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Online Appendix A: Many States and Actions

Example 1 illustrates the construction of the optimal experiment with many actions and

two types (Lemma 4).

Example 1 (Noncongruent Types) Consider uniform match values (ui = 1 for all i =

1, 2, 3) and two types, θL = (1/10, 1/10, 8/10) and θH = (4/10, 3/10, 3/10). These types

are noncongruent: without additional information, θH would choose action a1 and θ
L would

choose a3. The likelihood ratios θ
L
i /θ

H
i are (1/4, 1/3, 8/3). This implies ib = 2, whereas

is ∈ {1, 2} depending on the prior probability γ of the high type. For γ ∈ [0, 1/4] and

γ ∈ [1/4, 1/3], the high type obtains positive rents. Furthermore, for γ ≥ 1/4, the partially

informative experiment E(θL) involves dropping signal s1. The optimal experiment E(θL) as

a function of γ is given by

E(θL) s1 s2 s3

ω1 1 0 0

ω2 0 1 0

ω3 0 0 1

if γ < 1/4,

E(θL) s1 s2 s3

ω1 0 1/4 3/4

ω2 0 1 0

ω3 0 0 1

if γ ∈ [1/4, 1/3] ,

E(θL) s1 s2 s3

ω1 0 1/4 3/4

ω2 0 1/2 1/2

ω3 0 0 1

if γ > 1/3.

Example 2 illustrates how congruent, but not strongly congruent beliefs, allow for surplus

extraction. In the example, the two types deem state ω2 the most likely. Thus the types are

congruent but not strongly congruent, as they disagree on the relative likelihood of states

ω1 and ω3.

Example 2 (Congruent Priors) Consider uniform match values (ui = 1 for all i =

1, 2, 3) and two types, θL = (5/10, 1/10, 4/10) and θH = (4/10, 3/10, 3/10). Because ib = 1,

the optimal experiment E(θL) as a function of γ is given by

E(θL) s1 s2 s3

ω1 1 0 0

ω2 0 1 0

ω3 0 0 1

if γ ≤ 1/3,

E(θL) s1 s2 s3

ω1 1 0 0

ω2 0 1/2 1/2

ω3 0 0 1

if γ > 1/3,

and the high type obtains positive rents only if γ < 1/3.



Example 3 shows that the relaxed approach is not valid with many types. In the example

below with three types, no experiment E(θ1) can lead both types θ2 and θ3 to follow the

action recommended by every signal. Thus, the profits in the relaxed problem are strictly

greater than those in original problem.

Example 3 (Many Types and Actions) Consider uniform match values (ui = 1 for all

i = 1, 2, 3) and three types, θ1 = (1/6, 1/6, 4/6), θ2 = (1/2, 1/2, 0), and θ3 = (1/2, 0, 1/2),

which are all equally likely. In the relaxed problem, the monopolist sells the fully informative

experiment to types θ2 and θ3. Type θ1 is offered the partially informative experiment

E(θ1) s1 s2 s3

ω1 1/2 0 1/2

ω2 0 1 0

ω3 0 0 1

,

and the seller’s revenues are equal to 5/12. However, if type θ2 purchased experiment E(θ1),

he would choose action a1 when observing signal s3. In the solution to the full problem, which

we can construct by a guess-and-verify approach, the optimal experiment E(θ1) consists of

E(θ1) s1 s2 s3

ω1 1/2 0 1/2

ω2 1/2 1/2 0

ω3 0 0 1

, (46)

which yields revenues of 1/3, i.e., revenues are strictly lower in the relaxed program.
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Online Appendix B: More Actions than States
We consider a setting with two types, and we relax the assumption of matching state-

action payoffs. In particular, we consider the following example with two types, two states,

and three actions. The data buyer’s payoff is given by

u (ω, a) a1 a2 a3

ω1 1 0 4/5

ω2 0 1 4/5

.

