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respectively. They are given by:

ΠB,t = δSt +ΥB,t,

ΠP,t = (1− δ)St +ΥP,t.

Table 2 shows that the mean block builder's pro�t is very low, close to zero. As such, we

are particularly interested in the case where δ → 0,20 in which case ΠB,t and ΠP,t simplify to

ΠB,t = ΥB,t, (2)

ΠP,t = Rt −ΥB,t (3)

which in turn imply

θB,t =
ΥB,t

Rt

, (4)

θP,t =
Rt −ΥB,t

Rt

= 1− ΥB,t

Rt

(5)

Recall that block builder and proposer outside options, ΥB,t and ΥP,t, are equilibrium

outcomes that are determined endogenously. In turn, they determine the pro�t levels and

pro�t shares of the block builder and the proposer. Equations (2), (3), (4) and (5) highlight

the main intuition of the model� that the source of block builders' revenue is their outside

option.

Proposition 1 summarizes the main theoretical results of the model that rely on this

intuition and tightly connect to the empirical patterns documented in Section 4.

Proposition 1 (Information-Driven Market Power). If arbitrage transactions are suf-

�ciently more pro�table than regular transactions, existence of private arbitrage transactions

in a given block increases the pro�t share of the block builder and decreases that of the pro-

poser. On the other hand, higher total block revenue, controlling for the value of private

arbitrage, has the opposite impact on the pro�t share of the block builder and the proposer

by decreasing the pro�t share of the block builder.

The proof of proposition 1 shows that block builders' outside option is governed by their

private information. We call this the information-driven market power of block builders. In

order to get some intuition for this result, it is most insightful to consider the determination

of the outside options.

20This assumption is made for expositional purposes only. Proposition 1 holds for general δ < 1. The
proof is available upon request.
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First, assume period t is a period with only public blocks, i.e., with no private arbitrage

transactions. In this case, the selected proposer pt can choose any Bm,t ∈ Bt and none

of them has an advantage over the others. On the other hand, block builders cannot do

anything other than o�ering their block to proposer pt only in period t. In particular, any

block that is chosen as Bt and is added to the blockchain at time t includes the same set of

transactions. As such, all the other blocks in Bt lose their value as soon as Bt is added to

the blockchain. This implies that the block builder bt's outside option is zero. Thus, for the

public blocks added to the blockchain Equations (2) and (3) reduce to

Πpublic

B,t = 0 (6)

Πpublic

P,t = R̂t (7)

Next, consider a period t when there is a builder m̃ with a private block, Bm̃,t. Let n

denote the index of the proposer who is chosen in period t, and let ψn = wn∑N
i=1 wi

denote their

share of the stake. The proposer pt has the choice to pick the block Bm̃,t and add it to the

blockchain at time t to have Bt = Bm̃,t, or not.

Let X denote the expected pro�t that proposer pt obtains from the private block Bm̃,t if

he does not choose to add Bm̃,t at time t, i.e., Bt ̸= Bm̃,t. The proposer pt can extract X

from the total revenue of the private arbitrage block Bm̃,t at time t if he decides to choose it

at time t and have Bt = Bm̃,t.

If proposer pt does not choose the private block Bm̃,t in period t to add to the blockchain,

the private arbitrage transaction will not be exploited at time t. In each following period, it

will turn public with probability ρd, in which case it will be added to the blockchain right

away and exploited. Otherwise it will stay part of a private block that builder m̃ creates in

the future periods until another proposer accepts the bid and adds the private block to the

blockchain.

Proposer pt = n has an i.i.d. probability ψn to be chosen by the proof-of-stake consensus

mechanism in each period t. In each future period τ > t that he is the proposer, pτ = pt,

there are three contingencies. First, the private arbitrage transaction is still private and

unexploited, in which case it is included in block Bm̃,τ and proposer pt can obtain X from

choosing Bτ = Bm̃,t. Second, the private arbitrage just turned public, in which case it is

included in every block at period τ and proposer pt obtains R̄ from it. Third, the private

arbitrage has already turned public in period τ ′, t < τ ′ < τ and is already exploited by the

proposer in that period, in which case proposer pt gains nothing from it in period τ .21

21To be precise, this calculation gives an upper bound on X as it assumes that if the private arbitrage
transaction is still private at time τ , in the interim periods τ ′, t < τ ′ < τ , none of the proposers have added
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As such, an upper bound for X is:

X̄ =
1− (1− ψn)(1− ρd)

ρd
R+ ψnR̄

which is increasing in ψn and decreasing in ρd. These comparative statistics are intuitive: A

higher stake share ψn implies that it is more likely for pn to be the proposer next period and

add this block. Alternatively, an increase in ρd implies that it is more likely that this private

arbitrage transaction turns to a public one before proposer pt is chosen again, in which case

it is exploited by some other proposer. Put di�erently, 1
ψn

and ρd act as the e�ective discount

rate for proposer pt.

