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Abstract 

There is a very large literature on applications of stochastic control of jump diffusions and a 

smaller literature on such games. In many applications it is natural to assume that the arrival 

intensity is controlled, but except for two long-forgotten papers the literature instead assumes 

that it is the jump sizes that are controlled. The more natural assumption is typically avoided 

because a failed Lipschitz condition means that the classical existence and uniqueness proofs 

cannot be used. We here derive an asymptotic Markov equilibrium of the game with controlled 

jump intensities and show that it, at least in an example, is very similar to the Markov 

equilibrium of an analog game with controlled jump sizes. The paper thus makes two 

contributions: It supplies a way to solve some optimization problems and games with controlled 

jump intensities and it shows that the commonly used formulation with controlled jump sizes is 

quite defensible for at least some classes of games. 
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I. INTRODUCTION 

 

Suppose that a consumer is trying to decide how hard to search for lower prices or that the 

firms in an industry want to know how much each should invest in ongoing productivity 

improvement. Such problems, and many others, can be modeled as control problems or 

differential games in which the state variables follow Point processes as the consumer finds a 

lower price or the firms’ R&D projects bear fruit. A key step in the model formulation is to 

decide exactly how the decision makers affect the state dynamics: In particular, whether they 

control the rate at which jumps (low prices or R&D successes) arrive or the size of those jumps. 

This choice depends on the application, but in many cases, including the price search and the 

productivity investment examples above, it seems natural to assume that players control the 

arrival intensity rather than the jump size. And yet, at least as far as we know, all published 

applications assume that it is the jump sizes, rather than the arrival intensities that are controlled.  

A (the?) major reason for not looking at controlled arrival rates is that the resulting state 

dynamics do not satisfy Lipschitz conditions, such that one cannot apply the classical existence 

and uniqueness results. The fact that Jacod and Protter (1982) and Protter (1983) identified a set 

of conditions under which this class of problems can be solved has made no difference.2 These 

results are simply not used: Protter himself does not cite them in his textbook on Stochastic 

Integration (2005) and Øksendal (2022) believes that the two assumptions – controlled jump 

 
2 More recently, Hernandez-Hernandez et al. have independently solved the problem in a 2019 working paper in 

which they derive Bellman style verification results through a martingale approach. However, as far as we know, 

also that paper has yet to have influence. We use both their results and those of Jacod-Protter in Section III. 

There are also economics models in which agents may search with higher or lower intensity, but these are 

simpler and not subject to the technical problems analyzed in this paper, because search ends with the first 

arrival. 
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sizes and controlled arrival intensities - give very similar results and thus the choice makes little 

difference.  

In the present paper, we show how to find an asymptotic Markov equilibrium of a 

specific, but reasonably general, stochastic differential game with controlled jump intensities. 

The analysis shows that we can solve dynamic optimization problems and games with controlled 

jump intensities if we are willing to accept results that are subject to a couple of weak restrictions 

(theoretical bounds on the control variables and solutions that are unique in law rather than path 

wise unique). However, we also compare the equilibrium to that obtained for a similar problem 

with controlled jump sizes and find that the qualitative properties of the two equilibria are 

relatively close to each other. So we show how to overcome a barrier to the use of an often more 

natural formulation and suggest that its use might not make a major difference.  

Literature 

Since players in differential games find their strategies by solving control problems, the 

two literatures share a lot of foundations. Isaacs (1965) is generally considered to be the 

pioneering text in the study of (deterministic) differential games and Kushner and Chamberlain 

(1969) were probably the first to look at stochastic differential games. Since then, the literature 

has looked at the zero-sum case (e. g. Fleming and Souganitis, 1989), the cooperative case (e. g. 

Yeung and Petrosyan, 2006), and the non-cooperative variable-sum case. Most work on 

stochastic differential games fall in the latter case and represent the stochasticity as a Wiener 

process with controlled drift. It has, however, become clear that Point processes are more natural 

in a wide range of applications. 
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One of the first control theory models using Point processes is due to Merton (1971) and 

Øksendal and Sulem (2019) is a comprehensive textbook devoted to the topic. There are fewer 

game theory applications, but Wernerfelt (1988) gives conditions for existence of several 

equilibrium concepts, in particular Markov.  

We formulate and solve investment games with controlled jump sizes and controlled 

jump intensities in Sections II and III, respectively. Comparisons and concluding comments are 

made in Section IV.   

