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Classical statistics assesses the confidence of a prediction by measuring error variance, 
estimation variance, or the sum of both.  More complex machine learning models assess 
confidence using empirical methods such as resampling or conformal prediction.   
 
Model-based assessments of confidence, however, are likely to be unrealistically tight because 
they assume that the model is specified correctly and the predictive variables are measured 
without error.  
 
Relevance-based prediction, a model-free prediction technique, assesses the reliability of a 
prediction from the distribution of information that is used to form a prediction.  It gives a more 
realistic assessment of an individual prediction’s reliability because it does not rely on model 
correctness nor the assumption that the predictive variables are error free.  
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Abstract 

Classical statistics assesses the confidence of a prediction by measuring error variance, 

estimation variance, or the sum of both.  More complex machine learning models assess 

confidence using empirical techniques such as resampling or conformal prediction.  These 

methods implicitly assume that the model is correctly specified and the predictive variables are 

measured without error.  The authors describe a model-free approach to prediction called 

relevance-based prediction that does not rely on a model’s correctness, nor does it assume that 

the predictive variables are error free.  It measures the uncertainty of each individual prediction 

based on the unique distribution of information that is used to form the prediction.  
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CONFIDENCE REVISITED: THE DISTRIBUTION OF INFORMATION 

 

Data-driven predictions are usually formed by models such as a linear regression model or a 

neural network.  In classical statistics, there are three distinct concepts that relate to a 

prediction’s confidence: error variance reflects irreducible randomness in outcomes, estimation 

variance reflects noise in the prediction value that results from error-prone parameter 

estimates, and predictive variance is the sum of error variance and estimation variance which 

determines the width of a prediction interval.  These concepts can be derived analytically for a 

linear regression model.  For more complex machine learning models such as a neural network, 

it is usually impossible to determine these quantities theoretically, but one may approximate 

them using empirical techniques such as resampling or conformal prediction.  In all these cases, 

for both classical statistics and machine learning, the estimated measures of confidence may be 

unrealistically tight because they assume that the model is correctly specified and the 

predictive variables are measured without error.   

We propose a new framework for measuring prediction uncertainty based on a model-

free prediction technique called relevance-based prediction (RBP).  RBP gives a measure of 

prediction uncertainty that does not depend on the correctness of a parameterized model 

because there is no model, nor does it assume that the predictive variables are error free.  RBP 

forms a prediction as a weighted average of observed outcomes, which allows us to see 

precisely how each observation informs the prediction.  This transparency allows us to observe 

the distribution of information that goes into each prediction.  RBP associates prediction 

uncertainty with the alignment of the information that goes into a prediction.  If the 
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information is mutually supportive, which would show up as a tight distribution, we should be 

more confident in the prediction.  If it is mutually contradictory, as evidenced by a wide 

distribution, we should be less confident.   

We proceed as follows.  First, we describe partial sample regression, which is a building 

block of RBP.  It forms a prediction as a weighted average of observed outcomes in which the 

weights come from a precisely defined and theoretically justified statistic called relevance.  

Linear regression predictions emerge as a special case of partial sample regression.  We show 

how to construct distributions of the information that is used to form individual predictions, 

and we provide simulations to support our analysis.  We then introduce the notion of fit which 

quantifies the prevalence of useful patterns in a dataset pertaining to one specific prediction.  

Fit enables us to compute a composite prediction from a prediction grid that comprises many 

combinations of observations and predictive variables.  Each cell in the prediction grid gives a 

partial sample regression prediction and an associated measure of reliability.  The grid’s 

composite prediction is formed as a reliability-weighted average of each cell’s prediction.  We 

describe how to form distributions of information aggregated from all the cells that form the 

grid’s composite prediction.  We conclude with a summary.1 

 

Partial Sample Regression   

Partial sample regression forms a prediction as a weighted average of observed outcomes in 

which the weights are based on a statistic called relevance.  Relevance is composed of similarity 
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and informativeness which are both measured as Mahalanobis distances, as shown in 

equations 1 through 4.    

𝑟𝑖𝑡 = 𝑠𝑖𝑚(𝑥𝑖, 𝑥𝑡) +
1

2
(𝑖𝑛𝑓𝑜(𝑥𝑖 , 𝑥̅) + 𝑖𝑛𝑓𝑜(𝑥𝑡, 𝑥̅))   (1) 

𝑠𝑖𝑚(𝑥𝑖 , 𝑥𝑡) = −
1

2
(𝑥𝑖 − 𝑥𝑡)Ω−1(𝑥𝑖 − 𝑥𝑡)′   (2) 

𝑖𝑛𝑓𝑜(𝑥𝑖, 𝑥̅) = (𝑥𝑖 − 𝑥̅)Ω−1(𝑥𝑖 − 𝑥̅)′    (3) 

𝑖𝑛𝑓𝑜(𝑥𝑡, 𝑥̅) = (𝑥𝑡 − 𝑥̅)Ω−1(𝑥𝑡 − 𝑥̅)′    (4) 

In equations 1 through 4, 𝑥𝑖  is a vector of the values of 𝐾 predictive variables for a prior 

observation, 𝑥𝑡 is a vector of the values of the predictive variables for a specific prediction task, 

𝑥̅ = 1𝑁1𝑁
′ 𝑋𝑁−1 is the average of the predictive variables across all observations, and Ω−1 is the 

inverse covariance matrix of all the observations of the variables.  The vector (𝑥𝑖 − 𝑥𝑡) 

measures how distant each variable’s observed value is from its corresponding value in the 

prediction task, when measured in isolation.  By multiplying this vector by the inverse 

covariance matrix, we capture the interaction of the predictive variables, and at the same time 

we standardize the distances by dividing by variance.  By multiplying this product by the 

transpose of the vector (𝑥𝑖 − 𝑥𝑡) we consolidate the outcome into a single number.  All else 

being equal, observations that are like current circumstances but different from average 

circumstances are more relevant than those that are not.   

This definition of relevance is not arbitrary.  We know from information theory that the 

information contained in an observation is the negative logarithm of its likelihood.2  We also 

know from the Central Limit Theorem that the relative likelihood of an observation from a 
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multivariate normal distribution is proportional to the exponential of a negative Mahalanobis 

distance.  Therefore, the information contained in a point on a multivariate normal distribution 

is proportional to a Mahalanobis distance.   

