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Abstract

Government bonds in advanced economies shifted their comovement with aggregate stock
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then reverting to being “risky” after 2022. An analysis of twelve countries over the postwar
period shows these shifts occurred simultaneously across countries and are not well explained
by changes in output and inflation dynamics. Using a Dynamic Factor Model and a novel
identification strategy combining heteroskedasticity with narrative information, I find that
the data point instead to the increased importance after 1998 of financial shocks leading to
flight-to-safety dynamics. A model of financial intermediaries in the stock and bond market
formalizes how the rise of levered funds constrained by risk limits propagate such shocks,
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1 Introduction

Government bonds in the United States and other advanced economies are generally thought to be
“safe”, not only because they are subject to little or no risk of default, but also because their prices
tend to increase in bad times, such as recessions and financial crises, when risky asset prices fall.
The negative comovement between government bond and stock returns, however, is a relatively
new phenomenon that became apparent only at the turn of the last century, as first documented
by Li (2002) and Fleming et al. (2003). Indeed, for much of the century prior to the late 1990s, and
after 2022, treasuries behaved not as hedges but as “risky” assets, with their prices appreciating or
depreciating in sync with those of corporate equities and the broader business cycle.

Why the returns on safe government bonds switch from behaving pro- to counter-cyclically is
of first-order concern for our understanding of asset pricing, for the asset allocation decisions of
investors, and for the conduct of monetary and debt management policies. Focusing mostly on
the post-1980 US experience, an extensive literature has linked these switches to changes in the
covariance between output and inflation during the same period (Burkhardt and Hasseltoft, 2012;
David and Veronesi, 2013; Campbell, Sunderam, and Viceira, 2017; Campbell, Pflueger, and Viceira,
2020). Higher unexpected inflation lowers nominal and real bond returns, and higher output raises
stock returns, so changes in the cyclicality of inflation are a prime candidate for explaining the flip
of the bond-stock correlation from positive to negative. However, the global financial system has
undergone a large number of simultaneous technological, regulatory, and macroeconomic changes
since the early 1990s (see, e.g. Rey, 2013), which make it difficult to distinguish between alternative
theories of what drives these switches.

This paper widens the lens by studying the international and historical dimension of the ques-
tion, and advances the hypothesis that the structure of financial markets is key to understanding
the changes in the comovement between safe and risky assets. Using a panel of twelve advanced
economies for the entire postwar period, I first show that bonds co-moved mostly positively with
stocks for the majority of the sample, with the covariance only turning significantly negative
after the 1998 Financial Crisis, earlier than previously estimated. This switch was persistent, si-
multaneous across countries, and does not align well with the patterns of output and inflation

comovement in the time series or the cross section.! Instead, I show that a financial shock leading to

' A supplementary dataset going as back as 1890 confirms this picture. Part of this evidence is also discussed by
Laarits (2020) and Chernov et al. (2021).



flight-to-safety dynamics in international markets is the leading driver of the negative stock-bond
covariance, and that the importance of this shock increased dramatically after the late 1990s, chang-
ing the covariance unconditionally.” I then provide a theory of how market dynamics induced by
levered financial intermediaries in the equity and fixed-income markets, which became prominent
during this period, are consistent with the new set of facts. In my model, levered funds subject to
value-at-risk constraints amplify and propagate flight to safety episodes, and a rise in their market
share drives a switch in the aggregate return covariance.

A key contribution of this paper is to develop an empirical strategy that can identify the
nature of the macroeconomic shocks that account for the changes in the stock-bond covariance
across countries and over time. I use a Dynamic Factor Model (DFM) specifically designed
to summarize the comovement among a broad set of time series that includes not just stock
and bond returns, but also short-term interest rates, commodities, exchange rates, as well as
output, consumption and inflation, and tease out the changing importance of different types of
macroeconomic shocks. Building on ideas from the macroeconomics literature on the identification
of structural vector autoregressions (VAR), I exploit heteroskedasticity in the data, complemented
with a-priori narrative knowledge that certain types of structural shocks were more volatile in
certain periods, to identify the model. For example, knowledge that oil supply shocks were more
prevalent during the 1970s or during the 1990 Gulf War helps separate these from other types of
demand and supply shocks. This new approach, which extends the narrative sign restrictions
method of Antolin-Diaz and Rubio-Ramirez (2018) (see also Ludvigson et al., 2018; Giacomini
et al., 2021) to a case with conditional heteroskedasticity along the lines of Sentana and Fiorentini
(2001), Rigobon (2003) and Brunnermeier et al. (2020), helps overcome weak identification concerns
associated with identification via heteroskedasticity only (Montiel Olea et al., 2022).

My results show that the shocks that are responsible for the volatility of output and inflation
across developed countries are not the ones accounting for the flips in the stock-bond covariance,
simultaneously across countries, from positive to negative in 1998, and back from negative to
positive in 2022. Instead, a ‘financial shock’, identified from narrative information as having
unusually high variance during the stock market crashes of October 1987, August 1998, and
September 2008, appears as the main driver of the negative stock-bond covariance. I show that

the volatility of this shock was on average, three times higher after 1998 than before 1998, and

?For brevity, I will refer to this shock as a ‘flight-to-safety” shock. Baele et al. (2020) empirically document flgight-to-
safety episodes in international financial markets.



that it leads to a “flight to safety” in international financial markets: a simultaneous fall in the
prices of stock markets around the world, a decline in nominal and real long-term interest rates,
and an appreciation of the US dollar against risky currencies such as the Australian dollar but a
depreciation against safe currencies such as the Japanese Yen or the Swiss Franc.

Finally, I provide a theory that links the rise of levered financial intermediaries in the late 1990s
to the increased importance of financial shocks consistent with the facts. I present a stylized model
of financial intermediation in the spirit of Vayanos and Vila (2021), Greenwood et al. (2018, 2023a)
and Gourinchas et al. (2024) in which specialist levered traders subject to value-at-risk constraints
amplify and propagate flight to safety episodes in stock and bond markets. In the model, a shock to
the risk-taking capacity of specialist funds, interpreted as hedge funds or broker-dealers, interacts
with the convenience demand for long-term bonds of a separate class of market participants,
interpreted as pension funds, to produce a temporary flight towards long-term bonds. My model
reproduces the flight towards long-maturity instruments, rather than to a safe one period bond,
observed in the data and critical to explain the switch in the covariance between stock and bond
returns. As the importance of levered intermediaries increases in the market, driven by regulation
and/or financial innovation, shocks leading to opposite-sign movements in stock and bond returns

become more volatile, leading to a change in the aggregate return comovement.

Related literature. An active literature in macro-finance has explored why the relationship be-
tween government bond and stock returns has changed over time. The switch from positive to
negative covariance was documented and discussed by Li (2002), Fleming et al. (2003) and IImanen
(2003). Baele et al. (2010), Campbell et al. (2017, 2020), Burkhardt and Hasseltoft (2012), and David
and Veronesi (2013) all link the changing stock-bond covariance to changes in the cyclical behavior
of inflation and consumption. They argue that inflation was counter-cyclical during the 1970s
and 1980s but became pro-cyclical during the Great Moderation, affecting the riskiness of nominal
bonds. Consistent with my findings, Baele et al. (2010) find that macroeconomic fundamentals
contribute little to explaining stock and bond return correlations. A few papers have explored
alternative explanations, all within the framework of consumption-based asset pricing. Song (2017),
proposes that a shift toward more counter-cyclical monetary policy in the late 1990s accounts for
the observed changes, whereas Chernov et al. (2021) link them to changes in the autocorrelation of

consumption growth, and Li et al. (2022) links them to the fiscal policy regime. Consistent with



my findings, Acharya and Laarits (2023) document the important linkage between the stock-bond
covariance and convenience yields on long-term treasuries, and Laarits (2020) emphasizes the
importance of a precautionary savings motive. Duffee (2018, 2023) challenges existing theories
by showing that they all imply that volatile expected inflation is a primary driver of bond yields.
He shows instead that in the data, expected inflation is relatively stable and does not significantly
impact bond yields. My evidence confirms that shocks not directly linked to inflation are important
to explain the stock-bond covariance, and I provide a purely real model in which the latter can
switch without a significant role for inflation.

I depart from consumption-based pricing and instead build on a strand of theories emphasizing
the importance of financial intermediaries and market structure on asset pricing. Krishnamurthy
and Vissing-Jorgensen (2012) analyze how the demand for safe assets affects Treasury yields,
emphasizing the impact of the supply and demand dynamics of government bonds on asset prices.
Vayanos and Vila (2021) and Greenwood and Vayanos (2014) discuss how demand pressures
and supply factors influence the yield curve through the behavior of preferred-habitat investors.
In a closely-related contribution to my own, Kekre and Lenel (2021) investigate how value-at-
risk constraints on levered intermediaries affect asset prices and contribute to flight-to-safety
episodes. My model is closest to Greenwood et al. (2018, 2023a) and Gourinchas et al. (2024),
with the key difference that I focus the attention on arbitrage across stock and bond markets,
and shocks to levered intermediaries risk-taking capacity. On the empirical front, the literature
on the “global financial cycle” (Rey, 2013; Miranda-Agrippino and Rey, 2020, 2022) connects
these intermediary effects to the movements in risky asset prices. These papers document the
synchronization of financial cycles across countries and highlight the role of global financial
intermediaries in transmitting shocks internationally. I contribute to this body of work by showing
that safe assets such as bonds are also affected by the synchronized movements in prices associated
to the actions of global financial intermediaries.

On the econometric front, the paper contributes to the literature on dynamic factor models and
identification of structural vector autoregressions (VARs). Sentana (1998), and Sentana and Fioren-
tini (2001) explore identification in conditionally heteroskedastic factor models, while Rigobon
(2003) introduces identification through heteroskedasticity in structural VARs, a strategy that has
become increasingly popular (see, e.g. Brunnermeier et al., 2020; Lewis, 2021). Identification via

heteroskedasticity offers the promise of sharp inference by exploiting the differences in volatility,



but is subject to concerns about interpretability, sensitivity, and weak identification, as discussed
by Montiel Olea et al. (2022). To address these concerns, I introduce a new identification strategy
that combines heteroskedasticity with narrative information about periods where the volatility
of certain types of shocks is known a-priori to be elevated, an approach that I label “volatility
narratives” and that builds on the concept of narrative sign restrictions introduced in Antolin-Diaz

and Rubio-Ramirez (2018) (see also Ludvigson et al., 2018; Giacomini et al., 2021).

Organization of the paper. The rest of the paper is organized as follows. Section 2 discusses the
data and presents an initial set of stylized facts. Section 3 discusses the econometric approach to
identification, and presents the idea of volatility narratives. Section 4 applies the model to the data
and discusses the results. I formalize the mechanism behind the empirical results in section 5, and

section 6 concludes.

