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Abstract 

Drawing insights from the field of innovation economics, we discuss the likely 
competitive environment shaping generative AI advances. Central to our analysis are 
the concepts of appropriability—whether firms in the industry are able to control the 
knowledge generated by their innovations—and complementary assets—whether 
effective entry requires access to specialized infrastructure and capabilities to which 
incumbent firms can ration access. While the rapid improvements in AI foundation 
models promise transformative impacts across broad sectors of the economy, we 
argue that tight control over complementary assets will likely result in a concentrated 
market structure, as in past episodes of technological upheaval. We suggest the likely 
paths through which incumbent firms may restrict entry, confining newcomers to 
subordinate roles and stifling broad sectoral innovation. We conclude with 
speculations regarding how this oligopolistic future might be averted. Policy 
interventions aimed at fractionalizing or facilitating shared access to complementary 
assets might help preserve competition and incentives for extending the generative 
AI frontier. Ironically, the best hopes for a vibrant open source AI ecosystem might 
rest on the presence of a “rogue” technology giant, who might choose openness and 
engagement with smaller firms as a strategic weapon wielded against other 
incumbents. 
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1 Introduction 

The history of science and technology is a steady march punctuated by great inflection points (Kuhn 
1962). In such moments, the accumulation of knowledge about how humans can manipulate our 
world coalesces into novel technologies with the potential for great jumps in productivity. Like steam 
engines, airplanes, antibiotics, semiconductors, and the internet in previous eras, generative artificial 
intelligence (AI) has the potential to be the next major transformative technology.  

Interest in generative AI skyrocketed following the release of Open AI’s large language models (LLMs) 
for text (ChatGPT) and image generation (DALL-E) in the second half of 2022. ChatGPT’s uncanny 
ability to mimic human responses prompted individuals and firms to rethink what tasks might be aided 
or replaced by generative AI. Prominent business examples include novel protein design, writing 
software code, and weather forecasting. Meanwhile, individual consumers have embraced applications 
ranging from the mundane (automating email responses and shopping lists), to artistic (writing poetry, 
bedtime stories and screenplays), and skill building (e.g., personal tutors, coding copilots). As of 
early 2024, the GPT-4 model could pass the bar exam and a variety of Advanced Placement exams; 
score above the 93rd percentile on the SATs and above the 99th percentile on the GRE verbal exam; 
as well as perform a whole host of coding and programming challenges. In sum, there is little doubt 
that many industries—including law, information technology, education, and entertainment—are 
poised to experience large shocks to their labor and product markets. 

This new wave of “foundation” generative AI models (i.e. large-scale, pre-trained AI models built for 
diverse applications) possesses capabilities that are discontinuous improvements over previous 
generations of machine learning technologies. However, we do not yet understand whether or to what 
extent one or a few firm(s) will dominate the supply of foundational generative AI technologies. While 
regulators, investors, entrepreneurs, and managers face considerable uncertainty when attempting to 
forecast the broad societal impacts of AI, they must nonetheless engage in sober assessments of 
innovation and competition in this fledgling sector to shape it. Understanding the industrial 
organization of the industry that will power these applications strikes us as a legitimate and necessary 
topic for entrepreneurship and innovation policy. 

Rather than prognosticate about the depth and breadth of generative AI’s applications, this paper 
harnesses the accumulated wisdom of research in the field of innovation economics to venture (with 
some trepidation and many caveats) a prediction for the likely competitive environment in which generative 
AI advances will take place. How might the technological features of generative AI shape the extent 
of product market competition in the industry? How likely are deviations from perfect competition to 
result in blockaded entry and delayed innovation? And what will determine the viability of a vibrant 
“open source” ecosystem, as opposed to a more secretive, incumbent-driven oligopoly? To guide our 
analysis, we draw on Teece (1986), who gives primacy to the concepts of appropriability and 
complementary assets to identify the firms best able to profit from innovation: those first to market, 
follower firms, or those with formal rights to key assets (such as patents) or with related capabilities 
and assets that innovating firms require access to. Our central claim is that while formal intellectual property 
and secrecy are unlikely to durably prevent innovative firm entry, incumbent firms’ tight control over key complementary 
assets will likely usher in a highly concentrated market structure. Thus, incumbents will have the ability to 
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confine new entrants to the “application layer” of the industry in a pattern reminiscent of the 
smartphone industry, thus limiting widespread competition at the foundation layer of the generative 
AI stack. 

Studies of previous general purpose technologies such as the steam engine, factory electrification, 
machine tools, and computer programming provide useful lessons for the competitive paths likely to 
emerge in generative AI (Bresnahan and Trajtenberg 1995; David 1990; Rosenberg and Trajtenberg 
2004). As new and exciting as the early applications of AI may have been, they have mainly affected 
sectors that were either natively digital or had already experienced sustained digital transformation, 
such as internet search, digital advertising, customer relationship management, and protein structure 
prediction. For generative AI to reach its full technological potential, however, it will have to overcome 
bottlenecks that prevent invention in a broad set of application sectors, from agriculture to 
construction and financial services. These bottlenecks may be less technical in nature and more rooted 
in the incentive problems and adjustment costs that organizations face as they digitize operations 
(Iansiti and Lakhani 2020; Bresnahan 2024). An additional obstacle, and one central to the themes 
explored in this article, is that concentrated control in the upstream layer of the generative AI 
“technology stack” (defined precisely below) might well dim the incentives to innovate in the 
downstream application sectors. As a result, a flowering of AI innovation throughout the economy 
faces substantial headwinds. 

Industry predictions about the evolution of generative AI competition are quite varied but ultimately 
hinge on whether early leaders can establish a competitive “moat.” The flurry of new model releases 
has been matched only by claims and counter-claims of model superiority. Evaluating these statements 
is challenging, especially given the gold rush of venture capital money flowing into the industry.1 For 
example, in May 2023, a leaked internal Google memo titled “We have no moat, and neither does OpenAI” 
argued that the large and well-resourced leaders who pioneered the field using proprietary approaches 
would lose out to the nimbler open-source developers. Core to the argument was the idea that 
methods for improving and “fine tuning” open models were quickly dropping in cost.2 

On the other hand, early adoption patterns suggested that early movers and well-resourced 
incumbents were skilled at turning new technologies into compelling products. Consumer adoption 
reflected the dominance of OpenAI’s ChatGPT service, which was reported to have more than 100 
million monthly active users by January 2023 and 100 million weekly active users by November 2023, 
along with more than 2 million developers using its API.3 

One software startup CEO noted that having a “secret sauce” is rarely how defensible software 
businesses are made, a claim backed by ample historical experience.4 Today’s dominant technology 
platforms, including Google’s search engine, Meta’s social graph, and Amazon’s e-commerce 
platforms were all built on technologies that were well-understood by competitors and potential 
entrants. Rather, these firms locked in customers through superior execution (e.g., in the form of 

 
1 Even after excluding the $14 billion in funding that went to LLM leaders Open AI and Anthropic, Pitchbook data 
showed that the first three quarters of 2023 saw more than $7.4 billion in venture capital deals supporting generative AI 
startups (https://pitchbook.com/news/articles/generative-ai-startups-vc-deals-decline). 
2 https://www.semianalysis.com/p/google-we-have-no-moat-and-neither  
3 https://techcrunch.com/2023/11/06/openais-chatgpt-now-has-100-million-weekly-active-users/ 
4 https://www.airplane.dev/blog/openais-moat-is-stronger-than-you-think 
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compelling user interfaces), continuous innovation, and the harnessing of network effects. Further 
back, in industries from typesetting and aerospace to personal computing and disk drives, a small 
number of firms have often dominated in fast-growing industries despite astonishing performance 
improvements, cost reductions, and widespread technology diffusion. We draw on the insights gained 
in studying such breakthrough technologies to describe the forces likely to shape industry structure in 
generative AI and how innovation incentives might play out under different scenarios. 

We argue that tight control over specialized complementary assets is the most likely source of “moats” 
that would enable pioneering firms to durably entrench their dominant positions. We describe how 
producing and improving foundational generative AI models requires several interrelated 
complementary assets, six of which are highlighted in this essay: (1) the compute environment, (2) 
model-serving and inference capabilities, (3) safety and governance procedures, (4) the development 
of benchmarks and metrics, (5) access to massive quantities of non-public training data, and (6) data 
network effects—whereby users’ engagement with a model generates information that dynamically 
improves its performance. Given the potential for early success to beget further advantage along one 
or more of these dimensions, the prospects for a competitive market structure rest on the belief that 
public policy efforts will succeed in fractionalizing these assets or facilitating their broad sharing across 
a diverse set of ecosystem participants. Alas, determined interventions along these lines are likely to 
face strong political opposition. 

Ironically, a market structure characterized by oligopolistic control can perhaps best be averted 
through the actions of a single “rogue” technology giant. This rogue firm might pursue openness and 
engagement with smaller firms as a self-serving approach to improve its offerings in adjacent markets, 
or win the “war” for scarce AI talent. More generally, an open-access strategy might enable this firm 
to burnish its credentials as an AI technology leader, influencing standards and practices across the 
industry. Ordinarily, a maverick firm’s benevolence would be a thin reed on which to pin hopes for a 
democratized innovation ecosystem. However, that possibility deserves serious consideration in light 
of Meta, Inc.’s publicly professed commitment to open source—although doubts linger regarding the 
sustainability of this approach amid present and future competitive pressures. 

