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eAppendix A.  Notation and simulation procedures  

eA.1. Notation and technical details  

eA.2.1. Optimality (step IV.4.1 described below) 

RTARs balance treating, providing the (likely) best treatment on day 𝑑𝑑, with learning, 

trying (currently) inferior arms to learn about endpoint rates so that better decisions can be made 

about all future patients, including those after the trial. For many reasons, positive endpoints and 

knowledge is better now than in the future, so we slightly discount future endpoints by a factor, 

𝛿𝛿, where 𝛿𝛿 ∈ (0, 1). 

We represent knowledge about each arm by a (Bayesian) posterior distribution, a Beta 

distribution, with parameters 𝛼𝛼𝑎𝑎𝑎𝑎 and 𝛽𝛽𝑎𝑎𝑎𝑎, for arm 𝑎𝑎 based on endpoints observed up to day 𝑑𝑑. 

Gittins [e1] proved that the optimal balance between treating and learning is to compute a 

“Gittins index” for each arm and assign patients to the arm with the lowest index. (We are 

minimizing mortality, so lower is better.) We compute the Gittins index by comparing the 

“rewards” from a (currently) uncertain arm to the rewards from assigning patients to an arm 

where the endpoint rate is the Gittins index, 𝐺𝐺(𝛼𝛼𝑎𝑎𝑎𝑎,𝛽𝛽𝑎𝑎𝑎𝑎). For the trials we analyze, “rewards” is 

mortality (GUSTO-1 and EUROPA) or another negative event (EUROPA). Fewer 

mortalities/negative-events are better. We write this value as 𝐺𝐺𝑎𝑎𝑎𝑎 for short. 𝐺𝐺𝑎𝑎𝑎𝑎 represents the 

comparative daily rewards for an arm in which the anticipated endpoint is known with certainty. 

Let 𝑅𝑅(𝛼𝛼𝑎𝑎𝑎𝑎,𝛽𝛽𝑎𝑎𝑎𝑎) be the expected discounted rewards for acting optimally on day 𝑑𝑑 and all 

future days. We compare an uncertain arm to a certain arm to compute the Gittins index. In this 

comparison, the rewards for day 𝑑𝑑 are related to 𝐺𝐺𝑎𝑎𝑎𝑎 and the rewards for day 𝑑𝑑 + 1 by the 

Bellman equation. See derivation in [e2, e3]. 

𝑅𝑅(𝛼𝛼𝑎𝑎𝑎𝑎 ,𝛽𝛽𝑎𝑎𝑎𝑎) = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐺𝐺𝑎𝑎𝑎𝑎

1 − 𝛿𝛿
,

𝛼𝛼𝑎𝑎𝑎𝑎
𝛼𝛼𝑎𝑎𝑎𝑎 + 𝛽𝛽𝑎𝑎𝑎𝑎

[1 + 𝑎𝑎𝑅𝑅(𝛼𝛼𝑎𝑎𝑎𝑎 + 1,𝛽𝛽𝑎𝑎𝑎𝑎)] +
𝛽𝛽𝑎𝑎𝑎𝑎

𝛼𝛼𝑎𝑎𝑎𝑎 + 𝛽𝛽𝑎𝑎𝑎𝑎
𝛿𝛿𝑅𝑅(𝛼𝛼𝑎𝑎𝑎𝑎 ,𝛽𝛽𝑎𝑎𝑎𝑎 + 1)� 

There is no analytical solution to this Bellman equation, but the 𝐺𝐺(𝛼𝛼𝑎𝑎𝑎𝑎,𝛽𝛽𝑎𝑎𝑎𝑎)’s are easy to 

compute numerically. We do the numerical calculations and store a table of Gittins indices by 𝛼𝛼 

and 𝛽𝛽. 

The Gittins solution is provably optimal if one patient is assigned on day 𝑑𝑑 and if the 

endpoint for patients assigned on day 𝑑𝑑 is observed before assignments on day 𝑑𝑑 + 1. The 
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Gittins solution becomes an heuristic algorithm, which we hope will reduce mortality relative to 

an RCT or the block-based FLGI, when more than one patient is assigned on day 𝑑𝑑 and when 

there are delays in observed endpoints. This is an empirical question. The main paper tests 

whether the approximate optimal solution provides benefits relative to an RCT, the previously-

proposed block-based FLGI solution, and an 𝜂𝜂-variant. 