2 Data and Stylized Facts

2.1 Baseline dataset.

The main dataset underlying the empirical analysis comprises 99 time series at the monthly
frequency from January 1955 to June 2024 and covers twelve advanced economies: Australia,
Canada, France, Germany, Italy, Japan, New Zealand, Norway, Sweden, Switzerland, the United
Kingdom, and the United States. I outline here the variables included and the main sources,
and give full details in Appendix A. The dataset includes stock returns, 3-month and 10-year
interest rates, exchange rates against the US dollar, core and headline inflation, and GDP and
consumption growth for each country, as well as four series of commodity prices aggregated at the
level of broad categories (energy, agriculture and livestock, industrial metals, and precious metals).
Stock return data comes from Morgan Stanley Capital International (MSCI) from December 1969
onward, and from Global Financial Data (GFD) prior to that date. Because data on government
bonds differs greatly in terms of time span and maturity availability across countries, the creation
of consistent series of government bond yields requires specifying and estimating an empirical
model of the term structure of interest rates for each country. I apply the model of Diebold and
Li (2006), adjusted to allow for arbitrary patterns of missing data, to raw data from Thomson

Reuters Datastream and GFD, and construct homogeneous series of zero-coupon bond yields at the



1-month, 2-year and 10-year maturity for all the countries in my sample.® Bond returns are then
computed following the approximation of Campbell et al. (1998). All return series are denominated
in their domestic currency and converted into excess returns by subtracting the one-month bill
return of the respective country. Foreign Exchange rates are from the International Monetary Fund
(IMF).* Commodity futures returns are from S&P Goldman Sachs Commodity Indices. Whenever
necessary, these are extended backwards using historical data from GFD. Inflation rates, both
headline and core (excluding food and energy), as well as quarterly real GDP and consumption
growth rates, are from the OECD Main Economic Indicators. These are interpolated to monthly

frequency using the growth rates of industrial production and retail sales, also from the OECD.”

2.2 Additional data

I complement the main dataset with an extension covering a longer historical period starting in
1890. This is achieved by merging three distinct sources. The first is the study by Dimson, Marsh,
and Staunton (2009) (DMS), which compiles annual data on stock, bond, and bill returns, as well
as inflation since 1901 for a large cross section of countries. Second, the one of Barro and Urstia
(2008), whose main source is Global Financial Data (GFD). An advantage of the latter source is that
much of the return data is also available at monthly frequency. More recently, Jorda, Schularick,
and Taylor (2017) (JST) and Jorda et al. (2019) updated, revised and combined these data sources to
create a comprehensive database at the annual frequency for 17 advanced economies. Combining
these data sources, I can re-construct monthly series of stock and bond returns for the 12 countries
of interest going back to 1890.°

A summary of the data is displayed in Figure 1. In the figure, each blue circle represents one
country-year observation for the stock-bond correlation, computed as the correlation within the
twelve months of the year, using monthly stock and return data. The solid black line represents
the correlation, computed in the same way, of equally weighted global averages of stock and bond
returns, respectively. It is already possible to see a key stylized fact from the figure: although

each country and year is noisy, the stock bond correlation was mostly positive throughout the

*Further details are provided in Appendix A.

“For France, Germany and Italy, the Franc, Mark, and Lira are used prior to the introduction of the euro, and spliced
with the euro thereafter.

5The empirical model which I present below can easily be extended to handle mixed frequencies, at the cost of
increased computation time. To avoid this, I use the method of Chow and Lin (1971) to transform these series to monthly
frequency prior to estimation.

¢ Additional details of this reconstruction are presented in Appendix A.



Figure 1: INTERNATIONAL STOCK-BOND CORRELATION: 1890-2024
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Notes. In the figure, each blue circle represents one country-year observation for the stock-bond correlation, computed as the cor-
relation within the twelve months of the year, using monthly stock and return data. The solid black line represents the correlation,
computed in the same way, of equally weighted global averages of stock and bond returns, respectively. Vertical dashed line marks
failure of LTCM in August 1998.

century prior to 1998, and only turned clearly and persistently negative after that year. Moreover,
periods of large macroeconomic fluctuations, such as the 1930s and the 1970s, characterized by
very different cyclical behavior of inflation (pro-cyclical during the 1930s, counter-cyclical during
the 1970s) barely stand out.

Figure 2 presents a second important stylized fact. The figure displays the average pairwise
correlation among stocks and bond returns of different countries. As can be seen in the figure,
international asset comovement increased dramatically starting in the decade of the 1980s, and
in particular during the 1990s. At the end of the 20th century, advanced-economy stock and
government bond markets had become highly integrated, a fact that has been highlighted before
by Rey (2013) and Jorda et al. (2019). Taken together, these two facts suggest the need for an
empirical framework that is capable of capturing changes in the importance of global and country-
specific factors affecting asset returns and macro variables, as well as changes in their conditional
correlations.

A final stylized fact concerns the behavior of real (inflation-linked) interest rates. As originally
pointed out by Campbell et al. (2009, 2017) and Liu (2018) returns on U.S. Treasury Inflation-

Protected Securities (TIPS) co-move negatively with stocks returns in a similar manner than nominal



Figure 2: INTERNATIONAL ASSET COMOVEMENT: 1890-2024
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Notes. The figure represents the average pairwise correlation, computed on non-overlapping 12-month windows, of bonds and stocks
of the twelve countries included in the sample. Vertical dashed line marks failure of LTCM in August 1998.

bonds. An important limitation is that TIPS are available only since 1997, so it is not possible to
understand whether the switch in the correlation observed around this time for nominal bonds
occurred as well for real bonds. Figure 3 presents new evidence for three advanced economies
which started issuing inflation-linked bonds prior to 1997. Data is available since 1985 for the
United Kingdom, since 1990 for Canada, and since 1995 for Australia. In the three cases, we observe
a striking similarity between the patterns observed in the nominal and inflation-linked bond
returns. As is the case with the nominal bonds, the switch in the real bond-stock covariance appears
simultaneous across countries and centered around the time of the financial crises of 1997-1998.
This seems to suggest that changes in the covariance of expected inflation with aggregate stock
returns is less important for understanding fluctuations in the stock-bond covariance. As discussed
by Duffee (2018, 2023) this challenges existing theories, the majority of which imply that volatile

expected inflation is a primary driver of bond yields.



Figure 3: INTERNATIONAL INFLATION-LINKED BOND RETURN CORRELATION WITH STOCKS
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Notes. The figure represents the correlation of stock and inflation-linked bonds, at the 10-year maturity, computed using daily data
over quarterly windows. The solid blue lines represent the correlation of stocks with nominal bond returns, whereas the red lines
represent the correlation of stocks with inflation-linked bond returns. Vertical dashed line marks failure of LTCM in August 1998.

3 Econometric Framework

This section introduces the econometric model I use to further analyze the data described above.
The panel-like structure of the data, which contains different economic concepts for 12 integrated
economies, and the stylized patterns described above, suggest a Dynamic Factor Model with
time-varying volatilty. This type of model is well suited to capture common and country-specific
movements among financial and macroeconomic variables. To identify structural shocks, I propose
an identification strategy that combines heteroskedasticity-based methods with ”volatility narra-
tives”using periods where certain shocks are known to have elevated volatility based on historical

events. I present a Bayesian algorithm to conduct inference on the parameters of the model.

3.1 The structural factor model

Lety; bea N x 1 vector of observable time series at ¢. It is assumed that the variation in the data is
originating from £ < N common macroeconomic shocks, collected in the vector €, as well as V
variable-specific innovations, collected in the vector v;. The propagation of the k£ macroeconomic
shocks can be described in terms of £ common latent variables, denoted x;, which jointly follow an

autoregressive process of order p, and n idiosyncratic terms, denoted u;, which follow independent
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autoregressive process of order ¢:

Xt =P1xp_1+ ...+ ‘I’pthp + AalEt (1)

W =p1u-1+ ...+ pPgus—q + 14 (2)

with p, diagonal for / = 1...¢. The common and idiosyncratic processes map into observable

variables according to the measurement equation
yt = Aoxt + Ar1xi—1 + g 3)

The inclusion of a lag of the factors in the measurement equation has been advocated by An-
tolin-Diaz et al. (2024) as necessary to capture the heterogeneous dynamics present in many
macroeconomic time series. Pre-multiplying the factors by the matrix A, and defining X; = Agx,

b, = Ag® Ay L A= AoAy LA = AAy ! we can re-write the model in structural form:

5(,5 = (i)lit—l + ...+ (i)pit—p + Et (4)

yi = Ao%; + A%k +uy. ()

This formulation of the dynamic factor model will be particularly useful for discussing iden-
tification, and is flexible enough to encompass a wide class of macroeconomic models.” The
common shocks and idiosyncratic innovations are conditionally Gaussian, have mean zero, and are

uncorrelated with each other, but their variances are possibly time-varying, i.e.,

13 Ok D Ok N
t ~ N x1 7 t X ‘ ( 6)
v Onx1 Onxr Vi
Moreover, it is assumed that D; and V; are diagonal matrices. Diagonality of D; is a standard

assumption which is necessary for the shocks ¢; to be interpreted as primitive sources of variation,

whereas diagonality of V; identifies these innovations as purely specific to each variable. Indeed,

"In particular, it nests structural vector autoregressive (VAR) models, and the ‘ABCD’ representation of linearized
dynamic, stochastic, general equilibrium (DSGE) models (see Ferndndez-Villaverde et al., 2007), with the addition of
serially correlated measurement errors.

11



the conditional covariance matrix of the observables can be written
Vart(yt|xt*17ut717--. 7ut7q) = AODt 6 +Vt7

which highlights that any correlation between the variables originates from their loading on the
common shocks, €;1. For this reason, I refer to them as “macro” shocks. In turn, the idiosyncratic
innovations v affect only one variable each. They can be interpreted as measurement error in
the macroeconomic variables or market micro-structure-driven movements in returns that do not
spill over to other variables.

Denote (5,@1 the square root of the j-th diagonal element of the matrix D;, and by I/t(_?l the
square root of the i-th diagonal element of the matrix V;;, i.e. the volatilities of the macro

and idiosyncratic shocks. I assume that the logarithm of these volatilities evolve according to

autoregressive latent processes:

4 , : : o N '
log 5151)1 = ,u((;]) + (ﬁgj) log (5153) + ng)v(g,]t)“, v((;?t)+1 ~NN0O,1) j=1,...k (7)
log I/t(i)l = ,ul(f) + gbl(,j) log l/t(i) + w,(f)v,(jzﬂ, v,(jgﬂ lj@l N(0,1) j=1,...,n (8)

This completes the description of the model. I now turn to the issue of identification of its structural

parameters.

3.2 Identification and Weak Identification

The model in (4)-(6) is a dynamic factor model with heteroskedasticity in the innovations to the
factors and idiosyncratic components. It nests the setup of Bai and Wang (2014, 2015) by allowing
for conditional heteroskedasticity, and the one of Sentana (1998) and Sentana and Fiorentini (2001)
by allowing autoregressive dynamics in both factors and idiosyncratic components, as well as the
idiosyncratic components (rather than just the common factors) to be heteroskedastic.

It is well known that the structural DFM is in general not identified. In particular, because the

common factors are unobserved, rotations of factors and loadings by a k£ x k invertible matrix Q

12



lead to an observationally equivalent model:

Q% = Q®:Q 'Qx, 1 +... + Q®,Q Q% , + Qe )
v =AoQ'Qx + A1Q Q%1 + s (10)

Identifying the system means placing restrictions on the parameters to ensure that Q = I, is the
only admissible rotation. Bai and Wang (2015) discuss the identification problem in the context
of homoskedastic factor models, and show that we require a minimum of k2 restrictions on the
loading matrix A or the covariance matrix D, of the common shocks. We start the discussion on

identification by stating the general assumptions on the dynamic factor model:

Assumption 1 (A1). x; and v are stationary processes with E(x;) = E(u;) = 0, Var(x;) < oo and
Var(u;) < oc.

Assumption 2 (A2). The common shocks, ;, and idiosyncratic innovations, v;1, are mutually
independent, and serially uncorrelated, i.e. E(¢;:e5,s) = E(v;41,5) = E(€j¢14,s) = 0 Vi, j and Vt # s.
Assumption 3 (A3). The loading matrix A has full column rank, the covariance matrices D; and

V, are positive definite for all ¢.

Under these conditions, Bai and Wang (2015) propose two alternative identification schemes that

are sufficient to identify the reduced-form factor model:

Identification Scheme 1 (DFM1). Ifvar(e;) = Ij, and the upper k x k block of Ay is a lower-triangular
matrix with strictly positive diagonal elements, the factor model is identified.

