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Abstract

The authors describe a new prediction system, called relevance-based prediction (RBP), for
predicting player performance for NBA draft prospects based on the outcomes of previous NBA
players. This approach rests on a statistical concept called relevance, which gives a
mathematically precise and theoretically justified measure of the importance of a previous
player to a prediction. The authors also describe fit, which gives advance guidance about the
reliability of a specific prediction. And they show how fit, together with asymmetry, focuses
each prediction on the combinations of predictive variables and previous players that are most
effective for that prediction task. The authors argue that RBP addresses complexities that are
beyond the reach of conventional prediction models, but in a way that is more transparent,
more flexible, and more theoretically justified than widely used machine learning algorithms.
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PREDICTION WITH CONVICTION:
AN APPLICATION OF RELEVANCE-BASED PREDICTION TO THE NBA

We propose a new prediction system, called relevance-based prediction (RBP), for predicting
player outcomes. RBP forms a prediction as a weighted average of observed outcomes in which
the weights are based on a rigorously defined and theoretically justified statistic called
relevance. Unlike predictive models such as linear regression analysis or machine learning,
which work by estimating model parameters and then applying those parameters to new tasks,
RBP is fundamentally model-free. It works by evaluating patterns in the relationship between

outcomes and predictive variables given the specific circumstances of each prediction task.

RBP has several significant advantages compared to model-based prediction.

= RBPis theoretically justified by information theory, the Central Limit Theorem, the
Mahalanobis distance, and surprising mathematical convergences.

= RBPis prediction specific. It tailors the choice of players and predictive variables to each
individual prediction task.

= RBPis fully transparent. It reveals precisely how each player informs an individual
prediction and how each predictive variable contributes to the reliability of the
prediction.

= RBP reveals the reliability of each prediction before it is made, thereby enabling analysts
to view more cautiously predictions that are likely to be less trustworthy.

= RBPis less vulnerable to overfitting small samples because it proceeds task by task, its
transparency reveals the unique circumstances of each player who informs the
prediction, and it optimally balances the stronger patterns that exist within a more
focused sample with the increase in noise that comes with intentionally shrinking the

sample.



= RBP is resilient to missing information.?! It explicitly accounts for the relative importance
of missing information in forming a prediction and evaluating its reliability, and it retains

information that model-based prediction would exclude.

As has been well documented in the finance and data science literature, RBP extracts as
much information from complex datasets as machine learning models but more efficiently and
with full transparency.? Our purpose in this paper, however, is to highlight its application to
predictive sports analytics. We proceed by first describing the key features of RBP conceptually
and mathematically. We then illustrate RBP by showing how it would have predicted VORP
(value over replacement player)® of NBA players during their rookie seasons, based on certain
attributes of these players and their pre-NBA basketball performance, as well as attributes and
performance of NBA players who came before them, and we compare our predictions to the

draft prospects’ actual outcomes in the NBA. We conclude with a summary.

Relevance-Based Prediction

As described comprehensively by Czasonis, Kritzman, and Turkington (2022a, 2022b, 2023, and
2024), RBP is a model-free prediction technique that forms a prediction as a relevance-
weighted average of observed outcomes in which relevance has a precise statistical meaning.
Although RBP gives the same prediction as linear regression analysis if it is applied across all
players, it usually gives a more reliable prediction if it is applied to a subset of relevant players.

When RBP is applied to a subset of relevant players, it is called partial sample regression. RBP



also depends crucially on fit, which measures the average alignment of relevance and outcomes
across all pairs of players that go into a prediction task. Fit assesses the expected reliability of
individual predictions before they are rendered. The final feature of RBP is grid prediction,
which forms a composite prediction as a reliability-weighted average of many predictions given

by different combinations of players and predictive variables.
Relevance

Relevance is a statistical measure of the importance of previous NBA players to forming a
prediction for an NBA draft prospect given a chosen set of predictive variables. It is composed

of two components, similarity and informativeness, as shown in Equation 1.
1 = sim(x;, x;) + %(info(xi,f) + info(xt,f)) (1)

In Equation 1, similarity and informativeness are computed as Mahalanobis distances

(Mahalanobis 1936) rather than absolute distances or Euclidean distances.

sim(xy,x0) = =3 (6 = x)Q 7Gx — %)’ (2)
info(x;, %) = (x; — Q™ (x; — %)’ (3)
info(xy, x) = (x; — JE)-Q_l(xt —Xx)' (4)