If we define weights in terms of relevance as shown by equation 5, which admits the 

relevance-weighted average of every prior outcome in the full sample of observations, the 

result is precisely equivalent to the prediction given by linear regression analysis.3   

𝑤𝑖𝑡,𝑙𝑖𝑛𝑒𝑎𝑟 =
1

𝑁
+

1

𝑁−1
𝑟𝑖𝑡     (5) 

Partial sample regression assumes that we can produce a more reliable prediction by 

censoring observations that are less relevant than a chosen threshold, which leads to the 

following definition of prediction weights.   

𝑤𝑖𝑡,𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 =
1

𝑁
+

𝜆2

𝑛−1
(𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡 − 𝜑𝑟̅𝑠𝑢𝑏)   (6) 

𝛿(𝑟𝑖𝑡) = {
1    𝑖𝑓 𝑟𝑖𝑡 ≥ 𝑟∗

0    𝑖𝑓 𝑟𝑖𝑡 < 𝑟∗     (7) 

𝜆2 =
𝜎𝑟,𝑓𝑢𝑙𝑙

2

𝜎𝑟,𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑
2 =

1

𝑁−1
∑ 𝑟𝑖𝑡

2𝑁
𝑖=1

1

𝑛−1
∑ 𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡

2𝑁
𝑖=1

    (8) 

In equations 5 through 8, 𝑛 = ∑ 𝛿(𝑟𝑖𝑡)𝑁
𝑖=1  is the number of observations that are fully 

retained, 𝜑 = 𝑛/𝑁 is the fraction of observations in the retained sample, and 𝑟̅𝑠𝑢𝑏 =

1

𝑛
∑ 𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡

𝑁
𝑖=1  is the average relevance value of the observations in the retained sample.  It is 

important to note that 𝑤𝑖𝑡,𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 depends crucially on the prediction circumstances 𝑥𝑡.  

Relevance is reassessed for each prediction circumstance which further affects the 

identification of the retained subsample and introduces nonlinear conditional dependence of 
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the prediction 𝑦̂𝑡 on the prediction circumstances 𝑥𝑡.  The scaling factor 𝜆2 compensates for a 

bias that would otherwise result from relying on a small subsample of highly relevant 

observations.  In the case of linear regression analysis 𝑛 = 𝑁 and 𝜆2 = 1.  Lastly, note that the 

regression weights always sum to 1.4   

The prediction given by partial sample regression is shown by equation 9. 

𝑦̂𝑡 = ∑ (
1

𝑁
+

𝜆2

𝑛−1
(𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡 − 𝜑𝑟̅𝑠𝑢𝑏)) 𝑦𝑖𝑖    (9) 

We can equivalently express the prediction in terms of deviations from the full sample 𝑦̅ 

as shown by equation 10. 

𝑦̂𝑡 − 𝑦̅ =
𝜆2

𝑛−1
∑ 𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡(𝑦𝑖 − 𝑦̅)𝑖    (10) 

Even though equation 10 uses 𝑦̅ based on the full sample, only non-censored retained 

observations cause the prediction to tilt away from the full sample average.  The prediction’s 

tilts emanate only from the subsample where 𝛿(𝑟𝑖𝑡) = 1.  This feature allows us to construct a 

predictive distribution because we ignore censored observations.  We cannot ignore censored 

observations in equation 6 because the term 𝜑𝑟̅𝑠𝑢𝑏 implicitly manufactures the effect of the full 

sample 𝑦̅.  

As we have shown previously,5 we can express 𝜆2 equivalently as follows. 

𝜆2 =
𝜎𝑟,𝑓𝑢𝑙𝑙

2

𝜎𝑟,𝑝𝑎𝑟𝑡
2 =

𝑖𝑛𝑓𝑜(𝑥𝑡)

𝜎𝑟,𝑝𝑎𝑟𝑡
2 =

𝑖𝑛𝑓𝑜(𝑥𝑡)
1

𝑛−1
∑ 𝛿(𝑟𝑗𝑡)𝑟𝑗𝑡

2
𝑗

=
(𝑛−1)𝑖𝑛𝑓𝑜(𝑥𝑡)

∑ 𝛿(𝑟𝑖𝑡)𝑟𝑗𝑡
2

𝑗
  (11) 

These equivalences allow us to cancel out 𝑛 − 1 in equation 10, giving us a new 

equation. 
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𝑦̂𝑡 − 𝑦̅ =
𝑖𝑛𝑓𝑜(𝑥𝑡)

∑ 𝛿(𝑟𝑗𝑡)𝑟𝑗𝑡
2

𝑗
∑ 𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡(𝑦𝑖 − 𝑦̅)𝑖    (12) 

 

Solo prediction 

By removing 𝑛 − 1 from equation 10, we are now able to make a prediction from a single 

observation, 𝑠𝑜𝑙𝑜(𝑖), which has deviations from 𝑦̅ as shown in equations 13 and 14. 

𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖) − 𝑦̅ =
𝑖𝑛𝑓𝑜(𝑥𝑡)

𝑟𝑖𝑡
2 𝑟𝑖𝑡(𝑦𝑖 − 𝑦̅)    (13) 

𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖) − 𝑦̅ =
𝑖𝑛𝑓𝑜(𝑥𝑡)

𝑟𝑖𝑡
(𝑦𝑖 − 𝑦̅)    (14) 

The solo prediction scales the outcome deviation (𝑦𝑖 − 𝑦̅) by a simple factor, which is 

intuitive.  If the observation is equal to 𝑥𝑡, the scaling factor will equal 1 and the prediction will 

be formed from the outcome that occurred in the identical circumstance.  All else being equal, 

as the informativeness of the current prediction circumstance 𝑥𝑡 increases, the prediction 

amplifies the impact of the deviation for observation 𝑖.6  If observation 𝑖 is highly relevant, the 

deviation will be scaled back.  If the observation is not very relevant, it will be scaled up.  This 

scaling is necessary to express the observed outcome in the same expected scale as the 

prediction task.  The scaling factor also contains a positive or negative sign, so it has the 

potential to flip the direction of the deviation.  The solo prediction is technically undefined 

when relevance equals exactly zero because the observation is orthogonal to the task and 

cannot be used to inform it.   



9 
 

As we show next, we can combine solo predictions to form the actual prediction thereby 

accounting for multiple observations.  Observations that we censor using 𝛿(𝑟𝑖𝑡) = 0 receive 

zero weight in the composite sum, thus nullifying the impact of their extreme solo predictions.  

