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Abstract 

Accurate and interpretable prediction of player performance requires analytic methods that 
account for contextual player-specific information and give visibility into the influence of 
observations and variables on the formation of the predictions.  We describe a novel model-
free prediction system called relevance-based prediction (RBP) that addresses these needs, and 
we show how it enables prediction-specific interpretability that is beyond the reach of model-
based approaches such as linear regression analysis or machine learning models.  RBP reveals 
the specific reliability of each prediction before the prediction is made, the importance of each 
prior player to each prediction, the contribution of each predictive variable to each prediction’s 
value, and the contribution of each predictive variable to each prediction’s reliability.  We 
illustrate this new prediction system by applying it to predict wRC+ for major league baseball 
players.  The prediction-specific information given by RBP stands in contrast to R-squared, beta, 
and t-statistics, which only give information about average effects, as we illustrate with specific 
player examples.   

 

mailto:mczasonis@csanalytics.io
mailto:dturkington@csanalytics.io


2 
 

PREDICTION WITH TRANSPARENCY: OFFENSIVE VALUE IN BASEBALL 
 

 

Baseball analytics has made substantial progress in quantifying offensive performance using 

composite statistics.  For example, metrics such as wRC+ (weighted runs created plus) provide a 

holistic and league-normalized assessment of a player’s hitting value.  However, despite the 

availability of sophisticated performance metrics, the task of predicting future performance 

remains a significant challenge.  Traditional linear models treat predictive variables as 

independent factors, thereby failing to capture their interaction with player traits and 

circumstances.  Complex machine learning models capture nonlinear and conditional effects, 

but they lack transparency and often learn spurious patterns that undermine the quality of 

their predictions.  To translate complex data into trustworthy predictions, it is necessary to 

account for conditional, context-dependent effects in a way that is fully transparent. 

We describe a model-free prediction system called relevance-based prediction (RBP) 

which forms transparent predictions that adapt to the unique circumstances of each prediction 

task.  RBP forms a prediction as a weighted average of observed outcomes in which the weights 

are based on a rigorously defined and theoretically justified statistic called relevance.  Unlike 

predictive models such as linear regression analysis or machine learning models, which work by 

estimating model parameters and then applying those parameters to new tasks, RBP operates 

by evaluating patterns in the relationship between outcomes and predictive variables given the 

specific circumstances of each prediction task.   
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Like machine learning models, RBP captures nonlinear effects and conditionality, but 

unlike machine learning models, RBP’s model-free approach to prediction gives remarkable 

visibility into the formation of each individual prediction:  

• It reveals the reliability of each prediction before the prediction is made.   

• It reveals precisely how each player informs each prediction.   

• It shows how each predictive variable contributes to each prediction’s value.   

• It shows how each predictive variable contributes to each prediction’s reliability.   

The prediction-specific information given by RBP, as we illustrate in chosen examples, 

stands in stark contrast to the summary statistics given by a model.  For example, linear 

regression analysis provides one R-squared, one set of beta coefficients, and one set of t-

statistics for a calibrated model.  None of these statistics distinguish among the circumstances 

of different prediction tasks.  By contrast, RBP’s assessment of reliability, a variable’s 

contribution to a prediction’s value, and a variable’s contribution to a prediction’s reliability, 

reflect the player-specific context of each prediction task.   

 We proceed as follows.  We first describe the three key features of RBP: relevance, fit, 

and grid prediction.1  We then describe how RBP measures the influence of the predictive 

variables on a prediction’s value and on its reliability.  Next, we apply RBP to predict wRC+ for 

MLB players.  We describe our experiment setup, and we present results which give evidence of 

the transparency and efficacy of RBP.  We conclude with a summary. 
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Relevance-Based Prediction  

As described comprehensively by Czasonis, Kritzman, and Turkington (2022a, 2022b, 2023, and 

2024), RBP is a model-free prediction system that forms a prediction as a relevance-weighted 

average of observed outcomes in which relevance has a precise statistical meaning.  RBP also 

depends crucially on fit, which quantifies the extent to which there are useful patterns in a 

dataset.  The final feature of RBP is grid prediction, which forms a composite prediction as a 

reliability-weighted average of many predictions given by different combinations of players and 

predictive variables. 

