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Abstract 

The authors describe a new prediction system, called relevance-based prediction (RBP), for 
predicting player performance for NBA draft prospects based on the outcomes of previous NBA 
players. This approach rests on a statistical concept called relevance, which gives a 
mathematically precise and theoretically justified measure of the importance of a previous 
player to a prediction. The authors also describe fit, which gives advance guidance about the 
reliability of a specific prediction. And they show how fit, together with asymmetry, focuses 
each prediction on the combinations of predictive variables and previous players that are most 
effective for that prediction task. The authors argue that RBP addresses complexities that are 
beyond the reach of conventional prediction models, but in a way that is more transparent, 
more flexible, and more theoretically justified than widely used machine learning algorithms.  
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PREDICTION WITH CONVICTION: 
AN APPLICATION OF RELEVANCE-BASED PREDICTION TO THE NBA 

 

We propose a new prediction system, called relevance-based prediction (RBP), for predicting 

player outcomes. RBP forms a prediction as a weighted average of observed outcomes in which 

the weights are based on a rigorously defined and theoretically justified statistic called 

relevance. Unlike predictive models such as linear regression analysis or machine learning, 

which work by estimating model parameters and then applying those parameters to new tasks, 

RBP is fundamentally model-free. It works by evaluating patterns in the relationship between 

outcomes and predictive variables given the specific circumstances of each prediction task.  

RBP has several significant advantages compared to model-based prediction. 

 RBP is theoretically justified by information theory, the Central Limit Theorem, the 

Mahalanobis distance, and surprising mathematical convergences. 

 RBP is prediction specific. It tailors the choice of players and predictive variables to each 

individual prediction task. 

 RBP is fully transparent. It reveals precisely how each player informs an individual 

prediction and how each predictive variable contributes to the reliability of the 

prediction. 

 RBP reveals the reliability of each prediction before it is made, thereby enabling analysts 

to view more cautiously predictions that are likely to be less trustworthy. 

 RBP is less vulnerable to overfitting small samples because it proceeds task by task, its 

transparency reveals the unique circumstances of each player who informs the 

prediction, and it optimally balances the stronger patterns that exist within a more 

focused sample with the increase in noise that comes with intentionally shrinking the 

sample.   
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 RBP is resilient to missing information.1 It explicitly accounts for the relative importance 

of missing information in forming a prediction and evaluating its reliability, and it retains 

information that model-based prediction would exclude. 

 

As has been well documented in the finance and data science literature, RBP extracts as 

much information from complex datasets as machine learning models but more efficiently and 

with full transparency.2 Our purpose in this paper, however, is to highlight its application to 

predictive sports analytics. We proceed by first describing the key features of RBP conceptually 

and mathematically. We then illustrate RBP by showing how it would have predicted VORP 

(value over replacement player)3 of NBA players during their rookie seasons, based on certain 

attributes of these players and their pre-NBA basketball performance, as well as attributes and 

performance of NBA players who came before them, and we compare our predictions to the 

draft prospects’ actual outcomes in the NBA. We conclude with a summary. 

 

Relevance-Based Prediction  

As described comprehensively by Czasonis, Kritzman, and Turkington (2022a, 2022b, 2023, and 

2024), RBP is a model-free prediction technique that forms a prediction as a relevance-

weighted average of observed outcomes in which relevance has a precise statistical meaning. 

Although RBP gives the same prediction as linear regression analysis if it is applied across all 

players, it usually gives a more reliable prediction if it is applied to a subset of relevant players. 

When RBP is applied to a subset of relevant players, it is called partial sample regression. RBP 
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also depends crucially on fit, which measures the average alignment of relevance and outcomes 

across all pairs of players that go into a prediction task. Fit assesses the expected reliability of 

individual predictions before they are rendered. The final feature of RBP is grid prediction, 

which forms a composite prediction as a reliability-weighted average of many predictions given 

by different combinations of players and predictive variables. 

Relevance 

Relevance is a statistical measure of the importance of previous NBA players to forming a 

prediction for an NBA draft prospect given a chosen set of predictive variables. It is composed 

of two components, similarity and informativeness, as shown in Equation 1.    

𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑡𝑡) + 1
2
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥̅𝑥) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑡𝑡, 𝑥̅𝑥)�   (1) 

In Equation 1, similarity and informativeness are computed as Mahalanobis distances 

(Mahalanobis 1936) rather than absolute distances or Euclidean distances.    

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑡𝑡) = −1
2

(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑡𝑡)Ω−1(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑡𝑡)′   (2) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥̅𝑥) = (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)Ω−1(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)′    (3) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑡𝑡, 𝑥̅𝑥) = (𝑥𝑥𝑡𝑡 − 𝑥̅𝑥)Ω−1(𝑥𝑥𝑡𝑡 − 𝑥̅𝑥)′    (4) 

In Equations 1 through 4, 𝑥𝑥𝑖𝑖  is a row vector of the values of the predictive variables for a 

past player, 𝑥𝑥𝑡𝑡 is a row vector of the values of the predictive variables for the prospective 

player, 𝑥̅𝑥 is a vector of the average values of the predictive variables for all previous players in 

the sample, Ω−1 is the inverse covariance matrix of the values of the predictive variables for all 

previous players, and ′ denotes matrix transpose.  
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The vector (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑡𝑡) measures how different a previous player is from the prospect, 

whereas the vector (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥) measures how different he is from average, and (𝑥𝑥𝑡𝑡 − 𝑥̅𝑥) 

measures how different the prospect is from average. By multiplying these vectors by the 

inverse of the covariance matrix, we capture the correlation of the attributes of the previous 

players. Also, this calculation implicitly standardizes the differences by dividing them by 

variance. By multiplying the product by the transpose of the vector difference we consolidate 

the outcome into a single number, which represents the covariance-adjusted distance between 

the two vectors.   