Notice that the requirement that the unconditional variance of the shocks, var(e;) = I, imposes
k(k + 1)/2 restrictions, whereas the requirement that the upper block of A is lower-triangular
imposes an additional k(k — 1)/2 restrictions, a total of ¢* restrictions. This still leaves the model
invariant to sign flips, hence the requirement to fix the sign of the diagonal elements of the upper
block of Ay. Alternatively, one could specify var(e;) as a diagonal matrix and the upper block of

Ag has 1’s on the diagonal.

Identification Scheme 2 (DFM2). The upper k x k block of Ag is an identity matrix I,

This is also sufficient to identify the factor model. Notice that DFM2 does not impose any

13



restrictions on the unconditional covariance matrix of &, in principle allowing this to be a full
matrix X. The upper k variables provide 'labels’ to the factors, and structural analysis can be carried
out by further decomposing £ = A, (A;')" with a combination of zero and sign restrictions (see
Rubio-Ramirez et al., 2010).

While both DFM1 and DFM2 impose k? restrictions on either the loadings or the covariance
matrix of the factor innovations, DFM 2 leaves the structural matrix A ! unrestricted, whereas
DFM 1 has the peculiarity of simultaneously identifying the reduced-form and the structural form
of the factor model. It is reminiscent of the Cholesky identification strategy in the structural VAR
literature as it imposes a recursive structure to the impact of the structural shocks. Indeed, it is
easy to see that DFM1 is equivalent to DFM2 plus the additional requirement that A" is lower
triangular, which amounts to n(n — 1)/2 additional restrictions. Critically, the need for these
restrictions disappears under conditional heteroskedasticity of the structural shocks. This leads to

a new identification scheme.

Identification scheme 3 (DFMB3). Under independent AR(1) processes for the common volatilities in (8),
if Dy and V are diagonal matrices, with E(vgﬁ) , vélz) =0,Vj # land ,ugj =0 V3, the model is statistically
identified up to column permutations and sign flips.

The restrictions ugj ) = 0 fixes the scale of the shocks, giving us k restrictions, whereas the
diagonality of D; gives an additional k(k — 1)/2 restrictions, as in DFM1. The remaining k(k — 1) /2
restrictions that are necessary in the case of a homoskedastic model are made redundant by the
presence of conditional heteroskedasticity. This is easiest to see in the simplified case of Rigobon and
Sack (2003), in which the heteroskedasticity is described by two regimes: the empirical covariance
matrix of the second regime provides k(k — 1)/2 additional moments. This “identification via
heteroskedasticity” holds under a variety of stochastic processes for the time-varying variances in
D, 1 (Sentana and Fiorentini, 2001; Lewis, 2021).8

In practice however, estimation of the model above can be challenging. This is for two reasons.
First, economic time series display common trends in their volatilities (e.g., the ‘great moderation’
described in McConnell and Perez-Quiros (2000)), such that the independence assumption is

frequently violated. While, in theory, weaker assumptions are required for statistical identification

(Lewis, 2021), in small samples, the degree of commonality in the volatilities is sufficient to lead to

$Moreover, Sims (2020) argues that identification can be quite robust to misspecification of the volatility process.
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weak identification. Second, even if the patterns of volatilities are sufficiently distinct, the model is
still only identified only up to permutations and sign switches. This presents practical challenges
whenever two or more shocks display similar patterns of sign impact on the variables. Monte Carlo

Markov Chain algorithms, in practice, will tend to randomly permute the shocks across columns.

Figure 4: THREE CASES OF IDENTIFICATION VIA HETEROSKEDASTICITY
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Note: The figure illustrates three cases of identification via heteroskedasticity. In all cases the data generating process
underlying the figure is y; = Ae;, with the dimension of y; is of sizen = 2for T = 1,...,7, A = [1,1;-1,1]
and ;) ~ N(0,,%,) fort < T/2 and &;) ~ N(0,,32) for ¢ > T/2. In panel (a), ¥; = Xz = I,. In panel (b),
31 = diag([1.2,0.4]) and 32 = diag([0.3,1.5]). In panel (c), X1 = diag([1.2,0.4]) and X2 = diag([1.2,0.2]). The first
row plots each of T' = 400 observations drawn from the respective D.G.P, together with the true coefficients of A (solid
lines) and an arbitrary rotation at angle 0.8/m (dotted lines). The second row plots the value of the conditional log
likelihood for angles of rotation 6/7, 6 € [0, 1]. The horizontal lines mark the true parameters (¢ = 0, solid line) and the
rotation 6 = 0.8 (dotted line). As can be seen from the figure, the structural parameters of the model in panel (a) are not
identified, whereas they are identified in panels (b) and (c), but only weakly so in the latter case.

Figure 4 illustrates the intuition behind the problem of weak identification for a simple bi-variate
model with two shocks: one that moves both variables in the same direction and one that moves
them in opposite direction, as in a textbook demand and supply model. In the top panels, the solid

lines are the true demand and supply schedules, with their slopes equal to the inverse elasticities 1
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and —1. Each circle represents an observation resulting from simultaneous shocks that shift the
supply and demand curves. In the familiar case with constant shock volatilities (Panel A), it is not
possible to discriminate between the true parameters and an arbitrary rotation (thin dotted lines),
because their likelihood is the same, as seen in the lower panel. The model is not identified and
additional, theoretically-motivated restrictions are needed. In the case in which the volatilities of
the structural shocks are time-varying (Panel B), periods of high volatility of each shock trace out
the elasticities, and the true structural model maximizes the likelihood without need for additional
restrictions. In this case, the model is identified (up to permutations and sign switches) and all that
remains is to attach labels to the shocks ex-post. While this statistical approach to identification can
be appealing, in practice for the reasons discussed above, identification will be very weak and the

likelihood will become close to flat across different structural parameters (Panel C).

3.3 Introducing additional identifying information: volatility narratives

I now introduce the idea of volatility narratives in order to ameliorate the weak identification
problem described above. The idea of volatility narratives involves the possibility that for certain
dates 7 € 11, T2, ..., Ty, the researcher might have external knowledge about the volatilities of the
macroeconomic shocks being higher or lower than usual. For instance, one could think that the
variance of monetary policy shocks was higher than usual during the tenure of Paul Volcker, or
the volatility of financial shocks higher during the fall of 2008. This external knowledge can be
encoded in the form of a prior

plog6Y)) ~ N (k) €YY for rer,7,....,7m and jel,... k. (11)

SIS
where 1 represents the a priori level of the log volatility of shock j during period 7, and @Q )
captures a priori uncertainty around this level. Notice that given that the steady state log-volatilities
are zero, this implies that the volatility of shock j is believed to be exp(/f(Tj )) higher than usual
during period 7. Equivalently, one can think of the researcher as having access to a volatility proxy,
2z that is observed, with a measurement error whose variance is equal to ft(j ), to take the values ngj )
on dates 7 € 11,79, ..., Tm, and is not observed on other dates.

Volatility narratives extend the idea of narrative sign restrictions (Antolin-Diaz and Rubio-

Ramirez, 2018; Ludvigson et al., 2018) to models featuring heteroskedasticity. Narrative sign re-
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strictions constrain the structural shocks and/or the historical decomposition around key historical
events, ensuring that they agree with the established narrative account of these episodes. Volatility
narratives extend the idea of a shock being particularly important for the history of a variable
during a specific period by incorporating that information into the estimation of the time-varying
shock volatilities. The existing literature (see also Giacomini et al., 2021) has employed them in the
context of VARs with fixed volatilities, and therefore, like traditional sign restrictions, narrative
sign restrictions can only achieve set identification of the structural parameters.” Moreover, existing
algorithms for inference, such as the one developed by Antolin-Diaz and Rubio-Ramirez (2018),
rely on rejection sampling and can be computationally quite intensive. Volatility narratives provide
many of the same advantages as narrative sign restrictions in the context of point identification

and, as we shall see below, can be implemented by means of a straightforward Gibbs sampler.

3.4 Inference under volatility narratives

This section describes the estimation of the model in Equations (4)-(8) under the existence of volatil-
ity narratives as described in (11). Our objective is to draw from the joint posterior distribution
of the underlying shocks ¢;, idiosyncratic errors u, the autoregressive parameters governing the
dynamics of the factors, ® = {®, ..., ®,}, the structural impact matrix, A 1 the loading matrices
A and A4, the time-varying volatilities § = {d1,...,07} and v = {vy,...,v7}, together with the
vectors of autoregressive parameters and standard deviations for the log-volatilities, ¢s, ¢, , ws,
and w,. This posterior is in general unknown but can be approximated by means of a Gibbs
sampling algorithm that iteratively draws from the known conditional distributions of each block
of parameters. Many of the steps required are standard and have been described before, e.g by
Bai and Wang (2015); Antolin-Diaz et al. (2024), so this section focuses on the new elements and
provides only a brief sketch.!’

Conditional on an arbitrary initialization of the parameters, a first draw of the factors xgl) is

obtained. Using the previous draw of (A;')(?), these can be orthogonalised into 5<§1) = A(()O)xgl).

Each of the k factor autoregressions can now be treated as a series of unrelated regressions with

? An exception is Carriero et al. (2023), which uses traditional and narrative sign restrictions to refine the identification
in SVARs identified via heteroskedasticity.
0Full details are available in Appendix C.
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heteroskedastic errors:

iﬁg}t) = d%yﬁgl +...+ qBMiEPp +eit €50~ N(O, 6]2-7t) for j=1...k, (12)
where ¢, ¢ is the j-th row of ®,. Further dividing each equation by the previous estimate of §; ;
allows us to draw the rotated coefficients &, = Ag®A ' under a standard Normal-Inverse Wishart
prior. The posterior can then be rotated back using (A;*)() to obtain a new draw ®).

Next, we can calculate a new estimate of the structural shocks, 5%1) =(Ay 1 ) (0) [xgl) — P, (1)X£1_)1 -
e @p(l)xgp] which can be projected onto [xgl) - P, (1)x§91 - <1>p<1>x§1)p] element-by-element
to obtain a new draw of (A;")™).!! Sign restrictions can be imposed on the elements of A, ' using
the truncated normal sampler proposed by Korobilis (2022). At this stage, the columns of A, ' are
permuted to maximize the conditional likelihood p(e; |5§0)).

(4)

Then, we need to drawing from the log-volatilities log §,” and log 9

, while incorporating
prior information about the volatility narratives at dates 7 € 7, ..., 7,,. This can be achieved easily
by modifying the standard auxiliary mixture sampler of Kim et al. (1998) in order to incorporate
the proxy variable z;.

Finally, we need to draw the remaining parameters of the reduced-form factor model, including
the latent factors. These steps are standard and have been described in detail by Antolin-Diaz

et al. (2024). This completes a full iteration of the Gibbs sampler, which can be then iterated until

convergence.