 

II. GAME WITH CONTROLLED JUMP SIZES 

In this Section we find the Markov equilibrium of a two-person stochastic differential 

game in which the state variables follow Poisson processes and players control the jump sizes. 

We assume that the game is symmetric because we want to show that the two formulations, that 

with controlled jump sizes and that with controlled jump intensities, share the property that 

initially identical players can be expected to differ more and more, thus suggesting that the two 

formulations at least in this case yield similar qualitative predictions. We analyze a linear–

quadratic model for two reasons: First, we want to get an explicit solution, and second, we can 

look at it as a Taylor approximation to a much larger set of games. Since the Markov equilibrium 

is defined as a situation in which both players simultaneously follow their optimal control 

strategy, we can find the value functions simply by solving the Hamilton-Jacoby-Bellman (HJB) 

equation from Theorem 5.1 in Øksendal and Sulem (2019). To get an explicit solution, we guess 

that it is a low degree polynomial and find the specific coefficients from the terminal conditions 

and the HJB equation. Once we have them, the value - and policy functions allow us to 

characterize several interesting properties of the equilibrium. 
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Formally, two players, X and Y, compete in continuous time. The outcome at time t 

depends on both their stocks, the state variables (xt , yt) ϵ R+2, x0 = y0 = 0. At time T < ∞, the 

game terminates, and all stocks become worthless. Until then, the stocks of X and Y grow 

according to independent Poisson processes with intensity λ and jumps of size (ut, vt), 

respectively. The players choose the size of the jumps in their stocks as twice differentiable 

functions of the state variables and time3 such that X ‘s strategy is u(xt, yt, t) and Y’s is v(yt, xt, t).
4 

We will represent the stochastic processes xt, yt, ut, and vt by their “right continuous with left 

limits” versions (commonly known as “cadlag” from French), such that the size of the jump at t 

is xt – xt- etc..  

The description above implies that the stocks grow over time according to 

(1)  xt = ∫ 𝒖
𝒕

𝟎
(xs-, ys-, s-)dNx[λ]ds, 

(2)  yt = ∫ 𝒗
𝒕

𝟎
(ys-, xs-, s-)dNY[λ]ds 

where Nx[λ] and NY[λ] are independent Poisson processes with intensity λ and the integrals sum 

the jumps at arrivals between 0 and t.5  We are going to need (1) and (2) to satisfy an “at most 

linear growth” condition such that they have unique solutions (Theorem 1.19 in Øksendal and 

Sulem, 2019). This condition will hold if the jump sizes are linear or concave functions of the 

state and we will proceed as if that is the case and then come back and check after we have 

derived the equilibrium strategies.  

 
3 While the control (the jump size) chosen at t is a C2 function of t and the state, a jump in the state will typically 

cause a discontinuous change in the chosen jump size. So the value of the control variable will not follow a 

continuous path over time.  
4 We assume that both players observe the state at all times and that the payoff functions are common knowledge. 
5 The problem formulation suggests a filtration induced by the states (xs, ys, s), and we will conduct the analysis in 

that context. 
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We assume that X and Y maximize the second order polynomials ∫ 𝒆
𝑻

𝟎
-ρt[γxt

2 – ηyt
2 – θxtyt + αxt – 

βyt + σ – ½ut
2 - πut]dt and ∫ 𝒆

𝑻

𝟎
-ρt[γyt

2 – ηxt
2 – θxtyt + αyt – βxt + σ – ½vt

2 - πvt]dt, respectively. 

We can, for example, think of the game as describing a duopoly in which two firms invest in 

various assets that improve their competitive positions. To keep the expressions shorter and 

make the argument more transparent, we start by looking at the case in which  α = β = σ = π = 0, 

( ρ, η, θ) ϵ R+3, and γ > η. This means that X and Y maximize ∫ 𝒆
𝑻

𝟎
-ρt[γxt

2 – ηyt
2 - θxtyt - ½ut

 2]dt 

and ∫ 𝒆
𝑻

𝟎
-ρt[γyt

2 – ηxt
2 - θxtyt - ½vt

2]dt, respectively. (The extension to the more general case is 

easy and we will return to it later.)  