In Equations 1 through 4, x; is a row vector of the values of the predictive variables for a
past player, x; is a row vector of the values of the predictive variables for the prospective
player, X is a vector of the average values of the predictive variables for all previous players in
the sample, Q1 is the inverse covariance matrix of the values of the predictive variables for all

previous players, and ' denotes matrix transpose.
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The vector (x; — x;) measures how different a previous player is from the prospect,
whereas the vector (x; — X) measures how different he is from average, and (x; — )
measures how different the prospect is from average. By multiplying these vectors by the
inverse of the covariance matrix, we capture the correlation of the attributes of the previous
players. Also, this calculation implicitly standardizes the differences by dividing them by
variance. By multiplying the product by the transpose of the vector difference we consolidate
the outcome into a single number, which represents the covariance-adjusted distance between

the two vectors.

Notice that in the formula for similarity we multiply the Mahalanobis distance of a
previous player from the prospect by negative one half. The negative sign converts a measure
of difference into a measure of similarity. We multiply by one half because the average squared
distances between pairs of players is twice as large as the players’ average squared differences
from the average of all players. When we measure informativeness, we retain its positive sign,
and we need not multiply by one half. By measuring informativeness as a difference from
average, we are recognizing that unusual players contain more information than typical players.
Intuitively, this occurs because the outcomes for an unusual player are likely to reveal
underlying relationships to his personal attributes and circumstances, whereas outcomes for
highly typical players are likely to contain more noise and less information. Finally, note that we
measure the unusualness of the prospect. We do so to center our measure of relevance on
zero. All else being equal, previous players who are like the prospect but different from the

average of all previous players are more relevant to a prediction than those who are not.



This definition of relevance is not arbitrary. We know from information theory that the
information contained in an observation is the negative logarithm of its likelihood (Shannon
1948). We also know from the Central Limit Theorem that the relative likelihood of an
observation from a multivariate normal distribution is proportional to the exponential of a
negative Mahalanobis distance. Therefore, the information contained in a point on a

multivariate normal distribution is proportional to a Mahalanobis distance.

We can also justify the nonarbitrariness of relevance by considering a limiting case of
the predictions it yields. RBP forms a prediction as a weighted average of prior player outcomes

forY.
Pe =TI Wiy (5)

If we define weights in terms of relevance as follows, which admits the relevance-
weighted average of every prior player outcome in the observed data sample, the result is

precisely equivalent to the prediction that results from linear regression analysis. 4

1 1

Wit linear = N + N-1 Tit (6)

Owing to this equivalence, the theoretical justification given by Gauss for linear
regression analysis applies as well to RBP.> In most cases, however, we can produce a more
reliable prediction by taking a relevance-weighted average of a subset of relevant players,
which is called partial sample regression. Partial sample regression censors the influence of past
players who are less relevant than a chosen threshold, which leads to the following definition of

prediction weights.



1 A2 _
Wit retained = ﬁ + E (5(Tit)rit - Qorsub) (7)

1 ifryg=>r"
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0-2 ;Zrz
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In Equations 7 through 9, n = ¥V . (1;,) is the number of players who are fully retained,
@ = n/N is the fraction of players in the retained sample, and 7y, = %Z’i\’zl (1)1 is the
average relevance value of the players in the retained sample. It is important to note that
Wit retainea depends crucially on the prediction circumstances x;. Relevance is reassessed for
each prediction circumstance which further affects the identification of the retained subsample
and introduces nonlinear conditional dependence of the prediction J; on the prediction
circumstances x, . The scaling factor A2 compensates for a bias that would otherwise result
from relying on a small subsample of highly relevant players. In the case of linear regression

analysisn = N and A2 = 1. Lastly, note that the regression weights always sum to 1.6
Fit

Fit is a critical component of RBP. It reveals how much confidence we should have in a specific
prediction task, separately from the confidence we have in the overall prediction system. In
addition, fit provides a principled way to evaluate the relative merits of alternative calibrations

for each prediction task.