Future research might improve assignments with the solution to a fully optimal Bellman 

equation that accounts for multiple patients on day 𝑑𝑑 and delays in endpoints. Thus, all results 

for the (hopefully) approximately-optimal RTAR in this paper are conservative relative to the 

solution to such a Bellman equation. Note that one way of handling delays is to change the 

discount rate, 𝛿𝛿, to reflect a 30-day lag in updating. Fortunately, for our data, the Gittins solution 

appears to be robust to changes in the discount rate within a reasonable range suggesting that the 

loss of optimality due to delays may not be severe. Another heuristic might be to modify the 

RTAR to use the FLGI within each day 𝑑𝑑 for which multiple patients are assigned. Such a 

variant, and many other variants, are readily explored by modifying our resampling simulation 

code. We did not explore all variations to avoid overfitting the empirical data. 

eA.1.2. Learning (step IV.4.3) 

The learning step is based on updating the Beta priors, 𝛼𝛼𝑎𝑎𝑎𝑎 and 𝛽𝛽𝑎𝑎𝑎𝑎, with observations of 

the endpoints at day 𝑑𝑑. (The Beta priors are updated at the end of day 𝑑𝑑, patients assignments at 

the beginning of day 𝑑𝑑 are based on all data up to, but not including, endpoints observed on day 

𝑑𝑑.) Assuming the endpoints are observations from a Bernoulli process with stationary endpoint 

rates, the updating is simple and quick. When one endpoint is observed per day:  

𝛼𝛼𝑎𝑎,𝑎𝑎+1 = 𝛼𝛼𝑎𝑎𝑎𝑎 + 1, 𝛽𝛽𝑎𝑎,𝑎𝑎+1 = 𝛽𝛽𝑎𝑎𝑎𝑎 if the endpoint is a mortality 

𝛼𝛼𝑎𝑎,𝑎𝑎+1 = 𝛼𝛼𝑎𝑎𝑎𝑎, 𝛽𝛽𝑎𝑎,𝑎𝑎+1 = 𝛽𝛽𝑎𝑎𝑎𝑎 + 1 if the endpoint is survival 

If more than one endpoint is observed at the end of day 𝑑𝑑, say 𝑚𝑚𝑚𝑚𝑎𝑎 mortalities and 𝑚𝑚𝑠𝑠𝑎𝑎 survivals, 

then we update using 𝑚𝑚𝑚𝑚𝑎𝑎 and 𝑚𝑚𝑠𝑠𝑎𝑎. 

eA.2. Endpoints  
In GUSTO-1, the endpoint is death or survival at 30-days since randomization. In 

EUROPA, the endpoint is a composite of cardiovascular mortality, non-fatal MI, and 

resuscitated cardiac arrest at any point in the trial. 
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eA.3. Simulation procedures 
The RTAR multi-arm bandit (MAB) simulation can be run for any number of replicates. 

The number of replicates is set in the file “Parameters.R.” All reported results in the manuscript 

are results averaged across 200 replicates. The RTAR MAB code is in the file “MAB.R.” The 𝜂𝜂-

variant follows the same procedure except that, with probability 𝜂𝜂, patients are assigned as in an 

RCT (equally likely) until the arm reaches a pre-defined minimum number of patients. With 

probability 1 − 𝜂𝜂𝑘𝑘𝑎𝑎, patients are assigned with the RTAR MAB. 𝑘𝑘𝑎𝑎 is the number of arms that 

have not yet reached the minimum number of patients at the start of day 𝑑𝑑. The block-based 

forward-looking Gittins index (FLGI) algorithm is described in [e22]. In the block-based FLGI 

algorithm, patients are randomized in blocks. The code is available from the authors. We provide 

here the conceptual steps in the RTAR resampling simulations.. 

Step I. Load parameters and set seed.  

 When the parameter file indicates that a single replicate is to be run, the system uses a 

fixed seed. When more than one replicate is to be run, the system uses different random seeds in 

each replicate. Results are averaged across replicates. In the case of confidence intervals, we note 

the values where 2.5% are below (lower) or 2.5% are above (upper) the confidence limits. 

Step II. Load support functions. 

Step III. Load data. 

Step IV. Loop over all replicates (this the main part of the code)  

    Step IV.1. Build the pools of patients for this replicate. 

The original RCTs (GUSTO-1 and EUROPA) assigned one set of patients to each arm 

(treatment). We refer to each of these sets of patients as a “pool of patients” for that arm. 