Relevance 

In the context of predicting offensive production for MLB players, relevance provides a 

statistical measure of the importance of a previous player to the prediction for a current player 

given a chosen set of predictive variables.  It is composed of two components, similarity and 

informativeness, as shown in equation 1.    

𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑡𝑡) + 1
2
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥̅𝑥) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑡𝑡, 𝑥̅𝑥)�   (1) 

In equation 1, similarity and informativeness are computed as Mahalanobis distances 

(Mahalanobis 1936) rather than absolute distances or Euclidean distances.   

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑡𝑡) = −1
2

(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑡𝑡)Ω−1(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑡𝑡)′   (2) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥̅𝑥) = (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)Ω−1(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)′    (3) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑡𝑡, 𝑥̅𝑥) = (𝑥𝑥𝑡𝑡 − 𝑥̅𝑥)Ω−1(𝑥𝑥𝑡𝑡 − 𝑥̅𝑥)′    (4) 
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In equations 1 through 4, 𝑥𝑥𝑖𝑖  is a row vector of the values of the predictive variables for a 

previous player, 𝑥𝑥𝑡𝑡 is a row vector of the values of the predictive variables for the current 

player, 𝑥̅𝑥 is a vector of the average values of the predictive variables for all previous players in 

the sample, Ω−1 is the inverse covariance matrix of the values of the predictive variables for all 

previous players, and ′ denotes matrix transpose.  

The vector (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑡𝑡) measures how different a previous player is from the current 

player, whereas the vector (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥) measures how different he is from average, and (𝑥𝑥𝑡𝑡 − 𝑥̅𝑥) 

measures how different the current player is from average.  By multiplying these vectors by the 

inverse covariance matrix, we capture the correlation of the attributes of the previous players.  

Also, this calculation implicitly standardizes the differences by dividing them by variance.  By 

multiplying the product by the transpose of the vector differences we consolidate the outcome 

into a single number, which represents the covariance-adjusted distance between the two 

vectors.   

Notice that in the formula for similarity we multiply the Mahalanobis distance of a 

previous player from the current player by negative one half.  The negative sign converts a 

measure of difference into a measure of similarity.  We multiply by one half because the 

average squared distances between pairs of players is twice as large as the players’ average 

squared differences from the average of all players.  When we measure informativeness, we 

retain its positive sign, and we need not multiply by one half.  By measuring informativeness as 

a difference from average, we are recognizing that unusual players contain more information 

than typical players.  Intuitively, this occurs because the outcomes for an unusual player are 

likely to reveal genuine relationships, whereas outcomes for highly typical players are likely to 
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contain more noise.  Finally, note that we measure the unusualness of the current player.  We 

do so to center our measure of relevance on zero.  All else being equal, previous players who 

are like the current player but different from the average of all previous players are more 

relevant to a prediction than those who are not.   

This definition of relevance is not arbitrary.  We know from information theory that the 

information contained in an observation is the negative logarithm of its likelihood (Shannon 

1948).  We also know from the Central Limit Theorem that the relative likelihood of an 

observation from a multivariate normal distribution is proportional to the exponential of a 

negative Mahalanobis distance.  Therefore, the information contained in a point on a 

multivariate normal distribution is proportional to a Mahalanobis distance. 

We can also justify the non-arbitrariness of relevance by considering a limiting case of 

the predictions it yields.  RBP forms a prediction as a weighted average of prior player 

outcomes for 𝑌𝑌. 

𝑦𝑦�𝑡𝑡 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1       (5) 

If we define relevance weights as follows, which admits the relevance-weighted average 

of every previous player outcome in the observed data sample, the result is precisely equivalent 

to the prediction that results from linear regression analysis.2 

𝑤𝑤𝑖𝑖𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1
𝑁𝑁

+ 1
𝑁𝑁−1

𝑟𝑟𝑖𝑖𝑖𝑖     (6) 

Owing to this equivalence, the theoretical justification given by Gauss for linear 

regression analysis applies as well to RBP.3  In most cases, however, we can produce a more 
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reliable prediction by taking a relevance-weighted average of a subset of relevant players, 

especially if the relationship between the predictive variables and the outcomes is not perfectly 

static and symmetric.  RBP censors the influence of previous players who are less relevant than 

a chosen threshold, which leads to the following definition of prediction weights. 