Solo predictions that are undefined because relevance equals exactly zero also receive zero 

weight in the composite sum, and it is appropriate to treat these instances as zero 

contributions to the composite prediction.   

 

Contribution of a solo prediction 

Consider the contribution, 𝑐𝑜𝑛𝑡𝑟(𝑖), of a single observation to a multi-observation prediction’s 

deviation from the unconditional average: 

𝑦̂𝑡,𝑐𝑜𝑛𝑡𝑟(𝑖) − 𝑦̅ =
𝑖𝑛𝑓𝑜(𝑥𝑡)

∑ 𝛿(𝑟𝑗𝑡)𝑟𝑗𝑡
2

𝑗
𝑟𝑖𝑡(𝑦𝑖 − 𝑦̅)   (15) 

If we express contribution as a weight 𝜉𝑖 times that observation’s solo prediction: 

𝑦̂𝑡,𝑐𝑜𝑛𝑡𝑟(𝑖) − 𝑦̅ = 𝜉𝑖(𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖) − 𝑦̅)   (16) 

Then: 

          𝜉𝑖 =
𝑦̂𝑡,𝑐𝑜𝑛𝑡𝑟(𝑖)−𝑦̅

𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖)−𝑦̅
     (17) 

This substitution cancels out many terms, leading to: 

         𝜉𝑖 =
𝑟𝑖𝑡

2

∑ 𝛿(𝑟𝑗𝑡)𝑟𝑗𝑡
2

𝑗
     (18) 
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The weight placed on the solo prediction of a retained observation (𝛿(𝑟𝑖𝑡) = 1) is equal 

to its squared relevance as a fraction of the sum of the squared relevance of all the other 

retained observations.  Clearly these weights sum to 1, they are all nonnegative, and the 

weights of the censored observations in this context are all 0.   

 

Building a distribution of solo predictions 

Rewriting the weight formula so that the weights are all positive allows us to calculate a 

distribution of solo predictions.  Each solo prediction is scaled and signed as a conceptually 

viable prediction which receives a weight 𝜉𝑖 in the actual partial sample regression prediction.  

Together, these solo prediction deviations and weights define a histogram or distribution of 

relative likelihood.   

Censored observations receive zero weight, so they are censored from the distribution 

as they are from the prediction.  They have no effect irrespective of their solo prediction values.  

Observations with very low relevance may result in unrealistic solo predictions, but their 

probability weights in the histogram will be extremely small.  Rather than showing unrealistic 

outliers in a distribution that extrapolates noise to extremes, a graphical solution for this issue 

is to show cumulative tail bars on both sides of the distribution, limiting the display to a 

reasonable range.  This distribution will only reflect retained observations, just as the prediction 

itself only reflects retained observations (setting aside the computation of 𝑦̅).   

It is important to distinguish this distribution from the distributions implied by model-

based estimates of error variance and estimation variance.  The distribution of solo predictions 
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is a distribution of the information that is used to form each individual prediction 𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖).  It, 

therefore, allows us to measure prediction uncertainty in a way that captures nuanced details 

about how each prediction is formed which would be obscured by a distribution that is derived 

from summary statistics or empirically resampled predictions.  Moreover, unlike classical 

measures of confidence which are based on the same theoretical distribution for all predictions, 

the distributions of solo predictions are specific to each individual prediction task.   

 

Simulations of the distribution of solo predictions   

Linear Regression Analysis 

We now simulate a synthetic data sample of 100,000 observations to illustrate the distributions 

of 𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖).  First, we randomly draw values of a single predictive 𝑋 variable from a standard 

normal distribution.  Next, we form outcomes 𝑌 as the values of the predictive variable plus the 

values of a simulated error term which also comes from a standard normal distribution.   

To provide a point of reference with classical statistics, we show the distribution of 

𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖) for predictions given by linear regression analysis, which is the only model-based 

prediction for which we observe the distribution of 𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖).  We can observe this distribution 

owing to the equivalence of linear regression analysis with RBP in the special case in which 

partial sample regression is applied to all the observations.   

The left panel of Exhibit 1 shows the distribution of the solo predictions for the 

prediction task of 𝑥𝑡 = 1 and the right panel shows the distribution for the task 𝑥𝑡 = 2.  The 
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gray bars show the distribution of the solo predictions given by each observation, and the 

orange lines show the classical distribution of potential outcomes implied by the error variance 

estimated from the regression residuals.  Both are probability density functions that integrate 

to 1.   

Exhibit 1: Solo Distributions and Classical Error Variance Distributions 

 

 This example highlights the differences between RBP’s distribution of solo predictions, 

classical error variance, and classical estimation variance.  In this experiment, the classical 

estimation variance of the prediction is extremely small because the noise in 100,000 

observations mostly cancels out in the prediction estimates.  In other words, the predictions 𝑦̂𝑡 

are nearly certain to be close to their theoretical values given this large sample.  We do not 

show the distributions implied by the estimation variance in Exhibit 1 because they would be 

extremely pointed narrow distributions near the average prediction.  By contrast, the classical 

error variance, which creates the distributions shown in orange, do not become so narrow 

because no matter how reliable the overall prediction value becomes, actual outcomes include 
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the influence of the error term which has an irreducible variance.  Likewise, the distribution of 

solo predictions does not converge to a narrow outcome because the information contributed 

by each observation contains noise from the randomness in the data sample.   

There are several interesting takeaways from Exhibit 1.  First, the distribution of the solo 

predictions when the value of the predictive variable equals 1 and 2 are both reasonably close 

to the classical error distribution which confirms that they are sensible.  Second, the 

distributions of solo predictions are different from each other which highlights the fact that the 

solo predictions depend crucially on the prediction circumstances.  The classical error 

distribution, by contrast, has the same variance irrespective of the value of the predictive 

variable.  It is based on the average squared residuals across all predictions and does not 

recognize that some predictions can be more reliable than others.  It is worth noting that if we 

average the variance of the solo prediction distributions across all prediction tasks 𝑥𝑡 in the 

sample, the average of all these distributions will converge to the classical error variance for the 

special case in which there is a single predictive variable.  See the Appendix for an explanation 

of this result.   