Thus, action ai is the optimal action in state ωi, but action a3 provides a lower bound on

the payoffs that is uniform across states– an insurance action. Let the two types be given

by θL = (1/10, 9/10) and θH = (6/10, 4/10). As the results of Lemma 1 do not rely on

matching payoffs, we know type θH receives full information, E(θH) = E, his incentive

constraint binds, and the participation constraint of type θL binds.

For the case γ , Pr
[
θ = θH

]
= 3/4, an optimal menu contains the experiment

E(θL) s1 s2 s3

ω1 1/3 2/15 8/15

ω2 0 4/5 1/5

(47)

at a price t(θL) = 1/25 and the experiment E at a price t(θH) = 1/5. The optimal menu is

illustrated in Figure 10.

Figure 10: Optimal Menu

This menu has the following notable properties: (i) the seller extracts all the surplus from

both types; (ii) type θL follows the recommendation of every signal in E(θL); (iii) type θH , if



purchasing experiment E(θL), is indifferent between action a2 and action a3 when observing

signal s2 as well as between a1 and a3 when observing signal s3; and (iv) the optimal profits

are strictly lower than those in the relaxed problem.

Indeed, ignoring the off-path obedience constraints, the optimal menu is discriminatory,

and the seller extracts all the rents by offering the experiment

E(θL) s1 s2

ω1 2/5 3/5

ω2 0 1

(48)

at a price t(θL) = 1/25 and the experiment E at a price t(θH) = 2/5.

In the full problem, the seller cannot turn experiment E(θL) in (47) into the more in-

formative one in (48). If she did, buyer type θH would choose action a3 after deviating

and observing signal s2.27 In other words, the seller extracts the surplus, but at the cost of

additional distortion– notably, there is no “1”entry in (47).

Interestingly, action a3 may not be induced in an optimal menu yet still restrict the

seller. Indeed, if we modify the above example by setting γ = 2/3, an optimal menu can be

calculated to contain the experiment

E(θL) s1 s2

ω1 5/6 1/6

ω2 0 1

(49)

at a price t(θL) = 1/12 and the experiment E at a price of t(θH) = 11/60 < 1/5 = V
(
θH , E

)
.

As before, type θH is indifferent between a2 and a3 after deviating to E(θL) and observing

s2. Contrary to our earlier examples, the high type makes positive rents despite the seller’s

discriminatory menu offering.

To emphasize, action a3 is not chosen in an optimal menu by either type, yet it looms large

and prevents the seller from extracting the full surplus. In particular, the seller would like to

reduce π11 in order to relax the high type’s incentive constraint and increase tH . However,

by doing so she would induce type θH to choose action a3 after s2. This means that the high

type’s marginal benefit from a probability shift from π11 to π12 is θ
H
1 (−1 + 4/5) = −3/25,

while the corresponding marginal change in price tL is −θL1 = −1/10. Therefore, tH can only

increase at rate 1/50, which is not profitable for the seller when the fraction of high types

27Similarly, one can show that type θH must be indifferent after signal s3 in experiment (47). The argument
here is by contradiction: if he strictly preferred action a3, the seller could make the experiment more valuable
for θL without changing its value for θH ; and if he strictly preferred a1, the seller could rearrange all signals
and relax the incentive-compatibility constraint.



is γ = 2/3. If both types were instead required to follow the signals’recommendations, the

high type’s misreporting value would change at rate −θH1 = −3/5, allowing the seller to

increase tH at the profitable rate of 1/2. The kink in the “exchange rate”when the high

type is indifferent among several actions prevents the seller from making the modification.

To reinforce the point, maintain the assumption γ = 2/3 but exclude action a3 from the

set of available actions. The optimal menu is again given by the experiment in (48), which

is now less informative than (49), but allows the seller to extract all the rents.
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Online Appendix C: Sequential Design

We show that sequential design of experiments can increase the seller’s revenues in our

leading binary-type example. We focus on the simplest instance of a dynamic protocol,

whereby the seller first releases a free informative experiment to the buyer and then, without

observing the realized signal, offers a menu of (experiment, price) pairs from which to choose.