With or without a rogue firm, the locus of technological exploration is likely to be confined to the 
application layer, whereby startup entrants build services in the form of “fine-tuned” models running 
on top of the foundation models controlled by leading tech firms. A proper role for innovation and 
competition policy might be to ensure that the governance of this application layer guarantees 
academics and entrepreneurs enough freedom and pricing autonomy, lest these app stores of the 
future end up resembling gated communities rather than community gardens. 

Our paper begins with a technical primer on generative AI, describing the key technologies behind 
current-day generative AI models. Next, we lay out a framework for assessing the prospects for the 
emergence of a vibrant competitive landscape in generative AI, concluding that these prospects are 
rather dim for the foundation layer of the technological stack, but somewhat brighter for the 
application layer. We end by proposing policy “low-hanging fruits” that have the potential to help 
usher in more competition in this domain. 
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2 Technical Primer  

2.1 What do we mean by Generative AI? 

During the 2010s, progress in the field of machine learning resulted in the creation of models that 
excelled at predicting outcomes from input data. Deep learning and neural networks transformed the 
field during this period, enabling models to achieve high accuracy on tasks like financial fraud 
detection, image classification, and speech recognition.  

The recent revolution in generative AI builds on past achievements in machine learning using so-
called “foundation” models largely built using the newly developed transformer architecture. 
Foundation models are large-scale AI models that serve as the basis for a wide range of downstream 
applications. These models generate new content by learning from the patterns and structures present 
in the training data. During the training process, the model ingests vast amounts of text, images, or 
other forms of data, and breaks that data into “tokens” (e.g., word, pixel). In training, the model 
“learns” to predict the next token based on the input sequence. By iteratively refining its predictions, 
it can generate outputs that closely resemble the training data. Once trained, foundation models can 
be fine-tuned for specific tasks or used for open-ended generation of new content.  

What makes foundation models different than the previous generation of machine learning models is 
that they are “pre-trained” (i.e., they do not need to be trained using a specific dataset) and they are 
generic and context-independent (i.e., they are often powerful enough to perform a vast array of tasks 
without much additional training). For example, a language model like GPT-4 is extremely flexible 
and can perform varied tasks like language translation, text summarization, or question answering, 
with very little additional instruction. Alternatively, it can be used for creative writing tasks, such as 
generating stories, articles, or even code. Similarly, image-based foundation models like DALL-E can 
generate novel images based on textual descriptions, while audio-based models like AudioLM can 
generate music and speech. Foundation models are now being developed in a variety of other fields, 
such as robotics and biology. It is the versatility and adaptability of foundation models that have 
opened new possibilities for generative AI across various domains.  

Recently, companies like OpenAI have exposed the functionality of foundation models like GPT-4 to 
third parties so that they can build “plug in” modules to enhance the attributes of this leading 
foundation model. Therefore, a technology “stack” that might enable greater experimentation in 
generative AI applications is beginning to emerge (see Figure 1). At the bottom of the stack is the 
compute layer, which includes graphics processing units (GPUs) and a supporting technical 
infrastructure with many interrelated hardware, software, and data communication components. The 
second layer is composed of large amounts of data and the associated cloud storage infrastructure 
required to host these massive datasets. The third layer is the foundation model itself, which provides 
a general-purpose interface on top of which specific applications can be run. These models can either 
seem like powerful, almost magical “black boxes” or present themselves as transparent and 
customizable systems where developers have access to the model’s weights (the parameters learned 
during training that define how the model makes predictions) or can otherwise inspect it “under the 
hood.” The topmost layer is the application level, which facilitates interactions that allow end users to 
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access the functionality of the foundation model. It includes specialized applications enabling users to 
elicit answers from the underlying model in a specific domain or format. 

For illustration purposes, GPT-4 is a foundation model, while ChatGPT is a specific application 
allowing users to query GPT-4 with a chatbot interface.5 This design is reminiscent of the smartphone 
application stores where third-party developers leverage the functional features of devices and 
operating systems to develop targeted applications. Given their central position in the technology 
stack, foundation models can be a chokepoint for innovation and competition at the application level, 
and are therefore at the heart of generative AI policy debates. The central concern of this article is 
competition and control within the foundation model layer, but we will also attend to the effects that 
concentration at the foundation model layer could have for entry at the application layer, with the 
emergence of a vibrant AI application ecosystem hanging in the balance. 

Figure 1: The Generative AI Technology Stack 

 

2.2 Large Language Models (LLMs) 

Perhaps the most well-known of all foundation models is the Generative Pre-Trained Transformer 
(GPT) class of models from OpenAI, which belongs to a class of models called Large Language 
Models (LLMs) that are designed specifically to work with human language (and recently images and 
voice). Large Language Models (LLMs) are a subset of generative AI that analyze vast amounts of data 
to understand context, recognize patterns, and generate new content. By understanding how LLMs 
work, how they are trained, and the applications they enable, we can better grasp the potential and 
implications of generative AI for innovation and competition. 

The term “language” in LLMs refers to various forms of symbolic representation, including human 
languages, computer languages, and any other type of encoded meaning. At their core, LLMs are 

 
5 At the time of writing this manuscript, most models and applications have identical owners, so that the distinction 
between the two layers appears mostly semantic. But this soon could change, which is why we choose make the separation 
between model and application salient. 
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algorithms that predict the next word or token when fed a string of words, progressively building up 
syntax that a human could plausibly create. LLMs model the ingested training data as a multi-
dimensional space with numerous parameters, identifying artifacts (e.g., words, pixels) and their 
relationships to build new structures. Critical to the recent leap forward in generative AI is the 
transformer architecture, which adduces to traditional deep learning approaches an “attention 
mechanism” to discern contextual relevance—e.g., how the relationship between words (in the 
training data, prompts, or output) changes the likely meaning of a phrase (e.g., a machine learning 
model vs. a fashion model).6 

To understand how a model like GPT-4 works, it is useful to first take a deeper dive into the 
transformer architecture. The “M” in the LLM acronym stands for “Model,” i.e., the empirical 
derivation of a mathematical formula that best captures the input text, manipulated as numerical data. 
At its core, each model runs on a neural network, which consists of nodes arranged in layers 
interconnected with nodes in the adjacent layer (See Figure 2).  

Figure 2: Representation of a Neural Network in LLMs7 

 
Each node performs some computation, with the result passed forward to the adjacent interconnected 
nodes. Models also incorporate activation functions which are mappings applied to the weighted sum 
of inputs coming into a neuron. It introduces non-linearity into the neural network, allowing it to learn 
and model complex relationships between inputs and outputs. Each interconnection is given a certain 
“weight,” a multiplicative factor that captures the importance of the originating node’s result. The 

 
6 Grant Sanderson’s video series on deep learning provides an accessible introduction. See in particular Chapter 5, “But 
what is a GPT? Visual intro to transformers.” Available at https://www.youtube.com/watch?v=wjZofJX0v4M. 
7 From Yazici, Mahmut Taha, Shadi Basurra, and Mohamed Medhat Gaber. 2018. “Edge Machine Learning: Enabling 
Smart Internet of Things Applications.” Big Data and Cognitive Computing 2(3): 26. 
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numerical values are derived iteratively by “training” the neural network with large amounts of known 
text samples to minimize a loss function that captures the difference between the model’s output and 
the expected outcome. These weights and some other adjustable inputs called “biases” are collectively 
called “parameters” and have become a proxy for representing the complexity of the neural network 
and the number of factors used to predict an output. Industry observers often compare generative AI 
models by the number of parameters. GPT-3, for example, has 175 billion parameters, while GPT-4 
is estimated to have over a trillion. Meta’s latest Llama 3.1 model has a version with over 405 billion 
parameters. 

Earlier generations of neural networks used for natural language processing suffered from several 
drawbacks, including their inability to process whole sentences in one run and “long-term memory 
loss”—the inability to “remember” words occurring much earlier in the input sequence. These issues 
were overcome using the transformer architecture, created by Google researchers in 2017 (Vaswani et 
al. 2017). Transformer architectures process input text—broken down into units called tokens, each 
representing a word, word fragment, strings of words, or a sentence—in parallel and can capture the 
context between words in sentences using a mechanism called “attention.” When predicting the next 
word, the attention mechanism learns from the training data to “attend” or “focus” on specific words 
or phrases that are particularly relevant in the input context.  

The training data used by prominent LLMs typically have trillions of sentences or images, taken from 
publicly available sources such as the Web, books, social media content, audio, and video transcripts 
to recognize rules and patterns in the underlying data and make predictions for generating new content 
that uncannily resembles the training data. Some LLMs pre-train on specific categories, such as images 
(e.g., Open AI’s DALL-E) or music (e.g., Google’s AudioLM) to create new content specifically for 
these areas. Developers can also “fine-tune” models, a process that allows additional data to inform 
the output generated by a pre-trained model. While the most well-known LLMs distinguish themselves 
around content format (e.g., text, images, video, audio), other transformer-based generative AI models 
target specific knowledge domains and physical phenomena. One such specialized model is 
AlphaFold, an AI system pre-trained on data from the Protein Data Bank (PDB), a publicly-funded 
effort started in the early 1970s to catalog proteins’ three-dimensional structures. DeepMind trained 
their LLM on the PDB in order to predict a protein’s 3D structure from its amino acid sequence. In 
2018, AlphaFold made a major leap in accuracy, outperforming alternative protein structure 
predictions by a wide margin (Bertoline et al. 2023). 