Partial Sample Regression 

We now illustrate distributions of 𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖) for predictions given by partial sample regression 

based on simulated data from a more complex data generating process.  Partial sample 

regression is based on the premise that we can form more reliable predictions from subsamples 

of relevant observations than the full sample of observations.  This is so because in many 
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prediction circumstances non-relevant observations contradict or obscure useful patterns that 

would otherwise allow us to form a more reliable prediction.   

To illustrate the information distributions that come from partial sample regression, we 

draw simulated observations from two distinct regimes whose observations for 𝑋 collectively 

form a bimodal distribution.  One of the regimes, which we refer to as the majority regime, 

occurs 75% of the time.  Its predicted outcomes are equal to the values of 𝑋 drawn from a 

normal distribution with a mean of 5 and a standard deviation of 3 plus an error term that is 

normally distributed with a mean of 0 and a standard deviation of 3.  The second regime, which 

we refer to as the minority regime, occurs 25% of the time.  Its predicted outcomes are equal to 

2 times the values of 𝑋 drawn from a normal distribution with a mean of -5 and a standard 

deviation of 2 plus an error term that is normally distributed with a mean of 0 and a standard 

deviation of 3.   
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Exhibit 2: Boxplots of Predictions of Outcomes for Different Censoring Thresholds 

 

Exhibit 2 shows box plots demarcating the median, 25th, 75th, 10th, and 90th percentiles, 

along with the actual prediction (average), for predictions of a majority regime circumstance 

and a minority regime circumstance given several censoring thresholds.  This exhibit reveals 

that the distributions as summarized by these boxplots are not far apart from each other for 

the majority regime shown in the left panel, which makes sense because the majority regime is 

highly prevalent and therefore well represented by most subsamples of observations.   

The distributions for the minority regime in the right panel are wider because 

uncertainty in 𝑋 is magnified due to its greater contribution to the 𝑌 outcomes.  In addition, the 

more focused subsamples of relevant observations give notably tighter distributions.  This 

occurs because partial sample regression carefully curates the observations to predict 

uncommon outcomes, censoring the irrelevant information from the majority regime.   
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This insight raises the question of how to determine the optimal subsample of relevant 

observations for a given prediction task, which leads us to the broader formulation of 

relevance-based prediction.   

 

Relevance-Based Prediction 

To focus attention on the distribution of 𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖) we illustrated it using partial sample 

regression, which is a simplified and less refined version of relevance-based prediction (RBP).  

RBP extends partial sample regression in two important ways: it applies a principled way for 

determining the optimal subsample of relevant observations for each prediction task based on 

a statistic called fit, and it incorporates a prediction grid to account for the codependence of 

observations and predictive variables on the specific circumstances of each individual 

prediction task. 

Fit 

Fit quantifies the prevalence of useful patterns in a dataset, which provides a principled way to 

evaluate the relative efficacy of alternative calibrations for each prediction task.  Additionally, 

fit reveals how much confidence we should have in a specific prediction task, separately from 

the confidence we have in the overall prediction routine.   

Consider a pair of observations that are used to form a prediction.  Each observation has 

a weight and an outcome.  We are interested in the alignment of the weights of the two 

observations with their outcomes.  We first standardize them by subtracting the average value 
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and dividing this difference by standard deviation – in essence, converting them to z-scores.  

We then measure their alignment by taking the product of these standardized values.  If the 

product is positive, their relevance is aligned with their outcomes, and the larger the product, 

the stronger the alignment.  We perform this calculation for every pair of observations in our 

sample.  We should also note that all the formulas we have thus far considered for weights rely 

only on relevance, which in turn relies only on the 𝑥𝑖s, the 𝑥𝑡, and the 𝑥̅.  They do not use any of 

the information from outcomes.  To determine fit, however, we must consider outcomes (the 

𝑦𝑖s).   

𝑓𝑖𝑡𝑡 =
1

(𝑁−1)2
∑ ∑ 𝑧𝑤𝑖𝑡

𝑧𝑤𝑗𝑡
𝑧𝑦𝑖

𝑧𝑦𝑗𝑗𝑖     (19) 

Equation 20 intuitively describes fit as the squared correlation of relevance weights and 

outcomes, which conceptually matches the notion of the conventional R-squared statistic.   

𝑓𝑖𝑡𝑡 = 𝜌(𝑤𝑡, 𝑦)2     (20) 

Although we compute fit from the full sample of observations, the weights that 

determine fit vary with the threshold we choose to define the relevant subsample.  As we focus 

the subsample on observations that are more relevant, we should expect the fit of the 

subsample to increase, but we should also expect more noise as we shrink the number of 

observations.  The fit across pairs of all observations in the full sample implicitly captures this 

tradeoff between subsample fit and noise by overweighting observations that are more 

relevant and underweighting observations that are less relevant.   
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Like relevance, fit is not arbitrary.  In the case of linear regression analysis with 𝑛 = 𝑁, 

the informativeness-weighted average fit across all prediction tasks in the observed sample 

equals R-squared.7  

𝑅2 =
1

𝑁−1
∑ 𝑖𝑛𝑓𝑜(𝑥𝑡, 𝑥̅)𝑓𝑖𝑡𝑡

𝑁
𝑡=1     (21) 

Censoring observations that fall below a relevance threshold is more effective to the 

extent there is asymmetry between the fit of the weights formed from the retained subsample 

of observations and the fit of the weights formed from the complementary set of censored 

observations.  We measure asymmetry between the fit of the retained and censored 

subsamples as shown by equation 22.  The (+) superscript designates weights formed from the 

retained observations while the (−) superscript designates weights formed from the censored 

observations.  Asymmetry recognizes the benefit of censoring non-relevant observations that 

contradict the predictive relationships that exist among the relevant observations.  This 

assessment also inherently considers the relative sample sizes of the two subsamples.   

𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑡 =
1

2
(𝜌(𝑤𝑡

(+)
, 𝑦) − 𝜌(𝑤𝑡

(−)
, 𝑦))

2

                  (22) 

To calculate adjusted fit, we add asymmetry to fit and multiply this sum by 𝐾, the 

number of predictive variables included in the prediction, as shown by Equation 23.  

Multiplication by the number of predictive variables allows us to compare predictions based on 

different numbers of predictive variables.  Adjusted fit recognizes that we are more likely to 

observe a spurious relationship from prediction weights based on just one or a few variables 

than we are based on a collection of many variables.   