These pools will be used in step IV.4.2, when the RTAR MAB algorithm draws (with 

replacement) from these pools when making its assignments. 

    Step IV.2. Load priors for 𝛼𝛼𝑎𝑎(d) and 𝛽𝛽𝑎𝑎(𝑑𝑑) for this replicate. 

These priors are set in the file “Parameters.R.” 

Step IV.3. Initialize intermediate data structures  

See the file “Data dictionary.txt” for details on the intermediate variables. 

Step IV.4. For each day 𝑑𝑑 of the trial in this replicate, perform the following:  
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Step IV.4.1 DECIDE: select arm 𝑎𝑎𝑎𝑎∗  to use on day 𝑑𝑑. This is the optimality step. 

Select the optimal treatment arm, 𝑎𝑎𝑎𝑎∗ , given current 𝛼𝛼𝑎𝑎(𝑑𝑑) and 𝛽𝛽𝑎𝑎(𝑑𝑑) parameters of the 

Beta distribution over treatment-arm endpoint rates. The parameters are based on all 

endpoints observed at the start of day 𝑑𝑑. The RTAR algorithm chooses the arm with the 

largest Gittins index, 𝐺𝐺𝑎𝑎𝑎𝑎. 𝐺𝐺𝑎𝑎𝑎𝑎 is a pre-computed tabled function 𝛼𝛼𝑎𝑎(𝑑𝑑) and 𝛽𝛽𝑎𝑎(𝑑𝑑). The 

Gittins index optimally balances, on a daily basis, the amount of treating and learning the 

system does [e2, e3]. For details on the optimality step, please refer to §e3.2. 
 

Step IV.4.2. RESAMPLING PATIENTS: The RTAR MAB draws patients from the pool of 

arm 𝑎𝑎𝑎𝑎∗ . 

Compute the number of patients 𝑁𝑁𝑎𝑎 that were randomized by the RCT on day 𝑑𝑑.  

Assign 𝑁𝑁𝑎𝑎 patients to the optimal treatment arm, 𝑎𝑎𝑎𝑎∗ , by drawing with replacement 𝑁𝑁𝑎𝑎 

patients from the pool of patients that were randomized by the original RCT to the 

treatment 𝑎𝑎𝑎𝑎∗ . 
 

Step IV.4.3. LEARN  

For each treatment arm, learn from the endpoints observed for all the patients that had 

been assigned to that treatment arm and for whom endpoints have been observed by the 

start of day 𝑑𝑑. Update 𝛼𝛼𝑎𝑎(𝑑𝑑) and 𝛽𝛽𝑎𝑎(𝑑𝑑) as described in §e3.2. 

Step IV.5. Summarize results of the original RCT.  

Step IV.6. Summarize the results of this RTAR replicate. 

Step IV.7. Save all outputs to .csv files. 
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eAppendix B.   Statistical concepts and potential adaptivity bias 

eB.1. Statistical concepts and potential adaptivity bias 

Learning in the Gittins framework is inherently Bayesian and, hence, interpretations are 

based on the posterior distribution (prior time likelihood normalized). Because the Bayesian 

prior does not depend on patient assignment, the posterior distribution of endpoint rates also does 

not depend on how the RTAR assigns patients. For RARs, the posterior likelihood can be 

factored into a term based on the observed endpoint conditioned on the assignment and a term 

based on the probability of assignment given the data from prior endpoints. Because the latter is 

a known function of the data, the second term does not depend upon the unknown endpoint 

probabilities (or parameters of the model) and can be removed from the likelihood [e4]. Thus, 

the Bayesian posterior likelihood and the posterior distribution do not depend explicitly on how 

the RAR assigns patients. All information about unequal sample sizes among arms is included in 

the likelihood function [e4, e5, e6]. 

Because the posterior likelihood does not depend upon how the RAR assigns patients, 

neither do typically-used maximum-likelihood estimators (MLE). MLEs are consistent 

estimators (asymptotically unbiased for large numbers of days), efficient estimators (no 

consistent estimator has a lower asymptotic mean-square error), and are asymptotically normal 

[e4, e7, e8, e9]. From a Bayesian perspective, MLEs are asymptotically equivalent to maximum 

posteriori estimation with weakly informative priors [e10]. The ability to factor the likelihood 

and the fact that the assignments are a known function of the data implies that MLEs can be 

reported and analyzed after the trial (or simulation) is completed, especially for large samples 

[e4, e7, e8, e9, e11].  