Consider, for example, a pair of previous players who are used, in part, to form the

prediction of an outcome for a prospect. Each previous player has a relevance weight and an



outcome. We are interested in the alignment of the relevance weights of the two previous
players with their outcomes. But we must standardize them by subtracting the average value
and dividing by standard deviation — in essence, converting them to z-scores. We then measure
their alignment by taking the product of the standardized values. If this product is positive, their
relevance is aligned with their outcomes, and the larger the product, the stronger the
alignment. We perform this calculation for every pair of previous players in our sample. We
should also note that all the formulas we have thus far considered for the relevance weights
rely only on the x;s, the x;s, and the Xs. They do not make use of any of the information from

previous player outcomes. To determine fit, however, we must consider outcomes (the y;s).
. 1
fltt = WZL Zj Zwitzwjtzyizyj (10)

Equation 11 intuitively describes fit as the squared correlation of relevance weights and
outcomes, which conceptually matches the notion of the conventional R-squared statistic. As

we soon show, this connection of fit to R-squared is critically important.

fity = p(we, y)? (11)

Although we compute fit from the full sample of players, the weights that determine fit
vary with the threshold we choose to define the relevant subsample. As we focus the
subsample on players who are more relevant, we should expect the fit of the subsample to
increase, but we should also expect more noise as we shrink the number of players. The fit
across pairs of all players in the full sample implicitly captures this tradeoff between subsample
fit and noise by overweighting players who are more relevant and underweighting players who

are less relevant accordingly.



Like relevance, fit is not arbitrary. In the case of linear regression analysis withn = N,
the informativeness-weighted average fit across all prediction tasks in the observed sample

equals R-squared.’

R* = N info(x)fit, (12)

This convergence of fit to R-squared reveals an intriguing insight. R-squared is the result
of some good predictions, some average predictions, and some bad predictions; that is, some
predictions with high fit, some with average fit, and some with low fit. R-squared reveals the
average reliability of a prediction model. It reveals much less about the reliability of specific
prediction tasks, which can vary substantially. Fit is much more nuanced. It gauges the reliability
of a specific prediction task in a non-arbitrary way, as demonstrated by its convergence to R-
squared. Fit is the fundamental building block of R-squared. To compute fit, we must know the
weight of each observation in a prediction. These weights are inherent to RBP, but they are not
available in model-based prediction algorithms which rely exclusively on calibrated parameters

rather than weighted observations to form predictions.

This notion of prediction-specific fit warrants particular emphasis. Because it offers
advance guidance about a specific prediction’s reliability, it enables analysts to discard or view

with greater caution predictions that are foreseen to be unreliable.

Grid Prediction

We have thus far shown how to form a prediction as a relevance-weighted average of player
outcomes. And we have shown how we can use fit to measure the reliability of a specific

prediction task. But we have left unanswered the question of how to determine the threshold
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for the subsample of relevant players. We have only noted that a partial sample regression
prediction depends on the choice of a parameter, r*, which is the censoring threshold for
relevance. In addition, we have implicitly assumed up to this point that the full menu of
predictive variables is used to measure relevance and form a partial sample prediction.
However, it is possible that a subset of the predictive variables will render a better prediction
for a specific prediction task. The efficacy of previous players for a given prediction task
depends on the predictive variables, and the efficacy of the predictive variables depends on the
players. These choices are codependent. We, therefore, turn to the last key feature of RBP,
which is grid prediction. But before we show how to form predictions that consider a range of

alternative calibrations, we must first describe an enhanced version of fit called adjusted fit.

Partial sample prediction is more effective to the extent there is strong alignment
between relevance and outcomes, as measured by fit. It is also more effective to the extent
there is asymmetry between the fit of the retained subsample of previous players and the fit of
the censored players. In the presence of asymmetry, we trust the more relevant sample on
principle. In the absence of asymmetry, the full sample relationship is linear, and linear
regression analysis will suffice. Therefore, to compare properly the efficacy of two predictions

formed from different values of r*, we need a way to measure not only fit but asymmetry.