For any pair (ψn, ρd) such that ψn < 1 and ρd > 0, R < ρd(1−ψn)
ρd(1−ψn)+ψn

R̄ guarantees X̄ < R̄.

In other words, when R ≪ R̄ proposer n is willing to leave pro�t R̄ − X̄ for block builder

m̃ in order to be able to add the block Bm̃,t in period t to the blockchain. Thus, using

Equations (2) and (3), for a private block we have

Πprivate

B,t ≥ (1− ψn)R̄t −
1− (1− ψn)(1− ρd)

ρd
R > 0 ⇒ θprivateB,t > 0 (8)

Πprivate

P,t ≤ 1− (1− ψn)(1− ρd)

ρd
R+ ψnR̄ < R̄ ⇒ θprivateP,t < 1 (9)

Comparing Equation (6) with (8) and (7) with (9) clearly illustrates the opposite impact of

the private arbitrage opportunities on pro�t shares of block builders and proposers. It also

shows that higher block revenue leads to a higher share for the block builder only if the block

revenue comes from private arbitrages. All the rest of the block revenue is captured by the

proposer and thus increases his pro�t share, while decreasing the pro�t share of the block

builder. As such, Proposition 1 provides a consistent mechanism for the empirical �ndings

of Table 4.

Equation (8) also implies that a private arbitrage transaction which remains private

longer leads to a higher pro�t share for the block builder. This is intuitive as it corresponds

to a longer duration for the limited availability of the arbitrage transaction, which in turn

makes the private information of the block builder more valuable and improves his bargaining

position.22

the block Bm̃,τ ′ to the blockchain, so the private arbitrage opportunity remains unexploited until time τ .
This only strengthens the result as we need X < R̄, which is true if an upper bound in X is less than R̄.

22It is worth mentioning that we have abstracted away from any relationship building between proposers
and block builders, which is what gives rise to the negative builder pro�t shares. Furthermore, this simpli�ed
model does not address the determination of stakes of the proposers and the detailed interaction between
block builders and arbitrageurs. These simpli�cations are crucial to highlight the main mechanism that
gives rise to information-driven market power for block builders. We plan to incorporate the stylized model
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6 Robustness

In this section we show the robustness of our empirical results in two dimensions.

In Section 6.1 we change the sample of blocks in two di�erent ways. First, we extend

the sample to include the blocks in which the block builder subsidizes the proposer at very

high rates. Second, we limit the sample only to blocks in which block builders make weakly

positive pro�ts.

In Section 6.2 we use a more involved algorithm to measure builder's private information.

In particular, we employ the heuristic introduced by Heimbach et al. (2024). This heuristic

classi�es a transaction as a private arbitrage only if it is based on information that is not in

the blockchain.

Appendix C presents the results of these robustness estimation exercises. Importantly,

in every exercise all the instrumental variable regression coe�cients have the same sign as

the baseline estimation and remain statistically signi�cant.

6.1 Blocks With And Without Subsidies

In our main analysis, we removed blocks where the builder pro�t share was less than −10%,

consisting of about 3.5% of the sample, to prevent outliers from skewing the results. In

this section, we show our results hold when we don't remove these blocks. We also show

that the results hold when we condition on the builder pro�t share being non-negative,

and when we use alternative de�nitions of private transactions. In each of these robustness

checks, we obtain a signi�cant positive e�ect for the value of the builder's private information

on their pro�t share. Furthermore, our instrumental variables based on crypto crises and

cyber-attacks remain strong throughout all our alternative speci�cations.

Table 5 in Appendix C shows that there exist blocks where the builder gives a very large

subsidy to the proposer, with the largest subsidy being 56.13 ETH. This heavily skews the

builder pro�t share θP,t, with the share being highly negative for blocks with large subsidies.

We show in this subsection that our results apply even when we restrict ourselves to blocks

with a builder pro�t share θB,t ≥ −0.1, and when we restrict ourselves only to blocks with

non-negative builder pro�t share θB,t ≥ 0.

The results for these speci�cations are shown in Tables 6 through 9 in Appendix C. Tables

6 and 7 show the �rst and second stage estimation results for the full sample. Alternatively,

in a full model of the DeFi Intermediation chain that includes arbitrageurs, block builders, proposers and
depositors and features inter-period dependencies. The full model includes optimal strategy of arbitrageurs
as well as depositors and determines M,N and {w1, · · · , wn} endogenously.
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Tables 8 and 9 show the results conditioned on θB,t ≥ 0. While the e�ect of private infor-

mation is slightly attenuated from 5.5 to around 1.5, all coe�cients are still signi�cant and

the instruments are still strong.