MLEs are consistent, but they may be biased for small samples [e9, e11, e12, e13, e14]. 

When adaptive designs are based on a small number of intermediate analyses, trialists use 

standard corrections for estimation biases and especially for Type 1 error inflation [e9, e12, e15, 

e16, e17]. Small-sample biases occur in many RARs and require advanced statistics or 

propensity scores [e4, e5, e8, e18]. Such biases are minimal for the large samples in GUSTO-1 

or EUROPA as reported in this paper [e4, e11, e18].  

Researchers estimate the distributions of statistics to evaluate RARs, such as the percent 

of times the superior arm is identified as superior, by sampling from a known model [e9, e12, 
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e13, e14, e19, e20, e21, e22, e23] or resampling with replacement when patient-by-patient 

endpoints are observed [e2, e11]. When we have patient-by-patient end-point observations, 

resampling generates the distribution of observations from which we compute means, medians, 

and confidence intervals for statistics such as odds ratios and endpoint rates. Resampling also 

provides the percent assignments to arms, the probability an arm is identified as superior, Type 2 

error (the probability of declaring a trial inconclusive when it is not), and the percent of adverse 

imbalance in arm assignments [e11, e23, e24, e25, e26]. Resampling statistics are consistent with 

the (Bayesian) likelihood principle. When the number of patients is sufficiently large, they are 

consistent with commonly-reported post-trial statistics. 

eB.2. Anticipated performance of an RTAR relative to an RCT 
 As an RTAR learns endpoint rates for each arm, we expect the RTAR to allocate more 

patients to the (endogenously-identified) superior arm. With more patients allocated to the supe-

rior arm and fewer patients allocated to inferior arms, we expect the negative endpoints to be 

fewer for RTARs relative to an RCT. When the endpoint is mortality, RTARs will lead to greater 

patient beneficence. 

When more patients are allocated to the superior arm, we expect that the (resampling) 

confidence intervals, relative to RCT confidence intervals, will be tighter for the superior arm at 

the expense of less-tight confidence intervals for the inferior arms. We also expect there will be 

more power to estimate superior-arm endpoint rates and less power for inferior-arms endpoint 

rates. 

For two arms, pairwise power will be maximal and odds-ratio confidence intervals are 

tightest for equal allocation. With three (or more) arms, predictions are less clear. With three 

arms, we expect that the RTAR will allocate fewer than 𝑁𝑁/3 patients to the worst inferior arm, 

resulting in more than 2𝑁𝑁/3 patients split between the superior arm and the second-best arm. 

Depending on the specific allocation, the superior-arm-to-inferior pairwise power may either 

increase or decrease relative to the corresponding RCT. Similarly, the confidence intervals for 

the odds ratios may be tighter or less-tight depending upon the specific allocation of patients to 

arms. We resolve this ambiguity empirically for the GUSTO-1 and EUROPA trials. 

By design, an 𝜂𝜂-variant approaches an RTAR as 𝜂𝜂 → 0 and approaches an RCT as 𝜂𝜂 → 1, 

thus we expect the performance of an 𝜂𝜂-variant to be between that of an RTAR and an RCT. By 

choosing 𝜂𝜂 between 0 and 1, the trialist can finetune emphasis on patient beneficence, estimating 
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the endpoint rates for the superior arm, estimating the endpoint rates for the inferior arms, power 

for endpoint rates, and power for odds ratios.   
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eAppendix C.   Design and principle results of the GUSTO-1 and EUROPA large-
scale randomized controlled trials 

eTable 1. Summary of the GUSTO-1 and EUROPA trials (conducted as RCTs) 

Trial details GUSTO-1 EUROPA 

Goal 
Compare streptokinase and tissue plasmin-
ogen activator thrombolytic strategies in 
the treatment of acute myocardial infarc-
tion 

Assess the effect of perindopril versus 
placebo on the combined endpoint of 
cardiovascular death, non-fatal MI, and 
resuscitated cardiac arrest in patients 
with stable coronary heart disease 

1st Enrollment December 27, 1990   27 October, 1997 

Termination   February 22, 1993 20 March, 2003 

Arms at the start of the 
trial 

Arm 1: t-PA, IV Heparin  

Arm 2: SK, IV Heparin  

Arm 3: t-PA+ SK, IV Heparin  

Arm 1: Perindopril  

Arm 2: Placebo 

Patients per randomly  
allocated treatment a  

t-PA, IV Heparin:          10,396 

SK, IV Heparin:            10,410    

t-PA+ SK, IV Heparin: 10,374 

Perindopril:  6,110 

Placebo:       6,108 

Primary endpoint Death from any cause at 30 days of follow-
up 

Composite of cardiovascular mortality, 
non-fatal MI, and resuscitated cardiac 
arrest during (mean) 4.2 year follow-up 