In addition to the transformer architecture, diffusion models (which are a type of convolutional neural 
network) have gained popularity. These models are based on reversing a diffusion process—they start 
with data (like an image or audio) and gradually add noise to it, “diffusing” the original data over many 
steps. They then learn to reverse this diffusion process to reconstruct the original data from the pure 
noise input. Popular diffusion models include OpenAI’s DALL-E 2, Stability AI’s Stable Diffusion, 
and RFdiffusion for de novo protein design (Watson et al. 2023).8 Diffusion models have proved 

 
8 For protein structure determination, the transformer-based model AlphaFold 2 (Jumper et al., 2020) provided the initial 
breakthrough. The training data for this model consisted of known protein structures, but the model also made use of 
multiple sequence alignments to gather evolutionary information about a protein family. Encoding evolutionary rules into 
the architecture endowed these models with the ability to propose high quality structures for a vast number of proteins 
that had proved hard to resolve using traditional experimental methods, such as membrane proteins. At the same time, it 
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especially attractive to extend the power of LLMs to media other than text. However, the importance 
of training data and computing power remains central in this architecture. Therefore, diffusion models 
and “chatbot”-style LLMs appear quite complementary in both their development and use, with many 
of the leading-edge generative AI developers offering both within the same user interface (e.g., “multi-
modal” options within ChatGPT, Meta AI, or Google Gemini). 

Apart from OpenAI’s GPT, prominent examples of foundation models include Google’s Gemini, 
Large Language Model Meta AI (Llama) by Meta, and Claude from Anthropic. This diverse set of 
foundation models serves as the basis for various applications, such as chatbots, language translation, 
and code generation. 

2.3 Alternative foundation model architectures 

LLMs have clearly brought a step-increase to the immediate practical value of generative AI 
technology. The early success of transformer-based foundation models strengthens the claim that they 
represent a “dominant design,” meaning that they will become a widely adopted paradigm that 
simultaneously enables and constrains progress in this domain (Utterback 1994). If this prognosis is 
correct, then recent advances are only the beginning of a sequence during which incremental 
improvements in transformer-based models will continue for quite some time until their very design 
becomes a straitjacket, causing progress to markedly slow down as the current technological trajectory 
reaches a plateau (Dosi 1982). 

A counter-argument might be that the field has not yet experienced the emergence of a dominant 
design, and that the enthusiasm for transformer-based models might recede if more promising 
alternatives emerge, or if different technology “architectures” prove more valuable for certain 
generative AI tasks. Alternatives or complements to the transformer-based LLM architecture include 
convolutional neural networks (CNNs) used in many image generation models, and liquid neural 
networks (LNNs), which offer potential advantages such as greater interpretability, adaptability to new 
information, and lower computing requirements. LNNs are particularly attractive architectures for 
robotics and autonomous vehicle applications (Hasani et al. 2021).9  

Whether these alternatives surprise industry or remain an academic curiosity depends on both the 
uncertainty of scientific discovery and generative AI researchers’ allocation of resources and attention 
across emerging technologies. While predicting the take-off of these alternatives (and their eventual 
commercial appeal) is beyond our remit and best left to computer scientists, the rest of the article 
espouses the conventional view that foundation AI models currently situate themselves in the growth 
phase of an S-curve—a pattern followed by many new technologies, from tire materials to personal 
computing, artificial hearts, or X-Ray Lithography (Foster 1986; Henderson 1995). 

 
limited their usefulness in exploring the vast space of possible protein structures that have not been observed in nature. 
New models such as RFdiffusion have sought to free computational biology from this constraint by employing a model 
architecture akin to that found in image generation models, allowing the generated structures to include novel folding 
patterns or functionalities, a valuable feature in the context of drug discovery research. 
9 See https://techcrunch.com/2023/08/17/what-is-a-liquid-neural-network-really/ for a discussion of advantages and 
disadvantages of LNNs, compared to other deep learning methods. 
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2.4 The “openness” fetish 

As their name implies, foundation models form the substrate developers use to build a wide range of 
generative AI applications. Given this critical position in the generative AI ecosystem, foundation 
models can be a chokepoint for innovation and new entrants, offering incumbents a competitive edge 
that may be difficult to overcome. 

Computer scientists have begun to tackle the issue of foundation model competition by focusing on 
the concepts of “openness” and “transparency.” The basic idea is that if the various elements of the 
“secret sauce” behind a model are made available through code, data, or detailed description, then it 
should be technically feasible to recreate it, build upon it, and possibly compete against it. For example, 
one definition of openness claims that “open systems” are those that provide “transparency, 
reusability, and extensibility—they can be scrutinized, reused, and built on” (Widder et al. 2023). The 
idea is imported from the philosophy of the open source software movement, where openness means 
that the code behind a particular application is made available for public inspection and scrutiny.  

How precisely openness and transparency should be measured and what counts as genuinely “open” 
remain matters of active debate in the academic computer science community. For example, licensees 
of Open AI’s GPT-4 have access to its APIs but have limited knowledge of its internals (such as the 
weights used in the model, a critical component for extensibility). The company claims that it is open 
because it allows open access to the model’s output, while critics argue that without transparency 
around how the model was built, it remains relatively closed. They point to other large foundational 
models—Meta’s Llama 2 and OPT-175B and Google’s BERT—that are identified as open source. 
But even in these cases, as Widder et al. note, the term “open source” does not yet have a precise 
meaning in AI, unlike traditional open-source software development, because many aspects of these 
purportedly open models remain black boxes. For example, some development efforts unaligned with 
major tech firms (such as Bloom from BigScience and GPT-J by EleutherAI) are considered more 
“open” as the term is conventionally understood in the software industry, while Meta’s Llama 2 has 
bespoke licensing terms that do not conform to those used by conventional open-source software 
projects. 

Efforts are underway to standardize the definitions of openness and transparency. One notable effort 
in this spirit is the Foundation Model Transparency Index (Bommasani et al. 2023) created by Stanford 
University’s Center for Research on Foundation Models, which aims to formally evaluate transparency 
and openness claims. These researchers score ten leading foundation models against a battery of one 
hundred indicators such as compute, data, model weights, etc. The results of the 2023 index show that 
the ten major foundation models provide limited transparency, with a top score of 54% and a median 
of 37%, with the so-called “open” foundation models, Llama 2 and BLOOMZ, being the top scorers 
for transparency. Another such evaluation comes from Liesenfeld et al. (2023), who categorize model 
openness across thirteen separate dimensions. Similarly, Schrepel and Pentland (2023) have proposed 
an openness taxonomy to guide policy recommendations that policymakers can use to maintain a 
competitive ecosystem. 

These efforts are valuable in that they reveal the technical factors that might hinder the reverse-
engineering of foundation models, including access to training datasets with the required breadth and 
depth, as well as detailed knowledge of the model’s architecture (e.g., number of parameters, number 
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of neural network layers, precise description of the attention mechanism, possible use of 
reinforcement learning with human feedback among many other factors). Open source advocates 
believe that unless leading firms lay bare their models’ architecture, weights, data sources, etc., 
competition will necessarily be thwarted because even well-resourced rivals would have trouble 
replicating the pioneering models’ performance. 

Despite their value in assessing the technical landscape, we disagree with the underlying assumption 
that openness and transparency will necessarily beget entry and competition. As the long history of 
technological innovation shows, there is usually only a weak relationship between openness in a 
technical sense and a regime where leading incumbents are unable to appropriate rents from their 
innovations. For example, in the pharmaceutical industry, firms protect their key discoveries using a 
mix of secrecy and patent protection, yet multiple incumbents can develop successful products using 
varied approaches within a broader “class” of therapies. Conversely, there are cases where generics 
have entered after a key patent has expired, but leading incumbents still enjoy considerable market 
power through their brand, distribution, and related assets, as seen with synthetic insulin and the 
continued dominance of Eli Lilly and Novo Nordisk despite the expiration of formulation patents 
over two decades ago. 

We contend that philosophical discussions about the true meaning of openness constitute a distraction 
if one’s goal is to elucidate the conditions that will enable ongoing competition in the emerging 
generative AI sector. Rather, as we will argue, the more important factors driving foundation model 
competition are incumbents’ ability to endogenously raise the costs of reverse engineering over time, 
thus strengthening their grip on key complementary assets required to effectively compete. 

3 Economic Moat-ivation: A framework for predicting likely competitive 
dynamics in foundation AI models 

As practitioners of the dismal science, we are perhaps playing to type when we make light of the 
computer scientists’ esthetic preferences for openness and transparency. But this stance stems from a 
dispassionate assessment of other technology markets’ competitive dynamics. Historically, the 
relationship between openness of key technological ingredients and the extent of product market 
competition has been tenuous at best. To be sure, the circulation of technical talent across firms often 
means that access to key technical components eventually becomes democratized through feats of 
reverse engineering. This is especially the case when the national competitiveness stakes are high, as 
can currently be seen in the semiconductor industry. And yet, it is equally possible to point to 
numerous instances where technical know-how is widely dispersed across firms, and yet intense 
competition does not ensue. 