6.2 Alternative De�nition of Private Information

In our main analysis, we use the simplest possible de�nition of private information, where a

transaction is private if and only if it is not broadcast to the network before being appended

to the blockchain. However, there may be many arbitrage opportunities trades�while sent

privately to a builder�are observed by many entrepreneurs. For example, any price dis-

crepancies between decentralized exchanges (DEXs) on the blockchain may be observed by

multiple entrepreneurs who have algorithms scanning the blockchain for such trades. Even

if we observe an arbitrageur sending such transactions privately to a builder, it is possible

that other arbitrageurs have sent them to other builders, making the arbitrage essentially

public.

As an alternative measure of private information, we use the heuristic introduced by

Heimbach et al. (2024), who consider only arbitrage transactions which are based on infor-

mation that is not in the blockchain. Under this heuristic, a group of transactions is private

if and only if one of the transactions involves a direct transfer to the builder, the transactions

do not appear in the public mempool, one of the transactions is a DEX swap as classi�ed by

the ZeroMEV API,23, and the swap involves a token that is traded in a centralized exchange.

The intuition for this heuristic is that an arbitrage is private if it can only be discovered

using some private, o�-chain signal. The vast majority of private arbitrages are arbitrages

between centralized exchanges (CEXs) and decentralized exchanges. A CEX-DEX arbitrage

takes advantage of mispricings quoted between two or more exchanges, but one is a central-

ized exchange whose prices and orders are o�-chain. In contrast to DEX-DEX arbitrages,

its legs are not executed simultaneously, so there is inventory risk as the arbitrageur holds

the o�-chain position. For this reason, an arbitrageur wants their public position to execute

as soon as possible and exclusively, so they will certainly include a direct payment to a

block builder and do so privately. Moreover, as only the on-chain leg is observable on the

blockchain, the strategy looks like a swap between two tokens, one of which is traded on a

centralized exchange.

Tables 10 and 11 show the �rst-stage and 2SLS regression results using the alternative

de�nition of private information. We can see that the instruments are still strong, the results

23A DEX swap is an exchange of one token for another in a decentralized exchange. We use the ZeroMEV
API for a classi�cation of swap transactions24
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are signi�cant, and there's a positive e�ect for the value of private information. The only

qualitative di�erence is that all of our other regression results have a negative coe�cient for

logRevt in all columns, while in Table 11 the OLS coe�cient for logRevt is positive, and it

becomes negative only when using instrumental variables. The intuitive explanation for this

is that our de�nition of private arbitrage is much more restrictive, and many transactions

which would have been classi�ed as private in our main analysis are no longer classi�ed as

such. Therefore, a block with a large number of transactions has many other sources of

revenue for the builder that are not covered in the alternate de�nition of logPrivatet.

7 Conclusion

We examine the impact of private information on the pro�t shares of �nancial intermediaries

in Decentralized Finance (DeFi). Using novel DeFi transaction data, we �nd that the need

for privacy�driven by the commodi�cation of AI frontrunners�leads to the emergence of

block builders as intermediaries, who capture a share of the block revenue by incorporating

private transactions into aggregate blocks.

Employing an instrumental variable approach using crypto crises and thefts of funds from

crypto institutions and protocols as instruments, we �nd that a 1% increase in the value of

private information leads to a 1.4% increase in the block builder pro�t share. We propose

a repeated bargaining model to provide an economics mechanism for our empirical �ndings.

This evidence highlights the crucial role of private information in determining the revenue

shares of intermediaries in decentralized �nancial markets. As traditional and decentralized

�nance become increasingly interconnected, understanding the dynamics of intermediation

in decentralized markets becomes increasingly relevant for both academics and practitioners.
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Appendix

A Institutional Details

The Bitcoin Blockchain and Proof-of-Work The bitcoin blockchain (Nakamoto (2008))

is both the �rst blockchain ever created, and the largest by market capitalization. The goal

of the blockchain is to achieve consensus about who owns how many units of a digital asset,

the bitcoin cryptocurrency (BTC). This consensus is established by a proof-of-work pro-

tocol, where (approximately) every 10 minutes a new block of transactions is �mined� and

appended to the blockchain. As a payment for their service, the miner receives both a mining

reward�re�ected by the minting of new bitcoin which are credited to the miner's balance�

and transaction fees paid by users who want their transactions included in the block. In

every one of these 10 minute intervals, there is competition among users to be the miner

and collect the rewards. In the most simple terms, the miner is the �rst user who can solve

a cryptographic puzzle�the solution of which can be veri�ed by all other participants.25

Because there is a competition to mine the next block, the bitcoin blockchain essentially

has an all-pay auction every 10 minutes, where prospective miners perform trillions of com-

putations attempting to be the �rst to solve the cryptographic puzzle. This competition

is very wasteful and does not allow for high throughput of transactions. In addition, the

bitcoin blockchain has a drawback in that it only keeps track of bitcoin balances, but does

not have provisions for generating consensus on the balances of other assets.