Notice that in the formula for similarity we multiply the Mahalanobis distance of a 

previous player from the prospect by negative one half. The negative sign converts a measure 

of difference into a measure of similarity. We multiply by one half because the average squared 

distances between pairs of players is twice as large as the players’ average squared differences 

from the average of all players. When we measure informativeness, we retain its positive sign, 

and we need not multiply by one half. By measuring informativeness as a difference from 

average, we are recognizing that unusual players contain more information than typical players. 

Intuitively, this occurs because the outcomes for an unusual player are likely to reveal 

underlying relationships to his personal attributes and circumstances, whereas outcomes for 

highly typical players are likely to contain more noise and less information. Finally, note that we 

measure the unusualness of the prospect. We do so to center our measure of relevance on 

zero. All else being equal, previous players who are like the prospect but different from the 

average of all previous players are more relevant to a prediction than those who are not.   
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This definition of relevance is not arbitrary. We know from information theory that the 

information contained in an observation is the negative logarithm of its likelihood (Shannon 

1948). We also know from the Central Limit Theorem that the relative likelihood of an 

observation from a multivariate normal distribution is proportional to the exponential of a 

negative Mahalanobis distance. Therefore, the information contained in a point on a 

multivariate normal distribution is proportional to a Mahalanobis distance. 

We can also justify the nonarbitrariness of relevance by considering a limiting case of 

the predictions it yields. RBP forms a prediction as a weighted average of prior player outcomes 

for 𝑌𝑌. 

𝑦𝑦�𝑡𝑡 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1       (5) 

If we define weights in terms of relevance as follows, which admits the relevance-

weighted average of every prior player outcome in the observed data sample, the result is 

precisely equivalent to the prediction that results from linear regression analysis. 4 

𝑤𝑤𝑖𝑖𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1
𝑁𝑁

+ 1
𝑁𝑁−1

𝑟𝑟𝑖𝑖𝑖𝑖     (6) 

Owing to this equivalence, the theoretical justification given by Gauss for linear 

regression analysis applies as well to RBP.5 In most cases, however, we can produce a more 

reliable prediction by taking a relevance-weighted average of a subset of relevant players, 

which is called partial sample regression. Partial sample regression censors the influence of past 

players who are less relevant than a chosen threshold, which leads to the following definition of 

prediction weights. 
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𝑤𝑤𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝑁𝑁

+ 𝜆𝜆2

𝑛𝑛−1
(𝛿𝛿(𝑟𝑟𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖 − 𝜑𝜑𝑟̅𝑟𝑠𝑠𝑠𝑠𝑠𝑠)   (7) 

𝛿𝛿(𝑟𝑟𝑖𝑖𝑖𝑖) = �1    𝑖𝑖𝑖𝑖 𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑟𝑟∗ 
0    𝑖𝑖𝑖𝑖 𝑟𝑟𝑖𝑖𝑖𝑖 < 𝑟𝑟∗      (8) 

𝜆𝜆2 =
𝜎𝜎𝑟𝑟,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2

𝜎𝜎𝑟𝑟,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2 =

1
𝑁𝑁−1

∑ 𝑟𝑟𝑖𝑖𝑖𝑖
2

𝑖𝑖
1

𝑛𝑛−1
∑ 𝛿𝛿(𝑟𝑟𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖

2
𝑖𝑖

    (9) 

In Equations 7 through 9, 𝑛𝑛 = ∑ (𝑟𝑟𝑖𝑖𝑖𝑖)𝑁𝑁
𝑖𝑖=1  is the number of players who are fully retained, 

𝜑𝜑 = 𝑛𝑛 𝑁𝑁⁄  is the fraction of players in the retained sample, and 𝑟̅𝑟𝑠𝑠𝑠𝑠𝑠𝑠 = 1
𝑛𝑛
∑ 𝛿𝛿(𝑟𝑟𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1  is the 

average relevance value of the players in the retained sample. It is important to note that 

𝑤𝑤𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 depends crucially on the prediction circumstances 𝑥𝑥𝑡𝑡. Relevance is reassessed for 

each prediction circumstance which further affects the identification of the retained subsample 

and introduces nonlinear conditional dependence of the prediction 𝑦𝑦�𝑡𝑡 on the prediction 

circumstances 𝑥𝑥𝑡𝑡 . The scaling factor 𝜆𝜆2 compensates for a bias that would otherwise result 

from relying on a small subsample of highly relevant players. In the case of linear regression 

analysis 𝑛𝑛 = 𝑁𝑁 and 𝜆𝜆2 = 1. Lastly, note that the regression weights always sum to 1.6 

Fit 

Fit is a critical component of RBP. It reveals how much confidence we should have in a specific 

prediction task, separately from the confidence we have in the overall prediction system. In 

addition, fit provides a principled way to evaluate the relative merits of alternative calibrations 

for each prediction task.  