We measure asymmetry between the fit of the retained and censored subsamples as

shown by Equation 13.

asymmetry; = %(p(wt(ﬂ,y) - p(wt(_),y))2 (13)
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The (+) superscript designates weights formed from the retained subsample of players
while the (=) superscript designates weights formed from the complementary sample of
censored players. Asymmetry recognizes the benefit of censoring non-relevant players that
contradict the predictive relationships that exist among the relevant observations. This

assessment also inherently considers the relative sample sizes of the complementary groups

To calculate adjusted fit, we add asymmetry to fit and multiply this sum by K, the

number of predictive variables, as shown by Equation 14.

adjusted fit, = K(fit, + asymmetry;) (14)

Multiplication by the number of predictive variables allows us to compare predictions
based on different numbers of predictive variables. It corrects a bias that would otherwise
occur, whereby adding a pure noise variable decreases fit in proportion to the increase in the
number of variables, even if the predictions themselves do not change (consider, for example,
the case of a full sample linear regression analysis with a large sample of players). Another way
to view the intuition for K is that we are more likely to observe a spurious relationship from
weights based on any one variable in isolation than we are based on a collection of many

variables.

We now return to the question of how to form a prediction given uncertainty in the
calibration of r* and variable selection, which are codependent choices. To address this issue,
we could consider every possible calibration that combines a choice of r* with a choice of a
subset of variables and select the prediction with the greatest reliability as measured by

adjusted fit. It is critical to remember that the assessment of reliability using adjusted fit is
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made before the prediction is rendered and the subsequent outcome is known. And it is also

critical to remember that the assessment of reliability is specific to the prediction task.

Instead of selecting one optimal calibration for a given prediction task, it may be more
prudent to compute a composite prediction as a reliability-weighted average of the predictions
from all possible calibrations. Equation 15 defines reliability weights, Y4, as the adjusted fit for
a parameter calibration, 8, divided by the sum of all adjusted fits across all parameter

calibrations.

adjusted fitg

l/JQ - Ygadjusted fity (15)
Equation 16 describes the composite prediction.
Vegria = 2o VoPre (16)

Figure 1 gives a visual representation of grid prediction. The columns represent different
combinations of predictive variables and the rows represent different subsamples of previous
players as determined by different relevance thresholds. Each cell represents a calibration 6;
that is, a unique combination of predictive variables and previous players. In practice, we would
consider all 63 combinations of six variables, but for illustrative purposes we show only seven
columns in Figure 1. The first values shown in the cells are the calibration-specific predictions y,
for a given prediction task t. The second values are the weights 1)y we apply to the calibration-
specific predictions to form the composite prediction. The values in the grid are specific to each
prediction task. This illustration gives a composite prediction of 16.30 (15.7 x 1.72% + 15.7 x

1.15% + 10.1 x0.24% + ...+ 9.3 x 0.04%).
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Figure 1: Grid Prediction — lllustrative Example

Variable Combinations

Xy Xo Xg XaXs Xg Xy X Xs Xq Xy X3 X, X; X5 Xg X5 Xe X, Xe

0.0 15.7 1.72 15.7 1.15 10.1 0.24 15.3 1.37 10.9 0.54 15.3 0.47 7.4 0.06

0.1 164 202 16.7 139 | 104 0.23 15.4 1.88 125 073 155  0.50 7.7 0.04

0.2 17.5 2.20 17.4 1.43 10.3 0.18 15.4 1.91 12.6 0.64 15.5 0.44 7.9 0.05

0.3 17.8 217 17.7 1.43 10.5 0.20 15.5 2.24 12.6 0.62 15.5 0.42 7.9 0.05

0.4 18.2 229 | 18.0 150 | 106 022 | 154 218 | 127 0.65 | 155 041 8.1 0.07

0.5 18.6 2.50 18.2 1.58 10.7 0.25 14.3 2.50 12.8 0.70 15.3 0.41 8.1 0.06

0.6 18.7  2.47 18.4 1.61 10.7 0.23 15.4 1.21 13.1 0.73 15.4 0.42 8.8 0.10

0.7 19.0 247 18.8 1.63 10.7 0.19 154 220 12.9 0.62 154 041 8.7 0.07

Observation Censoring Thresholds

0.8 194 232 10.1 1.50 11.5 0.20 15.3 2.04 13.7 0.57 15.5 0.37 8.6 0.04

0.9 19.5 1.26 188 0.81 129 022 15.5 1.73 140 032 153 025 9.3 0.04

Composite Prediction : 16.30

Note that each cell’s prediction is a linear function of player observations, and the grid
prediction is a linear function of each cell’s prediction. Therefore, we can express the grid
prediction in terms of composite weights applied to each player, as shown in Equation 17.
Composite weights are important because they preserve the transparency of how each
previous player contributes to the current prediction task, and they allow us to calculate fit

from composite weights as a final gauge of the grid prediction’s reliability.