19 
 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝑡 = 𝐾(𝑓𝑖𝑡𝑡 + 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑡)   (23) 
 

Grid Prediction 

Grid prediction employs a grid in which the columns represent different combinations of 

predictive variables, and the rows represent subsamples of observations determined by 

different relevance thresholds.  Each cell contains a prediction and an associated adjusted fit.  

The assessment of reliability using adjusted fit occurs before the prediction is rendered and the 

subsequent outcome is known.  Grid prediction forms a composite prediction as a reliability-

weighted average of the predictions from all possible calibrations.  Equation 24 defines 

reliability weights, 𝜓𝜃, as the adjusted fit for a parameter calibration, 𝜃, divided by the sum of 

all adjusted fits across all parameter calibrations.   

𝜓𝜃 =
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝜃

∑ 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝜃̃𝜃̃

     (24) 

Equation 25 describes the composite prediction.   

𝑦̂𝑡,𝑔𝑟𝑖𝑑 = ∑ 𝜓𝜃𝑦̂𝑡,𝜃𝜃      (25) 

Exhibits 3 and 4 illustrate how RBP forms a prediction.  Exhibit 3 shows how we compute 

the prediction for a single cell in the prediction grid.  It includes hypothetical values for the 𝑋 

and 𝑌 variables.  The panel on the right gives values for the similarity and informativeness of 

prior observations and the informativeness of the observations for the current prediction task.  

It also shows the relevance of each prior observation and the observation’s relevance weight.   
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Exhibit 3: Single Cell Prediction 

 

Exhibit 4 gives a visual representation of grid prediction.  The columns represent 

different subsets of variables, and the rows represent different subsamples of observations as 

determined by different relevance thresholds.  Each cell represents a calibration 𝜃; that is, a 

unique combination of predictive variables and observations.  In practice, we would consider all 

63 combinations of six variables, but for illustrative purposes we show only six columns in 

Exhibit 4.  The first values shown in the cells are the calibration-specific predictions 𝑦̂𝑡 for a 

given prediction task 𝑡.  The second values are the weights 𝜓𝜃 we apply to the calibration-

specific predictions to form the composite prediction.  The values in the grid are specific to each 

prediction task.  This illustration gives a composite prediction of 16.30 (15.7 x 1.72% + 15.7 x 

1.15% + 10.1 x 0.24% + . . . + 9.3 x 0.04%).   

Variables Y X1 X2 X3 X4 X5 X6

Prediction Task t ? 2.78 8.75 0.28 0.61 0.31 0.58
Observation 1 20.67 3.13 10.21 0.29 0.00 0.47 0.53 -4.30 12.13 11.96 7.75 4.9%
Observation 2 6.30 4.14 12.24 0.21 0.60 0.29 0.48 -4.06 2.99 11.96 3.41 2.0%
Observation 3 5.19 1.99 9.78 0.16 0.52 0.10 0.48 -7.36 2.43 11.96 -0.17 -0.4%
Observation 4 10.41 3.21 13.47 0.26 0.34 0.48 0.54 -3.41 3.94 11.96 4.54 2.7%

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .
Observation n 4.49 4.14 3.14 0.23 0.31 0.22 0.37 -7.36 2.75 11.96 -0.01 -0.4%

Prediction 19.40

Adjusted Fit: 2.32

WeightSimilarity Infoi Infot Relevance
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Exhibit 4: Grid Prediction – Illustrative Example 

 

Note that each cell’s prediction is a linear function of observations, and the grid 

prediction is a linear function of each cell’s prediction.  Therefore, we can express the grid 

prediction in terms of composite weights applied to each observation, as shown by Equation 

26.  Composite weights are important because they preserve the transparency of each 

observation’s contribution to the current prediction task, and they allow us to calculate fit from 

composite weights as a final gauge of the grid prediction’s reliability.   

𝑤𝑖𝑡,𝑔𝑟𝑖𝑑 = ∑ 𝜓𝜃𝑤𝑖𝑡,𝜃𝜃      (26) 

0.0 15.7 1.72% 15.7 1.15% 10.1 0.24% 15.3 1.37% 10.9 0.54% 15.3 0.47% 7.4 0.06%

0.1 16.4 2.02% 16.7 1.39% 10.4 0.23% 15.4 1.88% 12.5 0.73% 15.5 0.50% 7.7 0.04%

0.2 17.5 2.20% 17.4 1.43% 10.3 0.18% 15.4 1.91% 12.6 0.64% 15.5 0.44% 7.9 0.05%

0.3 17.8 2.17% 17.7 1.43% 10.5 0.20% 15.5 2.24% 12.6 0.62% 15.5 0.42% 7.9 0.05%

0.4 18.2 2.29% 18.0 1.50% 10.6 0.22% 15.4 2.18% 12.7 0.65% 15.5 0.41% 8.1 0.07%

0.5 18.6 2.50% 18.2 1.58% 10.7 0.25% 14.3 2.50% 12.8 0.70% 15.3 0.41% 8.1 0.06%

0.6 18.7 2.47% 18.4 1.61% 10.7 0.23% 15.4 1.21% 13.1 0.73% 15.4 0.42% 8.8 0.10%

0.7 19.0 2.47% 18.8 1.63% 10.7 0.19% 15.4 2.20% 12.9 0.62% 15.4 0.41% 8.7 0.07%

0.8 19.4 2.32% 19.1 1.50% 11.5 0.20% 15.3 2.04% 13.7 0.57% 15.5 0.37% 8.6 0.04%

0.9 19.5 1.26% 18.8 0.81% 12.9 0.22% 15.5 1.73% 14.0 0.32% 15.3 0.25% 9.3 0.04%

O
bs

er
va

tio
n 

C
en

so
rin

g 
Th

re
sh

ol
d

X2 X6

Composite Prediction :     16.30

Variable Combinations

X1 X2 X3 X4 X5 X6 X1 X2 X3 X4 X1 X3 X4 X2 X5 X6 X3 X6
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Illustration of distributions of solo predictions from the prediction grid 

As an illustration, we now apply grid prediction to forecast the future one-year change in the 

effective federal funds rate.  We use two predictive variables: 

▪ X1: Employment, measured as the annual change in non-farm payrolls 

▪ X2: Inflation, measured as the annual change in personal consumption expenditures 

excluding food and energy 

We consider all three combinations of the predictive variables: X1 and X2, X1 by itself, 

and X2 by itself.  We consider four subsamples of observations in the grid based on censoring 

thresholds of 0% (full sample), 20%, 50% and 80%.  For each prediction, we filter on both 

relevance and similarity.8  Therefore, the prediction grid has 24 cells (three variable 

combinations times four subsamples times two censoring thresholds).  For our training data, we 

use non-overlapping calendar year observations from 1961 to 2023.   