The Ethereum Blockchain and Smart Contracts The Ethereum blockchain is the

second largest blockchain by market capitalization, and the largest blockchain that allows

the execution of general smart contracts (Buterin (2014)).26 The native cryptocurrency of

the Ethereum blockchain is Ether, or ETH for short.

Up until September 2022, Ethereum achieved consensus through a proof-of-work algo-

rithm, which immediately led to challenges for operating smart contracts at scale. Since

proof-of-work algorithms have very low throughput, the demand for smart contract oper-

ations was much larger than the available computing power of the Ethereum Virtual Ma-

chine,27 leading to high transaction fees and very volatile congestion charges.

25The consensus algorithm of bitcoin is more complex than described in this short paragraph, with
incentives designed to prevent participants from re-mining a block. Interested readers are directed to the
original bitcoin whitepaper in Nakamoto (2008).

26The Bitcoin blockchain allows the execution of a restricted set of smart contracts through bitcoin script,
but the feasible operations are very limited compared to the Turing-Complete Ethereum Virtual Machine.

27The bottleneck here is not the raw computing power of an individual node, but rather the amount of
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Proof-Of-Stake Consensus One way to address these challenges is a proof-of-stake al-

gorithm, where block proposers get chosen randomly with probability proportional to their

stake.28 To prevent a rogue block proposer from appending an invalid block to the blockchain

(e.g. one that has double spending), a small group of veri�ers is also chosen at random. The

veri�ers attest to the block's validity. As long as the stake is su�ciently distributed, the

block proposer and veri�ers will be independent with very high probability, and a valid

block will be added to the chain. Since only a very small fraction of participants needs to

be sampled to ensure the correctness of each new block, the amount of computation needed

to obtain consensus is vastly reduced.

Consensus Layer Yield In Ethereum, all participants who stake their ETH receive some

yield for accurately executing the consensus protocol. For every block, both the block pro-

poser and veri�ers receive some reward (in ETH) for accurately participating in the protocol.

This reward varies depending on how much aggregate ETH has been staked, the time it takes

for the veri�ers to produce their attestation of correctness, and of course, the correctness

of the proposed block. We de�ne the Consensus Layer Reward as the expected payment

(in ETH) to the block proposer and veri�ers for correctly participating in the consensus

protocol.

Rconsensus = E[Reward from Participating in Consensus]

Since the probability of being chosen as a proposer or veri�er is proportional to the

amount of ETH staked, the expected reward that one obtains from participating in the

protocol is also proportional to the amount of ETH one has staked. Therefore, this reward

can be interpreted as a yield on the staked Ether.

yconsensus =
E[Rconsensus]

Amount of ETH staked
.

Execution Layer Yield The most popular smart contracts on Ethereum are decentralized

�nance applications, including Crypto-Collateralized stablecoins such as MakerDAO, and de-

centralized exchanges such as Uniswap and Curve. Any user of the Ethereum blockchain

can attempt to �nd arbitrage opportunities arising from these protocols. For example, an

underwater MakerDAO loan can be liquidated at �re sale prices, and the collateral can be

computing power needed to agree on the state of the blockchain at any given time, including the state of all
the smart contracts being executed.

28In practice, the participants in proof-of-stake algorithms use a decentralized pseudorandom number
generator, which is implemented with cryptographic tools to prevent any coalition below a given size from
biasing the random number generation process.
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immediately sold in a decentralized exchange at a higher price, yielding an instant arbi-

trage in two transactions.29 Similarly, price discrepancies among the hundreds of di�erent

decentralized exchanges can lead to arbitrage opportunities.

Since the data on these applications is public, there can be many arbitrageurs competing

to exploit all of these arbitrage opportunities. This gives Ethereum block proposers some

power to decide who obtains these arbitrage pro�ts. When determining the order of trans-

actions in a block, the block proposer can prioritize some arbitrageurs over others. The

extreme case of this is when the block proposer observes the incoming transactions and fron-

truns arbitrage opportunities that are suggested to them by potential arbitrageurs. In the

long run, this would dissuade the arbitrageurs from operating, or would lead to vertical inte-

gration between arbitrageurs and block proposers. In the data we don't observe this vertical

integration. Instead, we see that there are specialized arbitrageurs�called block builders,

who share some of their surplus with the block proposers. This sharing of the surplus of

the execution layer reward gives the block proposers some expected income per block from

arbitrage opportunities. We de�ne the Execution Layer Reward as the expected payment

to the block proposer (in ETH) from arbitrageurs for incorporating their transactions into

a block.