Wit gria = 20 YoWit (17)
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The prediction grid also yields a comprehensive measure of how important each
variable is to the reliability of the current prediction. This measure is called relevance-based
importance (RBI).% As shown by Equation 18, RBI, for prediction t and variable k is computed
as the weighted average adjusted fit for grid cells that contain k (for which the variable
censoring indicator A, (6) = 1) minus the weighted average adjusted fit for cells that do not

contain k (for which A, (8) = 0). We express RBI as a sum over all grid cells 6.

Ax(8)(adjusted fitrg)—(1-Ar(0))(adjusted fiteg)
Y5 0k(0)

RBly, = Y ag (18)

The term X3 Ak(é) counts the number of cells that include variable k. For a grid that
includes every variable combination, this number is nearly equal to the number of cells that do
not include variable k, but the counts are not identical unless we include a column in the grid
for predictions that do not use any of the X variables (for which adjusted fit is always zero).
Thus, we divide by the number of cells that include variable k regardless of whether a given cell

contains k or not.

RBI has several advantages over alternative measures of variable importance. Linear
regression analysis relies on t-statistics and their corresponding p-values, which only measure a
variable’s marginal importance. RBI, by contrast, captures a variable’s total importance. RBI also
captures conditional relationships which t-statistics fail to address. And unlike the Shapley
value, which is the accepted standard for assessing variable importance in machine learning

models, RBI accounts for the reliability of individual predictions.

A final note on grid prediction. For some prediction tasks, it may be preferable to select

the subsample of players and predictive variables based on similarity rather than relevance. We
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need not worry whether we should use similarity or relevance to identify the optimal
combination of players and variables. We simply include these player censoring rules as
candidates in the grid. However, even when we censor players based on similarity, we should

still form the predictions as a relevance-weighted average of the retained players.

Application of Relevance-Based Prediction for NBA Outcomes

To illustrate how RBP is used to predict player outcomes, we apply it to predict VORP (value
over replacement player) during their NBA rookie years for players drafted in 2022, 2023, and
2024. We chose to predict VORP because it reflects a variety of ways in which a player affects
scoring and therefore has the potential to incorporate hidden complexities. Having said that,

we wish to emphasize that RBP can be applied to predict any outcome for any player.

Our full data sample comprises 468 players who were drafted from 2011 through 2024,
excluding 2019 and 2020, from Division | U.S. colleges with at least one season in the NBA. We
excluded players from 2019 and 2020 to avoid distortions that might have occurred from the
effect of COVID on both the collegiate and NBA player statistics. For each player in the 2022,
2023, and 2024 drafts and for each previously drafted player, we collect data in four categories:
physical attributes, individual college performance, team performance in college, and team
performance in the NBA. We chose these predictive variables merely to illustrate RBP. We do
not have expertise in determining the most effective predictive variables. For each prediction,
we use training data from previously drafted players that would have been available at the time

of that year’s draft.
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Prediction task:

= Rookie year VORP for 2022, 2023, and 2024 draft cohorts

Training sample:
= Players drafted from 2011 through 2023 who were drafted prior to the draft class that is
currently being predicted, excluding 2019 and 2020, from Division | colleges with at least

one NBA season

Predictive variables:
=  Physical attributes
e Height
e Weight
= College performance (final college season)
e Netrating
e True shooting percentage
e 3-point percentage
e Free throw rate
e Assists percentage
e Offensive box plus minus (BPM)
e Defensive box plus minus (BPM)
e Minutes per game
= Non-player factors — College
e School’s conference winning percentage (final college season)
e Number of players from school drafted into the NBA (prior 10 years)
= Non-player factors — NBA team (prior season)
e Win percentage