Incidence of the primary 
efficacy endpoints a  

t-PA, IV Heparin:             653 (6.3 %) 

SK, IV Heparin:               763 (7.3 %) 

t-PA+ SK, IV Heparin:    723 (7.0 %) 

Perindopril: 488 (8.0%) 

Placebo:      603 (9.9%) 

 

Eligibility 
Patients presenting to a participating hospi-
tal less < 6 hours after symptoms, with 
chest pain lasting at least 20 minutes and 
accompanied by electrocardiographic signs 
of ≥0.1mV of ST-segment elevation in two 
or more limb leads or ≥ 0.2 mV in two or 
more contiguous precordial leads 

Men and women ≥ 18 years with evi-
dence of coronary heart disease per MI, 
percutaneous or surgical coronary revas-
cularization, angiographic evidence ≥ 
70% narrowing of at least one major cor-
onary artery, or a history of typical chest 
pain in male patients with an abnormal 
stress test 

Exclusion 
Previous stroke, active bleeding, previous 
treatment with streptokinase or an-
istreplase, recent trauma or major surgery, 
previous participation in the trial, or non-
compressible vascular punctures 

 Clinically evident heart failure, planned 
revascularization procedure, hypoten-
sion, uncontrolled hypertension, use of 
ACE-inhibitors or angiotensin-2 receptor 
blockers in the last month, renal insuffi-
ciency, and serum potassium 

a Before removing observations with missing data. GUSTO-1 sample sizes after removing missing data are: 10,255 (arm 
1),10,268 (arm 2); 10,209 (arm 3)  
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eAppendix D.   Empirical details on the original RCTs and the RTAR simulations 

eD.1. Randomization and endpoints for GUSTO-1 and EUROPA RCTs 
eFigure 1 (for GUSTO-1) and eFigure 2 (for EUROPA) present the randomization of 

patients and the endpoints observed in both studies. The dots at the bottom of eFigure 1 and to 

the left of eFigure 2 correspond to the number of patients that were randomized by the RCT in 

each day of the GUSTO-1 trial (eFigure 1) and EUROPA trial (eFigure 2). This information is 

shown separately per treatment, using a color code. For GUSTO-1, blue corresponds to RCT 

randomizations to t-PA+Heparin (arm 1). Red corresponds to RCT randomizations to 

SK+Heparin (arm 2). Gray corresponds to RCT randomizations to t-PA+SK+Heparin (arm 3). 

For EUROPA, blue corresponds to RCT randomizations to Perindopril and orange corresponds 

to RCT randomizations to placebo. eFigures 1 and 2 also present, in the green solid line on the 

top of the figures, the number of endpoints that were observed in each day of the trial. This is the 

total number of daily endpoints summed over all arms in each study (GUSTO-1 had three arms; 

EUROPA had two arms).  

 

 
eFig. 1: RCT Randomizations (in blue, orange and gray) and endpoints (in green) in GUSTO-1   
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eFig. 2: RCT Randomizations (in blue and orange) and follow-up study’s endpoints (in green) in 

EUROPA  

eD.2. Evolution of RTAR arm assignments for GUSTO-1 and EUROPA  
eFigure 3summarizes arm assignments for (a) GUSTO-1 and (b) EUROPA. The purple, 

gold, and gray lines (GUSTO-1) or purple and gold lines (EUROPA) and the left vertical axis 

present the cumulative number of assignments over the duration of the trials. The horizontal axis 

represents the days of the trial. The RTAR adapts as data on patient endpoints become available. 