If (1) and (2) satisfy the above-mentioned “at most linear growth” condition, we can use 

Theorem 5.16 in Øksendal and Sulem (2019)7, according to which the players want to find C2 

value functions Wx(xt, yt, t), Wy(yt, xt, t) from R+2 х [0, T] → R that satisfy the HJB equations:8 

(3) Maxu(x, y, t){e-ρt[γxt
2 – ηyt

2 – θxtyt - ½ut
2] + ∂Wx(xt, yt, t)/∂t + λ[Wx(xt- + ut-, yt-, t-) –            

Wx(xt, yt-, t-)] + λ[Wx(xt-, yt-+ vt-
*, t-) – Wx(xt-, yt-, t-)]} = 0, Wx(xT, yT, T) = 0, for player X, 

(4) Maxv(y, x, t){e-ρt[γyt
2 – ηxt

2 – θxtyt - ½vt
2] + ∂Wy(yt, xt, t)/∂t + λ[Wy(yt- + vt-, xt-, t-) –            

Wy(yt-, xt-, t-)] + λ[Wy(yt-, xt-+ ut-
*, t-) –Wy(yt-, xt-, t-)]} = 0, Wy(yT, xT, T) = 0, for player Y. 

The first terms in (3) and (4) are the payoffs at t and the remaining terms make up a first order 

Taylor approximation to the dynamics of Wx and Wy. The Markov equilibrium controls ut-
* and 

vt-
* are therefore given by the first order conditions:  

 
6 Theorem 5. 1 is about a control problem but the extension to differential games is immediate since we get a 

Markov equilibrium if both players follow their optimal control strategy. The interested reader can see examples in 

Chapter 6 of Øksendal and Sulem (2019) and in Mataramvura and Øksendal (2008). 
7 Chapter 1 of this book presents the underlying theory of Levy processes. 
8 Since the value functions are C2, we can use the infinitesimal generators of xt and yt to describe the movements of 

the value functions in infinitesimal time-intervals.  
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(5) ut-
*(xt-, yt-, t-) = eρt-λ∂Wx(xt-, yt-, t-)/∂x,  

(6) vt-
*(yt-, xt-, t-) = eρt-λ∂Wy(yt-, xt-, t-)/∂y  

Since the players face symmetric problems, Wx ( ) = Wy( ) and we can drop the x and y 

subscripts, use W( ) for the value function, and henceforth focus on X. Substitution of (5) and (6) 

into (3) allows us to rewrite the HJB equation as: 

(7) e-ρt(γxt
2 – ηyt

2 - θxtyt) - e
ρtλ2[∂W(xt-, yt-, t-)/∂x]2/2 + ∂W(xt, yt, t)/∂t +                                

λ[W(xt- + eρtλ∂W(xt-, yt-, t-)/∂x, yt- , t-) – W(xt-, yt-, t-)] + λ[W(xt-, yt-+ eρtλ∂W(yt-, xt-, t-)/∂y, t-) – 

W(xt-, yt-, t-)] = 0,  W(xT, yT, T) = 09
 

We will guess that the solution to (7) has the form:10 

(8) Wg(xt, yt, t) ≡ e-ρt[a(t)xt
2 + b(t)xt + c(t) + d(t)yt

2 + e(t)yt + f(t)xtyt],  

a(T) = b(T) = c(T) = d(T)= e(T) = f(T) = 0. 

Using that the equilibrium strategies are symmetric, this gives: 

(9) ut-
g = λ[2a(t)xt- + b(t) + f(t)yt-] 

(10) vt-
g= λ[2a(t)yt- + b(t) + f(t)xt-] 

(11)  λ[Wg(xt- + λ2a(t)xt- + λb(t) +λf(t)yt-, yt-, t-) – Wg(xt-, yt-, t-)] =  

e-ρtλ2[a(t)λ + 1]{4a(t)2xt-
2 + 4a(t)b(t)xt- + b(t)2 + f(t)2yt-

2 + 2b(t)f(t)yt-+ 4a(t)f(t)xt-yt-}. 

(12)  λ[Wg(xt-, yt-+ λ2a(t)yt- + λb(t) + λf(t)xt-, t-) – Wg(xt-, yt-, t-)] = 

e-ρtλ2{λd(t)f(t)2xt-
2 +[λb(t)d(t) + e(t)]f(t)xt- + b(t)[λb(t)d(t) + e(t)] + 4a(t)d(t)[λa(t) + 1]yt-

2 + 

2[b(t)d(t) + 2λa(t)b(t)d(t) + a(t)e(t)]yt- + 2d(t)f(t)[2λa(t) + 1]xt-yt-}.        