Teece (1986) suggests that the ability of pioneer innovators to durably appropriate the returns from 
innovation is shaped by two fundamental forces: control over the knowledge at the core of the 
innovation—also called appropriability—and control over the complementary assets necessary to transform 
a firm’s innovative know-how into a value proposition customers might be willing to pay for. These 
assets might be tangible (like R&D tools, distribution networks, or manufacturing facilities), or 
intangible (like regulatory expertise, specialized skills, industry relationships, or brand equity). Below, 
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we analyze the emerging generative AI industry through this lens. With a clear understanding of how 
the twin scissors of appropriability and complementary assets cut across the sector, we can derive 
implications for competition policy in this fascinating—but ultimately “normal”—domain. 

3.1 Appropriability 

Two broad approaches can be used by firms to protect the knowledge generated by their inventive 
and innovative activities: formal intellectual property rights (such as patents, copyrights, and 
trademarks) and mechanisms to forestall reverse engineering (such as trade secrets, non-disclosure 
agreements, non-competes, and tacit knowledge). 

Although there are plenty of AI-related patents (Giczy et al. 2022), patents do not appear to be 
especially valuable for protecting foundation models from imitation. For example, the introduction of 
the transformer architecture was a significant milestone in the development of modern LLMs, but its 
broad contours were disclosed in a manuscript made available on arXiv, the most widely-used free 
distribution platform for pre-prints and working papers in computer science (Vaswani et al. 2017). 
That initial disclosure does not block all patents related to this architecture (e.g., pertaining to specific 
attention mechanisms), many of which might be quite valuable due to their wide applicability in 
models like BERT, GPT, and others. However, as is more broadly true in the software realm, much 
of AI/ML research may fall in the category of “abstract concept” and therefore fall short of the 
patentability standard.  

Further, the rapid advancement of generative AI innovation may not align well with the pace of patent 
examination in the modern patent system. This may lead inventors to turn to alternative mechanisms 
in order to control the critical technological knowledge associated with their ideas. It is worth noting 
that a variety of firms have at least applied for patents pertaining to technologies closely adjacent to 
foundation models.10 Yet other firms hold patents on software features in their products which directly 
embed the output of foundation models.11 With massive uncertainty surrounding the value of IP 
claims in this area, patenting investments might be thought of as “lottery tickets” that may be worth 
purchasing even if the expected value of such a patent is likely to be very low (Lemley and Shapiro 
2005). 

The development of foundation models is grounded in well-established scientific principles from 
fields like statistics, mathematics, and computer science, typically mastered by data scientists over the 
course of their undergraduate or graduate studies. Understanding these principles is crucial for making 
informed decisions about model design and training. Training these models involves designing 
experiments to test hypotheses about model behavior, testing their performance on real-world tasks 

 
10 For instance, Google’s “Processing of Deep Networks” (Szegedy and Vanhoucke 2017) covers methods for the 
compression of deep neural networks, i.e. reducing the computational complexity of deep neural networks while 
preserving, as much as possible, their performance. Microsoft’s “Neural network categorization accuracy with categorical 
graph neural networks” (Du et al. 2024) pertains to the enhancement of neural network-based categorization using graph 
neural networks. NVIDIA’s “Virtual environment scenarios and observers for autonomous machine applications”(Nassar 
et al. 2024) describes methods for AI systems to test and validate themselves. 
11 For instance, Adobe has patented technologies related to content generation and manipulation, such as the “Content-
Aware Fill” feature in Photoshop, which intelligently fills in the space when a part of an image is deleted. 
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and datasets, and drawing conclusions in a methodical way. This scientific knowledge and associated 
practices are broadly available to all firms in the industry, short-term skill shortage notwithstanding. 

However, training generative AI models also requires knowledge more akin to craft than the scientific 
method. Seasoned data scientists often develop an intuition for choosing the right model architectures, 
data preprocessing methods, and training parameters. Addressing challenges like overfitting, 
underfitting, or dealing with data irregularities can require solutions seldom found in textbooks. 
Finally, the process of tuning hyperparameters, designing human reinforcement learning programs, 
and iterating over different model configurations involves much trial and error, rather than a 
systematic process prescriptively determined in advance. 

Craft knowledge is more likely to remain tacit as it is deeply embedded and hard to unbundle from 
the broader architectural choices made by each firm in the design and training process. In this respect, 
generative AI models may be like other fields buffeted by technological breakthroughs. The spread of 
recombinant DNA research for instance, in spite of a seemingly broadly accessible scientific 
foundations, was for many years limited by pioneer researchers’ ability to engage the next generation 
of innovators in long periods of craft-like apprenticeship (Zucker et al. 1998). 

In addition to tacit knowledge, firms investing in the design and training of foundation models may 
be able to keep their models’ weights proprietary. Without access to the weights, others cannot modify 
the pre-trained model without having access to the original training data or computational resources. 
Sponsors of generative AI models can forestall reverse engineering by maintaining tight control in 
other areas, including the specifics of the training data corpus (which encompasses the exact datasets 
used, preprocessing steps that have been implemented), details about the infrastructure and scaling 
technology), and the methods employed for fine-tuning (which are essential for adapting a pre-trained 
model to a particular task or dataset). The intricacies of the user interface layer—which facilitate 
smoother interaction with the model through mechanisms such as natural language prompts—are yet 
another aspect that might be hard to replicate at scale. Lastly, foundation model developers might take 
inspiration from industries like stock photography and genetically modified seeds and develop their 
own technologies to detect IP leakage or unlicensed commercialization using their LLMs. 

Our interim conclusion is that pioneering firms in the industry benefit from a tight appropriability 
regime more owing to the many avenues to keep critical knowledge proprietary or tacit, rather than 
the assertion of formal intellectual property such as patents. This conclusion must remain guarded, 
however, since the field is still at an early stage of development. As AI talent becomes less scarce, the 
mobility of engineers and other technical staff will contribute to the circulation of knowledge that 
previously circulated as snippets within circumscribed communities of practice. 

3.2 Complementary Assets 

Complementary assets refer to the set of assets or capabilities required to effectively commercialize 
and extract value from an innovation (Teece 1986). These may include specialized manufacturing 
capabilities, access to distribution channels, service networks, or complementary technologies. 
Complementary assets may be generic and therefore not tightly held by incumbent firms. In contrast, 
other complementary assets may be narrowly tailored and dependent on a specific innovation, with 
few or no substitutes in the industry. In this case, complementary assets can be deployed by 
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incumbents in such a way that they constitute potent barriers to entry and imitation. As we discuss 
below, leading firms in the generative AI industry have already begun developing complementary 
assets. At least some of these assets have the potential to become the exclusive fiefdoms of a narrow 
set of large, incumbent technology firms. The following six complementary assets are probably the 
most salient. 

3.2.1 Compute environment 
The compute environment refers to the hardware and software infrastructure used to train and fine-
tune foundation models. It includes (1) hardware for substantial computational power, often provided 
by GPUs, which are specialized components for handling the parallel computations that are common 
in machine learning; (2) a software stack (e.g., operating system, machine learning frameworks); (3) 
networking infrastructure to facilitate quick data transfer between different computers; (4) integration 
with cloud services to scale resources up or down based on the needs of the model training or 
inference; and (5) tools to monitor the performance of the hardware, the progress of model training, 
resource utilization, and to manage the deployment and operation of models. 

Given their large scale, a well-optimized compute environment is crucial for the efficient training and 
testing of foundation models. In practice, this entails a careful balance of hardware capabilities, 
software support, and infrastructure management to ensure that the models can be trained, fine-tuned, 
and served effectively. An active computer science literature explores how model sponsors should 
trade-off model size, training dataset size, and compute budget at the margin (Hoffmann et al. 2023). 
This research broadly points to “scaling laws” reminiscent of Moore’s Law (Kaplan et al. 2020), and 
as a result the capital expenditures needed to set up, operate, and maintain the necessary infrastructure 
is increasing with model size and complexity. To fix ideas, Meta’s CEO Mark Zuckerberg recently 
announced that in its effort to train the next generation of its Llama large language model (Llama 3), 
the company was building a massive compute infrastructure including 350,000 of NVIDIA’s H100 
GPUs by the end of 2024. Valued at the retail price of this crucial piece of equipment, the GPU 
investment alone would amount to approximately 10 billion dollars.12 Even if such a model was 
“open” (in the sense that the weights are publicly accessible), Meta would still exert tight control over 
these computing resources and, therefore, over how the model will be trained in future iterations. 

3.2.2 Model serving and model inference capabilities and infrastructure 
Once trained, foundation model sponsors must possess the capability to deploy the model in a 
production environment where it can receive input data, process it, and provide outputs to end-users 
or other systems. The computational power needed for deploying large AI models in practical 
applications often surpasses the initial training requirements. While precise data on this subject is 
scarce, an informal analysis indicates that the operational costs of running the ChatGPT interface 
might exceed the training expenses of the GPT-4 model it is based on every week.13 Data scientists 
confusingly denote the task of applying a learned model to make predictions or decisions on new, 
unseen data as “inference,” and high inference costs have prompted OpenAI’s CEO, Sam Altman, to 
acknowledge in a congressional testimony that the company aims to design systems that do not 

 
12 https://www.theverge.com/2024/1/18/24042354/mark-zuckerberg-meta-agi-reorg-interview  
13 https://www.semianalysis.com/p/the-inference-cost-of-search-disruption  
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prioritize user engagement, partly due to a scarcity of GPUs, which are crucial for AI training and 
operations (Oremus 2023). 