4 Empirical Results

Given that the variables in my panel comprise the same economic concepts (such as stock returns,
long- and short-term interest rates, inflation, etc.) for each of the twelve countries in the sample, it
is natural to group them by economic concept and impose a block structure on the reduced-form
factor loadings, ensuring that each set of conceptually similar variables loads on the same factor
across countries. This greatly reduces the number of free parameters to be estimated and delivers
a clearer, more interpretable representation of the underlying factors. For example, consider a

simplified model in which the only economic concepts included in the dataset are stock returns,

T use an independent Normal-Inverse Wishart centered at an identity matrix with each element having a variance
of 100, making the prior essentially uninformative.
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bond yields, and inflation, each of which is observed for several countries in the panel. The

structure of the loadings would be as follows:

stock! 54 Atock USA) 0 0 Astock USA) 0 0
StOCkng )\((]stock,UK) 0 0 )\gstock,UK) 0 0
bon d? SA A 0 A ébond,USA) 0 A 0 )\ﬁbond,USA) 0
yi = ) 0= , 1=
bon din 0 A (()bond,UK) 0 0 )\gbond,UK) 0
in ﬂgjs A 0 0 /\(()inﬂ,USA) 0 0 A ginﬂ,USA)
lnﬂ? K 0 0 A éinﬂ,UK) 0 0 A ginﬂ,UK)

In this case, the first factor would be interpreted as the global stock factor, capturing the co-
movement of equity returns across all countries, while the second factor would represent a global
bond factor, and so on. It should be clear that because the structural impact matrix A s full, the
block structure in the loadings does not preclude cross-factor interactions or dynamic linkages
across blocks, since shocks can still propagate among them through the structural equations;

denoting a; ; the elements of A, we see that each shock can affect multiple factors simultaneously:

stock,USA stock,USA stock,USA
)\(() )CL1 1 /\(() )aLg )\(() )a1 3
stock, UK stock,UK stock, UK
)\((] )(I171 )\(() )a172 )\(() )a1,3
a1 diz 41,3 (bond,USA) (bond,USA) (bond,USA)
A_l B A A_l B /\0 a1 )\0 a272 )\0 a3
0 = [ @21 a2 aG23 |, 050 = (bond,UK) (bond,UK) (bond,UK)
)\0 a2.1 )\0 a2 )\0 a2.3
as1 as2 a33
infl, USA infl, USA infl, USA
)\6 )a371 )\6 )a372 )\é )a
infl, UK infl, UK infl, UK
A Jagy A lagp A Jags

I consider one factor per each of the groups of variables in the panel (stock returns, long-term
bond yields, short-term interest rates, inflation, core inflation, output, consumption, exchange
rates and commodities), plus an extra factor to capture additional variation in the short-term rates
across European countries, leading to ten factors. Additionally, I consider two additional factors

per each of the countries, restricted so that they are country-specific. These additional factors
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allow for the possibility that correlation among variables arises from shocks purely specific to each
country. Subject to these restrictions, the dynamic factor model is estimated using 7000 draws of
the algorithm above, discarding the first 2000 as burn-in. Posterior inference is carried out on the

remaining 5000 draws of the parameters and latent structural shocks.

4.1 Accounting for the Stock-Bond Correlation

Figure 5 displays the first key results of the model. Starting with the top panel, the figure reports the
time-varying correlation between the global bond factor and the global stock factor. The thick solid
line is the posterior median correlation along with the associated 68% and 90% highest posterior
density (HPD) intervals. For reference, a simple 12-month rolling estimate of the correlation is
also presented. As can be seen, the time-variation in the factor volatilities is able to explain the
secular patterns in the stock-bond correlation, in particular, the values close to zero or positive
between 1955 and 1975, the generally positive value between 1975 and the late 1990s, and the
switch to negative territory until after the 2020 pandemic. The vertical reference lines mark October
1987 (the “Black Monday” stock market crash), August 1998 (the failure of LTCM and associated
financial turmoil), the first month in which the correlation becomes significantly negative with 90%
confidence, and June 2022 (the start of an aggressive monetary tightening by the Federal Reserve),
a point after which the correlation becomes significantly positive again.'?

Panels (b) and (c) of Figure 5 display the posterior estimates of the average pairwise correlations
within stocks and bonds, respectively. Again, a simple rolling estimate is also reported for reference.
This figure is the model analogue for the postwar period of the longer-term estimates reported
in Figure 3. As can be seen, the model is successful at capturing the increased synchronization
in bond yields and returns that ocurred between the end of the 1980s and the early 2000s. This
correlation has increased further after the pandemic, reaching an average level of between 70 and
80 percent. Though less dramatic, the pairwise correlation between stocks of different countries
displays a similar secular increase, as reported by Jorda et al. (2019).

Next, I compute the stock-bond correlation of individual countries implied by the global factors
in Figure 6. For reference, a rolling 12-month estimate of the correlation is reported for each country

as a dotted gray line. Deviations between this estimate and the one implied by the global factors,

2The tightening process by the Federal Reserve started in March of 2022 with a 25 basis point hike and continued in
May with a 50 basis point hike. In their analysis of available policy records, Romer and Romer (2023) conclude that the
announcements of June or July 2022 meet their criteria for a contractionary monetary policy shock.
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Note: Estimates of stock-bond correlation across twelve advanced economies from January 1955 to June 2024, using
monthly data. Each panel presents the posterior median correlation (thick solid line) along with the associated 68%
highest posterior density (HPD) interval and 90% interval derived from the global factor model. The posterior estimates
account for the portion of the correlation explained by global shocks. The dotted line represents a simple 12-month
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Figure 6: GLOBAL VARIATION IN THE STOCK-BOND CORRELATION ACROSS COUNTRIES

(a) United States (c) Germany
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Note: Estimates of stock-bond correlation across twelve advanced economies from January 1955 to June 2024, using
monthly data. Each panel presents the posterior median correlation (thick solid line) along with the associated 68%
highest posterior density (HPD) interval and 90% interval derived from the global factor model. The posterior estimates
account for the portion of the correlation explained by global shocks. The dotted line represents a simple 12-month
rolling correlation.
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reported in thick solid red with associated 68% and 90% HPD confidence bands, represent the
influence of country-specific factors. The conclusion is clear: the changes in correlation between
stock and bonds across countries are highly synchronized across countries. In other words, the
time-variation in the correlation across countries represents the time-varying correlation of the
global stock and bond factors.

Two persistent deviations from this pattern are worth noting. First, Italy, where the comovement
is largely similar to that of other European countries until the sovereign debt crisis of 2010, after
which point Italian bonds systematically comoved positively with Italian stocks, reflecting a
heightened risk of government default. Second, Japan, where the correlation switched to negative
in early 1993. Interestingly, this year saw the Financial System Reform Act —passed one year earlier—
come into effect. It partially dismantled the strict firewall regulations in Japans financial sector
(akin to those under the U.S. Glass-Steagall Act), thereby allowing allowing financial institutions to
diversify their activities into securities trading, including the issuance and trading of derivatives.

We will return to the relationship between financial intermediation and the stock bond co-
variance in the next subsection. To make further progress, I require identification assumptions to
give economic meaning to the global sources of variation responsible for international asset price

comovements.

4.2 Identification Assumptions

To identify the structural shocks in the empirical Dynamic Factor Model, I use three sources:
heteroskedasticity in the data, volatility narratives, and sign restrictions. Heteroskedasticity allows
me to exploit periods when the variances of certain shocks change, aiding in their identification.
Volatility narratives involve historical events where specific shocks had elevated (or reduced)
volatility, helping to isolate those shocks. I also apply a small set of normalizing sign restrictions on
the immediate responses of certain variables to specific shocks, which help prevent the algorithm
from cycling through random sign switches of the structural parameters.

I identify four key shocks. Two U.S. monetary policy shocks are identified. First a “short
rate” shock using the period from October 1979 to December 1982, when the Federal Reserve
implemented significant policy changes that led to higher interest rate volatility, as well as the
zero lower bound period between January 2009 and December 2015 where the federal funds rate

was effectively fixed; the U.S. T-bill rate and the U.S. 10-year bond yield are restricted to have a

23



positive response on impact to this shock. A “long-rate” or term premium shock is identified during
the "Taper Tantrum” in June 2013, when indications of tapering quantitative easing led to rising
long-term interest rates; the U.S. T-bill rate is restricted to have a positive response on impact, and
the U.S. 10-year bond yield is restricted to have a stronger positive response on impact. An oil price
shock is associated with significant oil price fluctuations in January 1974, January 1986, and August
1990; oil prices are restricted to have a positive response on impact. A financial or flight-to-safety
shock is identified during periods of financial market stress, such as October 1987, August 1998,
and September 2008; stock prices are restricted to have a positive response on impact. By combining
heteroskedasticity, volatility narratives, and sign restrictions, this identification strategy allows me
to effectively disentangle the structural shocks in the model.

I find that once these four key shocks are identified, the remaining six global shocks in the
model appear to be robustly identified by the heteroskedasticity in the data alone. In order to give
them a label, I examine the implied Impulse Responses on GDP and Inflation, and label a shock
as an “aggregate demand” shock if it leads to a significantly positive comovement of output and
inflation at the one year horizon, an “aggregate supply” shock if it leads to negative comovement,

and “other” of there is no significant comovement.

4.3 The identified shocks and their contribution

Figure 7 displays the time series of the realization (in black solid line, left axis) and the volatility
(plotted as a blue area, right axis) of the four shocks identified via volatility narratives. Appendix
Figure E.1 is the analogue for the remaining shocks. The flight-to-safety shock is displayed in panel
(a). It is clear from the figure that this shock was virtually non-existent prior to the early 1970s, and
that its volatility has increased over time. Moreover, it displays discrete spikes during the market
crashes of 1987 and 1998, a result that derives from the identification assumptions. The fact that its
volatility is persistently higher after 1998 than before that date is instead a feature of the data rather
than an assumption. Panels (b) and (c) display the two monetary policy shocks. By assumption, the
short rate monetary policy shock displays large fluctuations during the reserve-targeting period of
1979-1982, and almost no realizations during the zero lower bound period of 2009-2015.

Figure 8 carries out a historical decomposition of the contribution of different structural shocks
to the historically observed deviations of several variables from their unconditional mean. His-

torical decompositions can be computed for every draw; the figure reports the posterior mean
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Figure 7: TIME SERIES AND VOLATILITIES OF KEY SHOCKS

(a) Flight-to-Safety Shock
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Note: Each panel displays the time series (in black solid line, left axis) of the realization of the identified structural shock,
and its estimated time-varying volatility (blue area, right axis). The reference lines mark the following events. Panel (a):
Black Monday (October 1987), collapse of LTCM (August 1998), failure of Lehman Brothers (September 2008); Panel
(b): Reserve Targeting period (October 1979 to July 1982), Zero Lower Bound period (January 2009 to December 2015);
Panel (c): first announcement of Quantitative Easing (November 2009), “Taper Tantrum” (June 2013); Panel (d) Iranian
Revolution (January 1974), collapse of OPEC (January 1986), Gulf War (August 1990). Results based on posterior mean.
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Figure 8: HISTORICAL DECOMPOSITION

(a) Global Inflation (annual, % 12 month change)
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Note: Estimates of the historical contribution of different structural shocks to the deviations of each variable from its
unconditional mean. Results based on posterior mean.
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decomposition. This allows to trace out visually which shocks were important for which variables
during different periods. Starting with panel (a), which examines the movements of global inflation,
intuitively we observe that the identified oil shock displays an important impact on inflation during
the 1970s, and then fades until the post-pandemic period. In any event, panels (b) and (c) of Figure
8 already show a key result of this paper: the changing volatilities of energy shocks that dominated
inflation fluctuations during the postwar period were not important for stock return fluctuations,
which were instead were dominated by flight-to-safety shocks. Bond returns reflect a mixture of
influences, but only those shocks that strongly affect stocks and bonds, such as monetary policy
and flight-to-safety shocks, can account changes in their correlation.