 
9 Since vt

*is in (3) and ut
* is in (4), two HJB equations are coupled. We can, however, write vt

* in terms of Wx as eρt-

λ∂Wx(yt-, xt-, t-)/∂y and ut
* in terms of Wy as eρt-λ∂Wy(xt-, yt-, t-)/∂x therefore decouple the two equations. 

10 The superscript g indicates that Wg( ) is a guess. 
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So if our guess is correct, (9) and (10) show that the jump sizes are linear in the state and 

therefore that (1) and (2) have unique solutions. Rewriting the HJB equation in terms of the 

coefficients in Wg(xt, yt, t) gives: 

(13)  γxt
2 – ηyt

2 - θxtyt – λ2[2a(t)xt- + b(t) + f(t)yt-]
2/2 + [a’(t) – ρa(t)]xt

2 + [b’(t) – ρb(t)]xt +[c’(t) 

– ρc(t)] + [d’(t) – ρd(t)]yt
2 + [e’(t) – ρe(t)]yt  + [f’(t) - ρf(t)]xt-yt + λ2[a(t)λ + 1]{4a(t)2xt-

2 + 

4a(t)b(t)xt- + b(t)2 + f(t)2yt-
2 + 2b(t)f(t)yt-+ 4a(t)f(t)xt-yt-} + λ2{λd(t)f(t)2xt-

2 +[λb(t)d(t) + 

e(t)]f(t)xt- + b(t)[λb(t)d(t) + e(t)] + 4a(t)d(t)[λa(t) + 1]yt-
2 + 2[b(t)d(t) + 2λa(t)b(t)d(t) + 

a(t)e(t)]yt- + 2d(t)f(t)[2λa(t) + 1]xt-yt-} = 0.       

 a(T) = b(T) = c(T) = d(T)= e(T) = 0. 

 Wg(xt, yt, t) solves (7) if the constant term and the coefficients on xt
2, xt, yt

2, yt and xtyt  all are 

zero at T. This means that the coefficients in Wg(xt, yt, t) solve the following differential 

equations: 

(14)  a’(t) = - γ – 2a(t)2λ2[1 + 2a(t)λ] - λ3d(t)f(t)2 + ρa(t), a(T) = 0 

(15)  b’(t) = [- 4λ3a(t)2 - 2 λ2a(t) + λ3d(t)f(t) + ρ]b(t) + λ3e(t)f(t),  b(T) = 0   

(16)  c’(t) =  - λ2b(t)[λa(t)b(t) + b(t)/2 + λb(t)d(t) + e(t)] +ρc(t), c(T) = 0 

(17)  d’(t) = η - 4λ2a(t)d(t)[a(t)λ + 1] - λ2f(t)2[a(t)λ + ½] + ρd(t), d(T) = 0 

(18)  e’(t) = – b(t)[2λa(t) + 1][2d(t) + f(t)] + 2a(t)e(t)] + ρe(t), e(T) = 0 

(19)  f’(t) = θ - 2λ2f(t)[2a(t)λ + 1][a(t) + d(t)] + ρf(t),  f(T) = 0                                                                

Since (14) - (19) is a system of ODEs with Lipschitz continuous right-hand sides, a unique 

solution exists (see e. g. Cid, 2003, and further references cited there), and we can conclude that:  

Proposition 1: Suppose that all jumps arrive with intensity λ and that these are controlled by 

players X and Y, respectively, then: 
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(1. 1) The value functions W*(xt, yt, t) and W*(yt, xt, t) are e-ρt[a(t)xt
2 + b(t)xt + c(t) + d(t)yt

2 + 

e(t)yt + f(t)xtyt] and e-ρt[a(t)yt
2 + b(t)yt + c(t) + d(t)xt

2 + e(t)xt + f(t)xtyt], respectively.   

(1. 2) The Markov equilibrium strategies are ut-*= λ[2a(t)xt- + b(t) + f(t)yt-] and vt-*= λ[2a(t)yt- 

+ b(t) + f(t)xt-]. 

So the value functions are second order polynomials, and the policy functions are proportional to 

the arrival intensity and linear in both players’ stocks.  