In addition to compute infrastructure, sponsors must make the trained model accessible for practical 
use, for example through APIs or other interfaces. Serving a model involves tracking its performance, 
ensuring its uptime, and updating it (or the underlying infrastructure) to handle additional load or to 
integrate improvements. When models also process user-generated data, sponsors must set up secure 
data transmission channels, ensure data privacy, and comply with relevant regulations. 

Lastly, the output of foundation models might be further enhanced by tight integration into the web 
browsing experience and wider ecosystem features, such as Google’s chrome or Microsoft’s edge web 
browsers or Meta’s WhatsApp messaging app. Not only might ecosystem owners elevate access to 
their preferred model by default (not unlike their current approaches to the selection of search 
engines), they might also enrich answers by leveraging location data or the past browsing history of 
individual users. 

3.2.3 Safety and governance 
Sponsors must engage in a range of practical measures to ensure that foundation models are developed 
and used responsibly. The specifics vary between organizations, but generally begin with a set of ethical 
principles that guide development and deployment, along with the creation of boards or committees 
responsible for overseeing compliance with these principles. From a technical standpoint, sponsors 
may develop methods to make their systems more transparent and understandable to humans, and 
implementing measures to protect the data the models are trained on and ensure the models do not 
leak private information. 

Sponsors also invest in research dedicated to understanding and mitigating potential risks associated 
with AI, such as studying the problem of alignment (ensuring AI systems reliably do what their 
operators intend) and robustness (ensuring AI systems behave safely under a wide range of 
conditions).14 To some degree, these R&D investments are product- or brand-specific choices 
undertaken with the goal of differentiation and risk management. However, developing safety systems 
might prove to be necessary to placate regulators and earn public trust. For example, model developers 
often build in safety valves to make sure that LLMs do not output large chunks of copyrighted 
information from its training data. When testing new LLMs and their derivatives, conducting audits 
of released generative AI products, and handling customer complaints, incumbents that invested and 
demonstrated such safety systems may have both efficiency and credibility advantages. 

Investing in AI safety can be quite expensive, but the exact figures are often not publicly disclosed 
and can vary widely between organizations and depending on the scale of the AI systems being 
developed. The expenses include not only direct financial investments in research and development 
but also the opportunity costs of implementing rigorous safety measures, which can slow down the 
development process. Despite these costs, leading AI organizations tend to view these investments as 

 
14 Industry observers caught a glimpse of the importance of these research investment with a series of events surrounding 
the departure of Dr. Timnit Gebru from Google in late 2020. This incident attracted significant attention and led to 
widespread discussion about academic freedom, the ethical implications of AI, and diversity and inclusion within the tech 
industry. 
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essential, both for ethical reasons and for the long-term viability and acceptance of their services. In 
fact, AI safety is often seen as the main reason against promoting an open and competitive marketplace 
of foundation models. If strict AI safety requirements were instituted, leading incumbents might be 
able to further reinforce their lead. Such an effect would not be unlike the increase in market 
concentration in web service provision ushered in with the introduction of GDPR privacy regulation 
in Europe (Peukert et. al 2022).   

3.2.4 Benchmarks and metrics 
Commercial sponsors invest in the development of benchmarks to evaluate the performance of 
foundation models, often in collaboration with academic researchers, industry experts, and 
policymakers. 

This might take the form of investing in the creation or curation of large, diverse, and representative 
datasets that can be used to rigorously test the performance of foundation models across various tasks 
(such as the case of ImageNet), or in the form of hosting contests where researchers worldwide work 
to achieve the best performance on a given benchmark, thereby pushing forward the state-of-the-art 
in model evaluation. For example, the GLUE, SuperGLUE or the MMLU benchmarks are designed 
to evaluate the performance of models on a range of natural language understanding tasks such as 
sentence completion, question answering, and sentiment analysis (Hendryks et al. 2020, Wang et al. 
2019). 

Another area in which benchmark development is becoming more salient is governance, where firms 
endeavor to publish and promote safety methodologies for AI systems. For instance, OpenAI 
published Safety Gym, a suite of reinforcement learning environments and tools for developing AI 
systems that learn to perform tasks while respecting safety constraints (Ray et al. 2019).  

3.2.5 Training data 
The training data corpus for foundation models is typically extensive, diverse, and sourced from a 
wide range of public or semi-public sources. Foundation model sponsors must bear the costs of 
harvesting, ingesting, storing, and preprocessing these data for training purposes. In some cases, they 
must guard against contaminating the corpus with biased and sensitive content, and keep it updated 
to prevent “data staleness.” 

Some of the data used for training might be in the public domain, such as the Protein Data Bank (used 
to train structure prediction models such as AlphaFold or RoseTTAFold), ImageNet (a large visual 
dataset used for image classification), and Project Gutenberg (a massive dataset of books in the public 
domain). But many other data sources could be characterized instead as “semi-public,” i.e., data that 
is not explicitly private (like personal e-mails or messages) but exists in a gray area concerning usage 
and privacy expectations. Examples include social-media posts, user-generated content on forums and 
discussion boards, code repositories, product reviews and feedback, academic papers, and newspaper 
articles. 

When using such semi-public data, model sponsors need to consider legal aspects (like copyright and 
data protection laws), ethical considerations (like the reasonable expectation of privacy and the 
intentions of the content creators), and the potential impact on their reputation and trust with users. 
Most sponsors do not typically disclose the exact datasets used in the training process, while also 
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claiming they will respect opt-out requests and endeavor to use the data in ways that align with the 
expectations of the individuals and organizations that originally created the content.  

The legal framework that will govern the use of copyrighted data in the training of foundation models 
is not settled (Lemley and Casey 2020; Gans 2024). While sponsors typically invoke the doctrine of 
fair use, this is contested by copyright holders, and a flurry of legal cases suggest that sponsors might 
mitigate legal risks by using data for which they have licenses or explicit permission to use for training 
purposes. Of course, a consequence might be that only sponsors with sufficient financial resources or 
legal expertise will be in the position of acquiring training datasets of sufficient breadth and depth, 
while taking care of purging personal information accidentally found in the training data and more 
generally deal with biased and sensitive content. The evolution of copyright policy in this area 
(especially whether and to what extent training on copyrighted material will be deemed fair use) will 
have important implications for competition in generative AI. 

3.2.6 Data network effects 
An additional consideration is whether a very particular type of network effect is likely to arise from 
sheer access to massive amounts of training data. For LLMs specifically, as more data is collected and 
used in training, the model generally becomes better at understanding and generating natural language. 
This is due to the model’s increased exposure to various linguistic patterns, nuances, and contexts. In 
some implementations, user interactions with the model can be used to further refine its output. For 
example, when users correct or flag inappropriate responses, this feedback can be used to improve 
the model. As more users interact with the model, the quality of the model can improve, benefiting 
all users. 

Reinforcement Learning from Human Feedback (RLHF) is a training strategy whereby a model is 
fine-tuned based on feedback that reflects human preferences or corrections. RLHF has been 
particularly influential when training models for complex tasks where traditional reward functions are 
insufficient to capture all aspects of desired behaviors, such as language models, robotics, and game 
playing. It typically involves an iterative process where the model is continuously updated based on 
ongoing feedback from human raters. In this iterative cycle, each new piece of data adds value to the 
model, and the improved model, in turn, provides better service to users, encouraging more 
engagement and feedback. 

Since RLHF involves tradeoffs between generalization and diversity of output (Kirk et al. 2024), it is 
probably too early to assert it will give rise to data network effects that will favor firms able to create 
the infrastructure necessary to capture human feedback on a large scale. We choose to mention it as 
one of a broad class of complementary technologies that, if deployed in conjunction with massive 
training datasets, might endogenously lead initial performance advantages to cumulate and magnify 
over time. 

3.2.7 The durability of complementary assets 
While the list of complementary assets above (summarized in Figure 3) is not meant to be exhaustive, 
it suggests nonetheless that complementary assets have the potential to help turn foundation models 
from standalone technologies into integral components of products, services, or business processes. 
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Their importance lies not only in enhancing the performance of these models but also in ensuring that 
they are usable, reliable, and aligned with broader organizational goals and societal norms.15 

However, the inhibition of competition through tight control of complementary assets is subject to 
change as technological developments either amplify or depreciate their value (Tripsas 1997). For 
instance, much research effort has been recently directed to alleviating the burden of initial model 
training, thus lessening the need to invest in an extensive compute environment to make contributions 
at the frontier of the field. DeepMind’s Chinchilla study highlighted that the size of large language 
models (measured in tokens) and the size of its training corpus are broad substitutes (Hoffmann et al. 
2022). Simultaneously low-rank adaptation (LoRA) is a method designed to efficiently fine-tune large 
models without the need to retrain them fully, which can be computationally expensive and time-
consuming (Hu et al. 2021). Combined with techniques in model distillation, these developments offer 
the tantalizing possibility of a level playing field between large tech companies, startups, and academic 
groups. 