As the trial progresses, the RTAR automatically assigns more patients to the superior arm (gold 

line). By roughly the 500th day of the 819-day GUSTO-1 trial, and the 500th day of the 1,989-day 

EUROPA trial, the RTAR begins to assign almost all patients to the superior arm (gold line). In 

theory, a particularly adverse, but random, run of negative endpoints might lead an MAB to ex-

plore inferior arms after stabilization, but that probability is low. Future research might explore 

optimal stopping rules which could save even more lives than the RTAR studied in this paper.  
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A. GUSTO – 1  

  

B. EUROPA  

  

eFig. 3. Assignments to arms using the day-to-day RTAR 
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eAppendix E. Temporal Changes in Endpoint Rates 

Temporal changes in endpoint rates are a known issue with RARs and are potentially an 

issue with RTARs [e5, e9, e14, e21]. Suppose that there is a shock to the system, perhaps due to 

a mutation in a virus, a change in the demographics of patients, environmental changes, or the 

advent of auxiliary treatments. Such a temporal change might imply that the mortality rate is 

higher for later patients than for earlier patients.  

RARs tend to allocate relatively more patients to superior arms and fewer patients to 

inferior arms as the trial progresses. To visualize the effect, assume the temporal change happens 

midway through the number of patients in the trial. For an RCT, the estimated endpoint rates will 

be the average of the endpoint rates in the two periods. For RARs, because the superior-arm 

sample grows relative to the inferior-arm sample, the endpoint rate for the superior arm will be 

closer to the endpoint rate at the end of the trial and the endpoint rate for the inferior arm will be 

closer to the endpoint rate at the beginning of the trial. The net result will be that, relative to an 

RCT, the difference in endpoint rates between the superior and inferior arms will be 

overestimated. The logic generalizes, for example, we would observe similar effects when 

endpoint rates drift throughout the trial [e14, e21]. Prior research suggests that RARs are robust 

to drift as long as the drift is less than 25%, that the block-based MAB is less sensitive to drift 

than Thompson sampling, and that it is important to distinguish RAR biases from biases induced 

by early stopping [e9, e21]. 

RTARs are based on Gittins indices which react to observed endpoint rates [e27]. If there 

are sufficient post-shock observations, the Gittins indices will evolve after the shock causing the 

MAB to reexplore the inferior arms. As a result, RTARs might be better able to react to shocks 

than many RARs. 

To explore the impact of temporal changes in the endpoint rates on the performance of an 

RTAR, we use sample enrichment to simulate the effect of a change in endpoint rates midway 

through the trial (after half of the patients have been assigned). Patient enrichment is an accepted 

way to model temporal changes [e13] and provides equivalent implications to changing endpoint 

rates in simulations. With patient enrichment, we add sufficiently many patients to the pool for 

each arm such that the endpoint rate in each arm is the endpoint rate we seek to simulate.  

For example, the RCT endpoint rate (mortality) for arm 1 in GUSTO-1 is 0.0615 and we 

wish to simulate a shock of 5%. For arm 𝑎𝑎 in the first period, we draw from GUSTO-1 patients 
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for the days corresponding to the first 𝑁𝑁𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡/2 patients in GUSTO-1 arm 𝑎𝑎. We modify the 

pool of patients from which we draw patients for the days corresponding to the second 𝑁𝑁𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡/2 

patients in the GUSTO-1 trial. A 5% increase in 0.0615 is 0.0646, an increase of 0.0031 in the 

mortality rate. To maintain consistency with the literature, we increase all arms by 0.0031 

resulting in a vector of endpoint rates of [0.0646, 0.0753, 0.0717] for arms 1, 2, and 3, 

respectively.  

eFigure 4 illustrates how the Gittins index changes during the trial for two separate 

GUSTO-1 simulations. A change in the Gittins index indicates that the arm is being used – when 

an arm is used, the Gittins index is updated with the end-outcome. For example, the left pane of 

eFigure 4 shows that when there are no shocks, the RTAR algorithm for this replicate stabilizes 

slightly before the 500th day of the trial, i.e., the RTAR stops assigning the two worst arms (arms 

2 and 3). After the 500th day, the Gittins indices for arms 2 and 3 do not change as represented by 

the flat green and red lines. Note also that the ranking of the three arms also does not change.  

 
eFig. 4. Gittins indices indicating assignments to arms using the day-to-day RTAR for one replicate of the 

GUSTO-1 data in the absence (left) and presence (right) of a 25% shock. 