e Average point spread

16



As we discussed previously, grid prediction considers many subsamples of previously
drafted players and subsets of predictive variables for each individual prediction task. The
information from every cell in the grid is aggregated to form one composite vector of weights
across all previously drafted players. These weights directly determine the prediction: it equals
the weighted average of player outcomes. The weights also contain other important
information. For illustrative purposes, let us consider the VORP predictions for the three draft
cohorts. For the players we predicted, Figures 2 through 4 show scatter plots of predicted
rookie year VORPs, reported as cross-sectional percentile ranks, on the vertical axis, and their
corresponding conviction levels based on fit, also reported as cross-sectional percentile ranks,
on the horizontal axis. These results reveal two key insights. First, conviction varies dramatically
from one prediction to the next, even for predictions at similar levels. This underscores the
value of fit, which reveals the reliability of each prediction before it is made, thereby enabling
analysts to view more cautiously predictions that are likely to be less trustworthy. Second,
larger magnitude predictions tend be based on stronger patterns leading to higher conviction,
while lower conviction predictions based on weaker patterns tend to revert to the mean. This
underscores RBP’s model-free approach to prediction. It works by assessing patterns in past
players specific to the circumstances of each prediction task, thereby calibrating each individual

prediction one task at a time using a rigorous evaluation routine.
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Figure 2: VORP Predictions and Convictions for 2022 Draft Cohort
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Figure 3: VORP Predictions and Convictions for 2023 Draft Cohort
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Figure 4: VORP Predictions and Convictions for 2024 Draft Cohort
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In addition to customizing each prediction task to account for a draft prospect’s unique
circumstances, RBP reveals precisely how each previously drafted player informs the prediction.
For example, Figure 5 shows the ten most important players for forming the VORP predictions

for Zach Edey and Reed Sheppard. Edey’s predicted VORP, 0.68, was the highest (100t
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percentile) among all players in his draft cohort. At the 88" percentile, it also had high
conviction. It is affirming to note that RBP successfully identified highly relevant players with
similarly strong rookie season performance as what subsequently occurred for Edey. In
comparison, Reed Sheppard’s predicted VORP, 0.26, was more moderate (80t percentile) along
with its conviction (58 percentile). Intuitively, we see that the most relevant players for
Sheppard’s prediction generally had weaker rookie year performance than those for Edey’s
prediction. Interestingly, RBP identified three fellow University of Kentucky alums—Isaiah
Jackson, Cason Wallace, and TyTy Washington—among the most relevant players for Sheppard.
The main takeaway from Figure 5, though, is the extraordinary level of transparency that RBP
affords, which is critical for facilitating dialogue between analytics professionals, coaches, and

scouts.
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Figure 5: Most Important Players for Zach Edey and Reed Sheppard

Zach Edey
Purdue
Prediction (VORP): 0.68
Prediction Percentile: 100%
Conviction Percentile: 88%

Top 10 Most Important Players (Highest Prediction Weights)

Prior Player Weight Most Similar Variables VORP
Luka Garza 4.6% |Mins/Game AST% NBA Win%
Frank Kaminsky 4.4% |College Conf Win% |College Drafts Net Rating
Ben Simmons 4.1% |dBPM FT Rate College Drafts
Deandre Ayton 4.1% [(TS% College Conf Win% |Mins/Game
Kelly Olynyk 3.8% |College Drafts dBPM AST%

Joel Embiid 3.6% [TS% FT Rate AST%

Marvin Bagley 3.5% |NBA AvgSpread |NBA Win% Net Rating
Cody Zeller 3.4% |dBPM Net Rating College Drafts
Cameron Bairstow 3.2% |College Drafts AST% Mins/Game
Jared Sullinger 3.2% |Net Rating dBPM Mins/Game

Reed Sheppard
University of Kentucky

Prediction (VORP): 0.26
Prediction Percentile: 80%
Conviction Percentile: 58%

Top 10 Most Important Players (Highest Prediction Weights)

Prior Player Weight Most Similar Variables VORP
Dereck Lively 3.6% |NBA AvgSpread |Net Rating dBPM

Mark Williams 3.2% |[NBA Avg Spread |NBA Win% FT Rate

Shai Gilgeous-Alexander | 2.9% |oBPM NBA Avg Spread  [dBPM

Lonzo Ball 2.7% |Weight FT Rate College Conf Win%
Isaiah Jackson 2.6% |dBPM NBA Avg Spread  |Net Rating

Cason Wallace 2.6% |[College Drafts College Conf Win% |AST%

Jalen Johnson 2.5% |Net Rating NBA Avg Spread  |AST%

AJ Griffin 2.3% |NBA Avg Spread |0oBPM NBA Win%

TyTy Washington 2.3% |Height College Conf Win% |Mins/Game

Chet Holmgren 23% |TS% Weight oBPM

Figure 6 gives further evidence of RBP’s transparency and the importance of prediction-
specific information. It shows how each predictive variable contributed to the reliability of each