Consider, for example, a pair of previous players who are used, in part, to form the 

prediction of an outcome for a prospect. Each previous player has a relevance weight and an 
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outcome. We are interested in the alignment of the relevance weights of the two previous 

players with their outcomes. But we must standardize them by subtracting the average value 

and dividing by standard deviation – in essence, converting them to z-scores. We then measure 

their alignment by taking the product of the standardized values. If this product is positive, their 

relevance is aligned with their outcomes, and the larger the product, the stronger the 

alignment. We perform this calculation for every pair of previous players in our sample. We 

should also note that all the formulas we have thus far considered for the relevance weights 

rely only on the 𝑥𝑥𝑖𝑖𝑠𝑠, the 𝑥𝑥𝑡𝑡𝑠𝑠, and the 𝑥̅𝑥𝑠𝑠. They do not make use of any of the information from 

previous player outcomes. To determine fit, however, we must consider outcomes (the 𝑦𝑦𝑖𝑖s).   

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 = 1
(𝑁𝑁−1)2

∑ ∑ 𝑧𝑧𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧𝑤𝑤𝑗𝑗𝑗𝑗𝑧𝑧𝑦𝑦𝑖𝑖𝑧𝑧𝑦𝑦𝑗𝑗𝑗𝑗𝑖𝑖     (10) 

Equation 11 intuitively describes fit as the squared correlation of relevance weights and 

outcomes, which conceptually matches the notion of the conventional R-squared statistic. As 

we soon show, this connection of fit to R-squared is critically important.  

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 = 𝜌𝜌(𝑤𝑤𝑡𝑡,𝑦𝑦)2     (11) 

Although we compute fit from the full sample of players, the weights that determine fit 

vary with the threshold we choose to define the relevant subsample. As we focus the 

subsample on players who are more relevant, we should expect the fit of the subsample to 

increase, but we should also expect more noise as we shrink the number of players. The fit 

across pairs of all players in the full sample implicitly captures this tradeoff between subsample 

fit and noise by overweighting players who are more relevant and underweighting players who 

are less relevant accordingly. 
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Like relevance, fit is not arbitrary. In the case of linear regression analysis with 𝑛𝑛 = 𝑁𝑁, 

the informativeness-weighted average fit across all prediction tasks in the observed sample 

equals R-squared.7    

𝑅𝑅2 = 1
𝑇𝑇−1

∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑡𝑡)𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡      (12) 

This convergence of fit to R-squared reveals an intriguing insight. R-squared is the result 

of some good predictions, some average predictions, and some bad predictions; that is, some 

predictions with high fit, some with average fit, and some with low fit. R-squared reveals the 

average reliability of a prediction model. It reveals much less about the reliability of specific 

prediction tasks, which can vary substantially. Fit is much more nuanced. It gauges the reliability 

of a specific prediction task in a non-arbitrary way, as demonstrated by its convergence to R-

squared. Fit is the fundamental building block of R-squared. To compute fit, we must know the 

weight of each observation in a prediction. These weights are inherent to RBP, but they are not 

available in model-based prediction algorithms which rely exclusively on calibrated parameters 

rather than weighted observations to form predictions.  

This notion of prediction-specific fit warrants particular emphasis. Because it offers 

advance guidance about a specific prediction’s reliability, it enables analysts to discard or view 

with greater caution predictions that are foreseen to be unreliable. 

Grid Prediction 

We have thus far shown how to form a prediction as a relevance-weighted average of player 

outcomes. And we have shown how we can use fit to measure the reliability of a specific 

prediction task. But we have left unanswered the question of how to determine the threshold 
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for the subsample of relevant players. We have only noted that a partial sample regression 

prediction depends on the choice of a parameter, 𝑟𝑟∗, which is the censoring threshold for 

relevance. In addition, we have implicitly assumed up to this point that the full menu of 

predictive variables is used to measure relevance and form a partial sample prediction. 

However, it is possible that a subset of the predictive variables will render a better prediction 

for a specific prediction task. The efficacy of previous players for a given prediction task 

depends on the predictive variables, and the efficacy of the predictive variables depends on the 

players. These choices are codependent. We, therefore, turn to the last key feature of RBP, 

which is grid prediction. But before we show how to form predictions that consider a range of 

alternative calibrations, we must first describe an enhanced version of fit called adjusted fit. 

Partial sample prediction is more effective to the extent there is strong alignment 

between relevance and outcomes, as measured by fit. It is also more effective to the extent 

there is asymmetry between the fit of the retained subsample of previous players and the fit of 

the censored players. In the presence of asymmetry, we trust the more relevant sample on 

principle. In the absence of asymmetry, the full sample relationship is linear, and linear 

regression analysis will suffice. Therefore, to compare properly the efficacy of two predictions 

formed from different values of 𝑟𝑟∗, we need a way to measure not only fit but asymmetry.  