Figure 9 more formally carries out a historical correlation decomposition. Since the shocks are
orthogonal to each other, we can write the one-step ahead conditional correlation between any two
variables, i and j, as:

1 £2 A —1
Corr(Yi, Yjilye-1,---,y1) = Z Ao % Aour) (13)

=1 /Ao 07 Ao

which can be computed additively for each shock » = 1... k. Each of these terms represents the
contribution of each structural shock to the total correlation.'® Confirming the visual impression
discussed above, Figure 9 shows that the monetary policy and the flight-to-safety shocks are
responsible for esentially all of the correlation and its movements over time. In particular, the
flight-to-safety shock (panel (a)) is responsible for the negative comovement, and its importance
increases over time, whereas the monetary policy shock —in particular the long-rate shock—accounts
for most of the positive covariance. The latter shock increases in importance during the second half
of the 1980s, then declines at the end of the 1990s until the post-pandemic period. All the other
shocks taken together have a limited influence on the stock-bond correlation.

Appendix Figure G.1 performs the equivalent decomposition of the output and inflation corre-
lation. This “Phillips curve” correlation is mostly positive except for the 1970s and 1980s period.
Moreover, aggregate demand and supply shocks are mostly responsible for changes in this correla-
tion. Thus, contrary to the existing literature, the shocks that are responsible for the changes in the
output-inflation correlation are distinct from those responsible for the changes in the stock-bond

correlation. Moreover, a flight-to-safety shock largely disconnected from output and inflation is the

BThis formula can be generalized to the correlation at any horizon by substituting A, ' by the matrix of impulse
responses at horizon h.
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Figure 9: HISTORICAL CORRELATION DECOMPOSITION: STOCK-BOND CORRELATION
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Note: Estimates of the contribution of different structural shock to the observed correlations between the global stock
and bond return factors. Each panel presents the posterior median correlation (thick solid line) along with the associated
68% highest posterior density (HPD) interval and 90% interval derived from the global factor model, attributable to the
shocks highlighted. The posterior estimates account for the portion of the correlation explained by global shocks. The
dotted line represents a simple 12-month rolling correlation.
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key shock that drives a negative stock-bond correlation. I now examine this shock in more detail.

Figure 10 displays the impulse responses of selected variables in the panel to a one standard
deviation innovation in the flight to safety shock.'* As can be seen from the figure, the shock
leads to a simultaneous decline in the global stock markets, and a decline in global bond yields.
The flight-to-safety shock is not entirely disconnecte from macroeconomic variables: it leads to a
short-term decline in output and inflation. Interestingly, the response of short term rates across
major economies is not significant. This point is further seen in Figure 11, which compares the
implied responses of the average short term interest rates (blue impulse reponses) with the decline
in bond yields (red responses). The significant differences between the two indicate a decline in the
bond term premium for all countries. Figure 12 looks at the response of currencies. As can be seen,
risky currencies such as the Australian, New Zealand, or Canadian dollar depreciate against the
US dollar, whereas the Euro, Japanese Yen and the Swiss Franc appreciate. This is consistent with
the results of Baele et al. (2020), who empirically document and classify flight-to-safety episodes
using a different methodology. Thus, the flight-to-safety shock responsible for the negative stock-
bond-comovement is peculiar in two ways. First, it leads to a decline in long-term term premia,
contrary to other episodes of flight towards cash, and second it does not lead to an homogeneous
appreciation of the dollar, but instead appears to have a significant effect on the carry factor (Lustig
etal., 2011).

Finally, Figure 13 plots the responses of additional indicators not included in the model. These
are computed using Local Projections of each variable on the shock, controlling for 48 lags of
each. Indicators of risk aversion, such as the VIX volatility index, the MOVE index of treasury
implied volatility, or the spread between BAA corporate bonds and treasuries, both spike in a
consistent manner. These patterns are consistent with the findings of Acharya and Laarits (2023),
who document that the stock-bond covariance is strongly negative when convenience yields
on long-term treasuries are highest, and of Laarits (2020), who emphasizes the importance of a
precautionary savings motive. The figure also shows the response of the intermediary capital
ratio of He et al. (2017). This variable reflects the financial strength of intermediaries and their
capacity to absorb shocks. It is constructed as the market equity of broker-dealers divided by the
sum of their market equity and book leverage, capturing the intermediary’s capital constraints.

This measure is crucial in their asset pricing framework, as it proxies for intermediary risk-bearing

“The full set of impulse responses is available upon request.

29



Figure 10: Impulse Responses to a Flight-to-Safety Shock
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Figure 11: Impulse Responses of Interest Rates to a Flight-to-Safety Shock
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capacity, which varies countercyclically and helps explain fluctuations in risk premia. The response
shows a significant and persistent decline in the ratio following the shock, with the trajectory
indicating an immediate and pronounced drop that disipates after about one year. The sharp drop
in the intermediary capital ratio reflects a contraction in the ability of broker-dealers to absorb
risk, as their equity buffers shrink relative to their total or risk-weighted assets. Such a reduction
in financial resilience constrains intermediaries capacity to provide liquidity and extend credit,
limiting their ability to support financial markets during periods of stress. Moreover, panel (f)
looks at the response of actual bond holdings by primary dealers, using data collected by Fleming
et al. (2024). Primary dealers, which were generally net short during this sample, typically respond
to the impairment in their risk taking capacity by undoing these short positions, i.e. buying back
bonds. This dynamic highlights the intrinsic connection between the identified financial shock and
the ability of broker-dealers to take on risk. These patterns are all consistent with the traditional
flight to safety mechanism, in which risky assets simultaneously sell off to the benefit of bonds
and safe-haven currencies. Importantly, this shock, which accounts for the negative comovement
between stocks and bonds, has a modest impact on inflation but appears strongly connected to the
risk taking capacity of intermediary broker-dealers. The next section presents a stylized model that
rationalizes these responses from the perspective of the risk taking capacity of levered financial

intermediaries.
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Figure 12: Impulse Responses of Currencies to a Flight-to-Safety Shock
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Figure 13: RESPONSES OF ADDITIONAL FINANCIAL VARIABLES
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rolling correlation.
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5 A Stylized Model of Flight to Safety

This section presents a stylized equilibrium model that formalizes the link between the increased
importance of financial shocks and flight to safety episodes observed in the data to the rise of
levered financial intermediaries. A key challenge is to generate a flight to safety towards long-term
bonds. In frictionless models, when a short-term risk-free asset is available, an increase in risk
aversion leads investors to reduce holdings in both stocks and long-term bonds in favor of the
short-term asset (Merton, 1972). This limitation suggests the need to move beyond representative
agent models.

I build upon models of quantity-driven asset prices (Vayanos and Vila, 2021; Greenwood
etal., 2018, 2023a) and incorporate three key elements: segmented markets, a preference for long-
term bonds, and slow-moving capital (Duffie, 2010). Segmented markets introduce heterogeneity
among investors, allowing shifts in the marginal investor to influence equilibrium prices. Some
investors derive a convenience yield from holding long-term bonds, whereas others require to
hold cash instruments, creating differential preference for these assets. Slow-moving capital means
that trading frictions amplify the impact of demand shifts on prices. In my model, a shock to
the risk-taking capacity of levered intermediaries, subject to value-at-risk constraints, interacts
with the demand for long-term bonds from other market participants. This interaction leads
to a temporary flight towards long-maturity bonds. As the presence of levered intermediaries
increases due to exogenous changes in regulation or financial innovation, shocks causing opposite
movements in stock and bond returns become more and more prominent, altering the aggregate

return comovement.

51 Set-up

Primitives. The model is set in discrete time, and describes the dynamics of real asset prices,
abstracting from nominal shocks. There are three types of assets —a risk-free, one period bond,
a long-term bond, and a stock which represents a claim to the aggregate dividend- and four

underlying sources of risk in the model, which are described in turn. First, an exogenous system
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governs the dynamics of dividend growth and the real interest rate:

Adpy1 = (1 — da)d + ¢paldy + £ 4 (14)

Tt+1 =T + Ba(Adir1 — d) + iy, (15)

where d and 7 are the steady-state dividend growth and real interest rates, ¢, dividend growth
autocorrelation and ¢, , is an 4.i.d. innovation, whereas 1}, | = ¢,7} + 7. In this equation, ¢, is
an autocorrelation coefficient, and ¢, | is an i.i.d. innovation. The parameter 3; > 0 captures an
endogenous, contemporaneous reaction of the interest rate to dividend growth. The term 7; is an
exogenous shock to the real interest rate. This formulation is a reduced-form representation that
stands in for a more involved structure where monetary policy endogenously sets the real interest
rate in line with the growth of aggregate output or consumption, which in turn is correlated to
dividend growth, but subject to exogenous real interest rate shocks captured by ¢7_ ;.

In addition, following Vayanos and Vila (2021), the supplies of both long term bonds and stocks,

denoted s?, ; and s{ ; respectively, is subject to random fluctuations, with
st = (1= 80)8" +oys] +e forj € {s,b}. (16)

This formulation accommodates shocks coming from issuers of the assets including governments
and the corporate sector, net of the demands from “preferred habitat” investors operating in either
market. These supply shocks represent additional sources of risk which arbitrageurs must absorb,
as we describe next.

To model the excess returns of bonds and stocks, we will follow the tradition of Campbell and

Shiller (1988a,b), and approximate them by the following linear relationships:

6 1
rih = T g + 1t~ (17)

riv1 = K= pdpirr +dpy + Adgyy — 1y, (18)

where y; and dp; are the yield on the long-term bond and the stock dividend-price ratio at time
t, respectively, 0 is a parameter that determines the duration of the bond, and the x and p are

approximation constants that arise from the linearization of stock returns.
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Market structure. We consider two classes of arbitrageurs, distinguished by their ability to
operate in different markets. First, a class of generalists are active both in stock and bond markets.
They are subject to two frictions: they face costs to adjust their portfolios, and they have a preference
or convenience yield for long-term bonds. This preference is motivated by unmodelled regulatory
requirements and/or liability matching motives. These features make pension and sovereign
wealth funds close empirical analogue of these actors, so we will refer to them as “pension funds’
from now on.

Pension funds are mean-variance investors, trading off the one-period ahead expected return
of their portfolio against its variance, and also taking into account adjustment costs and their
convenience yield for bonds. Denote by D; = [D?, D]’ the asset demands, expressed as shares of
pension funds’ total portfolio held in bonds and stocks, with any residual wealth held in the risk

free rate.

1
n&xwwm) =1+ DiEry, | — EDQZth —g(Dy —Dy_1) +v(DY), (19)

where E;xr?, ;= [E; (1)) ,E; (rf;)] is the vector of expected excess returns on bonds and
stocks, 37 is the covariance matrix of excess returns, 7 is the risk tolerance parameter, g(D; —
Dy )= %(Dt — D;_1)'X%(Dy — Dy_) captures a quadratic cost of adjusting the portfolio shares
with ¢ > 0, and v(D?) = AD? with A > 0 is the convenience yield from holding long-term bonds.

Given their objectives, the optimal demands for bonds and stocks satisfy

D;=(1- ﬁ)T(EI)fl (Etrtxﬂ + )\eb) + D1 (20)
where e, is a selection vector and § = 1fﬁ 7 arises from the presence of transaction costs. With

quadratic adjustment costs, the optimal portfolio shares are a linear combination of the optimal
mean-variance solution in the absence of adjustment costs, and the previous-period shares.