Rexecution = E[Block Proposer Reward from Arbitrage Opportunities]

Since the probability of being a block proposer is proportion the amount of ETH staked,

we can interpret this as a yield

yexecution =
E[Rexecution]

Amount of ETH staked
.

Maximal Extractable Value (MEV) The Maximal Extractable Value of a block repre-

sents the revenue that can be extracted from the ordering of transactions in a block, which

is in excess of revenue from the value of transactions alone. Figure 4 shows the time series

of MEV since the merge. We observe that the execution layer component is more volatile

than the consensus layer component.

MEV Searchers MEV searchers are automated arbitrageurs who identify mispricings

and the potential for near-riskless pro�t and bundle together transactions that, upon being

incorporated into the blockchain, execute their arbitrage strategy. The success of these

29The arbitrage is instant because the transaction that buys the collateral at �re sale prices and the one
that sells the purchased collateral in decentralized exchanges occur in the same block.
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Source: Dune Analytics

Figure 4: Daily Gas and MEV Revenue

strategies is contingent on immediately capitalizing on public and private information, so

their transactions carry high priority fees and even direct payments to builders in order to

guarantee their incorporation towards the front of the next block. Because the immediacy

and position of these transactions matter, their value is considered MEV.

The Market Ine�ciencies of MEV The arbitrage opportunities in decentralized �-

nance, combined with the decentralized consensus protocol of the Ethereum blockchain,

create economic ine�ciencies. First, there may be competition among arbitrageurs to get

their transactions incorporated into blocks�and to prevent competitors from placing their

transactions. For example, an arbitrageur may pay transaction fees high enough to buy the

entire space in a block, preventing anybody else from interfering in their trades. Addition-

ally, there is a problem with frontrunning. If an arbitrageur �nds a pro�table trade and

submits it directly to a block proposer, there is no inherent reason besides reputation for

why the proposer can't just clone the transaction and submit it themselves to collect the

pro�t. In the long run, this discourages arbitrageurs from participating in the market.

Proposer-Builder Separation To prevent frontrunning, members of the Ethereum com-

munity advocated for the principle of Proposer-Builder Separation (PBS). Under this princi-

ple, the builder who collects all the transactions in a block, including the pro�table arbitrage

opportunities, is not the same as the block proposer who is chosen by the consensus protocol

to propose the next block. Instead, there are multiple builders�in essence arbitrageurs�

who compete to build the most pro�table block of transactions. The builders will collect all
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the MEV of the block, and split this revenue with the proposer through a proposer fee�

essentially a bid that incentivizes the proposer to choose the builder's block over all others.

In order to prevent frontrunning, the process through which these blocks are proposed is as

follows

� Block Builder's Action Block builder i creates a block Bi. She submits a pair

(Bi, pi) to a relay, where pi is the proposed payment to the proposer.

� Relayer's Action The relay j receives multiple pairs (Bi1 , pi1), ..., (Bin , pin). The relay

veri�es that the blocks are valid (and potentially, that they don't have transactions

from sanctioned Ethereum accounts), and chooses the highest bid (B∗
j , p

∗
j) among the

valid block proposals.

Each relay j communicates (H∗
j , p

∗
j) to the block proposer, where H∗

j = H(B∗
j ) is a

hash function of the block B∗
j . Since the block proposer only observes a hash of the

block�and hash functions are essentially random�30 the block proposer at this time

learns nothing which would allow her to frontrun the arbitrage opportunities collected

in the block.

� Block Proposer's Action The block proposer may either

1. choose a relay j∗ who �wins� the round�in which case the relay j∗ reveals the

block B∗
j to the block proposer; or

2. the block proposer rejects all bids and proposes some �outside-option� block Bout

that they construct themselves.

� Payo�s The payo�s of the game are as follows

1. If the block proposer accepts the bid (H∗
j , p

∗
j), she will receive a payo� of p∗j . The

block builder will receive both the consensus layer and execution layer reward.

We assume the relay is competitive, and receives zero payo�.31

30The technical term here is that a hash function is computationally hiding. Under widely accepted
computational assumptions such as the existence of one-way functions, the receiver of a message H∗

j would
have to do an astronomical amount of computation to recover an input B∗

j such that H(B∗
j ) = H∗

j . This is
also true if the received wanted to partially recover some bits from the input B∗

j .
31The assumption that relays are competitive seems to line up with the observed data. There are multiple

relays, and both block builders and block proposers can connect to more than one relay. Furthermore,
the code for relays is open-source, and therefore non-exclusive and non-rival. In practice, there is some
vertical integration between relayers and block builders, with �ashbots and Bloxroute operating both block
builder bots as well as relays. Since the builders have to trust the relays not to frontrun them, there is an
informational advantage for blockbuilders to operate their own relaying software.
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2. If the block proposer rejects all bids, she receives both the consensus layer and

execution layer rewards associated with Bout. In this case, the payo� to the block

builder is 0. In addition�as in the previous case�the relayer is assumed to be

competitive and has 0 payo�.