Since Proposition 1 gives an explicit solution to the game, we can quite easily derive 

several interesting corollaries.  

Corollary 1. 1:   a(t) > 0 and f(t) < 0. 

Proof: From (14): First, since a’(t) < 0 for t close to T, a(t) > 0  in that neighborhood. Second, 

because a’(s) < 0 if a(s) = 0, a(s) cannot change sign and is therefore positive for all t < T. 

Similarly from (19): Since f’(t) > 0 for t close to T, f(t) < 0 in that neighborhood and because  

f’(t) > 0 if f(t) = 0, f(t) cannot change sign and is therefore negative for all t < T. 

QED 

Corollary 1. 2:  If x0 > y0, and Et=k(zs) denotes the expectation, taken at time k < s, of the period 

s value of z, then Et=k (xs/ys) grows with s.  

Proof: Suppose again that X is ahead at time h. The players are equally likely to get the next 

arrival at time h + i, but the size of a player’s arrival and post arrival stocks are proportional to 

his or her stock. So if X gets the arrival at h + i, we can write xh+i as rxh whereas Y’s h + i stock 

would be ryh if it gets the first arrival. Therefore Et=h (xh+i/yh+i) = ½ [rxh/yh + xh/(ryh)] = 

½(xh/yh)[(r2 + 1)/r] which is larger than xh/yh for all r ≠ 1. 
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QED 

Corollary 1. 3: Et=0│xs - ys│ grows with s.  

Proof: Suppose that X is ahead at time h in the sense that xh  > yh. In that case (since λ[2a(t)xh + 

b(t) + f(t)yh] > λ[2a(t)yh + b(t) + f(t)xh] when xh  > yh), ut-* >  vt-* and X invests more. The 

players are equally likely to get the next arrival at time h + i, but since X will invest more, │xh - 

yh│ will grow more if it gets the arrival than if Y does. The expected value of │xh+i - yh+i│is 

therefore larger than │xh - yh│.The same mechanism applies for all later arrivals, and if Y gets the 

first arrival. So while Et =0 (xs - ys) = 0, Et=0│xs - ys│ is strictly positive and grows with s.  

QED 

Corollary 1. 4:  The probability that xs - ys changes sign decreases with s. 

Proof: Suppose that xs > ys. The players are equally likely to get the next arrival but X’s will be 

larger and by Corollary 1. 3, the expected difference in sizes grows with xs – ys and thus with 

time. 

QED 

Corollaries 1.2 – 1.4 suggest that a player who is ahead is more likely to increase their lead, that 

the players are expected to grow more different over time, and that the probability of a lead 

change decreases with time.  

 

III. GAME WITH CONTROLLED JUMP INTENSITIES 

This Section contains the main theoretical result of the paper. We formulate a two-player 

stochastic differential game in which the state dynamics are governed by Point processes and 
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players control their jump intensities. We then use Corollary 31 from Jacod and Protter (1982) 

and Corollary 3.11 from Protter (1983) to characterize an asymptotic Markov equilibrium. To 

facilitate comparison with the case studied in Section II, we keep the models and the notation as 

similar as possible. The game is also here linear-quadratic, we guess a polynomial value function 

and find the coefficients as solutions to ordinary differential equations. Given this, we get value - 

and policy functions that are very similar to those in Section II and can show that close 

analogues of the four Corollaries hold. There are only three technical differences between the 

models. First, and most importantly, the players’ stocks grow in fixed jump sizes but with 

controlled intensities. Second, the equilibria in this model are unique in law, a subtly weaker 

form of uniqueness than the pathwise uniqueness used in Section II. Third, the controls are 

bounded for a reason to be described below.  

Formally, the game again starts at x0 = y0 = 0 and terminates when all stocks become 

worthless at T < ∞. The players’ stocks grow in jumps of size φ > 0 that arrive according to non-

homogeneous Point processes with intensities u(xt-, yt-, t-) for X and v(yt-, xt-, t-) for Y. The 

players choose the intensities as C2 Markov controls bounded by the positive constant U; X ‘s 

strategy is u(xt, yt, t) ≤ U and Y’s is v(yt, xt, t ) ≤  U. The stocks therefore develop over time 

according to: 