Figure 3: Key Complementary Assets Shaping Competition in Foundation Models 

 
The research frontier in AI foundation models is perpetually shifting outward. On the one hand this 
could provide opportunity for laggards to leapfrog over the achievements of pioneer innovators. On 

 
15 At the same time, the gatekeeping effects of complementary assets need to be ascertained on a case by case basis. In 
structural biology, for example, the training datasets have so far mostly consisted of publicly available data, and the users 
of foundation models are technically sophisticated, lessening the importance of model serving capabilities. To date, the 
compute environment necessary to train these models has not put the frontier out of reach for academic labs, as attested 
by the arrival of the RoseTTAFold model (Baek et al. 2021), quick on the heels of DeepMind’s AlphaFold (Jumper et al. 
2021). 
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the other hand, there is likely no model training “free lunch,” with follow-on innovators requiring 
access to an infrastructure of their own to realize the promise of their innovative approaches.  
 
If these complementary assets maintain their relevance over time, the companies likely to dominate 
the AI sector in the future will likely be recruited from the ranks of current incumbents. Yet, another 
possibility is that the pivotal complementary assets that would enable a handful of players to dominate 
the AI landscape are not yet in evidence, because it is not clear yet what key challenges need to be 
overcome in order to facilitate AI adoption across a broad cross-section of economic sectors.16 If that 
alternative view turns out to be correct, the industry would still evolve towards an oligopolistic 
structure, but its commanding heights might be controlled, by new entrants, including some not yet 
founded at the time we write these lines, rather the current set of “usual suspects.” 

3.3 A natural experiment in appropriability: The Llama leak and its consequences 

Relative to Google and OpenAI, Meta’s AI research efforts have distinguished themselves by 
embracing an approach of relatively open sharing. In April 2022, the company released its OPT (Open 
Pre-trained Transformer) large language model, along with extensive documentation describing model 
architecture and design, training data/methodology, and detailed performance information. Even 
seemingly unabridged log books detailing the many steps needed to train the model were made 
available, which provided a rare glimpse into the craft-like techniques used by data scientists in their 
model training efforts. 

However, the model weights for the 175 billion parameters OPT-175B were not released to the public. 
Meta’s decision to withhold the model weights was likely due to concerns about potential misuse and 
the need for responsible AI development and deployment. One year later, Meta followed a similar 
approach with its more advanced Llama (Large Language Model Meta AI) model.17 Merely a week 
after Meta began accepting inquiries for Llama access, the model found its way online. On March 3rd, 
2023, a downloadable version of the system (including the model’s weights) appeared as a torrent on 
4chan, and quickly disseminated through numerous AI forums. 

The accidental leak provided a glimpse into the importance of openness for innovation in the AI 
foundation model domain, sparking a rapid series of cascading events. Even though Llama’s release 
was stripped to essentials, the availability of pre-trained weights allowed researchers who might not 
have the resources to train such large models from scratch to experiment with and improve upon a 
state-of-the-art LLM. Having a high-quality LLM available without constraints also permitted 
comprehensive benchmarking and comparative studies.18 Following the leak, numerous Llama-based 
developments emerged in quick succession, including Stanford’s Alpaca, an instruction-following 
model; Vicuna from UC Berkeley, CMU, Stanford, and UC San Diego; BAIR’s Koala, enhanced with 
internet dialogues; Nebuly’s ChatLLama for custom conversational assistants; FreedomGPT, an 

 
16 https://joshuagans.substack.com/p/so-whos-really-going-to-win-with 
17 https://ai.meta.com/blog/large-language-model-llama-meta-ai/  
18 In text-to-image generation, Stable Diffusion’s launch in 2022 marked the first time that a foundation model was released 
as open source. Yet, until Llama’s release, this approach had not been mirrored in the large language model (LLM) arena, 
where frontier advances such as GPT-4, Claude, and Cohere were API-bound, and therefore preventing third party 
researchers to peek “under the hood.” 
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Alpaca-based conversational agent; and UC Berkeley’s Colossal-AI project’s ColossalChat, a 
ChatGPT-style model using Llama.  

Within a month, these “spawns of Llama” included variants with instruction tuning (Zhang et al. 
2023), quantization,19 and RLHF (Köpf et al. 2024). Based on our tabulation of the data gathered by 
the Center for Research on Foundation Models, by the end of 2023, 30% of large language models 
introduced by startups and academic groups were built on Llama or its direct descendants, Alpaca and 
Vicuna. 

These open-source developments sent shockwaves through the major tech firms’ engineering staff, as 
they seem to imply that these firms would struggle to maintain control of the knowledge at the core 
of the models they sponsored. With much trepidation, a leaked internal document from Google 
claimed that “while our models still hold a slight edge in terms of quality, the gap is closing astonishingly quickly. 
Open-source models are faster, more customizable, more private, and pound-for-pound more capable. They are doing 
things with $100 and 13B params that we struggle with at $10M and 540B. And they are doing so in weeks, not 
months.” 20 

The impact of these investments has been amplified by the platform Hugging Face, whose vibrant 
developer community has catalyzed open-source innovation by democratizing access to pre-trained 
models, offering access to libraries and tools, providing users with the ability to fine-tune models for 
specific tasks or datasets, and facilitating direct comparison of models on standardized benchmarks 
(Greenstein et al. 2022). In particular, Hugging Face hosts and maintains benchmark datasets and 
leaderboards, which are crucial for tracking the state-of-the-art and assessing the progress of 
foundation models over time.21 

This natural experiment in openness demonstrates that leading firms’ attempts to titrate access to their 
innovation by keeping some of the implementation details secret have not been successful. Leaks are 
hard to prevent and police, and once a model’s inner workings are exposed for all developers to see 
and tinker with, incumbent firms may not be able to wind the openness clock back. Further, the rapid 
development of the “spawns of Llama” demonstrate that a vibrant and talented open source developer 
community stands ready to build on open models to extend the generative AI frontier. 

Less certain is whether the open source AI ecosystem’s “green shoots” foretells the devaluation of 
some of the complementary assets mentioned earlier. Llama’s availability catalyzed cumulative 
innovation in the open source developer community, but it did not hinder the widespread adoption 
proprietary models released by leading firms such as OpenAI, Anthropic, and Google. Even if the 

 
19 Quantization refers to a set of techniques to make it feasible to run powerful AI models directly on user devices, enabling 
real-time processing without the need for constant cloud connectivity. A cognate concept is that of model distillation, 
whereby knowledge from a large, complex model (or an ensemble of models) is transferred to a smaller, more efficient 
model. 
20 https://www.semianalysis.com/p/google-we-have-no-moat-and-neither  
21 An important caveat is that, in the absence of well-validated benchmarks to compare the performance of different 
models, we should not treat claims of performance parity between open source models and large scale implementations 
such as OpenAI’s GPT-4 or Google’s BARD at face value. It may well be that recent developments democratize access 
to language models useful for a broad range of niche applications, while human-like performance in general tasks remains 
the prerogative of firms endowed with the resources to train and retrain ever larger models using the latest, most expensive, 
and most energy-consuming hardware. 
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importance of the compute environment fades over time, other complementary assets—such as 
investments in AI safety and access to unique training data—might still result in an industry with an 
oligopolistic structure, albeit one with a highly variegated fringe of smaller actors. 

3.4 LLAMA in the ointment: Competitive scenarios with one “rogue” tech firm 

Our pessimism regarding the emergence of a vibrant and competitive foundation model marketplace 
is grounded in the belief that large tech firms have incentives to close their models, multiple technical 
avenues to do so, and will likely exert a stranglehold on access to some essential complementary assets. 
But what if one “rogue” technology firm chose to deviate from this predictable script? We mention 
this possibility because, following the LLAMA leak, Meta’s founder Mark Zuckerberg has explicitly 
expressed his company’s intent to pursue an open source strategy as it invests massively in the quest 
to achieve “General Artificial Intelligence.” 

We can speculate on the reasons that might lead a powerful AI pioneer to choose an open source 
approach. That company could benefit indirectly from a vibrant ecosystem that uses its open models. 
For example, improvements by third parties (such as chip developers) could be integrated back into 
its own offerings, enhancing their value at minimal cost. Further, if that company’s business model 
relies on selling value-added services on top of foundation models, standardizing the underlying model 
might benefit these follow-on services. Third, by positioning itself as a leader in open AI, such a firm 
could significantly enhance its reputation and establish itself as a benevolent technology leader, 
influencing standards and practices across the industry. Lastly, an open and collaborative approach 
could make that firm a magnet for top AI talent—researchers motivated by the prospect of working 
on high-impact, accessible models. A recent essay by Meta validates at least a few of these claims. 22 

In the scenario where Meta (or any other large tech firm) “goes rogue” and commits to a genuinely 
transparent approach for the development of its foundation model, the competitive landscape could 
be transformed in a manner akin to the early dynamics between Android and iOS in the smartphone 
industry. Meta’s approach could democratize access to powerful AI tools, much as Android initially 
made smartphone technology widely accessible, enabling a broad range of manufacturers to produce 
devices that catered to various market segments. This could significantly lower the costs of exploration 
for startups and academic teams who might otherwise hesitate to investigate new use-cases for the 
nascent AI technology. By lowering the cost of experimentation and adoption, the rogue open-access 
competitor could catalyze a surge in AI applications, unlocking innovative opportunities across a 
broad array of sectors and geographies that would otherwise remain underdeveloped. 