We measure asymmetry between the fit of the retained and censored subsamples as 

shown by Equation 13.  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦𝑡𝑡 = 1
2
�𝜌𝜌�𝑤𝑤𝑡𝑡

(+),𝑦𝑦� − 𝜌𝜌�𝑤𝑤𝑡𝑡
(−),𝑦𝑦��

2
   (13)  
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The (+) superscript designates weights formed from the retained subsample of players 

while the (−) superscript designates weights formed from the complementary sample of 

censored players. Asymmetry recognizes the benefit of censoring non-relevant players that 

contradict the predictive relationships that exist among the relevant observations. This 

assessment also inherently considers the relative sample sizes of the complementary groups 

To calculate adjusted fit, we add asymmetry to fit and multiply this sum by 𝐾𝐾, the 

number of predictive variables, as shown by Equation 14.  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 = 𝐾𝐾(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦𝑡𝑡)   (14) 

Multiplication by the number of predictive variables allows us to compare predictions 

based on different numbers of predictive variables. It corrects a bias that would otherwise 

occur, whereby adding a pure noise variable decreases fit in proportion to the increase in the 

number of variables, even if the predictions themselves do not change (consider, for example, 

the case of a full sample linear regression analysis with a large sample of players). Another way 

to view the intuition for 𝐾𝐾 is that we are more likely to observe a spurious relationship from 

weights based on any one variable in isolation than we are based on a collection of many 

variables. 

We now return to the question of how to form a prediction given uncertainty in the 

calibration of 𝑟𝑟∗ and variable selection, which are codependent choices. To address this issue, 

we could consider every possible calibration that combines a choice of 𝑟𝑟∗ with a choice of a 

subset of variables and select the prediction with the greatest reliability as measured by 

adjusted fit. It is critical to remember that the assessment of reliability using adjusted fit is 
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made before the prediction is rendered and the subsequent outcome is known. And it is also 

critical to remember that the assessment of reliability is specific to the prediction task.  

Instead of selecting one optimal calibration for a given prediction task, it may be more 

prudent to compute a composite prediction as a reliability-weighted average of the predictions 

from all possible calibrations. Equation 15 defines reliability weights, 𝜓𝜓𝜃𝜃, as the adjusted fit for 

a parameter calibration, 𝜃𝜃, divided by the sum of all adjusted fits across all parameter 

calibrations.  

𝜓𝜓𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝜃𝜃
∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝜃𝜃�𝜃𝜃�

     (15) 

Equation 16 describes the composite prediction. 

𝑦𝑦�𝑡𝑡,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ∑ 𝜓𝜓𝜃𝜃𝑦𝑦�𝑡𝑡,𝜃𝜃𝜃𝜃      (16) 

Figure 1 gives a visual representation of grid prediction. The columns represent different 

combinations of predictive variables and the rows represent different subsamples of previous 

players as determined by different relevance thresholds. Each cell represents a calibration 𝜃𝜃; 

that is, a unique combination of predictive variables and previous players. In practice, we would 

consider all 63 combinations of six variables, but for illustrative purposes we show only seven 

columns in Figure 1. The first values shown in the cells are the calibration-specific predictions 𝑦𝑦�𝑡𝑡 

for a given prediction task 𝑡𝑡. The second values are the weights 𝜓𝜓𝜃𝜃 we apply to the calibration-

specific predictions to form the composite prediction. The values in the grid are specific to each 

prediction task. This illustration gives a composite prediction of 16.30 (15.7 x 1.72% + 15.7 x 

1.15% + 10.1 x 0.24% + . . . + 9.3 x 0.04%). 
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Figure 1: Grid Prediction – Illustrative Example

 

Note that each cell’s prediction is a linear function of player observations, and the grid 

prediction is a linear function of each cell’s prediction. Therefore, we can express the grid 

prediction in terms of composite weights applied to each player, as shown in Equation 17. 

Composite weights are important because they preserve the transparency of how each 

previous player contributes to the current prediction task, and they allow us to calculate fit 

from composite weights as a final gauge of the grid prediction’s reliability.  

𝑤𝑤𝑖𝑖𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ∑ 𝜓𝜓𝜃𝜃𝑤𝑤𝑖𝑖𝑖𝑖,𝜃𝜃𝜃𝜃     (17) 

0.0 15.7 1.72 15.7 1.15 10.1 0.24 15.3 1.37 10.9 0.54 15.3 0.47 7.4 0.06

0.1 16.4 2.02 16.7 1.39 10.4 0.23 15.4 1.88 12.5 0.73 15.5 0.50 7.7 0.04

0.2 17.5 2.20 17.4 1.43 10.3 0.18 15.4 1.91 12.6 0.64 15.5 0.44 7.9 0.05

0.3 17.8 2.17 17.7 1.43 10.5 0.20 15.5 2.24 12.6 0.62 15.5 0.42 7.9 0.05

0.4 18.2 2.29 18.0 1.50 10.6 0.22 15.4 2.18 12.7 0.65 15.5 0.41 8.1 0.07

0.5 18.6 2.50 18.2 1.58 10.7 0.25 14.3 2.50 12.8 0.70 15.3 0.41 8.1 0.06

0.6 18.7 2.47 18.4 1.61 10.7 0.23 15.4 1.21 13.1 0.73 15.4 0.42 8.8 0.10

0.7 19.0 2.47 18.8 1.63 10.7 0.19 15.4 2.20 12.9 0.62 15.4 0.41 8.7 0.07

0.8 19.4 2.32 19.1 1.50 11.5 0.20 15.3 2.04 13.7 0.57 15.5 0.37 8.6 0.04

0.9 19.5 1.26 18.8 0.81 12.9 0.22 15.5 1.73 14.0 0.32 15.3 0.25 9.3 0.04

Composite Prediction : 16.30

Variable Combinations
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The prediction grid also yields a comprehensive measure of how important each 