VORP prediction for the 2024 draft cohort, based on RBI which we described earlier. The gray
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bars show the 20" to 80" percentile range of variable importance across all 42 players. The
lines within the gray bars represent the median player. The red diamonds show the importance
of each predictive variable for Zach Edey, while the blue diamonds show this measure for Reed
Sheppard. Figure 6 shows remarkable differences in the importance of the predictive variables
across these two players. For example, height was by far the most important variable for Edey’s
prediction, while it contributed adversely to the reliability of Sheppard’s prediction. This
suggests that past players with similar statures to Edey (who, at 7 feet 4 inches, is the tallest
player in our sample) had relatively consistent rookie year VORPs. Therefore, including height as
a predictive variable contributed positively to the reliability of his prediction. However, for
Sheppard, including height harmed the reliability of his prediction, indicating inconsistent
performance for past players with similar heights. The opposite is true for defensive BPM. It was

the most important variable for Sheppard’s prediction, but unimportant to Edey’s prediction.
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Figure 6: Variable Importance for VORP Predictions for 2024 Draft Cohort
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Next, we show how well RBP performed out of sample using the same set of predictive
variables. Figure 7 shows the average rookie season VORP for players drafted in 2022, 2023,
and 2024. The first set of rows shows the actual outcomes for players who were predicted to be
in the top half of all players and those predicted to be in the bottom half of all players, based on

all RBP predictions for a given draft cohort. The second and third set of rows show the same
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comparisons, but only for those predictions foreseen to be among the 50% and 75% most
reliable, respectively, as indicated by fit. The final set of rows compare the VORP outcomes for
the players who were among the first 50% to be drafted with those who were among the last

50% to be drafted.

Figure 7: Average Actual Rookie Year VORPs

2022 2023 plopXi: Pooled
RBP - All High prediction 0.23 0.07 -0.04 0.11
Low prediction -0.33 -0.26 -0.29 -0.30
High predicti 0.57 0.21 0.14 0.32
RBP - 50% most reliable '8h pre '|c.|on
Low prediction -0.47 -0.35 -0.56 -0.42
High predicti 0.97 0.38 0.22 0.58
RBP - 25% most reliable '8h pre .|c.|on
Low prediction -0.52 -0.50 -0.50 -0.50
High predicti 0.07 -0.11 -0.22 -0.09
Draft order 'gh pre -|c.|on
Low prediction -0.16 -0.07 -0.10 -0.11

To facilitate comparison, Figure 8 summarizes the spread in realized VORP outcomes for

high minus low predictions for the four groups of predictions.

Figure 8: Spread in Average Actual Rookie Year VORPs for High versus Low Predictions

1.6
1.2
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0.0 — . —_
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The main takeaway from Figures 7 and 8 is that RBP successively distinguished in
advance players with more favorable VORP outcomes from those with less favorable outcomes,
especially for predictions foreseen to be more reliable. Moreover, it delineated more favorable
outcomes from less favorable outcomes more effectively than the order in which the players
were drafted, though it is important to acknowledge that many other factors contribute to the

order of the draft.

Summary

We described a new approach for predicting player outcomes called relevance-based
prediction. RBP forms predictions as weighted averages of past outcomes in which the weights
are based on the relevance of previous players, measured in a mathematically precise and

theoretically justified way.

Then we described a measure of prediction-specific fit, which indicates the specific
reliability of each individual prediction task. R-squared, by comparison, measures only the
average reliability of a prediction model. We showed that fit converges to R-squared in the case
of linear regression analysis when aggregated properly across all prediction tasks. And of critical
importance, we showed that fit enables us to discard, or consider more cautiously, predictions

that are foreseen to be less reliable.

Next, we introduced grid prediction, which uses fit to precisely blend the predictions

that result from different combinations of players and predictive variables. Crucially, the blend
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places greater emphasis on players and variables that are most useful for an individual

prediction task.

We then illustrated RBP by predicting VORP (value over replacement player) for the
rookie seasons for players who were drafted in 2022, 2023, and 2024. Our analysis revealed
that RBP successively distinguished in advance which players would produce more favorable
outcomes from those who would produce less favorable outcomes, and it did so more
effectively than the draft in all cases. And we provided compelling evidence that, based on fit,
we could distinguish in advance which predictions to trust and which to discard or treat with
caution. We also highlighted the extreme transparency of RBP, which reveals precisely how
each player informs an individual prediction and how each predictive variable contributes to the

reliability of the prediction.