𝑤𝑤𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝑁𝑁

+ 𝜆𝜆2

𝑛𝑛−1
(𝛿𝛿(𝑟𝑟𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖 − 𝜑𝜑𝑟̅𝑟𝑠𝑠𝑠𝑠𝑠𝑠)   (7) 

𝛿𝛿(𝑟𝑟𝑖𝑖𝑖𝑖) = �1    𝑖𝑖𝑖𝑖 𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑟𝑟∗ 
0    𝑖𝑖𝑖𝑖 𝑟𝑟𝑖𝑖𝑖𝑖 < 𝑟𝑟∗      (8) 

𝜆𝜆2 =
𝜎𝜎𝑟𝑟,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2

𝜎𝜎𝑟𝑟,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2 =

1
𝑁𝑁−1

∑ 𝑟𝑟𝑖𝑖𝑖𝑖
2

𝑖𝑖
1

𝑛𝑛−1
∑ 𝛿𝛿(𝑟𝑟𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖

2
𝑖𝑖

    (9) 

In equations 7 through 9, 𝑛𝑛 = ∑ (𝑟𝑟𝑖𝑖𝑖𝑖)𝑁𝑁
𝑖𝑖=1  is the number of players who are fully retained, 

𝜑𝜑 = 𝑛𝑛 𝑁𝑁⁄  is the fraction of players in the retained sample, and 𝑟̅𝑟𝑠𝑠𝑠𝑠𝑠𝑠 = 1
𝑛𝑛
∑ 𝛿𝛿(𝑟𝑟𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1  is the 

average relevance value of the players in the retained sample.  It is important to note that 

𝑤𝑤𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 depends crucially on the prediction circumstances 𝑥𝑥𝑡𝑡.  Relevance is reassessed for 

each prediction circumstance which further affects the identification of the retained subsample 

and introduces nonlinear conditional dependence of the prediction 𝑦𝑦�𝑡𝑡 on the prediction 

circumstances 𝑥𝑥𝑡𝑡 .  The scaling factor 𝜆𝜆2 compensates for a bias that would otherwise result 

from relying on a small subsample of highly relevant players.  In the case of linear regression 

analysis 𝑛𝑛 = 𝑁𝑁 and 𝜆𝜆2 = 1. Lastly, note that the prediction weights always sum to 1.4 

Fit 

Fit is a critical component of RBP.  It quantifies the prevalence of useful patterns in a dataset 

which reveals how much confidence we should have in a specific prediction task, separately 
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from the confidence we have in the overall prediction system.  Fit provides a principled way to 

evaluate the relative merits of alternative calibrations for each prediction task.  

Consider, for example, a pair of previous players who are used, in part, to form the 

prediction of an outcome for a current player.  Each previous player has a relevance weight and 

an outcome.  We are interested in the alignment of the relevance weights of the two previous 

players with their outcomes.  But we must standardize them by subtracting the average value 

and dividing by standard deviation – in essence, converting them to z-scores.  We then measure 

their alignment by taking the product of the standardized values.  If this product is positive, 

their relevance is aligned with their outcomes, and the larger the product, the stronger the 

alignment.  We perform this calculation for every pair of previous players in our sample.  We 

should also note that all the formulas we have thus far considered for the relevance weights 

rely only on the 𝑥𝑥𝑖𝑖𝑠𝑠, the 𝑥𝑥𝑡𝑡𝑠𝑠, and the 𝑥̅𝑥𝑠𝑠.  They do not make use of any of the information from 

previous player outcomes. To determine fit, however, we must consider outcomes (the 𝑦𝑦𝑖𝑖s).   

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 = 1
(𝑁𝑁−1)2

∑ ∑ 𝑧𝑧𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧𝑤𝑤𝑗𝑗𝑗𝑗𝑧𝑧𝑦𝑦𝑖𝑖𝑧𝑧𝑦𝑦𝑗𝑗𝑗𝑗𝑖𝑖     (10) 

Equation 11 intuitively describes fit as the squared correlation of relevance weights and 

outcomes, which conceptually matches the notion of the conventional R-squared statistic.  As 

we soon show, this connection of fit to R-squared is critically important.  