In the smartphone market, Android’s open system served as a counterbalance to Apple’s more closed 
and expensive iOS, fostering wider smartphone adoption globally and supporting a diverse array of 
application developers. This competition kept iPhone prices somewhat in check and spurred 
continuous innovation relative to what might occur in a monopoly scenario. Similarly, an open-source 
AI model from a leading firm could encourage rapid advancements in AI applications, propelled by 
an open collaboration model that accelerates iterative experimentation. 

 
22 https://about.fb.com/news/2024/07/open-source-ai-is-the-path-forward  
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However, just as Android’s nominally open-source license has not resulted in a flurry of entry into the 
smartphone OS market, the existence of a leading open access foundation model would not by itself 
ensure access to the complementary assets that are necessary to build a viable foundation model in 
the AI marketplace. In fact, by reducing the profit opportunities available to competitors at the 
foundation model layer of the stack, the rogue firm might divert innovation efforts to the downstream 
application layer. Additionally, the long-term sustainability of Meta’s openness “crusade” is uncertain. 
As in the case of the Android ecosystem, where Google has occasionally shifted its strategy and 
tightened control over aspects of the platform, Meta could potentially alter the terms of access, 
especially if the economic or strategic benefits of the open approach turn out to clash with its broader 
corporate goals. 

4 Implications for public policy 

Given this framework, how might policy makers think about competition policy in this setting? Below, 
we highlight four low-hanging fruits that may prove socially beneficial without committing 
government authorities to wade in too deeply in the dynamics of a still nascent industry. 

4.1 Credible performance benchmarks 

First, it might be worthwhile for the government to coordinate the establishment of benchmarks for 
foundation models, both with respect to their performance as well as their safety. In spite of its 
ubiquity, the task of comparing foundation models is fraught with challenges, making definitive claims 
of superiority less compelling than they often appear. 

One of the primary difficulties in comparing foundation models lies in their multifaceted nature and 
the great variety of tasks they are designed to perform. LLMs and related image generation AI tools 
are not only evaluated based on their accuracy but also on factors like efficiency, scalability, adaptability 
to different languages or domains, and ethical considerations such as bias and fairness. Given this, a 
model that excels in one benchmark task or metric might underperform in another, complicating 
direct comparisons.23 Moreover, the rapid pace of development in AI means that benchmarks 
themselves can quickly become outdated, as models evolve to address their limitations and new 
capabilities are developed. Further, given a lack of transparency around what data is used to train a 
model, whether a model truly “learned” to perform a particular task or whether it is simply 
regurgitating responses from its training data can be hard to assess. Further, even if some models are 
better at taking tests or achieving pre-determined targets than others, their economic utility rests on 
their impact in real-world applications such as assisting call-center agents or copywriters; at the time 
of this writing, such impacts lie far beyond the purview of existing benchmarks (Brynjolfsson et al. 
2023, Noy and Zhang 2023). 

 
23 For example, the information retrieval and prediction needed to climb a leaderboard that ranks LLMs based on their 
performance on Jeopardy questions (https://github.com/aigoopy/llm-jeopardy) is likely quite different from the 
features that make LLMs perform well on software programming tasks (https://huggingface.co/spaces/mike-
ravkine/can-ai-code-results). Furthermore, such performance metrics may not adjust for speed, cost, or model size.  
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Given these challenges, claims of one model being superior to another, or of open-source models 
catching up to their proprietary counterparts, should indeed be approached with caution. Without a 
comprehensive and nuanced understanding of both the benchmarks and the models being compared, 
such claims can be misleading. One recent example involves a careful comparison of several open-
source model LLMs with the proprietary models GPT-4 and Claude 2 in the context of the 
Nephrology Self-Assessment Program, a multiple-choice questionnaire administered by the American 
Society of Nephrology to help clinicians assess their disciplinary knowledge (Wu et al. 2024). Large 
performance gaps emerged between the open-source models and the proprietary ones, casting doubt 
on the reliability of unvalidated leaderboards such as those used by the leading open source repository 
Hugging Face. Similarly, one open source project compared over 200 open-source models to the six 
leading closed models on a variety of logic-based word questions. While the top-performing open-
source models produced impressive results and were competitive with the laggard closed-source 
models, the top performing closed models (GPT-4 and Claude 3) outperformed all other models by 
a significant margin.24  

This complexity and the need for nuanced comparison provide a potential avenue for government 
intervention, specifically in the development of widely accepted and well-validated benchmarks. An 
organization like the National Institute for Standards and Technology (NIST) could play a crucial role 
in this regard. NIST, with its history of developing standards across various domains, could bring a 
level of rigor, transparency, and neutrality to the process of benchmarking AI models. By convening 
a diverse set of stakeholders from academia, industry, and civil society, NIST could help ensure that 
benchmarks are comprehensive, up-to-date, and reflective of the broader societal impacts of AI 
technologies.25  

To avoid the often-criticized incentive problems of third-party rating agencies in finance, a 
government-sponsored generative AI benchmarking organization might instead follow the structure 
of the National Renewable Energy Lab (NREL). As a government-owned, contractor-operated 
organization, NREL plays an important role in the performance testing, measurement, and validation 
of new energy technologies like solar photovoltaics. Instead of sending prototypes of a solar cell for 
efficiency testing in a controlled environment, generative AI researchers could provide LLM access to 
these third party evaluators for a transparent set of performance tests and published results.  

In the rapidly evolving domain of AI, the ability to accurately assess and compare the capabilities of 
different models is not just a technical necessity but also a regulatory imperative. Without clear 
standards, assessing the competitive landscape becomes fraught with uncertainty, making it 
challenging to identify actual market leaders or to evaluate claims of technological parity critically. This 
uncertainty may lead to either premature regulatory interventions or, conversely, a lack of action in 
the face of emerging monopolies. 

 
24 https://docs.google.com/spreadsheets/d/1NgHDxbVWJFolq8bLvLkuPWKC7i_R6I6W  
25 One could argue that the US government is already heeding this advice. In February of 2024, the US Department of 
Commerce and NIST announced the creation of the AI Safety Institute Consortium (AISIC), which included a consortium 
of more than 200 large incumbent technology companies and financial institutions with the goal of developing AI safety 
tools and standards (https://www.reuters.com/technology/us-says-leading-ai-companies-join-safety-consortium-
address-risks-2024-02-08/). The exclusive focus on safety appears misplaced to us, although a neutral arbiter like NIST 
offers prospects that emerging safety standards will not be tilted to favor entrenched incumbents. 
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Moreover, the fast emergence of such standards could help demystify the actual progress and 
capabilities of AI technologies for policymakers, businesses, and the public. It would help distinguish 
hype from genuine advancement, ensuring that public and private resources are allocated efficiently 
and that innovations that truly push the boundaries of AI are recognized and fostered. 

4.2 Hastening the pace of clarification of key legal issues 

The development and adoption of AI foundation models, including LLMs and those capable of 
generating images or films, raise several legal issues that courts will likely need to assess. These issues 
create a degree of uncertainty regarding the returns on investments in this rapidly evolving domain. 
The legal challenges span the areas of intellectual property rights, privacy concerns, liability for harm, 
employment issues (such as the delicate interplay of non-compete agreements and trade secrecy law), 
and regulatory compliance, among others. 

These legal challenges highlight the need for clear regulatory frameworks and legal precedents to guide 
the development and deployment of AI foundation models. Until these issues are more definitively 
addressed by courts and regulators, companies and investors in the AI domain will face ongoing 
uncertainty about the legal landscape and the risks associated with their AI endeavors. 

Governments, including the U.S. government, could take two steps to hasten the pace of legal 
clarification surrounding AI foundation models without introducing comprehensive new legislation. 

First, they could wade into the use of copyrighted data for training purposes. A Supreme Court 
decision on proper scope of fair use in AI model training would have a huge impact on investment 
incentives. The solicitor general could encourage the highest Court in the land to take on an AI fair 
use case. The Copyright Office could also issue guidance, as it has done on the question of whether 
AI output is copyrightable. Even if immediately challenged in the courts, this might force the legal 
system to adjudicate the underlying issues at a less leisurely pace. 

Second, Regulatory agencies could issue guidance, frameworks, and best practices for AI 
development and use. This approach would provide immediate clarity on how existing laws apply to 
AI technologies, including intellectual property rights, privacy, liability, and ethical considerations. For 
instance, the Federal Trade Commission (FTC) could offer guidance on applying consumer protection 
laws to AI products and services; or the FDA could develop disclosure standards that would be 
required when AI software is involved in patient care, or regulating the use of AI in medical devices. 

These two steps can help provide greater clarity and guidance for AI developers and users, addressing 
some of the most pressing legal uncertainties without the need for comprehensive new legislation. 
The options above would contribute to preparing the legal landscape for future initiatives, perhaps 
introduced by Congress through new legislation. 