Separately, in another replicate, we introduced a 25% shock after 50% of the patients are 

assigned (day 530). The results, shown in the right pane of eFigure 4, indicates that the Gittins 

indices driving RTAR assignments have stabilized for this replicate around the 450th day 

(represented by the flat red and green lines for the inferior arms). Around day 560 (when the first 

30-day after-shock GUSTO endpoint-outcomes were observed), the index detects changes in 

mortality rates and the RTAR returns to using all arms (trying first the red arm and then the 

green arm, both inferior). This is represented by changes in the green, blue and red lines. By day 

730, the RTAR algorithm has sufficiently explored and learned about the arms’ endpoint rates 

given the new mortality rates (post shock). Assignments again stabilize, and RTAR assigns 
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patients only to the arm it has automatically determined is the best arm (arm 1, blue line). The 

green and red lines for arms 2 and 3 become flat, representing no new patients being assigned to 

arms 2 and 3. The data for shock levels from 5% to 25% are provided in eTable 2. For 

exploratory research on MABs under temporal changes see [e28, e29, e30, e31]. 

eTable 2: The effect of temporal changes (temporal shock) for an RTAR and an RCT using 
sample enrichment of the GUSTO-1 trial  

Shock 
 

Arm 1 
Std 
Dev 

Arm 1 
Arm 2 

Std 
Dev 

Arm 2 
Arm 3 

Std 
Dev 

Arm 2 

Arm 
1:2 

Arm 
1:3 

Arm 
2:3 

5% Mortality rate at start of trial 0.0620 0.0034 0.0720 0.0036 0.0690 0.0035 0.0100 0.0070 0.0030 
 Mortality rate at end of trial 0.0651 0.0034 0.0751 0.0037 0.0721 0.0036 0.0100 0.0070 0.0030 
 Mortality rate RCT 0.0636 0.0017 0.0736 0.0048 0.0706 0.0040 0.0100 0.0070 0.0030 
 Mortality rate RTAR 0.0637 0.0017 0.0747 0.0049 0.0720 0.0040 0.0111 0.0083 0.0028 
 Percent bias vs. RCT 0.16%  1.62%  2.02%  10.89% 18.88% -7.76% 
 Patients pre shock, RTAR 8,068  2,337  3,068      Patients post shock, RTAR 11,913  574  1,046      Patients to arm, RTAR 19,981  2,911  4,114     

10% Mortality rate at start of trial 0.0620 0.0034 0.0720 0.0036 0.0690 0.0035 0.0100 0.0070 0.0030 
 Mortality rate at end of trial 0.0682 0.0035 0.0782 0.0037 0.0752 0.0037 0.0100 0.0070 0.0030 
 Mortality rate RCT 0.0651 0.0018 0.0751 0.0047 0.0721 0.0037 0.0100 0.0070 0.0030 
 Mortality rate RTAR 0.0655 0.0018 0.0766 0.0047 0.0725 0.0037 0.0111 0.0070 0.0041 
 Percent bias vs. RCT 0.57%  1.97%  0.55%  11.13% 0.41% 36.12% 
 Patients pre shock, RTAR 8,171  2,217  3,085      Patients post shock, RTAR 10,702  983  1,848      Patients to arm, RTAR 18,873  3,200  4,933     

15% Mortality rate at start of trial 0.0620 0.0034 0.0720 0.0036 0.0690 0.0035 0.0100 0.0070 0.0030 
 Mortality rate at end of trial 0.0713 0.0036 0.0813 0.0038 0.0783 0.0038 0.0100 0.0070 0.0030 
 Mortality rate RCT 0.0667 0.0018 0.0767 0.0045 0.0737 0.0037 0.0100 0.0070 0.0030 
 Mortality rate RTAR 0.0671 0.0018 0.0781 0.0045 0.0742 0.0037 0.0109 0.0071 0.0038 
 Percent bias vs. RCT 0.71%  1.85%  0.79%  9.46% 1.57% 27.88% 
 Patients pre shock, RTAR 8,157  2,194  3,122      Patients post shock, RTAR 10,252  1,314  1,967      Patients to arm, RTAR 18,409  3,508  5,089     

20% Mortality rate at start of trial 0.0620 0.0034 0.0720 0.0036 0.0690 0.0035 0.0100 0.0070 0.0030 
 Mortality rate at end of trial 0.0744 0.0037 0.0844 0.0039 0.0814 0.0038 0.0100 0.0070 0.0030 
 Mortality rate RCT 0.0682 0.0019 0.0782 0.0043 0.0752 0.0036 0.0100 0.0070 0.0030 
 Mortality rate RTAR 0.0684 0.0019 0.0791 0.0043 0.0756 0.0036 0.0106 0.0072 0.0035 
 Percent bias vs. RCT 0.35%  1.11%  0.52%  6.32% 2.17% 16.00% 
 Patients pre shock, RTAR 8,132  2,254  3,087      Patients post shock, RTAR 9,491  1,729  2,312      Patients to arm, RTAR 17,623  3,984  5,399     