(20)  xt = ∫ 𝒅𝑴𝒙[𝒖
𝒕

𝟎
(xs-, ys-, s-)]ds 

(21)  yt = ∫ 𝒅𝑴𝒚[𝒗
𝒕

𝟎
(ys-, xs-, s-)]ds 

where Mx[u(xs-, ys-, s-)] and My[v(ys-, xs-, s-)] are Point processes with jumps of size φ and 

intensities u(xs-, ys-, s-) and v(ys-, xs-, s-). X and Y maximize ∫ 𝒆
𝑻

𝟎
-ρt[γxt

2 – ηyt
2  – θxtyt  - ½ut

 2]dt 
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and ∫ 𝒆
𝑻

𝟎
-ρt[γyt

2 – ηxt
2 -– θxtyt-  -  ½vt

2]dt, respectively, and we continue to assume that (ρ, η, θ) ϵ 

R+3, and γ > η.   

 The bound on the controls makes the problem very difficult. Depending on U and the 

realizations of (1)  and (2) the state can be in one of four regions: Neither player is constrained, 

one of the players is constrained, or both players are constrained. The value functions must take 

into account that the state may enter and leave each of these regions several times and they 

would need value matching and smooth pasting on each such occasion. We can, however, get a 

limiting result by taking advantage of the fact that the incentives to choose a high jump intensity 

go to zero as t → T. So the state will, no matter what happens, spend some time in the region in 

which neither player is constrained and the probability that it spends the entire [0, T] interval in 

that region goes to 1 as U → ∞.  

The problem no longer satisfies the conditions of Theorem 5.1 in Øksendal and Sulem 

(2019) because the jump intensities u(xt-, yt-, t-) and v(yt-, xt-, t-) depend on the very states they 

govern. Since the coefficients in (20) and (21) therefore do not satisfy Lipschitz conditions, we 

cannot apply classical existence and uniqueness results. Fortunately, we can rely on a more 

general result first obtained by Jacod and Protter (1982, Corollary 31) and Protter (1983, 

Corollary 3.11).11 They show that (20) and (21) have solutions that are unique in law if there 

exists finite-valued increasing processes p and q such that ∫ 𝒖
𝒕

𝟎
(xs, ys, s)ds ≤ pt  and ∫ 𝒗

𝒕

𝟎
(ys, xs, 

s)ds ≤ qt for all t  ≥ 0.12 These conditions are clearly satisfied by pt = qt = tU.  

 
11 The idea in the proof is to inductively define an increasing sequence of stopping times (jump times) τ1, τ2, …τn, ..   

and piece together the entire solution from the intervals [τ1, τ2-) in which the classical theory applies.  
12 Uniqueness in law means that all solutions produce the same distribution over future realizations given the same 

starting point and time. Classical conditions give pathwise uniqueness, a stronger property under which all solutions 

follow the same paths everywhere. 
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Given the above, we will take U to infinity, disregard the constraint, and apply Theorem 7.1 

in Hernandez-Hernandez et al. (2019) to justify the HJB equation. This gives us the following 

limiting result: 

Proposition 2: Suppose that all jumps are of size φ, that the arrival intensities (ut, vt) are 

bounded by U > 0, and that these are controlled by players X and Y, respectively. Further, define 

A(t), B(t), C(t), D(t), E(t) and F(t) as the solutions to:  

A’(t) = - γ – [2A(t)2 + F(t)2]φ2 + ρA(t), A(T) = 0,  

B’(t) = - [A(t)φ + B(t)]φ2[2A(t) + F(t)] - φ2[D(t)φ + E(t)]+ ρB(t), B(T) = 0,  

C’(t) =  - φ2[A(t)φ + B(t)]2/2 - φ2[A(t)φ + B(t)][D(t)φ + E(t)] +ρC(t), C(T) = 0  

D’(t) = η  – φ2[4A(t)D(t) + F(t)/2] + ρD(t), D(T) = 0 

E’(t) = - φ2F(t)[A(t)φ + 2B(t)] - 2φ2[2A(t)D(t)φ +A(t)E(t) + B(t)D(t)] + ρE(t), E(T) = 0 

F’(t) =  θ - 2φ2F(t)[2A(t) + D(t)] + ρfFt), F(T) = 0 

In this case, as U → ∞:  

(2. 1) The probability of Maxt{ut-, vt-} < U converges to 1.  