The second class of agents in the model are differentiated by the fact that they do not face
adjustment costs, but can only invest in either of the two asset classes (they can both invest in
the risk-free one period bond). Similar to Greenwood et al. (2018), these agents are fast-moving
specialists that perform arbitrage within but not across markets. Their empirical counterparts of the
fast-moving specialists are hedge funds and proprietary trading desks of banks and broker-dealers,

which are typically segmented across asset class lines and conduct highly leveraged arbitrage
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trades. I therefore label these agents ‘hedge funds’ for short, although it should be understood that
they are meant to capture a wider class of levered specialists. I introduce two features which will
be key to generate the flight to safety dynamics observed in the data. First, the levered hedge funds
will face a cost of holding long positions in their respective risky assets, interpreted as a balance
sheet cost. Second, their risk bearing capacity will be subject to stochastic shocks, common across

the hedge fund sector. Formally, the problem of the hedge fund in sector j € {b, s} is

maxU; (Wi ) = d]E[ril,] —

1 . .
il d] 2V'—l/'dj,
: 5 (Vs — vy

which gives rise to the optimal portfolio weights:

E, [Tf—{-l] —Vj

v, (21)

d{ =N
where v; = 5+ ¢y (vi-1 —7) + ¢/, and ¢ ~ N(0,02). One-period optimization subject to time-
varying risk limits, such as Value-at-Risk constraints, naturally gives rise to portfolio rules such
as (21), (see, e.g. Danielsson and Zigrand, 2001; Danielsson, Shin, and Zigrand, 2004). A more
complicated structure could link the realization of ] to the aggregate dividend, linking the risk
taking capacity of the levered intermediaries to the state of the aggregate stock market. For

simplicity, and for now, ¢/ is assumed to be uncorrelated to the other primitive shocks.

Market clearing. Assume now that there is a continuum of pension funds with overall size w
and a continuum of hedge funds with size 1 — w in each market. Collect the demands of the hedge
funds in each sector into the vector d; = [df, ds) ' Market clearing in the stock and bond markets
imply:

wdy + (1 — w)Dy = sy, (22)

wheres; = [s?, 5{]". The demands from hedge funds can be collected in the vector d; = vV~ (Eerf,; — v),

where V = diag(X7") is the matrix of variances of excess returns, and v = [v, vs]'.

Equilibrium risk premia and prices. Combining this with equations (20) and (22), we can obtain

the following expression for risk premia
By = Q7 (st —wy Vv = (1—w)(1 = B)T(Z") " hep — (1 —w)BDy_y), (23)
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where

Q =wy V' 4+ (1 -w)(1-p)r(Z) 7

is the market-wide effective level of risk tolerance. As can be seen in equation (23), the model
features two sources of time variation in risk premia. First, shocks that increase supply increase
risk premia, as both classes of arbitrageurs require compensation for absorbing additional supply.
Second, shocks to the risk bearing capacity of the specialist hedge funds also increase risk premia,
by lowering €, but also through the second term in equation (23). Moreover, with adjustment
costs, risk premia depend as well on the past pension fund allocations. Given risk premia, bond

yields and the price-dividend ratio can be retrieve from the Campbell-Shiller relationships:

ye = (1-90) ZGjEt (Tt+j + TﬁjH) (24)
=0
K > ;
dpt = - =, + Z PR (re — Aderjin + 7 41) (25)
=0

5.2 Solution method.
An equilibrium in this model is defined as a fixed point for the covariance matrix of excess returns,

o _ ‘/b Cbs
Cbs V;

At this fixed point, both generalist investors (such as pension funds) and specialist investors (such
as hedge funds) satisfy their optimal demand functions, and markets clear, given the stochastic
processes governing dividends, real interest rates, asset supplies, and the risk tolerance of specialists.

The equilibrium is found numerically by iterating through the following steps:

1. Start with an initial guess for V;, Vs, and Chs.

2. Given this initial guess, calculate the policy functions for equilibrium prices using a second-

order perturbation method around the 'risky steady state” (Coeurdacier et al., 2011).
3. Using these policy functions, compute the implied values of Vj, Vs, and Cs.

4. Iterate the process by updating the guess in step 2 and continue until the covariance matrix

converges, indicating that the equilibrium has been reached.
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This numerical procedure ensures that the resulting covariance matrix satisfies the equilibrium
conditions, reflecting the interaction between asset supplies, investor preferences, and the stochastic
environment. Moreover, as discussed by Greenwood et al. (2018), models with stochastic supply
can feature multiple rational expectations equilibria, with a unique stable equilibrium that does
not explode as o2 — 0. Like most of the literature, I focus on analyzing the properties of the stable

equilibrium, which the numerical procedure above is guaranteed to converge to.

5.3 Calibration.

The table below presents the calibrated parameters used in the model, which are carefully chosen to
reflect realistic economic conditions and investor behaviors. These parameters include steady-state
values for key variables such as the risk-free rate, dividend growth rate, and asset supplies, as well
as critical behavioral parameters like risk tolerance and the convenience yields associated with

holding bonds and stocks.

Table 1: Model Parameters and Their Descriptions

Parameter Description Value Comments

T Steady-state risk free rate 0.0025 Implies 1% annual real rate

d Steady-state dividend growth rate  0.0075 Implies 5% annual dividend growth rate
5p Steady-state bond supply 10

55 Steady-state stock supply 15

K Stock return approx. constant 0

p Stock return approx. discount rate  0.97

Or Risk free rate autocorrelation 0.9

®d Dividend growth autocorrelation 0.7

Psb Bond supply autocorrelation 0.9

oy S.D. risk free innovation 0.003269 Implies 1.5% annualised S.D. of r;
o4 S.D. dividend innovation 0.01785  Implies 5% annualised S.D. of r;
Tsh S.D. bond supply innovation 1

0 Bond discount rate 0.95

T Generalist risk tolerance 25

v Specialist risk tolerance 10

a Generalist demand inertia 0.1

Ba Interest rate response to dividends  0.0-0.2

wh Fraction of specialists 0.0-0.5
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Figure 14: Responses of Returns to Exogenous Shocks
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Note: Responses of returns to one-standard deviation shocks to dividend growth, interest rates, bond supply and
specialist risk tolerance.

5.4 Results.

Figure 14 shows the responses of returns to the different shocks in the model. Starting with the
first panel, a positive shock to dividend growth results in an immediate increase in stock prices,
reflecting higher expected future cash flows. Through the endogenous response of the short-term
interest rate, bonds decline in value, experiencing a negative return. The impulse response functions
show that this shock is priced instantaneously in both asset prices, with no movements in returns
beyond the impact horizon. In other words, risk premia do not change in response to the shock,
and neither of the agents in the model vary their allocations in response to the shock.

A similar picture emerges in response to a positive shock to the risk-free rate (second panel),
the impulse response functions indicate an instantaneous decrease in both stock and bond prices.
Of note, a risk-free rate shock moves returns of both assets in the same direction, so it will be
important that this shock does not dominate the unconditional distribution of shocks for a negative
stock-bond covariance to emerge. Finally, as was the case with the dividend growth shock, the
interest rate shock does not lead to a movement of risk premia beyond the instaneous impact.

The third panel shows the responses to a bond supply shock.!” As is typical of this class of
models (see, e.g., Greenwood et al., 2023b), an unanticipated increase in bond supply leads to a

negative instantaneous bond return, as well as a movement in risk premia in the opposite direction.

The responses to a stock supply shock look like the mirror image of the bond supply shock, with a strong
instantaneous impact on stock returns followed by a movement in the opposite direction, and a muted impact on bond
returns in the same direction.
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This is seen as a positive response beyond impact horizon. The response propagates to the equity
market as well, although in a muted way. Like the response to the interest rate shock, an increase
in bond supply leads to movements in returns of stocks and bonds in the same direction, so this
shock cannot be an important driver of a negative stock-bond covariance.

Finally, the last panel of Figure 14 shows the effect of a y-shock, an unanticipated decline in the
risk tolerance of the specialist sector. As can be seen in the figure, this leads to a strong response of
stocks and bonds instantaneously, followed by a movement in risk premia in the opposite direction.
Figure 15 looks at the responses to this shock in more detail, focusing on movements in demands.

An unexpected increase in the supply of bonds leads to a decline in bond prices, as indicated by
the impulse response functions. The increased supply results in higher yields, which in turn raises
the risk premia for bonds. The pension fund, which has a significant allocation to long-term bonds,
reduces its bond holdings in response to the lower prices and higher yields. Similarly, hedge funds
specializing in bonds adjust their portfolios by demanding a higher expected return to hold the
increased supply. The impact on stocks is relatively muted, although there may be some indirect
effects if the bond supply shock alters the overall risk perception in the market.

Figure 16 displays the impact of increasing w, the share of specialists in stock and bond markets,
on the unconditional stock-bond correlation. As the share of specialists in the market increases,
shocks to their risk tolerance (v shocks) become more significant, leading to a decrease in the equi-
librium correlation between stock and bond returns. This decline in correlation is non-monotonic:
a small increase in the share of specialists exerts a strong downward pressure on the stock-bond
correlation, sufficient to flip the sign of the stock-bond covariance even for a small share —about 5%
of specialists in the market. However, as the share increases, the decline slows down and eventually
reverses.

To see why, recall the equilibirum expression for risk premia, Eq. (23). When w is small,
specialists are a minor part of the market and have little impact on prices. As w increases, the effects
of shocks to specialists’ risk tolerance become larger, amplifying their influence on asset prices and
reducing the stock-bond correlation. However, if w becomes too large, the convenience yield term
'(D?) decreases because the demand from other investors diminishes. This reduction lessens the

flight-to-safety effect, potentially reversing the decline in correlation.
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Figure 15: Impulse Responses to a Risk Tolerance Shock
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Figure 16: Impact of Increased Share of Hedge Funds on Stock-Bond Correlation
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Note: Unconditional stock-bond correlation as the share of hedge funds increases.

5.5 Robustness

Appendix I examines the sensitivity of the results to various changes to the baseline parametrization.
These are summarized briefly here: first, a greater degree of interest rate sensitivity to the dividend
growth rate lower, all else equal, the equilibrium stock-bond correlation for any level of specialist
market share. This is because, as described above, the dividend growth shock also leads to a
negative stock-bond correlation which is amplified by the endogenous response of the interest
rate; second for sufficiently high volatility of interest rate shocks, it is very unlikely that a negative
stock-bond correlation can emerge, given the strong positive conditional correlation that this
type of shock generates; finally, I examine the importance of adjustment costs of the generalist
pension fund, and find that while these costs contribute to increasing quantiatively the impact of

an increased market share of specialist, they play a small impact on the qualitative results.
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Figure 17: Counterfactual analysis: varying w (share of specialists)
and ¢” (MP Shock volatility)
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Note: Counterfactual simulation in which the share of specialist hedge funds (w) is high and the interest rate volatility
(0") is low after 1998 (solid blue), versus an alternative scenario in which the interest rate volatility remains high after
1998.

5.6 Counterfactual analysis

Figure 17 presents a simple counterfactual analysis. The results above suggest that there are
two conditions for a negative stock-bond correlation to emerge: first, a sufficiently high share of
specialists in the market (w), and second, a sufficiently low volatility of interest rates (¢"). The
counterfactual presents an exercise where, first, both parameters are calibrated to generate the
broad patterns seen in the data. This includes a low but positive correlation during the 1950s and
1960s (driven by small interest rate volatility but small share of specialist hedge funds), a high and
positive correlation during the 1970s and through the mid-1990s, as interest rate volatility increased
in an environment in which the share of specialists was low. From the late 1990s we enter an era
of low interest rate volatility and high share of specialists, leading to the emergence of a negative
correlation.

This exercise also sheds light to the events after the COVID-19 pandemic. After 2022, the
stock-bond correlation became positive again, but did not reach the levels observed prior to 1998.
Through the lens of the model, this can be rationalised as a higher volatility of interest rates

interacting with a still-high share of intermediaries.
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6 Conclusion

This paper examines how government bonds in advanced economies transformed from moving
in sync with stocks to acting as ”“safe” assets that appreciate when stock prices decline, and their
subsequent return to behaving as risky assets in 2022. An analysis of twelve countries over
the postwar period reveals that these shifts occurred simultaneously across nations and are not
adequately explained by changes in output and inflation dynamics. Instead, the findings point
to an increased importance of financial shocks inducing flight-to-safety behavior as the primary
driver. By employing a Dynamic Factor Model with a novel identification strategy, this paper
identifies these financial shocks and demonstrates how the rise of levered financial intermediaries,
constrained by risk limits, amplified and propagated these shocks, altering the unconditional
comovement between stocks and bonds.