variable is to the reliability of the current prediction. This measure is called relevance-based 

importance (RBI).8 As shown by Equation 18, 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 for prediction 𝑡𝑡 and variable 𝑘𝑘 is computed 

as the weighted average adjusted fit for grid cells that contain 𝑘𝑘 (for which the variable 

censoring indicator ∆𝑘𝑘(𝜃𝜃) = 1) minus the weighted average adjusted fit for cells that do not 

contain 𝑘𝑘 (for which ∆𝑘𝑘(𝜃𝜃) = 0). We express RBI as a sum over all grid cells 𝜃𝜃. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = ∑ 𝛼𝛼𝜃𝜃 𝜃𝜃
∆𝑘𝑘(𝜃𝜃)(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝜃𝜃)−�1−∆𝑘𝑘(𝜃𝜃)�(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝜃𝜃)

∑ ∆𝑘𝑘�𝜃𝜃��𝜃𝜃�
   (18) 

The term ∑ ∆𝑘𝑘�𝜃𝜃��𝜃𝜃�  counts the number of cells that include variable 𝑘𝑘. For a grid that 

includes every variable combination, this number is nearly equal to the number of cells that do 

not include variable 𝑘𝑘, but the counts are not identical unless we include a column in the grid 

for predictions that do not use any of the 𝑋𝑋 variables (for which adjusted fit is always zero). 

Thus, we divide by the number of cells that include variable 𝑘𝑘 regardless of whether a given cell 

contains 𝑘𝑘 or not. 

RBI has several advantages over alternative measures of variable importance. Linear 

regression analysis relies on t-statistics and their corresponding p-values, which only measure a 

variable’s marginal importance. RBI, by contrast, captures a variable’s total importance. RBI also 

captures conditional relationships which t-statistics fail to address. And unlike the Shapley 

value, which is the accepted standard for assessing variable importance in machine learning 

models, RBI accounts for the reliability of individual predictions.  

A final note on grid prediction. For some prediction tasks, it may be preferable to select 

the subsample of players and predictive variables based on similarity rather than relevance. We 
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need not worry whether we should use similarity or relevance to identify the optimal 

combination of players and variables. We simply include these player censoring rules as 

candidates in the grid. However, even when we censor players based on similarity, we should 

still form the predictions as a relevance-weighted average of the retained players. 

 

Application of Relevance-Based Prediction for NBA Outcomes 

To illustrate how RBP is used to predict player outcomes, we apply it to predict VORP (value 

over replacement player) during their NBA rookie years for players drafted in 2022, 2023, and 

2024. We chose to predict VORP because it reflects a variety of ways in which a player affects 

scoring and therefore has the potential to incorporate hidden complexities. Having said that, 

we wish to emphasize that RBP can be applied to predict any outcome for any player. 

Our full data sample comprises 468 players who were drafted from 2011 through 2024, 

excluding 2019 and 2020, from Division I U.S. colleges with at least one season in the NBA. We 

excluded players from 2019 and 2020 to avoid distortions that might have occurred from the 

effect of COVID on both the collegiate and NBA player statistics. For each player in the 2022, 

2023, and 2024 drafts and for each previously drafted player, we collect data in four categories: 

physical attributes, individual college performance, team performance in college, and team 

performance in the NBA. We chose these predictive variables merely to illustrate RBP. We do 

not have expertise in determining the most effective predictive variables. For each prediction, 

we use training data from previously drafted players that would have been available at the time 

of that year’s draft.  
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Prediction task: 

 Rookie year VORP for 2022, 2023, and 2024 draft cohorts 

 

Training sample: 

 Players drafted from 2011 through 2023 who were drafted prior to the draft class that is 

currently being predicted, excluding 2019 and 2020, from Division I colleges with at least 

one NBA season 

 

Predictive variables: 

 Physical attributes 

• Height 

• Weight 

 College performance (final college season) 

• Net rating 

• True shooting percentage 

• 3-point percentage 

• Free throw rate 

• Assists percentage 

• Offensive box plus minus (BPM) 

• Defensive box plus minus (BPM) 

• Minutes per game 

 Non-player factors – College 

• School’s conference winning percentage (final college season) 

• Number of players from school drafted into the NBA (prior 10 years) 

 Non-player factors – NBA team (prior season) 