MEV-Boost In practice, there is open source software, called MEV-Boost, which imple-

ments this proposer-builder separation. After the transition to proof-of-stake, MEV-Boost

gained widespread adoption, with around 90% of blocks in Ethereum being selected through

MEV-Boost, and around 75% of all blocks having di�erent builders and proposers. 32 The

most popular relay is the �ashbots relay. However, it has recently faced increased compe-

tition from other relays. The main di�erence between �ashbots and their competitors is

that �ashbots will not accept any block that contains transactions with accounts sanctioned

by the Treasury's O�ce of Foreign Asset Control (OFAC). Many other relays, including

Bloxroute-Max-Pro�t, do not take OFAC regulations into account when deciding which

blocks to accept.

B Proofs

Proof Proposition 1. It is su�cient to characterize ΥB,t across di�erent periods.

Classify periods into two groups: First, periods where all transactions are public, (whether

a public arbitrage opportunity is present or not), and second, periods where a private arbi-

trage transaction happens. Note that as arbitrage opportunities arise with a small Poisson

rate independently, the probability that two arbitrage opportunities of any kind happen in

the same period is vanishingly small.

In a public period, every block has the exact same value. As such, all block builders

act as perfect competitors and undercut each other. Therefore, all the pro�ts from adding

a block to the blockchain in this period are appropriated by the proposer chosen by the

proof-of-stake consensus mechanism. As such, ΥB,t = θB,t = 0, θP,t = 1.

Next, consider a private period t. We would like to show that ΥB,t > 0 in private

periods. Let Bm̃,t denote the private block and n denote the chosen proposer (i.e., pt = n).

When δ → 0, the builder and proposer pro�t shares are given by Equations (4) and (5),

respectively. Let X be the pro�t proposer n can obtain from the existence of the private

arbitrage transaction which is in block Bm̃,t, if he doesn't choose Bt = Bm̃,t in period t.

32The data on MEV-Boost, including relay and block builder market shares, is obtained from Toni
Wahrstätter's website https://mevboost.pics/, and is augmented with data from the individual relays'
websites.
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In order to show that ΥB,t > 0, it is more convenient to characterize X and prove that

it is smaller than R̄. To characterize X, consider the following observations. First, if n

doesn't choose Bm̃,t now, he chooses a public block with value Rt in period t. Second, in the

stationary steady state, in each future period τ > t , he will be the proposer with probability

ψn. In each such period, there are three contingencies: 1) the private arbitrage transaction

is still private and unexploited, in which case it is included in block Bm̃,τ and proposer n

adds it and obtains X from choosing Bτ = Bm̃,t; 2) the private arbitrage just turned public,

in which case it is included in every block at period τ and proposer n obtains R̄ from it; or

3) the private arbitrage has already turned public in period τ ′, t < τ ′ < τ and is already

exploited by the proposer n′ who was chosen in that period, in which case proposer pt gains

nothing from it in period τ .

Thus, the expected value that n gets from not adding block Bm̃,t to the blockchain at

time t is given by:

X ≤R

+ ψn
[
ρdR̄ + (1− ρd)X

]
+ (1− ψn)ψn

[
ρd × 0 + (1− ρd)

[
ρdR̄ + (1− ρd)X

]]
+ (1− ψn)

2ψn
[
ρd × 0 + (1− ρd)ρd × 0 + (1− ρd)

2
[
ρdR̄ + (1− ρd)X

]]
+ · · ·

The �rst term, R, is what proposer n gets from adding any other block at time t. Each

line j that follows corresponds to proposer n payo� if he is chosen as the proposer at time

τ = t + j for the �rst time after time t. If in any period τ ′ = t + j′, j′ ∈ {1, · · · j − 1}, this
private arbitrage transactions has become public, it is exploited already and proposer n gets

nothing. If the arbitrage transaction is still private until period j− 1, proposer n can obtain

ρdR̄+(1−ρd)X from it at time τ = t+ j assuming that no interim proposers have exploited

it.33 Either the arbitrage turns public with probability ρd, in which case proposer n gets all

the surplus R̄, or it remains private in which case proposer n gets R. As such, we have

X ≤R+ ψn
[
ρdR̄ + (1− ρd)X

] ∞∑
τ=t+1

((1− ψn)(1− ρd))
τ−t−1

= Rt + ψn
[
ρdR̄ + (1− ρd)X

] 1

1− (1− ψn)(1− ρd)