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 = 𝜌𝜌(𝑤𝑤𝑡𝑡,𝑦𝑦)2     (11) 

Although we compute fit from the full sample of players, the weights that determine fit 

vary with the threshold we choose to define the relevant subsample.  As we focus the 

subsample on players who are more relevant, we should expect the fit of the subsample to 
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increase, but we should also expect more noise as we shrink the number of players.  The fit 

across pairs of all players in the full sample implicitly captures this tradeoff between subsample 

fit and noise by overweighting players who are more relevant and underweighting players who 

are less relevant accordingly. 

Like relevance, fit is not arbitrary.  In the case of linear regression analysis with 𝑛𝑛 = 𝑁𝑁, 

the informativeness-weighted average fit across all prediction tasks in the observed sample 

equals R-squared.5    

𝑅𝑅2 = 1
𝑇𝑇−1

∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑡𝑡)𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡     (12) 

This convergence of fit to R-squared reveals an intriguing insight. R-squared is the result 

of some good predictions, some average predictions, and some bad predictions; that is, some 

predictions with high fit, some with average fit, and some with low fit.  R-squared reveals the 

average reliability of a prediction model.  It reveals much less about the reliability of specific 

prediction tasks, which can vary substantially.  Fit is much more nuanced.  It gauges the 

reliability of a specific prediction task in a non-arbitrary way, as demonstrated by its 

convergence to R-squared.  Fit is the fundamental building block of R-squared.  To compute fit, 

we must know the weight of each player in a prediction.  These weights are inherent to RBP, 

but they are not available in model-based prediction algorithms which rely exclusively on 

calibrated parameters rather than weighted players to form predictions.  

This notion of prediction-specific fit warrants particular emphasis.  Because it offers 

advance guidance about a specific prediction’s reliability, it enables teams to discard or view 

with greater caution predictions that are foreseen to be unreliable. 
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Grid Prediction 

We have thus far shown how to form a prediction as a relevance-weighted average of player 

outcomes.  And we have shown how we can use fit to measure the reliability of a specific 

prediction task.  But we have left unanswered the question of how to determine the threshold 

for the subsample of relevant players.  We have only noted that a prediction depends on the 

choice of a parameter, 𝑟𝑟∗, which is the censoring threshold for relevance.  In addition, we have 

implicitly assumed up to this point that the full menu of predictive variables is used to measure 

relevance and form a prediction.  However, it is possible that a subset of the predictive 

variables will render a better prediction for a specific prediction task.  The efficacy of previous 

players for a given prediction task depends on the predictive variables, and the efficacy of the 

predictive variables depends on the players.  These choices are codependent on the traits and 

circumstances of the current player.  We, therefore, turn to the last key feature of RBP, which is 

grid prediction.  But before we show how to form predictions that consider a range of 

alternative calibrations, we must first describe an enhanced version of fit called adjusted fit. 

RBP is more effective to the extent there is strong alignment between relevance and 

outcomes, as measured by fit.  It is also more effective to the extent there is asymmetry 

between the fit of the retained subsample of previous players and the fit of the censored 

players.  In the presence of asymmetry, we trust the more relevant sample on principle. In the 

absence of asymmetry, the full sample relationship is linear, and linear regression analysis will 

suffice.  Therefore, to compare properly the efficacy of two predictions formed from different 

values of 𝑟𝑟∗, we need a way to measure not only fit but asymmetry.  
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We measure asymmetry between the fit of the retained and censored subsamples as 

shown by equation 13.  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦𝑡𝑡 = 1
2
�𝜌𝜌�𝑤𝑤𝑡𝑡

(+),𝑦𝑦� − 𝜌𝜌�𝑤𝑤𝑡𝑡
(−),𝑦𝑦��

2
   (13)  

The (+) superscript designates weights formed from the retained subsample of players 

while the (−) superscript designates weights formed from the complementary sample of 

censored players.  Asymmetry recognizes the benefit of censoring non-relevant players that 

contradict the predictive relationships that exist among the relevant observations.  This 

assessment also inherently considers the relative sample sizes of the complementary groups 

To calculate adjusted fit, we add asymmetry to fit and multiply this sum by 𝐾𝐾, the 

number of predictive variables, as shown by equation 14.  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 = 𝐾𝐾(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦𝑡𝑡)   (14) 