• Win percentage 

• Average point spread 
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As we discussed previously, grid prediction considers many subsamples of previously 

drafted players and subsets of predictive variables for each individual prediction task. The 

information from every cell in the grid is aggregated to form one composite vector of weights 

across all previously drafted players. These weights directly determine the prediction: it equals 

the weighted average of player outcomes. The weights also contain other important 

information. For illustrative purposes, let us consider the VORP predictions for the three draft 

cohorts. For the players we predicted, Figures 2 through 4 show scatter plots of predicted 

rookie year VORPs, reported as cross-sectional percentile ranks, on the vertical axis, and their 

corresponding conviction levels based on fit, also reported as cross-sectional percentile ranks, 

on the horizontal axis. These results reveal two key insights. First, conviction varies dramatically 

from one prediction to the next, even for predictions at similar levels. This underscores the 

value of fit, which reveals the reliability of each prediction before it is made, thereby enabling 

analysts to view more cautiously predictions that are likely to be less trustworthy. Second, 

larger magnitude predictions tend be based on stronger patterns leading to higher conviction, 

while lower conviction predictions based on weaker patterns tend to revert to the mean. This 

underscores RBP’s model-free approach to prediction. It works by assessing patterns in past 

players specific to the circumstances of each prediction task, thereby calibrating each individual 

prediction one task at a time using a rigorous evaluation routine.  
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Figure 2: VORP Predictions and Convictions for 2022 Draft Cohort 
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Figure 3: VORP Predictions and Convictions for 2023 Draft Cohort 

 

 

Figure 4: VORP Predictions and Convictions for 2024 Draft Cohort 

  

In addition to customizing each prediction task to account for a draft prospect’s unique 

circumstances, RBP reveals precisely how each previously drafted player informs the prediction. 

For example, Figure 5 shows the ten most important players for forming the VORP predictions 

for Zach Edey and Reed Sheppard. Edey’s predicted VORP, 0.68, was the highest (100th 
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percentile) among all players in his draft cohort. At the 88th percentile, it also had high 

conviction. It is affirming to note that RBP successfully identified highly relevant players with 

similarly strong rookie season performance as what subsequently occurred for Edey. In 

comparison, Reed Sheppard’s predicted VORP, 0.26, was more moderate (80th percentile) along 

with its conviction (58th percentile). Intuitively, we see that the most relevant players for 

Sheppard’s prediction generally had weaker rookie year performance than those for Edey’s 

prediction. Interestingly, RBP identified three fellow University of Kentucky alums—Isaiah 

Jackson, Cason Wallace, and TyTy Washington—among the most relevant players for Sheppard. 

The main takeaway from Figure 5, though, is the extraordinary level of transparency that RBP 

affords, which is critical for facilitating dialogue between analytics professionals, coaches, and 

scouts. 
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Figure 5: Most Important Players for Zach Edey and Reed Sheppard 

 

 

Figure 6 gives further evidence of RBP’s transparency and the importance of prediction-

specific information. It shows how each predictive variable contributed to the reliability of each 

VORP prediction for the 2024 draft cohort, based on RBI which we described earlier. The gray 

Prediction (VORP): 0.68
Prediction Percentile: 100%
Conviction Percentile: 88%

Prior Player Weight VORP
Luka Garza 4.6% Mins/Game AST% NBA Win% -0.1
Frank Kaminsky 4.4% College Conf Win% College Drafts Net Rating 0.5
Ben Simmons 4.1% dBPM FT Rate College Drafts 4.5
Deandre Ayton 4.1% TS% College Conf Win% Mins/Game 1.2
Kelly Olynyk 3.8% College Drafts dBPM AST% 0.3
Joel Embiid 3.6% TS% FT Rate AST% 1.3
Marvin Bagley 3.5% NBA Avg Spread NBA Win% Net Rating 0.4
Cody Zeller 3.4% dBPM Net Rating College Drafts 0.0
Cameron Bairstow 3.2% College Drafts AST% Mins/Game -0.1
Jared Sullinger 3.2% Net Rating dBPM Mins/Game 0.0

Top 10 Most Important Players (Highest Prediction Weights)

Most Similar Variables

Zach Edey
Purdue

Prediction (VORP): 0.26
Prediction Percentile: 80%
Conviction Percentile: 58%

Prior Player Weight VORP
Dereck Lively 3.6% NBA Avg Spread Net Rating dBPM 0.8
Mark Williams 3.2% NBA Avg Spread NBA Win% FT Rate 0.4
Shai Gilgeous-Alexander 2.9% oBPM NBA Avg Spread dBPM 0.8
Lonzo Ball 2.7% Weight FT Rate College Conf Win% 1.3
Isaiah Jackson 2.6% dBPM NBA Avg Spread Net Rating 0.0
Cason Wallace 2.6% College Drafts College Conf Win% AST% 0.9
Jalen Johnson 2.5% Net Rating NBA Avg Spread AST% -0.1
AJ Griffin 2.3% NBA Avg Spread oBPM NBA Win% 0.4
TyTy Washington 2.3% Height College Conf Win% Mins/Game -0.5
Chet Holmgren 2.3% TS% Weight oBPM 3.3

Reed Sheppard
University of Kentucky

Top 10 Most Important Players (Highest Prediction Weights)

Most Similar Variables
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bars show the 20th to 80th percentile range of variable importance across all 42 players. The 

lines within the gray bars represent the median player. The red diamonds show the importance 

of each predictive variable for Zach Edey, while the blue diamonds show this measure for Reed 

Sheppard. Figure 6 shows remarkable differences in the importance of the predictive variables 

across these two players. For example, height was by far the most important variable for Edey’s 

prediction, while it contributed adversely to the reliability of Sheppard’s prediction. This 

suggests that past players with similar statures to Edey (who, at 7 feet 4 inches, is the tallest 

player in our sample) had relatively consistent rookie year VORPs. Therefore, including height as 

a predictive variable contributed positively to the reliability of his prediction. However, for 