These results have significant implications for understanding financial markets and informing
economic policy. They highlight the crucial role of financial intermediaries and market structure in
shaping asset price dynamics, suggesting that traditional macroeconomic factors may be insufficient
to explain asset comovements fully. Recognizing the influence of financial shocks and intermediary
behavior is essential for policymakers when designing regulatory frameworks and for investors in
developing effective portfolio diversification and risk management strategies.

On the modeling side, my model is silent from the international implications of shocks to the risk
tolerance of levered specialist, treating global financial markets as a closed economy. Extending the
theoretical framework to a multi-country setting, and exploring the implications for exchange rates
in the directions suggested by Greenwood et al. (2023a) and Gourinchas et al. (2024) is an important
priority for future investigation. Moreover, empirical research could build on the macro findings by
exploring the micro-level mechanisms through which financial intermediaries impact asset prices,
potentially incorporating data on intermediary balance sheets and risk exposures. Additionally,
examining the effects of regulatory changes and financial innovations on intermediary behavior
may provide deeper insights into the evolution of asset return comovements. Understanding these
dynamics is increasingly important in a global financial system where shocks can quickly propagate

across borders, affecting the stability of financial markets and the broader economy.
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A Details on Data Construction

A.1 Baseline data set

The main dataset underlying the empirical analysis is at the monthly frequency from January 1955
to June 2024 and covers twelve advanced economies: Australia, Canada, France, Germany, Italy,
Japan, New Zealand, Norway, Sweden, Switzerland, the United Kingdom, and the United States.

I outline here the variables included and the main sources, and give full details in Appendix A.
The dataset includes stock and bond returns, 3-month and 10-year interest rates, exchange rates
against the US dollar, commodity prices, core and headline inflation, and GDP growth. Stock
return data comes from Morgan Stanley Capital International (MSCI) from Decmber 1969 onwards,
and from Global Financial Data (GFD) prior to that date. Because data on government bonds
differs greatly in terms of time span and maturity availability across countries, the creation of
consistent series of government bond returns requires specifying and estimating an empirical
model of the term structure of interest rates for each country. I apply the model of Diebold and
Li (2006), adjusted to allow for arbitrary patterns of missing data, to raw data from Thomson
Reuters Datastream and GFD, and construct homogeneous series of zero-coupon bond yields at
the 1-month, 2-year and 10-year maturity for all the countries in my sample.! Returns are then
computed following the approximation of Campbell et al. (1998). All return series are denominated
in their domestic currency and converted into excess returns by substracting the one-month bill
return of the respective country. Foreign Exchange rates are from the International Monetary Fund
(IMF).2 Commodity futures returns are from S&P Goldman Sachs Commodity Indices. I include
series for the most important commodities for each asset class for which long series are available,
including Brent Crude (energy), Gold (precious metals), Copper and Aluminum (Industrial metals),
and an index of agricultural commodities. Whenever necessary, these are extended backwards
using historical data from GFD. Inflation rates, both headline and core (excluding food and energy),
as well as quarterly real GDP and consumption growth rates, are from the OECD Main Economic

Indicators. These are interpolated to monthly frequency using the growth rates of industrial

!Further details are provided in Appendix A.
2For France, Germany and Italy, the Franc, Mark, and Lira are used prior to the introduction of the euro, and spliced
with the euro thereafter.



production and retail sales, also from the OECD.?

B Specification of the Priors for the Factor Model

One of the advantages of our Bayesian approach is that an a-priori preference for simpler models can
be naturally encoded by shrinking the parameters towards a more parsimonious specification. We
follow the tradition of applying stronger shrinkage to more distant lags initiated by ?. “Minnesota”-
style priors are applied to the coefficients in A(L), ¢(L) and p;(L). For ¢(L) the prior mean is set to
0.9 for the first lag, and to zero in subsequent lags. This reflects a belief that the common factor
captures a highly persistent but stationary business cycle process. For the factor loadings, A(L), the
prior mean for the contemporaneous coefficient is set to §;, an estimate of the standard deviation of
each of the variables, and to zero in subsequent lags. This prior reflects the belief that the factor is
a cross-sectional average of the standardized variables. For the autoregressive coefficients of the
idiosyncratic components, p;(L) the prior is set to zero for all lags, shrinking towards a model with
no serial correlation in u; ;, a common specification in the literature (see, e.g., ?). In all cases, the
variance of the priors is ;;;, where v is a parameter governing the tightness of the prior, and h is
equal to the lag number of each coefficient. We set v = 0.2, the reference value used in the Bayesian
VAR literature. We use a Normal diffuse prior for c and normalize the initial value of the stochastic
trend by setting ag = 0. For the variances of the innovations to the time-varying parameters w2, w?
and w%vi we also use priors that shrink them towards zero, i.e. towards a DFM without time-varying
long-run growth and SV. In particular, for w? we set an inverse gamma prior with one degree of
freedom and scale equal to 0.001. For w? and W%,i we set an inverse gamma prior with one degree
of freedom and scale equal to 0.0001.%

The number of lags in A(L), ¢(L), and p;(L) is set tom = 1, p = 2, and ¢ = 2. We found that
m = 1 is enough to allow for rich heterogeneity in the dynamics. By setting p = ¢ = 2, which
follows ?, the model allows for the hump-shaped responses to aggregate shocks commonly thought
to characterize macroeconomic time series. With this choice we also nest the specification in ?,

which we consider as a benchmark model without heterogeneous dynamics and without outliers.

*The empirical model which I present below can easily be extended to handle mixed frequencies, at the cost of
increased computation time. To avoid this, I use the method of Chow and Lin (1971) to transform these series to monthly
frequency prior to estimation.

#? provide a number of robustness checks around the choice of priors in a Bayesian DFM.



In the Online Appendix, we evaluate the deviance information criterion (DIC, Spiegelhalter et al.,
2002; Chan and Grant, 2016) for alternative choices of the lag orders m, p, ¢. The analysis of the DIC
clearly supports models with heterogeneous lead-lag dynamics (m > 0), but also highlights that

our baseline specification of m, p, and ¢ is preferred over alternative ones with greater values.

C Further Details on the Estimation Algorithm

C.0.1 Detailed description of the Gibbs sampler algorithm

The algorithm has a block structure composed of the following steps.

0. Initialization

The model parameters are initialized at arbitrary starting values 8°, and so are the sequences for

the stochastic volatilities, {ag,t, agi t}le. The latent components c;, 0, and f;, are initialized by

running the Kalman filter and smoother once, conditional on the initialized parameters. Set j = 1.

1. Draw outlier and idiosyncratic components conditional on estimated common factors

Obtain a draw {0, }7_; and {u;¢}7_, from p({os s, uie}i_y167" 0], 7171 {02y o Y, y) for
each variable,i =1,..., N.

Conditioning on a{ _1, t” ~1 and the loadings, )\g _1, one can compute Ay; s — ¢iy — Ni(L) fy =
0it — 0it—1 + uis. Therefore, conditioning on pj - {U%Ztl ML, and ai;l and vf ~1 one can use
the Kalman filter and simulation smoother to independently draw the outlier and idiosyncratic
components. This step is independent for each of the variables in the system as such it can be run in
a univariate state-space and be parallelized. The univariate state spaces are all at monthly frequency,
and in the case of quarterly variables the estimation of the states spaces also produces interpolated
monthly values for the quarterly variables applying the approximation in MarianoMurasawa2003.
The interpolated quarterly variables are used in later steps of the Gibbs sampler. Specifically, we

can retrieve monthly, outlier adjusted data as ygtA = cit+ Ni(L) fr + wig.



2. Draw the parameters of the outlier component

j—1

. . . ] T
For each variable, @ = 1,..., N, obtain a draw of ¢,; from p(007i|{0i,t}t:17vi

p(UiHOg,t}g:l? Jz,z’)'

) and v; from

A fat-tailed distribution is easily obtained by a scale mixture, see ?, ?. Therefore, we can
treat the scale mixture variable as a latent variable. Specifically, with 1);; i.i.d. inverse gamma,
or vi/Yis ~ Xz, With z;; ~ N(0,02;) one has that oy = \/4izit ~ t,(0,02;). Taking the
sample {0Z +/ \/W ', and posing an inverse-gamma prior p(c? i) ~ 1G(s0,i,0,) the conditional
posterior of O'OJ is also drawn from an inverse-gamma distribution. We choose the scale s,; = 0.1
and degrees of freedom v, ; = 1 for the monthly variables. For the quarterly variables where only
one in three data points is available, we choose a more conservative prior with v, ; = 30 degrees of
freedom.

Conditioning on ail-, given the conjugate inverse gamma prior, the conditional posterior

of ¥;|v is also an inverse gamma. A draw ¢, can be obtained from p( t|olt7 o vl ~

1
I1G ( u +1, o 2 )2+2>. The degree of freedom v; are discrete with probability mass pro-
z t/%

portional to the product of t distribution ordinates p(v? ]o”, o’ ) = p(v) I, F11/;2F va}g) (v +

(oi’t / am) 2)=(+1)/2 where p(v) denotes the prior distribution for the degree of freedom (see ?). We
use a weakly informative prior for v which we assume to follow a Gamma distribution I'(2, 10)
discretized on the support [3; 40]. This prior was proposed and analyzed by ?. The lower bound at

3 enforces the existence of a conditional variance for the outlier component.

3. Draw the common factor and trend component conditional on model parameters and SVs

Obtain a draw {af, f/}{_; from p({as, f}{_1|{0] } /1. 07" oL, ot Vo, )

Having computed the outlier adjusted series and interpolated the quarterly series in Step 1 of
the algorithm, this step produces a draw of the entire state vector x; (which includes the long-run
growth component, a;, and the common factor, f;) of the state-space representation described in

Section C.0.2, and using the precision filter as described in the Section C.0.3.

SLike ?, we initialize the Kalman Filter step from a normal distribution whose moments are independent of the

5



4. Draw the variance of the time-varying GDP growth component

Obtain a draw w2’ from p(w?|{al}7_)).

Taking the sample {a/}7_, drawn in the previous step as given, and posing an inverse-gamma
prior p(w?) ~ IG(S,,v,) the conditional posterior of w? is also drawn from an inverse-gamma

distribution. We choose the scale S, = 103 and degrees of freedom v, = 1.

5. Draw the autoregressive parameters of the factor VAR

Obtain a draw &7 from p(®|{f/, o }L,).

Taking the sequences of the common factor {f/}7 | and its stochastic volatility {ag;l T,
from previous steps as given, and posing a non-informative prior, the corresponding conditional
posterior is drawn from the Normal distribution, see, e.g. 2.5 Like ?, or ?, we reject draws which

imply autoregressive coefficients in the explosive region.

6. Draw the factor loadings and constant terms

Obtain a draw of A and ¢/ from p(X, ¢, {f/, 00 V1, ¥)-

Conditional on the draw of the common factor {f/}7_,, the measurement equations reduce
to n independent linear regressions with heteroskedastic and serially correlated residuals. By
conditioning on p’~! and U%; !, the loadings and constant terms can be estimated using GLS. When
necessary, we apply linear restrictions on the loadings. In order to ensure the identification of the
model, we set the loading of the GDP equation associated to the (contemporaneous) common factor

to unity (?).

model parameters, in particular xo ~ N (0, 10*I).
°In the more general case of more than one factor, this step would be equivalent to drawing from the coefficients of a
Bayesian VAR.