4.3 Encouraging the fractionalization of infrastructure 

One way policy makers might mitigate market dominance by a few large players is to encourage the 
“fractionalization” of complementary assets so that smaller firms or academic researchers can 
experiment and build products on top of the leading technologies, without the barrier of large capital 
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expenditures. In this context, fractionalization means the unbundling of the distinct activities and 
infrastructure (e.g., compute, training data, safety systems) required to bring forth and improve 
foundation AI models. Focusing policy attention on the complementary assets most likely to elude 
market-led democratization efforts would amplify the effectiveness of such interventions. 

Policy efforts to encourage and simplify entrant innovators’ access to shared AI infrastructure could 
take many forms, from heavy-handed interventions such as compulsory licensing or mandated access, 
to more subtle measures whereby governments delicately place their finger on the scales to alleviate 
specific frictions or bottlenecks. Looking across sectors in the recent past, there are interesting 
precedents where government agencies played a constructive role to level the playing field by 
encouraging technology sharing. For instance, in the late 1990s, the National Institutes of Health led 
negotiations between the public company DuPont, the non-profit Jackson Laboratories, and the 
academic community to reach a memorandum of understanding to make genetically modified mice 
available to academic researchers through a simple license and material transfer agreement (Murray et. 
al 2016). Stretching the analogy, one might imagine that foundation model giants might prefer 
negotiating larger deals for compute and AI training systems with a small number of large research 
funding agencies, rather than being enmeshed in a myriad of bilateral collaboration agreements with 
universities and startups. Funding agencies could then decide how to allocate “compute credits” to 
their many recipients.26 

Beyond supplying infrastructure and standards for generative AI research and testing, government 
policy might also support the fractionalization of AI assets by providing credible demand signals for 
new AI tools. Modeled off of government programs that have accelerated private industry 
development in frontier technologies like space launch (NASA’s Commercial Orbital Transportation 
Service program) and fusion energy (the Department of Energy’s Milestone-Based Fusion 
Development Program), the government might co-finance companies in the early development of 
cutting-edge generative AI “infrastructure” tools aimed at reducing barriers to entry, then provide 
subsequent larger awards to companies that achieve new milestones and publish their methods and 
findings. Milestones could include achievements in model compression and distillation (reducing 
needs for expensive compute), fine-tuning systems, performance benchmarking, detection of 
unauthorized model use, and reducing the energy intensity of cloud computing. 

In a nascent industry, there is a legitimate concern that forceful government interventions could dull 
incentives for subsequent innovation by leading firms. While measures such as the compulsory 
licensing of technologies, the development of public APIs, or mandated access to infrastructure could 
be justified in the future, we believe it to be more fruitful to first envision a role where the government 
creates a legal framework and norms to govern collaborations between leading firms and teams from 
academia and startups. Although incumbents might at first resist even these “light touch” 
interventions, these might well rebound to their benefit if the collaborations they enable provide 
leading firms with greater insight into new technologies and acquisition targets. 

 
26 A recent example in this spirit is the National Deep Inference Fabric (NDIF) Experiment Program, supported by the 
NSF and developed in collaboration with researchers at Northeastern University and the Public Interest Technology 
University Network (a consortium of 63 universities and colleges). NDIF gives researchers remote access to large scale 
compute and “inference” systems to test new methods on frontier open foundation models like Llama3. 
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4.4 Platform Policy 

Our discussion has been exclusively focused on competition between sponsors of AI foundation 
models. Distilled in a few words, our considered view is that the industry, left to its own devices, is 
likely to evolve an oligopolistic structure due to the stranglehold exercised by leading firms on at least 
some valuable complementary assets. Of course, limited competition in foundation models is 
compatible with the existence of one or more vibrant ecosystems of “fine-tuned” models that build 
on top of the infrastructure layer provided by foundation models. Such a platform evolution is 
portended by OpenAI’s fledgling store of third party plugins.   

Just as in the example of application stores for smartphone operating systems, competition policy 
challenges are sure to arise to limit the bargaining power of the caretakers of these ecosystems—the 
companies controlling the foundation models—vis à vis third-party application providers. For 
example, how proprietary should the APIs that allow application developers to develop on top of 
foundation models be? Should foundation model sponsors be allowed to avail themselves of the data 
used by third party developers to fine-tune these models for their particular use case? And how 
unfettered should the power of model sponsors be in setting royalty rates and access fees to capture 
value generated by third-party developers? Since we deem the prospects for competition and 
innovation at the application layer of the technology stack to be most promising, preventing the walled 
gardens that prevailed in mobile computing to emerge in even more restrictive forms in the AI context 
will require heightened vigilance on the part of competition policy authorities. For examples, efforts 
to standardize the development of third-party applications such that they are interoperable with 
multiple foundation models might significantly enhance consumer choice in the application layer as 
well as effective competition at the foundation model layer. 

5 Conclusion 

Our analysis emphasizes how the technology and complementary assets of the nascent generative AI 
industry might favor a small set of leading firms as they build up a war chest of both specialized know-
how and physical assets. Naturally, predicting another concentrated technology industry might suggest 
preemptive policy guardrails against market power or spark calls to subsidize entrants or offer 
government-created “public option” models to check the private sector oligopolists.27 However, if the 
goal of innovation policy is to foster progress and technological leadership through the emergence of 
a diverse and commercially viable ecosystem, that outcome does not strictly require many competitors. 
The economics of innovation literature highlights the inverted U-shaped relationship between the 
number of competitors and incentives for innovation: not enough competition and firms exploit their 
market power without the urgency to invest in disruptive R&D; too much competition and profits 
erode, lowering innovation returns for all (Aghion et al. 2005; Segal and Whinston 2007). 

Thus, competition policy efforts in the AI domain face the high wire act of fostering intense 
competition without dulling incentives for engaging in risky R&D. That daunting challenge is why our 
policy recommendations emphasize reducing barriers to experimentation—such as legal and 
regulatory uncertainty, milestone based private-public partnerships, public benchmarking, and access 

 
27 https://foreignpolicy.com/2023/06/12/ai-regulation-technology-us-china-eu-governance/ 



26 
 

to AI research infrastructure. Instead of bluntly forcing incumbents to license or share their models, 
generative AI innovation policies could ideally encourage a robust ecosystem of academic researchers 
and firms of different types to compete for the development of next-generation AI models and tools. 
Through policies that are agnostic with respect to the size of organizations that will ultimately bring 
the most promising ideas to market, innovators can strive to complement or displace the leading firms’ 
models, rather than merely duplicate their efforts by developing models with similar technological 
underpinnings. 

A challenge specific to the rapidly evolving AI foundation model sector is that U.S. policymakers find 
themselves navigating between the Charybdis of fostering a competitive market and the Scylla of 
ensuring technological safety, resulting in a policy approach that can appear, at times, to be marked by 
a certain ambivalence, bordering on a dissociative identity disorder.  

First, there is a pronounced concern among policymakers regarding the potential for market 
domination by a select few large tech companies, such as Meta, Google, and Microsoft. Left to their 
own devices, these behemoths could monopolize the AI field, stifle innovation and control the 
direction of future technological developments. This perspective champions the idea of breaking 
down barriers to entry and encouraging a vibrant ecosystem where startups and academic teams 
innovate freely, thus preventing any single entity from wielding disproportionate influence over the 
AI landscape. 

In contrast, a palpable sense of caution permeates policy discussions, primarily centered on the safety 
and ethical implications of AI technologies. The rapid pace of innovation, especially among smaller 
startups with fewer resources to dedicate to ethical considerations, raises concerns about the potential 
for harmful applications, such as the creation and proliferation of deep fakes. Here, the larger 
corporations, with their established reputations and experience with operating under regulatory 
scrutiny, are seen as entities that might be more accountable and responsible stewards of powerful AI 
technologies. 

The reaction to the “Model Forum,” convened by leading AI providers to develop safety standards, 
represents a quintessential example of the ambivalence permeating the AI policy landscape. One 
perspective lauds this initiative as a commendable example of self-regulation, reminiscent of the 
Asilomar conference, which played a pivotal role in addressing the ethical and safety concerns 
surrounding recombinant DNA technology (Berg et al. 1975; Frederickson 1991). This view sees the 
forum as a proactive step toward ensuring AI technologies are developed and deployed responsibly, 
mitigating risks and fostering public trust. Meanwhile, a more skeptical view might interpret the same 
forum as a strategic maneuver by incumbent firms to solidify their dominance. By setting the bar for 
compliance with safety standards they themselves crafted, these firms could inadvertently (or perhaps 
tactically) raise the operational and financial hurdles for emerging and future competitors, potentially 
entrenching their market position. 

This ambivalence presents a conundrum for crafting policy recommendations aimed at fostering 
competition within the AI domain. In this article, we have argued that delineating a competition policy 
framework requires a nuanced understanding of the AI ecosystem, one that is grounded in the twin 
pillars of appropriability and complementary assets. The power of this conceptual framework, 
however, only becomes compelling if this sector is approached by policymakers like any other nascent 
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industry. Rather than reinventing the competition policy wheel for the AI age, we have argued that 
there is nothing inherently special about this domain. While there is always a risk of constraining the 
interpretation of new innovation phenomena within the boundaries of existing paradigms, our analysis 
offers a counterpoint to the fevered claims and policy proposals advanced by industry insiders, as well 
as their detractors. 
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