33The assumption of no exploitation of the private arbitrage by interim proposers implies the inequality,
which provides an upper bound on X as explained in the text.
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Thus

X

(
1− ψn(1− ρd)

1− (1− ψn)(1− ρd)

)
≤ R+

ψnρd
1− (1− ψn)(1− ρd)

R̄

X
ρd

1− (1− ψn)(1− ρd)
≤ R+

ψnρd
1− (1− ψn)(1− ρd)

R̄

Thus, an upper bound for X is:

X̄ =
1− (1− ψn)(1− ρd)

ρd
R+ ψnR̄

For any pair (ψn, ρd) such that ψn < 1 and ρd > 0, let

Rmax =
ρd(1− ψn)

ρd(1− ψn) + ψn
R̄.

If R < Rmax, then X̄ < R̄ and thus X < R̄. Thus assumption R ≪ R̄ guarantees that

X < R̄t. As such, proposer n is willing to leave pro�t R̄− X̄ for block builder m̃ to add Bm̃,t

to the blockchain in period t, ΥB,t ≥ R̄− X̄ > 0.

Substituting the lower bound for ΥB,t in Equations (2) and (3) leads to Equations (8) and

(9), where the last inequality in each equation is satis�ed if R < Rmax. These inequalities

directly imply θprivateB,t > 0 and θprivateP,t < 1.

C Robustness Regression Tables

In this Appendix, we show the robustness regression Tables described in Section 6. Table

5 shows summary statistics for the full sample. Tables 6 through 9 show our regressions

using di�erent subsamples of our dataset. Tables 10 and 11 show the regressions using an

alternative de�nition of private information.
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Mean Std. Dev. Min 5th Median 95th Max Skewness Kurtosis

Revt 0.14 1.49 0.00 0.02 0.05 0.36 691.96 229.03 79243.77
ΠB,t 0.01 0.40 -56.13 -0.00 0.00 0.02 386.27 472.18 369899.17
ΠP,t 0.13 1.36 0.00 0.02 0.05 0.35 691.96 257.98 99142.42
θB,t 0.01 0.90 -947.07 -0.06 0.01 0.15 1.00 -555.01 495297.49
θP,t 0.99 0.90 0.00 0.85 0.99 1.06 948.07 555.01 495297.57
logPrivatet 0.07 0.17 0.00 0.00 0.03 0.27 6.54 8.55 122.62
logPublict 0.03 0.05 0.00 0.01 0.02 0.07 5.20 24.77 1146.61
Hack Dummy 0.07 0.26 0.00 0.00 0.00 1.00 1.00 3.24 11.50
Crisis Dummy 0.02 0.14 0.00 0.00 0.00 0.00 1.00 6.88 48.39

Observations 2723585

Source: Dune Analytics and Mempool Guru Project

Table 5: Summary Statistics for the Full Sample

(1) (2) (3) (4)
logPrivatet logPrivatet logRevt logRevt

Hack Dummy 0.0076∗∗∗ 0.0063∗∗∗ 0.0045∗∗∗ 0.0048∗∗∗

(0.0007) (0.0006) (0.0007) (0.0007)

Crisis Dummy 0.1141∗∗∗ 0.1162∗∗∗ 0.1228∗∗∗ 0.1212∗∗∗

(0.0094) (0.0101) (0.0094) (0.0101)

Constant 0.0699∗∗∗ 0.0968∗∗∗

(0.0022) (0.0019)

Observations 2679416 2341828 2679416 2341828

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows the �rst stage estimation results with our full sample. Columns (1) and (2) show
how logPrivate is a�ected by our instrumental variables, without and with builder, proposer, and builder
× proposer �xed e�ects. Columns (3) and (4) show analogous results for logRev. All standard errors are
clustered at the builder × proposer level.

Table 6: Full Sample First Stage Regression Results
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(1) (2) (3) (4)
OLS No FE OLS FE IV No FE IV FE

logPrivatet 0.154∗∗∗ 0.138∗∗∗ 3.004∗∗∗ 5.512∗∗∗

(0.0245) (0.0358) (0.771) (1.759)

logRevt -0.0449∗∗∗ -0.0401∗∗ -3.396∗∗∗ -5.886∗∗∗

(0.0137) (0.0193) (0.928) (1.908)

Constant 0.00176 0.128∗∗∗

(0.00333) (0.0359)

N 2679416 2341828 2679416 2341828
F Statistic 592.33 128.77
Robust F Statistic 230.179 24.570

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows our multivariate estimation results with our full sample. Columns (1) and (2) show
OLS results, without and with builder, proposer and builder × proposer �xed e�ects. Columns (3) and (4)
show 2SLS results, without and with builder, proposer, and builder × proposer �xed e�ects. All standard
errors are clustered at the builder × proposer level. The instrumental variables are Hackedt and Crisist.