To conclude, we acknowledge that scouting information provides insights that would be
unobtainable from any analytical system. However, we wish to emphasize that RBP produces
valuable information that is unknowable from scouting as well as from other prediction

techniques.

We would like to thank Miles Kee for valuable insights and computational assistance.
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Appendix: Convergence of Relevance to Other Prediction Methods

Convergence to Linear Regression Analysis

The prediction equation corresponding to full sample linear regression equals:
~ = 1 _
Ve =5 + =21 = 7)
Expanding the expression for relevance gives:

~ _ N 1 _ N _
Yt:)”"(xt_x)m §V=1Q 1(xl.—x) V=¥

To streamline the arithmetic, we recast this expression using matrix notation:

Xgq = (X - 1Nf)
Je =y =B +x:f — (xp — X)X Xg) ' Xg1ny
Where:

B = XaXa)T'XgY

(A1)

(A2)

(A3)

(A4)

(A5)

Noting that X;1, equals a vector of zeros, because X, represents attribute deviations

from their own respective averages, we get the familiar linear regression prediction formula:

Je =@ —xB) + xpB

a=({y—xp)

Ve =a+xp
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Relationship to Large Language Models

The key innovation that led to the success of large language models (LLMs) is the transformer,
which is an information processing architecture based on attention mechanisms. Relevance is

conceptually similar to attention and offers a novel interpretation of these models.

In the context of language processing, consider a sequence of words (or tokens) which is
encoded as a vector, x;. The goal is to transform each word into an enriched vector, z;, with
new dimensions, which represents a refined contextual meaning of the word within the

passage.

As noted in Vaswani et al. (2017), attention in a transformer model is determined by a
set of three transformation matrices: W@, WX, and WV, which compute what are commonly
referred to as query, key, and value vectors from each word x;. To highlight the link with RBP,

we characterize this as follows:

qe = x,W? (A9)
ki = xl-WK (AlO)
v = xiWV (All)
k!
z; = Y;softmax (\/%) v; (A12)

We may intuitively think of v; as representing the learned unconditional meaning of each word
in the passage. These values represent the dependent variable, and we want to predict the
contextual meaning as a weighted average of v; for all words in the passage based on their

relevance to x;. We may express:
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qeki = x,WeWKx] (A13)

Equation A13 matches the definition of relevance in Equation 1 from earlier, if we
assume ¥ = 0 and we have W WX rather than the inverse covariance matrix to relate
circumstances to each other. In other words, the learned matrices W WX amount to a square
matrix that is used to evaluate relevance. The letters used to characterize words are mostly
arbitrary (compared to meaning), so learned mappings are necessary for language
interpretation, whereas for meaningfully oriented data the inverse covariance matrix is well-

motivated.

The softmax function serves as a censoring function that normalizes weights to sum to
one, while also requiring them to be strictly positive. Thus, the use of softmax effectively
censors observations to focus on the most relevant subset, similar to partial sample regression.
There are many other complexities to transformers. We do not aim to provide a thorough
accounting of how these models work. We merely wish to point out the striking similarity
between the essence of the attention mechanism used in these models and the principles of

RBP described in this article.
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1 Though we don’t emphasize this advantage in this paper, please refer to Czasonis, Kritzman, and Turkington
(2025a) for a thorough description of how RBP handles incomplete information.

2 See, for example, Czasonis, Kritzman, and Turkington (2024) and Czasonis, Kritzman, and Turkington (2025c).

3 VORP (value over replacement player) is an estimate of the points per 100 team possessions a player scores over
a replacement player during the entire season assuming his teammates perform in line with the average of all NBA
players. Replacement players are bench players and have a VORP of -2.

4 See Czasonis, Kritzman, and Turkington (2023) for proof of this result.

5 We also show in the Appendix that our definition of relevance aligns with the key breakthrough that enables
large language models such as ChatGPT.

6 See Czasonis, Kritzman, and Turkington (2023) for proof of this result.

7 See Czasonis, Kritzman, and Turkington (2022b) for proof of this result.

8 See Czasonis, Kritzman, and Turkington (2025a) for a thorough description of relevance-based importance.
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