Sheppard, including height harmed the reliability of his prediction, indicating inconsistent 

performance for past players with similar heights. The opposite is true for defensive BPM. It was 

the most important variable for Sheppard’s prediction, but unimportant to Edey’s prediction.  
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Figure 6: Variable Importance for VORP Predictions for 2024 Draft Cohort 

 

  

Next, we show how well RBP performed out of sample using the same set of predictive 

variables. Figure 7 shows the average rookie season VORP for players drafted in 2022, 2023, 

and 2024. The first set of rows shows the actual outcomes for players who were predicted to be 

in the top half of all players and those predicted to be in the bottom half of all players, based on 

all RBP predictions for a given draft cohort. The second and third set of rows show the same 
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comparisons, but only for those predictions foreseen to be among the 50% and 75% most 

reliable, respectively, as indicated by fit.  The final set of rows compare the VORP outcomes for 

the players who were among the first 50% to be drafted with those who were among the last 

50% to be drafted. 

Figure 7: Average Actual Rookie Year VORPs  

 

To facilitate comparison, Figure 8 summarizes the spread in realized VORP outcomes for 

high minus low predictions for the four groups of predictions.  

Figure 8: Spread in Average Actual Rookie Year VORPs for High versus Low Predictions 

 

2022 2023 2024 Pooled
High prediction 0.23 0.07 -0.04 0.11
Low prediction -0.33 -0.26 -0.29 -0.30
High prediction 0.57 0.21 0.14 0.32
Low prediction -0.47 -0.35 -0.56 -0.42
High prediction 0.97 0.38 0.22 0.58
Low prediction -0.52 -0.50 -0.50 -0.50
High prediction 0.07 -0.11 -0.22 -0.09
Low prediction -0.16 -0.07 -0.10 -0.11

RBP - All

RBP - 50% most reliable

RBP - 25% most reliable

Draft order
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The main takeaway from Figures 7 and 8 is that RBP successively distinguished in 

advance players with more favorable VORP outcomes from those with less favorable outcomes, 

especially for predictions foreseen to be more reliable. Moreover, it delineated more favorable 

outcomes from less favorable outcomes more effectively than the order in which the players 

were drafted, though it is important to acknowledge that many other factors contribute to the 

order of the draft.  

 

Summary 

We described a new approach for predicting player outcomes called relevance-based 

prediction. RBP forms predictions as weighted averages of past outcomes in which the weights 

are based on the relevance of previous players, measured in a mathematically precise and 

theoretically justified way.   

Then we described a measure of prediction-specific fit, which indicates the specific 

reliability of each individual prediction task. R-squared, by comparison, measures only the 

average reliability of a prediction model. We showed that fit converges to R-squared in the case 

of linear regression analysis when aggregated properly across all prediction tasks. And of critical 

importance, we showed that fit enables us to discard, or consider more cautiously, predictions 

that are foreseen to be less reliable.  

Next, we introduced grid prediction, which uses fit to precisely blend the predictions 

that result from different combinations of players and predictive variables. Crucially, the blend 
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places greater emphasis on players and variables that are most useful for an individual 

prediction task.   

We then illustrated RBP by predicting VORP (value over replacement player) for the 

rookie seasons for players who were drafted in 2022, 2023, and 2024. Our analysis revealed 

that RBP successively distinguished in advance which players would produce more favorable 

outcomes from those who would produce less favorable outcomes, and it did so more 

effectively than the draft in all cases. And we provided compelling evidence that, based on fit, 

we could distinguish in advance which predictions to trust and which to discard or treat with 

caution. We also highlighted the extreme transparency of RBP, which reveals precisely how 

each player informs an individual prediction and how each predictive variable contributes to the 

reliability of the prediction.  

To conclude, we acknowledge that scouting information provides insights that would be 

unobtainable from any analytical system. However, we wish to emphasize that RBP produces 

valuable information that is unknowable from scouting as well as from other prediction 

techniques. 

 

 

We would like to thank Miles Kee for valuable insights and computational assistance. 
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Appendix: Convergence of Relevance to Other Prediction Methods 

Convergence to Linear Regression Analysis 

The prediction equation corresponding to full sample linear regression equals: 

𝑦𝑦�𝑡𝑡 = 𝑦𝑦� + 1
𝑁𝑁−1

∑ 𝑟𝑟𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑁𝑁
𝑖𝑖=1     (A1) 

Expanding the expression for relevance gives:   

𝑦𝑦�𝑡𝑡 = 𝑦𝑦� + (𝑥𝑥𝑡𝑡 − 𝑥̅𝑥� 1
𝑁𝑁−1

∑ Ω−1(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥�′(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑁𝑁
𝑖𝑖=1    (A2) 

 To streamline the arithmetic, we recast this expression using matrix notation: 

𝑋𝑋𝑑𝑑 = (𝑋𝑋 − 1𝑁𝑁𝑥̅𝑥)     (A3) 

𝑦𝑦�𝑡𝑡 = 𝑦𝑦� − 𝑥̅𝑥𝛽𝛽 + 𝑥𝑥𝑡𝑡𝛽𝛽 − (𝑥𝑥𝑡𝑡 − 𝑥̅𝑥)(𝑋𝑋𝑑𝑑′ 𝑋𝑋𝑑𝑑)−1𝑋𝑋𝑑𝑑′ 1𝑁𝑁𝑦𝑦�   (A4) 