Table 7: Full Sample OLS and Two-Stage Least Squares Results

Builder Pro�t Share θB,t

(1) (2) (3) (4)
logPrivatet logPrivatet logRevt logRevt

Hack Dummy 0.0086∗∗∗ 0.0069∗∗∗ 0.0052∗∗∗ 0.0052∗∗∗

(0.0008) (0.0007) (0.0009) (0.0008)

Crisis Dummy 0.1406∗∗∗ 0.1440∗∗∗ 0.1493∗∗∗ 0.1494∗∗∗

(0.0161) (0.0182) (0.0163) (0.0184)

Constant 0.0801∗∗∗ 0.1081∗∗∗

(0.0030) (0.0028)

Observations 2134770 1862430 2134770 1862430

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows the �rst stage estimation results for our di�erent 2SLS speci�cations when
θB,t ≥ 0. Columns (1) and (2) show how logPrivate is a�ected by our instrumental variables, without and
with builder, proposer, and builder × proposer �xed e�ects. Columns (3) and (4) show analogous results
for logRev. All standard errors are clustered at the builder × proposer level.

Table 8: First Stage Regression Results when θB,t ≥ 0
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Builder Pro�t Share θB,t

(1) (2) (3) (4)
OLS No FE OLS FE IV No FE IV FE

logPrivatet 0.160∗∗∗ 0.128∗∗∗ 1.586∗∗∗ 1.596∗∗∗

(0.0142) (0.0163) (0.164) (0.215)

logRevt -0.101∗∗∗ -0.0786∗∗∗ -1.455∗∗∗ -1.468∗∗∗

(0.00900) (0.00966) (0.162) (0.198)

Constant 0.0351∗∗∗ 0.0670∗∗∗

(0.00277) (0.00461)

N 2134770 1862430 2134770 1862430
F Statistic 441.75 113.99
Robust F Statistic 164.056 34.042

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows our multivariate estimation results when θB,t ≥ 0. Columns (1) and (2) show OLS
results, without and with builder, proposer, and builder × proposer �xed e�ects. Columns (3) and (4)
show 2SLS results, without and with builder, proposer and builder × proposer �xed e�ects. All standard
errors are clustered at the builder × proposer level. The instrumental variables are Hackedt and Crisist.

Table 9: OLS and Two-Stage Least Squares Results where θB,t ≥ 0

(1) (2) (3) (4)
logPrivatet logPrivatet logRevt logRevt

Hack Dummy 0.0055∗∗∗ 0.0051∗∗∗ 0.0035∗∗∗ 0.0046∗∗∗

(0.0004) (0.0005) (0.0007) (0.0008)

Crisis Dummy 0.0582∗∗∗ 0.0580∗∗∗ 0.1486∗∗∗ 0.1451∗∗∗

(0.0059) (0.0069) (0.0108) (0.0119)

Constant 0.0174∗∗∗ 0.1003∗∗∗

(0.0013) (0.0020)

Observations 2242059 1933070 2242059 1933070

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows the �rst stage estimation results for our di�erent 2SLS speci�cations using an
alternative arbitrage de�nition. Columns (1) and (2) show how logPrivate is a�ected by our instrumental
variables, without and with builder, proposer, and builder × proposer �xed e�ects. Columns (3) and (4)
show analogous results for logRev. All standard errors are clustered at the builder × proposer level.

Table 10: First Stage Regression Robustness Results Using Alternative Arbitrage
De�nition
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Builder Pro�t Share θB,t

(1) (2) (3) (4)
OLS No FE OLS FE IV No FE IV FE

logPrivatet 0.106∗∗∗ 0.0847∗∗∗ 1.283∗∗∗ 0.964∗∗∗

(0.00937) (0.0110) (0.186) (0.226)

logRevt 0.0210∗∗∗ 0.0222∗∗∗ -0.464∗∗∗ -0.317∗∗∗

(0.00317) (0.00430) (0.0862) (0.102)

Constant 0.0234∗∗∗ 0.0513∗∗∗

(0.00251) (0.00660)

N 2242059 1933070 2242059 1933070
F Statistic 177.95 93.52
Robust F Statistic 63.502 25.051

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows our multivariate estimation results when the builder pro�t share is the dependent
variable, using an alternative arbitrage de�nition. Columns (1) and (2) show OLS results, without and
with builder, proposer and builder × proposer �xed e�ects. Columns (3) and (4) show 2SLS results,
without and with builder, proposer, and builder × proposer �xed e�ects, respectively. All standard errors
are clustered at the builder × proposer level. The instrumental variables are Hackedt and Crisist.

Table 11: OLS and Two-Stage Least Squares Using Alternative Arbitrage De�nition
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