(2. 2) The value functions W*(xt, yt, t) and W*(yt, xt, t) converge to e-ρt[A(t)xt
2 + B(t)xt + C(t) + 

D(t)yt
2 + E(t)yt + F(t)xt-yt-] and e-ρt[A(t)yt

2 + B(t)yt + C(t) + D(t)xt
2 + E(t)xt + F(t)xt-yt-], 

respectively. 

(2. 3) The Markov equilibrium strategies converge to:   

ut-
* = φ[2A(t)xt- + φA(t) + B(t) + F(t)yt-] and  vt-

* = φ[2A(t)yt- + φA(t) + B(t) + F(t)xt-].  
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Proof: Consider a time t < T and a pair of finite-valued functions from [0, t] to [0, U]. Imagine 

that the latter pair of functions are arrival intensities and hold them and t constant. Then, for any 

pair of reals kx, ky, the probability of a pair of sequences of realized arrival times such that xt > kx 

or yt > ky  is decreasing in U. This establishes (2. 1) and that the extent to which the value 

functions in the constrained game depart from those in the unconstrained game goes to zero as U 

goes to infinity.  

Next, note that the HJB equation for player X in the unconstrained game is: 

(22) Maxu(x, y, t){e-ρt[γxt
2 – ηyt

2 – θxtyt-  -- ½ut
2] + ∂W(xt, yt, t)/∂t + ut-[W(xt- + φ, yt- ,t-) –           

W(xt-, yt-, t-)] + vt-[W(xt-, yt- + φ ,t-) – W(xt-, yt-, t-)] = 0. 

The Markov equilibrium controls ut-
* and vt-

* are therefore given by the first order conditions:  

(23) ut-
*(xt-, yt-, t-)= eρt[W(xt- + φ, yt- ,t-) – W(xt-, yt-, t-)]  

(24) vt-
*(yt-, xt-, t-)= eρt[W(yt- + φ, xt- ,t-) – W(yt-, xt-, t-)] 

We can substitute (23) and (24) into (22) and rewrite the HJB equation as: 

(25) e-ρt(γxt
2 – ηyt

2-– θxtyt-) + ∂W(xt-, yt-, t-)/∂t + eρt[W(xt- + φ, yt-, t-) – W(xt-, yt-, t-)]
2/2 +  

eρt[W(yt- + φ, xt-, t-) – W(yt-, xt-, t-)][W(xt-, yt- + φ, t-) – W(xt-, yt-, t-)] = 0. 

We again guess a solution of the form:  

(26) Wg(xt, yt, t) ≡ e-ρt[A(t)xt
2 + B(t)xt + C(t) + D(t)yt

2 + E(t)yt   + F(t)xt-yt-].  

Substituting (26) into (25) gives: 

(27) {A’(t) – ρA(t) + γ + [2A(t)2 + F(t)2]φ2}xt
2 + {B’(t) – ρB(t) + [A(t)φ + B(t)]φ2[2A(t) + F(t)] - 

φ2[D(t)φ + E(t)]}xt + {C’(t) – ρC(t) +  φ2[A(t)φ + B(t)]2/2 - φ2[A(t)φ + B(t)][D(t)φ + E(t)]} + 
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{D’(t) - η – ρD(t) + φ2[4A(t)D(t) + F(t)/2]}yt
2 + {E’(t) – ρE(t)+ φ2F(t)[A(t)φ + 2B(t)] + 

2φ2[2A(t)D(t)φ +A(t)E(t) + B(t)D(t)]}yt  + {F’(t) – ρF(t) - θ + 2φ2F(t)[2A(t) + D(t)]}xtyt  = 0 

Our guess Wg(xt, yt, t) therefore solves (27) if the coefficients in Wg(xt, yt, t), solve the following 

differential equations: 

(28) A’(t) = - γ – [2A(t)2 + F(t)2]φ2 + ρA(t), A(T) = 0,  

(29) B’(t) = - [A(t)φ + B(t)]φ2[2A(t) + F(t)] - φ2[D(t)φ + E(t)]+ ρB(t), B(T) = 0,  

(30)  C’(t) =  - φ2[A(t)φ + B(t)]2/2 - φ2[A(t)φ + B(t)][D(t)φ + E(t)] +ρC(t), C(T) = 0  

(31) D’(t) = η  – φ2[4A(t)D(t) + F(t)/2] + ρD(t), D(T) = 0 

(32) E’(t) =- φ2F(t)[A(t)φ+ 2B(t)]- 2φ2[2A(t)D(t)φ+ A(t)E(t)+ B(t)D(t)]+ ρE(t), E(T) = 0 

(33) F’(t) =  θ - 2φ2F(t)[2A(t) + D(t)] + ρF(t), F(T) = 0 

Since (28) – (33) have Lipschitz continuous right-hand sides, a solution exists and (2. 2) and (2. 