 Where: 

𝛽𝛽 = (𝑋𝑋𝑑𝑑′ 𝑋𝑋𝑑𝑑)−1𝑋𝑋𝑑𝑑′ 𝑌𝑌     (A5) 

 Noting that 𝑋𝑋𝑑𝑑′ 1𝑁𝑁 equals a vector of zeros, because 𝑋𝑋𝑑𝑑 represents attribute deviations 

from their own respective averages, we get the familiar linear regression prediction formula:   

𝑦𝑦�𝑡𝑡 = (𝑦𝑦� − 𝑥̅𝑥𝛽𝛽) + 𝑥𝑥𝑡𝑡𝛽𝛽     (A6) 

𝛼𝛼 = (𝑦𝑦� − 𝑥̅𝑥𝛽𝛽)      (A7) 

𝑦𝑦�𝑡𝑡 = 𝛼𝛼 + 𝑥𝑥𝑡𝑡𝛽𝛽      (A8) 
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Relationship to Large Language Models 

The key innovation that led to the success of large language models (LLMs) is the transformer, 

which is an information processing architecture based on attention mechanisms. Relevance is 

conceptually similar to attention and offers a novel interpretation of these models.  

In the context of language processing, consider a sequence of words (or tokens) which is 

encoded as a vector, 𝑥𝑥𝑖𝑖. The goal is to transform each word into an enriched vector, 𝑧𝑧𝑖𝑖, with 

new dimensions, which represents a refined contextual meaning of the word within the 

passage.  

As noted in Vaswani et al. (2017), attention in a transformer model is determined by a 

set of three transformation matrices: 𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, and 𝑊𝑊𝑉𝑉, which compute what are commonly 

referred to as query, key, and value vectors from each word 𝑥𝑥𝑖𝑖. To highlight the link with RBP, 

we characterize this as follows: 

𝑞𝑞𝑡𝑡 = 𝑥𝑥𝑡𝑡𝑊𝑊𝑄𝑄      (A9) 

𝑘𝑘𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑊𝑊𝐾𝐾      (A10) 

𝑣𝑣𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑊𝑊𝑉𝑉      (A11) 

𝑧𝑧𝑖𝑖 = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 � 𝑞𝑞𝑡𝑡𝑘𝑘𝑖𝑖
′

 √𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
� 𝑣𝑣𝑖𝑖𝑖𝑖     (A12) 

We may intuitively think of 𝑣𝑣𝑖𝑖  as representing the learned unconditional meaning of each word 

in the passage. These values represent the dependent variable, and we want to predict the 

contextual meaning as a weighted average of 𝑣𝑣𝑖𝑖  for all words in the passage based on their 

relevance to 𝑥𝑥𝑖𝑖. We may express: 
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𝑞𝑞𝑡𝑡𝑘𝑘𝑖𝑖′ = 𝑥𝑥𝑡𝑡𝑊𝑊𝑄𝑄𝑊𝑊𝐾𝐾𝑥𝑥𝑖𝑖′     (A13) 

Equation A13 matches the definition of relevance in Equation 1 from earlier, if we 

assume 𝑥̅𝑥 = 0 and we have 𝑊𝑊𝑄𝑄𝑊𝑊𝐾𝐾 rather than the inverse covariance matrix to relate 

circumstances to each other. In other words, the learned matrices 𝑊𝑊𝑄𝑄𝑊𝑊𝐾𝐾 amount to a square 

matrix that is used to evaluate relevance. The letters used to characterize words are mostly 

arbitrary (compared to meaning), so learned mappings are necessary for language 

interpretation, whereas for meaningfully oriented data the inverse covariance matrix is well-

motivated.  

The softmax function serves as a censoring function that normalizes weights to sum to 

one, while also requiring them to be strictly positive. Thus, the use of softmax effectively 

censors observations to focus on the most relevant subset, similar to partial sample regression. 

There are many other complexities to transformers. We do not aim to provide a thorough 

accounting of how these models work. We merely wish to point out the striking similarity 

between the essence of the attention mechanism used in these models and the principles of 

RBP described in this article. 
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1 Though we don’t emphasize this advantage in this paper, please refer to Czasonis, Kritzman, and Turkington 
(2025a) for a thorough description of how RBP handles incomplete information. 
2 See, for example, Czasonis, Kritzman, and Turkington (2024) and Czasonis, Kritzman, and Turkington (2025c). 
3 VORP (value over replacement player) is an estimate of the points per 100 team possessions a player scores over 
a replacement player during the entire season assuming his teammates perform in line with the average of all NBA 
players. Replacement players are bench players and have a VORP of -2. 
4 See Czasonis, Kritzman, and Turkington (2023) for proof of this result. 
5 We also show in the Appendix that our definition of relevance aligns with the key breakthrough that enables 
large language models such as ChatGPT. 
6 See Czasonis, Kritzman, and Turkington (2023) for proof of this result. 
7 See Czasonis, Kritzman, and Turkington (2022b) for proof of this result. 
8 See Czasonis, Kritzman, and Turkington (2025a) for a thorough description of relevance-based importance. 