25% Mortality rate at start of trial 0.0620 0.0034 0.0720 0.0036 0.0690 0.0035 0.0100 0.0070 0.0030 
 Mortality rate at end of trial 0.0775 0.0037 0.0875 0.0039 0.0845 0.0039 0.0100 0.0070 0.0030 
 Mortality rate RCT 0.0698 0.0019 0.0798 0.0042 0.0768 0.0037 0.0100 0.0070 0.0030 
 Mortality rate RTAR 0.0703 0.0019 0.0812 0.0042 0.0775 0.0037 0.0109 0.0072 0.0037 
 Percent bias vs. RCT 0.86%  1.83%  1.02%  8.56% 2.65% 22.37% 
 Patients pre shock, RTAR 8,100  2,377  2,996      Patients post shock, RTAR 9,359  1,866  2,308      Patients to arm, RTAR 17,459  4,243  5,303     
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eAppendix F.  Early stopping, biomarkers, and discount rates  
eF.1. Early stopping 

An RTAR method adapts during the trial (increasing sample in the superior arm and 

reducing sample in inferior arms). By design, without early-stopping the trial the total sample 

size in the overall trial is not reduced. RTARs might be further be improved by addressing 

stopping early for futility or for compelling results. Optimal stopping in MABs is a challenging 

problem. One approach might be to adopt alpha-spending considerations [e32].  

eF.2. Biomarkers and earlier adaptivity 
An RTAR, with or without early stopping, saves lives because. relative to an RCT, the 

RTAR learns quickly to assign more sample to the superior arm. The GUSTO-1 and EUROPA 

simulations suggest that an RTAR has advantages even when there are delays in observing 

endpoints. If endpoints could be observed sooner, the advantages of an RTAR might improve. 

One potential practical solution to earlier observation might be to observe biomarkers and learn 

how (whether) the biomarkers predict endpoints. Adapting arm assignments based on biomarkers 

complicates the technical problem because, when we observe a biomarker, we observe a 

probabilistic prediction of the endpoint outcome. Adapting on biomarkers transforms the MAB 

to a partially-observable Markov dynamic program (POMDP). Such POMDPs have been studied 

in other contexts and provide promising results [e33]. 

eF.3. Sensitivity to “discount” rates 
A “discount” rate enables an MAB to value current (positive) outcomes more than future 

(positive) outcomes. By using a discount rate, the MAB bases the treating-versus-learning 

decisions on both trial-based and post-trial patients. For RTARs and for MABs in general, unlike 

in financial decisions, the amount by which future outcomes are discounted is an ethical 

decision. For our simulations we chose a discount rate (𝛿𝛿 = 0.9999) that values future endpoint 

outcomes almost as much as current endpoint outcomes. A trialist might want to discount future 

endpoint outcomes more or less. To aid the trialist, we ran simulations with 200 replicates for 

discount rates of 𝛿𝛿 = 0.95, 0.99, 0.999, 0.9999, and 0.99995. The RTAR that we simulated 

appears to be robust to these changes in the discount rate. We hope future research will explore 

this sensitivity further. 
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eTable 3: Sensitivity to the discount parameter 

Discount 
parameter Arm Mean 

Endpoint Rate CI Lower CI Upper Sample 
Allocated Events 

0.95000 Arm 1 0.062 0.059 0.065 23,253 1,431 
 Arm 2 0.072 0.066 0.089 3,086 221 
 Arm 3 0.069 0.064 0.080 4,393 302 

0.99000 Arm 1 0.062 0.059 0.068 22,947 1,413 
 Arm 2 0.072 0.066 0.090 3,002 216 
 Arm 3 0.068 0.063 0.081 4,783 327 

0.99900 Arm 1 0.062 0.059 0.066 23,420 1,440 
 Arm 2 0.072 0.066 0.097 3,021 218 
 Arm 3 0.069 0.065 0.086 4,291 2966 

0.99990 Arm 1 0.061 0.058 0.066 23,538 1,446 
 Arm 2 0.072 0.066 0.089 2,922 210 
 Arm 3 0.069 0.064 0.089 4,272 294 

0.99995 Arm 1 0.061 0.059 0.065 23,442 1.441 
 Arm 2 0.072 0.066 0.094 2,864 207 
 Arm 3 0.069 0.064 0.085 4,426 304 
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