We highlight two predictions: the one-year rate change for 2023 and the one-year rate 

change for 2025.  For each prediction, our inputs reflect the employment and inflation values 

for the prior year.  For 2023, RBP predicted that the effective federal funds rate would increase 

90 basis points compared to an actual increase of 120 basis points.  For the calendar year that 

will end in December 2025, RBP predicted the effective federal funds rate would decrease 30 

basis points.  

The composite predictions that are given by the grid are fit-weighted averages of the 

individual cell predictions.  And each cell’s prediction is a weighted average of the solo 

predictions from the individual observations that are used by each cell.  We can therefore 
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construct a distribution of the information given by pooling the solo predictions across all the 

cells in the grid, which is what we show in Exhibit 5.  The dotted lines in Exhibit 5 show the 

aggregate predictions which are the means of each distribution.   

Exhibit 5: Distribution of Solo Predictions from Grid Prediction 

 

Exhibit 5 demonstrates how the grid preserves and assembles the information from 

each observation across all the grid cells to form composite distributions of all the information 

used to form each prediction.  It also reveals that these distributions differ from prediction to 

prediction and that they are distinctly different from classical distributions based on a model’s 

summary statistics.  From first principles, we should expect the distributions of information 

given by the grid to have greater resolution than distributions composed from a single 

combination of variables and observations, because the grid distributions capture a much 

broader set of distinct solo predictions based on different combinations of variables.   
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Summary   

We first introduced the notion of partial sample regression, which is a model-free prediction 

technique that forms a prediction as a weighted average of observed outcomes in which the 

weights are based on a precise and theoretically justified statistic called relevance.  We 

explained that the premise of partial sample regression is to form a prediction from a 

subsample of relevant observations, which in most cases gives a more reliable prediction than 

the full sample of observations.  

We then showed how the model-free nature of partial sample regression enables us to 

form single-observation predictions called solo predictions.  These solo predictions are the 

building blocks that aggregate to the prediction given by all the observations that are used by 

partial sample regression to form the prediction.   

We evaluated the distribution of solo predictions on simulated distributions, assuming 

that both the observations and errors come from a standard normal distribution, for a special 

case of partial sample regression that uses the full sample of observations.  This special case 

gives the same prediction as linear regression analysis, which enabled us to compare our 

information distributions with the classical distribution that comes from the stylized 

assumptions of linear regression analysis.  This comparison showed how the distributions of 

information differ from each other and from the classical distribution of possible values.  

We then evaluated distributions of solo predictions in which the observations were 

drawn from a bimodal distribution composed of a majority regime and a minority regime.  We 

summarized these distributions with boxplots.  We showed that the boxplots were relatively 
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similar for predictions of outcomes associated with the majority regime but different for 

outcomes associated with the minority regime.  This distinction highlighted the fact that partial 

sample regression carefully curates the observations to predict unusual outcomes. 

We next introduced RBP, which depends crucially on fit.  Fit quantifies the prevalence of 

useful patterns in a dataset for forming a prediction.  We showed how fit gives advance 

guidance of a prediction’s reliability, which enables us to identify the best subsample of 

observations for a given prediction task.  We then extended this concept to the choice of 

predictive variables.  We discussed how the choice of both observations and predictive 

variables is codependent on the unique circumstances of each prediction task.  We described 

the prediction grid which considers a vast number of combinations of observations and 

predictive variables.  The columns of the grid represent different combinations of predictive 

variables, and the rows represent different subsamples of observations based on different 

censoring thresholds.  Each cell in the grid has a prediction and an associated fit.  The grid forms 

a composite prediction as a fit weighted average of the predictions across all the grid cells.  It, 

therefore, produces a composite prediction that is diversified across many calibrations but in a 

way that bends toward those combinations of observations and predictive variables that give 

more reliable predictions. 

We then presented a simple illustration of grid prediction in which we predicted annual 

changes in the effective federal funds rate.  We demonstrated that because each cell’s 

prediction is a weighted average of solo predictions and because the grid’s composite 

prediction is a weighted average of all the cell predictions, we can construct distributions of all 

the information in the grid that is used to form a composite prediction. 
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Finally, we discussed how our information-based measure of prediction uncertainty 

relates to model-based assessments of confidence.  Model-derived distributions tell us about 

the range of prediction errors we should expect and the range of estimated predictions we 

should expect if we repeated the prediction with different data.  We should have less 

confidence in a prediction if these distributions are wide than if they are tight.  These model-

based methods, however, assume that the model is correctly specified and that the predictive 

variables are measured without error.  By contrast, RBP assesses a prediction’s reliability based 

on the consistency of the information that is used to form each individual prediction.  RBP tells 

us that we should have more trust in a prediction if it is formed from information that is 

mutually supportive than if it is formed from information that is mutually contradictory.  

In conclusion, we do not assert that RBP’s measure of prediction uncertainty is 

necessarily better than a model-based assessment of confidence.  It does, however, give a 

completely novel perspective about a prediction’s reliability, and it does so in a way that does 

not assume perfect accuracy of the model and the predictive variable observations.  We 

therefore recommend it as a valuable complement to conventional measures of confidence.  
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Notes 

This material is for informational purposes only.  The views expressed in this material are the 
views of the authors, are provided “as-is” at the time of first publication, are not intended for 
distribution to any person or entity in any jurisdiction where such distribution or use would be 
contrary to applicable law and are not an offer or solicitation to buy or sell securities or any 
product.  The views expressed do not necessarily represent the views of Windham Capital 
Management, State Street Global Markets®, or State Street Corporation® and its affiliates. 

 

References 

Czasonis, Megan, Mark Kritzman, and David Turkington. 2022a. “Relevance.” The Journal of 

Investment Management, 20 (1). 

Czasonis, Megan, Mark Kritzman, and David Turkington. 2022b. Prediction Revisited: The 

Importance of Observation. Hoboken, New Jersey: John S. Wiley & Sons.  

Czasonis, Megan, Mark Kritzman, and David Turkington. 2023. “Relevance-Based Prediction: A 

Transparent and Adaptive Alternative to Machine Learning.” The Journal of Financial Data 

Science, 5 (1). 