3) follows. 

QED 

So just as in the game with controlled jump sizes, the limiting value functions with controlled 

arrival intensities are second order polynomials, and the policy functions are linear in both 

players’ stocks. Finally, except for the quadratic A(t)φ2,  the policy functions are proportional to 

the jump size which therefore play a role very similar to that played by the arrival intensity in the 

game with controlled jump sizes. Between the jump size and the arrival intensity, the 

uncontrolled magnitude plays more or less the same role in both models. 
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It is easy to establish that the game with controlled jump intensities behaves “like” the 

game with controlled jump sizes in the sense that Corollaries 2.1 – 2.4 below are analogues of 

Corollaries 1.1 – 1.4.  

Corollaries 2.1-2.4: As U → ∞, the probability that the following statements are true converges 

to 1: 

Corollary 2.1: a(t) > 0 and f(t) < 0. 

Corollary 2.2:  If x0 > y0, Et=0 (xs/ys) grows with s. 

Corollary 2.3:  Et=0│xs - ys│ grows with s. 

Corollary 2.4: The probability that xs - ys changes sign decreases with s.  

Proof: By arguments identical to those used to prove Corollaries 1.1 – 1.4 with one difference: 

In this model players will get equally-sized arrivals, but whoever is ahead is more likely to get 

the next one.  

QED 

In a natural analogue of the model presented in Section II, we obtain a limiting result 

according to which the value - and policy functions are very similar to what we found there. By 

Corollaries 2 – 4, the two games share other appealing properties as well. The analysis in this 

Section shows that we can solve dynamic optimization problems and games with controlled 

jump intensities if we are willing to accept results that depend on theoretical bounds on the 

control variables  and solutions that are unique in law only. However, it also suggests that the 

qualitative properties of the solution may be relatively close to those obtained in similar models 

with controlled jump sizes. 
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IV. DISCUSSION 

There are some theoretical limits on the acceptability of the solution to the second 

formulation, but we do not see them as particularly important. It is hard to think of an application 

in which a solution would be disqualified because it only is unique in law. There are certainly 

cases in which it is natural to assume that the arrivals cannot be too close in time (“at most one 

per day”?), but the two formulations do not differ in that respect; only the arrival intensities are 

at stake. Can there be cases in which it is important to bound the arrival intensities? We cannot 

think of an example, but the answer may be less clear than that about the nature of uniqueness.  

We would like to close with four observations: First, as discussed at the start of Section II, 

we claim that the result hold for general second order polynomial objective functions of the form 

∫ 𝒆
𝑻

𝟎
-ρt[γxt

2 – ηyt
2 – θxtyt + αxt – βyt + σ – ½ut

2 - πut]dt. To see this, start by writing out the 

analogue of (7). This only differs because the first term (the payoff function) is longer and 

because ut-
*(xt-, yt-, t-) = eρt-λ∂W(xt-, yt-, t-)/∂x – π, where the π is new. You then guess a solution 

of the form Wg(xt, yt, t) ≡ e-ρt[a(t)xt
2 + b(t)xt + c(t) + d(t)yt

2 + e(t)yt + f(t)xtyt], which is the same 

as (8). By going through each term in the HJB equation you can then see that it also is a second 

order polynomial and therefore can be solved by Wg(xt, yt, t). Second, it is a limitation that the 

results only have been established  for a linear-quadratic model, but such models are Taylor 

approximations to a much richer set and the approximation can locally be very good. It is true 

that relatively few models in the social sciences use our linear-quadratic functional form, but that 

is because it often is possible to solve models with a more appealing interpretation in the context. 

In the case considered here, it would be very, very hard to solve other functional forms and 

having an approximate model is presumably better than having no model. Third, it is not 

important that the games be symmetric. We chose that case because Corollaries 2 – 4 are 
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uninteresting in other settings. Fourth, to help us think about the limitations of the results, it 

would be interesting to identify an application in which the two formulations yield conflicting or 

at least different intuitions about what is going on.  
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