Let Ω = {ω1, ω2}, A = {a1, a2}, and assume uniform match values, i.e.,

u (ωi, aj) = I[i=j].

Consider two equally likely types with interim beliefs θL = 1/8 and θH = 1/4,respectively,

where θ , Pr [ω1].

Because the two types are congruent, an optimal static mechanism (Proposition 3) con-

tains only the fully informative experiment. In the current example, the seller is indifferent

between charging prices t = 1/8 and t = 1/4. In either case, the monopoly profits are

π∗static = 1/8.

Consider the following sequential scheme. First, the seller reveals an outcome of the

following experiment E0 at no cost to the buyer

E0 s1 s2

ω1 1 0

ω2 1/3 2/3

After observing signal s2, the buyer is convinced that the state is ω = ω2, which confirms

his prior, and does not buy further information. After realization s1, however, the buyer’s

beliefs are updated to

θL (s1) = 3/10, θH (s1) = 1/2.

At this point, the seller offers the fully informative experiment at a price t̄ = 3/10.

The key observation is that signal s1 under experiment E0 is more likely be realized for

the high type θH = 1/4 than for the low type θL = 1/8. In particular, the signal distribution

is given by

Pr
[
s1 | θL

]
=

5

12
, Pr

[
s1 | θH

]
=

1

2
.



As a consequence, the monopolist’s profit is given by

π∗dyn , t̄
(
γ Pr

[
s1 | θH

]
+ (1− γ) Pr

[
s1 | θL

])
= 11/80.

Thus, the sequential sale outperforms the static sale in this example, i.e.,

π∗dyn = 11/80 > 1/8 = π∗static.

Taking a step back, it is clear that the seller would ideally like to condition payments on

the realized states. In this case, she could charge a payment of 1 upon realization of state

ω1, which is the state less likely for either type. Both types would accept such a contract,

and the seller achieves the first-best profits. As we do not allow for the payments to be

made contingent on the realization of the state, a sequential mechanism essential represents

a costly instrument to (partially) circumvent this restriction.

In essence, the proposed sequential scheme charges a constant price t̄ = 3/10 upon

realization of signal s1. Because the signal is correlated with the state under experiment

E0, it occurs more frequently for the higher type, allowing the seller to effectively price

discriminate without ever giving the buyer a choice of experiment.

Finally, note that the seller could do better within the simple class of mechanisms that

initially release a free experiment, followed by a menu.

Intuitively, as the correlation between state and signal s1 becomes more precise (i.e., as

s1 becomes more informative), the seller’s ability to condition payments on states improves.

Ultimately, however, the seller must balance the ability to correlate payments with the

willingness to pay for supplemental information after observing signal s1 (e.g., the signal

cannot be arbitrarily precise).

To formalize the intuition, consider offering free experiments of the following form

E (x) s1 s2

ω1 1 0

ω2 1− x x

.

These experiments lead to posterior beliefs

θL (x) , Pr
[
s1 | θL

]
=

1

8− 7x
,

θH (x) , Pr
[
s1 | θH

]
=

1

4− 3x
.

These beliefs satisfy the condition 1/2 = γ ≥ θL (x) /θH (x) for all x. Therefore, after



releasing experiment E (x) the seller optimally offers the fully informative experiment Ē at

a price

t̄ (x) = min
{
θL (x) , 1− θH (x)

}
.

Finally, a straightforward calculation reveals that the seller’s profits are maximized by choos-

ing x such that θL (x) < 1/2 < θH (x). In particular, it is optimal for the seller to induce

the two types to have identical willingness to pay for the full information, i.e.,

θL (x∗) = 1− θH (x∗) .

The optimal experiment has

x∗ = 1− 1/
√

21 ≈ 0.781,

which is larger than x = 2/3, as used in the initial example, and yields profits π∗ = (7 +

2
√

21)/112 ≈ 0.144 that exceed 11/80, as computed above.