7. Draw the serial correlation coefficients of the idiosyncratic components

Obtain a draw of p/ from p(p|N =1, {f7, o0 L1, ).

Taking as given the idiosyncratic components and the sequence for the stochastic volatility of
the i'" component, {0’%;1 }L ,, the standardized idiosyncratic component is obtained, which follows
an autoregression with homoskedastic residuals whose conditional posterior can be drawn from

the Normal distribution.

8. Draw the stochastic volatilities

Obtaina draw of {0, }[; and {07, , }{_; from p({oe,:}{_;|®7, {f{}{), and from p({oy, , }/1 |N, 07, { ]} 1. ¥)

respectively.

Finally, we draw the stochastic volatilities of the innovations to the factor and the idiosyncratic
components independently, using the algorithm of Kim et al. (1998), which uses a mixture of normal

random variables to approximate the elements of the log-variance.”

Increase j by 1 and iterate until convergence is achieved.

C.0.2 Construction of the state space system for Step 3 of the Gibbs sampler

For expositional clarity, in this section we abstract from the heterogeneous dynamics. Recall
that in our main specification we choose the order of the autoregressive dynamics in factor and
idiosyncratic components to be p = 2 and ¢ = 2, respectively. Let the n x 1 vector y;, which
contains the (outlier adjusted and de-meaned) n, interpolated quarterly and n,, monthly variables
(i.e. n = ng + ny).® Therefore the time index t is always monthly, both for the quarterly and the

monthly variables. The state space system is defined so that the system is written out in terms of

"This is a more efficient alternative to the exact Metropolis-Hastings algorithm previously proposed by ?. For
the general case in which there is more than one factor, the volatilities of the factor VAR can be drawn jointly, see
primiceri2005time.

®The interpolation of the quarterly variables is performed in step 1 of the Gibbs sampler.



the quasi-differences of the indicators, y;, defined as

q q q
Yie = PLAY14-1 — P1,2Y14—2

q q q
~ ynq,t - p"qvlynq,tfl - pnqﬂynq,t72

m m m
Y1t = Png+1,1Y1¢—1 = Png+1,2Y1¢t—2

m m m
Ynmt = Pn1Yn, t—1 = Pn2Yn,, t—2

Given this re-defined vector of observables, we cast our model into the following state space form:

Yo = Hxy+ 7, fe~N (0, Rg)

x; = Fxy_q1+ey, e~N(0,Qq)

where the state vector is defined as x; = [a¢, at—1,a1—2, ft, ft—1, ft—2]. We order GDP, GDI and
consumption growth as the first three variables in y; and assume they share a common low
frequency component. Therefore in Equation (??) wesetb = (11 5.0 ... 0)’. Setting A\; = 1 for

identification, the matrices of parameters H and F, are then constructed as shown below:
H-= |: H, H)\ :| )
where the respective blocks of H are defined as

I —p11p —p12 I —p1a —p1,2
1 —po1 —p2p A2 —Aop21 —Azp22

be —bepsi —beps2

0(n—3)><3 An _)\npn,l _Anpn,2_



and

Fi 0
F— ,

0 Fo

where the respective blocks of F are defined as

1 O1x2
F, = Fy =

I, 021

o1 @2 0 -‘
I, 02x1

| — E—
| I

The innovations to the transition equation are denoted as

!
€ = |vg, O9x1 & Ole}a

with covariance matrix Q; = diag(w?, 01x2, af,t,leg). Whereas the covariance matrix of the

. . . > N . 2 2
measurement equation is defined as R; = diag(oy, ,,..., 07, ).

C.0.3 Efficient precision sampler with missing observations

In order to make the algorithm more efficient we use the vectorized version of the Kalman fil-
ter/smoother (sometimes referred to as precision sampler, see Chan and Jeliazkov, 2009). The
vectorized approach leads to substantial gains in computational time.

Following DurbinKoopman2012, we can express any state space model in its vectorized form:

y = Hx+n, n~N(O,R)

Fx = x*+e, e~ N(0,Q)

(26)

where y’ = [y1,...,y7], X' = [x], ..., x| and x* = [x(, 01 xx(7—1)]- X0 is the initialization for the state

vector and its variance is initialized at P. The system’s matrices are organized as



H1 Rl
_ H, _ Ry
H= , R = ,
HT RT
L 1. L 1 27)
I Py
_ -F; I _
P 1 I . g- Q1
i —Fr1 I | i Qr-1 |

In Proposition 1 we extend the results of Chan jeliazkov09tothecasewheretherearemissingobservations.

Proposition 1. Let J be the diagonal selection matrix selecting the full rank portion of the generic time t
covariance matrix of the transition equation and = a diagonal matrix with ones corresponding to the existing
elements in y and zero for the missing elements. Define J=(Ir ® J), F=JFJ,Q=7QJ H=H7J, and

R~ = &R 'E. The state vector x ~ N (3¢, P) with

P = K+HR'H

» = P! (Kf‘_lx* + ﬁ’f{_ly>

where K =F'Q~'F.

The precision algorithm takes advantage of the sparse and banded structure of many of the
very large matrices that enter into the posterior for the states. The introduction of J allows us to
deal with the presence of a rank deficient system for the state variables, arising from the presence
of multiple lags in the dynamics of the factors,” whereas Z deals with the missing observations. '’

Research on precision sampling algorithms for state space models with mixed frequency data is

fast evolving. See for example ? and ? for recent contributions in this area. In particular, the

°J is a k-dimensional diagonal matrix with zeros corresponding to singular columns and one for the nonsingular
columns of Q;, where the latter denotes the covariance matrix of the transition equation innovations of the (original)
state space model.

19Tn MATLAB, the use of the ‘backslash’ operator as opposed to the standard inverse operator guarantees further
efficiency in computation. Given a k x k non-singular sparse matrix S and a k x 1 vector z, we have that S~ 'z = S\z,
which denotes the unique solution for z to the system Sz = . Defining the Cholesky factor C, such that CC’' = §,S™ 'z =
C'\(C\z), and this solves two triangular systems by forward substitution followed by back substitution (see also ?).

10



precision-based method of ? is applicable to a wide range of state-space models with missing data

patterns.

D Empirical Fit of the Factor Model

11
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Figure D.1: Fit of the Model: Stock Returns
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Figure D.2: Fit of the Model: Long-Term Bond Yields
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E Shock Time Series and Volatilties of Remaining Shocks
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Figure E.1: TIME SERIES AND VOLATILITIES OF OTHER SHOCKS
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F Additional Impulse Responses

Figure F.1: Impulse Responses to a Long-Rate Monetary Shock
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Figure E2: Impulse Responses to an Oil Supply Shock
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Figure E.3: Impulse Responses to an Aggregate Demand Shock
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Figure F.4: Impulse Responses to an Aggregate Supply Shock

Global Stock Price

o

12

Germany: Short Term Rate

24

36

12

Japan: Short Term Rate

24

36

IS
o

12

24

36

Global: GDP Growth

o

12

24
Months

36

Global Bond Yield

0.6

0.4

0 12 24 36 48

UK: Short Term Rate

0 12 24 36 4

©

Global: Headline Inflation

0 12 24 36 48

Global: Energy Price

0 12 24 36 48
Months

19

-0.5

0 12 24 36 48
04 Australia: Short Term Rate
0.3

Percent

USA: Short Term Rate

0.2

0.1

o

12 24 36 48

Global: Core Inflation

0.4

0.3

0.2

0.1

/

o

12 24 36 48

Global: Food Price

0 12 24 36 48
Months

Note: Responses of selected variables to the aggregate supply shock.



Figure E5: Impulse Responses to a Food Supply Shock
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G Phillips Curve Correlation Decomposition
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Figure G.1: HISTORICAL CORRELATION DECOMPOSITION: STOCK-BOND CORRELATION
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Note: Estimates of stock-bond correlation across twelve advanced economies from January 1955 to June 2024, using
monthly data. Each panel presents the posterior median correlation (thick solid line) along with the associated 68%
highest posterior density (HPD) interval and 90% interval derived from the global factor model. The posterior estimates
account for the portion of the correlation explained by global shocks. The dotted line represents a simple 12-month
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H Steady state of the Model

We solve for the stochastic steady state given a guess of the variances and covariances:

= eyt (- w)] T (W G (28)
2

= P ey -] GBS - G 29

y = 741 (30)

dp = (1- p)fl [r+ 7" — Ad — K] (31)

bk et

b 2

d 0 7 (32)
_ T b s

D, = TR C,?s [V;r Chsr } (33)
o # s xb

R [Vir™ = o] (34)

For the initial guess, we consider a model with no time variation in risk premia. Iterating
forward on the return equation, and denoting Z the deviation of a variable from its unconditional

mean, we have E;rf?, — r® = Ey;rff; — r® = 0, and:

R N 1-6
g = (1=0)) OEifrss = (1_9¢ )Tt
s=0 T

0 0 2
Vanriy) = Van [(1_9> ‘gt] B (1—9;) > ”
dAP = i P Ee(Pegs — ACit+s+1) = ! Tt — ¢d Ady
! poart 1— pg, 1— poa

R 1
Var(r{y;) = Var; [—pdthrl + Adt+1} = Var; [— <1 —ppcb ) T+l + <1 — p¢d> Adt-i—l}

_ 1 ? 2 1Y 2 2 P 1
- () A () -2 () () contmnan

T s 0 P 0 1
COVt(rt-’b_brt—H) N (1 - e(br) <1 - p¢r) Jg - (1 - 9¢T> (1 - p(bd) COVt(Tt—i_l’dt—i—l)

I Sensitivity Analysis

This section analyzes the sensitivity of the quantitative results to the values of certain key parame-

ters. In particular, I examine the impact of the volatility of interest rate shocks (o), the endogenous
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Figure I.1: Sensitivity Analysis, higher interest rate volatility
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response of the real interest rate to dividend growth (captured by the sensitivity parameter 3;),
and the degree of adjustment costs in the pension funds portfolio («).

Starting with the volatility of interest rate shocks, Figure 1.1 looks at the impact of increasing
the sensitivity of interest rate shocks. Given that this class of shocks leads to a strong movement
of equity and bond returns in the same direction, as discussed in the main text, the higher the
volatility of interest rate shocks, the less likely that a negative stock-bond correlation emerges in
equilibrium. The figure shows how, for an increase of 50% in this parameter, there is no level of
w, the hedge-fund market share, that leads to an unconditionally negative correlation. Therefore,
these results show, as discussed in the text, that interest rate volatility being sufficiently low is a
necessary condition for the negative correlation to appear.

Figure 1.2 examines the sensitivity of the results to the endogenous response of the real interest
rate to dividend growth shocks. All else equal, dividend growth shocks lead to an equilibrium

negative stock-bond correlation through a “cash-flow” channel as long as this sensitivity is not zero.
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Figure 1.2: Sensitivity Analysis, lower endogenous response of dividends
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The higher the sensitivity, the more likely it is that a negative correlation emerges unconditionally.
However, as the figure shows, even in a situation in which this channel is entirely shut down, for a
sufficiently large share of specialist hedge funds, the vy-shocks alone are capable of generating a
negative unconditional comovement.

Finally, Figure 1.3 examines the importance of the adjustment costs for the pension funds
portfolios. While the qualitative conclusions of the main paper are not greatly affected by removing
the adjustment costs, the figure shows how, the higher the adjustment costs for pension funds,
the more the y-shocks propagate and the more pronounced the negative equilibrium stock-bond

correlation.
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Figure 1.3: Sensitivity Analysis, higher interest rate volatility
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