Czasonis, Megan, Mark Kritzman, and David Turkington. 2025a. “The Virtue of Transparency: 

How to Maximize the Utility of Data Without Overfitting.” The Journal of Financial Data Science, 

7 (2). 

Czasonis, Megan, Mark Kritzman, and David Turkington. 2025b. “A Transparent Alternative to 

Neural Networks with an Application to Predicting Volatility.” Journal of Investment 

Management, 23 (3). 

Czasonis, Megan, Mark Kritzman, and David Turkington. 2025c. “Prediction with Incomplete 

Information.” The Journal of Financial Data Science, 7 (3). 

Shannon, C. 1948. “A Mathematical Theory of Communication.” Bell System Technical Journal 
27 (July, October): 379–423, 623–656. 
 

 

 

 



28 
 

Appendix: A Note about the Distribution of Solo Predictions  

 

In the following analysis, we derive an expression for the average variance of the RBP solo 

prediction distributions across all prediction tasks in the case of a linear regression and we 

relate it to the classical variance of the error term from a linear model.   

Let us assume without loss of generality that 𝑦̅ = 0.  The following expressions give the 

solo predictions and their associated weights.  

𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖) =
𝑖𝑛𝑓𝑜(𝑥𝑡)

𝑟𝑖𝑡
𝑦𝑖      (A1) 

𝜉𝑖 = 𝛿(𝑟𝑖𝑡)
𝑟𝑖𝑡

2

∑ 𝛿(𝑟𝑗𝑡)𝑟𝑗𝑡
2

𝑗
     (A2) 

Let us calculate the mean of the distribution as a probability-weighted sum:  

𝜇𝑡,𝑠𝑜𝑙𝑜 = ∑ 𝜉𝑖𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖)𝑖      (A3) 

𝜇𝑡,𝑠𝑜𝑙𝑜 = ∑ 𝛿(𝑟𝑖𝑡)
𝑟𝑖𝑡

2

∑ 𝛿(𝑟𝑗𝑡)𝑟𝑗𝑡
2

𝑗

𝑖𝑛𝑓𝑜(𝑥𝑡)

𝑟𝑖𝑡
𝑦𝑖𝑖     (A4) 

           𝜇𝑡,𝑠𝑜𝑙𝑜 =
𝑖𝑛𝑓𝑜(𝑥𝑡)

∑ 𝛿(𝑟𝑗𝑡)𝑟𝑗𝑡
2

𝑗
∑ 𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡𝑦𝑖𝑖     (A5) 

𝜇𝑡,𝑠𝑜𝑙𝑜 = 𝑦̂𝑡     (A6) 

Now, calculate the variance of the distribution:  

𝜎𝑡,𝑠𝑜𝑙𝑜
2 = ∑ 𝜉𝑖(𝑦̂𝑡,𝑠𝑜𝑙𝑜(𝑖) − 𝑦̂𝑡)

2
𝑖     (A7) 

𝜎𝑡,𝑠𝑜𝑙𝑜
2 = ∑ 𝜉𝑖 (

𝑖𝑛𝑓𝑜(𝑥𝑡)𝑦𝑖

𝑟𝑖𝑡
− 𝑦̂𝑡)

2

𝑖     (A8) 
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𝜎𝑡,𝑠𝑜𝑙𝑜
2 = ∑ 𝛿(𝑟𝑖𝑡)

𝑟𝑖𝑡
2

∑ 𝛿(𝑟𝑗𝑡)𝑟𝑗𝑡
2

𝑗
(

𝑖𝑛𝑓𝑜(𝑥𝑡)2𝑦𝑖
2

𝑟𝑖𝑡
2 + 𝑦̂𝑡

2 −
2𝑖𝑛𝑓𝑜(𝑥𝑡)𝑦̂𝑡𝑦𝑖

𝑟𝑖𝑡
)𝑖   (A9) 

    𝜎𝑡,𝑠𝑜𝑙𝑜
2 =

1

∑ 𝛿(𝑟𝑗𝑡)𝑟𝑗𝑡
2

𝑗
∑ 𝛿(𝑟𝑖𝑡)(𝑖𝑛𝑓𝑜(𝑥𝑡)2𝑦𝑖

2 + 𝑟𝑖𝑡
2𝑦̂𝑡

2 − 2𝑖𝑛𝑓𝑜(𝑥𝑡)𝑟𝑖𝑡𝑦̂𝑡𝑦𝑖)𝑖  (A10) 

Consider the case of a linear regression, where 𝛿(𝑟𝑖𝑡) = 1 for all 𝑖. Now, we have: 

𝜎𝑡,𝑠𝑜𝑙𝑜
2 =

1

(𝑁−1)𝑖𝑛𝑓𝑜(𝑥𝑡)
∑ 𝛿(𝑟𝑖𝑡)(𝑖𝑛𝑓𝑜(𝑥𝑡)2𝑦𝑖

2 + 𝑟𝑖𝑡
2𝑦̂𝑡

2 − 2𝑖𝑛𝑓𝑜(𝑥𝑡)𝑟𝑖𝑡𝑦̂𝑡𝑦𝑖)𝑖    (A11) 

𝜎𝑡,𝑠𝑜𝑙𝑜
2 =

1

𝑁−1
∑ (𝑖𝑛𝑓𝑜(𝑥𝑡)𝑦𝑖

2 + 𝑟𝑖𝑡
2𝑦̂𝑡

2 − 2𝑟𝑖𝑡𝑦̂𝑡𝑦𝑖)𝑖   (A12) 

For linear regression the definition of 𝑦̂𝑡 is: 

𝑦̂𝑡,𝑙𝑖𝑛𝑒𝑎𝑟 =
1

𝑁−1
∑ 𝑟𝑖𝑡𝑦𝑖𝑖     (A13) 

Substituting this in the previous equation gives: 

        𝜎𝑡,𝑠𝑜𝑙𝑜,𝑙𝑖𝑛𝑒𝑎𝑟
2 =

1

𝑁−1
∑ (𝑖𝑛𝑓𝑜(𝑥𝑡)𝑦𝑖

2 + 𝑟𝑖𝑡
2 (

1

𝑁−1
∑ 𝑟𝑗𝑡𝑦𝑗𝑗 )

2

−
2𝑟𝑖𝑡

𝑁−1
∑ 𝑟𝑖𝑡𝑦𝑗𝑦𝑖𝑖 )𝑖  (A14) 

𝜎𝑡,𝑠𝑜𝑙𝑜,𝑙𝑖𝑛𝑒𝑎𝑟
2 =

1

𝑁−1
∑ (𝑖𝑛𝑓𝑜(𝑥𝑡)𝑦𝑖

2 +
𝑟𝑖𝑡

2

(𝑁−1)2
∑ ∑ 𝑟𝑗𝑡𝑟𝑘𝑡𝑦𝑗𝑦𝑘𝑘𝑗 −

2𝑟𝑖𝑡

𝑁−1
∑ 𝑟𝑗𝑡𝑦𝑗𝑦𝑖𝑗 )𝑖  (A15) 

𝜎𝑡,𝑠𝑜𝑙𝑜,𝑙𝑖𝑛𝑒𝑎𝑟
2 =

𝑖𝑛𝑓𝑜(𝑥𝑡)

𝑁−1
∑ 𝑦𝑖

2
𝑖 +

1

(𝑁−1)3
∑ 𝑟𝑖𝑡

2 ∑ ∑ 𝑟𝑗𝑡𝑟𝑘𝑡𝑦𝑗𝑦𝑘𝑘𝑗𝑖 −
2

(𝑁−1)2
∑ ∑ 𝑟𝑗𝑡𝑟𝑖𝑡𝑦𝑗𝑦𝑖𝑗𝑖   (A16) 

𝜎𝑡,𝑠𝑜𝑙𝑜,𝑙𝑖𝑛𝑒𝑎𝑟
2 =

𝑖𝑛𝑓𝑜(𝑥𝑡)

𝑁−1
∑ 𝑦𝑖

2
𝑖 +

𝑖𝑛𝑓𝑜(𝑥𝑡)

(𝑁−1)2
∑ ∑ 𝑟𝑗𝑡𝑟𝑘𝑡𝑦𝑗𝑦𝑘𝑘𝑗 −

2

(𝑁−1)2
∑ ∑ 𝑟𝑗𝑡𝑟𝑖𝑡𝑦𝑗𝑦𝑖𝑗𝑖  (A17) 

Now, let us take the average of 𝜎𝑡,𝑠𝑜𝑙𝑜,𝑙𝑖𝑛𝑒𝑎𝑟
2  across all prediction tasks 𝑡 in the observed 

sample of 𝑁 (dividing by 𝑁 − 1 rather than 𝑁, which makes little difference):   

1

𝑁−1
∑ 𝜎𝑡,𝑠𝑜𝑙𝑜,𝑙𝑖𝑛𝑒𝑎𝑟

2
𝑡 =

𝐾

𝑁
∑ 𝑦𝑖

2
𝑖 +

𝐾

(𝑁−1)2
∑ ∑ 𝑟𝑖𝑗𝑦𝑖𝑦𝑗𝑗𝑖 −

2

𝑁(𝑁−1)2
∑ ∑ 𝑟𝑖𝑗𝑦𝑖𝑦𝑗𝑗𝑖  (A18) 
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1

𝑁−1
∑ 𝜎𝑡,𝑠𝑜𝑙𝑜,𝑙𝑖𝑛𝑒𝑎𝑟

2
𝑡 =

𝐾

𝑁
∑ 𝑦𝑖

2
𝑖 +

𝐾−2

(𝑁−1)2
∑ ∑ 𝑟𝑖𝑗𝑦𝑖𝑦𝑗𝑗𝑖        (A19) 

 Equation A19 characterizes the average variance of the solo distribution.  Notably, it 

increases with the number of predictive variables, 𝐾.  When there are more predictive 

variables, the noise in those variables creates more dispersion in the solo predictions, reflecting 

greater uncertainty in the information that underlies a linear regression prediction.  For a 

sufficiently large sample, adding a pure noise variable to linear regression will have little impact 

on prediction values because the noise cancels out.  But this noise variable will still increase the 

variance of the information that informs the prediction.  For RBP grid predictions, the grid 

assigns less weight to cells that do not exhibit useful patterns for a prediction.  As a result of 

this prediction logic, noise variables may contribute less to information variance than they 

would in a linear regression context.   

 Let us now consider how equation A19 relates to the classical range of outcomes for a 

prediction.  For the special case of just one predictive variable (𝐾 = 1), we have:   

1

𝑁−1
∑ 𝜎𝑡,𝑠𝑜𝑙𝑜,𝑙𝑖𝑛𝑒𝑎𝑟

2
𝑡 =

1

𝑁−1
∑ 𝑦𝑖

2
𝑖 −

1

(𝑁−1)2
∑ ∑ 𝑟𝑖𝑗𝑦𝑖𝑦𝑗𝑗𝑖      (A20) 

1

𝑁−1
∑ 𝜎𝑡,𝑠𝑜𝑙𝑜,𝑙𝑖𝑛𝑒𝑎𝑟

2
𝑡 = 𝜎𝑦

2(1 − 𝑅2) = 𝜎𝜖
2      (A21) 

 Equation A21 reveals why the solo distributions from Exhibit 1 were close to the 

classical distributions with a variance of 𝜎𝜖
2, and why one of the distributions was narrower than 

the classical distribution while the other was wider.  On average across all empirical prediction 

tasks, the solo distributions will converge to a variance of 𝜎𝜖
2 for the special case where 𝐾 = 1.   
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1 The descriptions of partial sample regression and relevance-based prediction throughout this article follow 
closely language used from Czasonis, Kritzman, and Turkington (2022a, 2022b, 2023, 2025a, 2025b, and 2025c), 
but they are modified to fit the context of the current discussion.  
2 Shannon showed that information is an inverse logarithmic function of probability, which is a key insight from his 
comprehensive theory of communication.  See Shannon (1948). 
3 See Czasonis, Kritzman, and Turkington (2023) for proof of this result.  
4 See Czasonis, Kritzman, and Turkington (2023) for proof of this result. 
5 See Czasonis, Kritzman, and Turkington (2022b). 
6 Each prediction contains both a signal and noise.  As the impact is scaled up so too is the noise, which leads to 
more uncertainty about the prediction. 
7 See Czasonis, Kritzman, and Turkington (2022b) for proof of this result.  
8 It is often helpful to censor the observations on just similarity as well as relevance, though we always form the 
prediction as a relevance-based weighted average.  Moreover, we need not choose which censoring criterion to 
use.  We let adjusted fit determine the best censoring criterion. 