Multiplication by the number of predictive variables allows us to compare predictions 

based on different numbers of predictive variables.  It corrects a bias that would otherwise 

occur, whereby adding a pure noise variable decreases fit in proportion to the increase in the 

number of variables, even if the predictions themselves do not change (consider, for example, 

the case of a full sample linear regression analysis with a large sample of players).  Another way 

to view the intuition for 𝐾𝐾 is that we are more likely to observe a spurious relationship from 

weights based on any one variable in isolation than we are based on a collection of many 

variables. 
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We now return to the question of how to form a prediction given uncertainty in the 

calibration of 𝑟𝑟∗ and variable selection, which are codependent choices.  To address this issue, 

we could consider every possible calibration that combines a choice of 𝑟𝑟∗ with a choice of a 

subset of variables and select the prediction with the greatest reliability as measured by 

adjusted fit.  It is critical to remember that the assessment of reliability using adjusted fit is 

made before the prediction is rendered and the subsequent outcome is known.  And it is also 

critical to remember that the assessment of reliability is specific to the prediction task.  

Instead of selecting one optimal calibration for a given prediction task, it may be more 

prudent to compute a composite prediction as a reliability-weighted average of the predictions 

from all possible calibrations.  Equation 15 defines reliability weights, 𝜓𝜓𝜃𝜃, as the adjusted fit for 

a parameter calibration, 𝜃𝜃, divided by the sum of all adjusted fits across all parameter 

calibrations.  

𝜓𝜓𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝜃𝜃
∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝜃𝜃�𝜃𝜃�

     (15) 

Equation 16 describes the composite prediction. 

𝑦𝑦�𝑡𝑡,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ∑ 𝜓𝜓𝜃𝜃𝑦𝑦�𝑡𝑡,𝜃𝜃𝜃𝜃      (16) 

Exhibit 1 gives a visual representation of grid prediction based on hypothetical values.  

The columns represent different combinations of predictive variables and the rows represent 

different subsamples of previous players as determined by different relevance thresholds.  Each 

cell represents a calibration 𝜃𝜃; that is, a unique combination of predictive variables and 

previous players.  In practice, we would consider all 63 combinations of six variables, but for 
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illustrative purposes we show only seven columns in exhibit 1.  The first values shown in the 

cells are the calibration-specific predictions 𝑦𝑦�𝑡𝑡 for a given prediction task 𝑡𝑡.  The second values 

are the weights 𝜓𝜓𝜃𝜃 we apply to the calibration-specific predictions to form the composite 

prediction.  The values in the grid are specific to each prediction task. This illustration gives a 

composite prediction of 16.30 (15.7 x 1.72% + 15.7 x 1.15% + 10.1 x 0.24% + . . . + 9.3 x 0.04%). 

Exhibit 1: Grid Prediction – Illustrative Example 

 

Note that each cell’s prediction is a linear function of player observations, and the grid 

prediction is a linear function of each cell’s prediction.  Therefore, we can express the grid 

prediction in terms of composite weights applied to each player, as shown in equation 17.  

Composite weights are important because they preserve the transparency of how each 
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previous player informs the prediction, and they allow us to calculate fit from composite 

weights as a final gauge of the grid prediction’s reliability.  

𝑤𝑤𝑖𝑖𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ∑ 𝜓𝜓𝜃𝜃𝑤𝑤𝑖𝑖𝑖𝑖,𝜃𝜃𝜃𝜃     (17) 

The prediction grid also yields a comprehensive measure of how each variable 

contributes to the value of a prediction.  This measure is called contribution to prediction (CTP).  

As shown by equation 18, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡 for prediction 𝑡𝑡 and variable 𝑘𝑘 is computed as the weighted 

average prediction value for grid cells that contain 𝑘𝑘 (for which the variable censoring indicator 

∆𝑘𝑘(𝜃𝜃) = 1) minus the weighted average prediction value for cells that do not contain 𝑘𝑘 (for 

which ∆𝑘𝑘(𝜃𝜃) = 0).  We express 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡 as a sum over all grid cells 𝜃𝜃.   

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡 = ∑ 𝛼𝛼𝜃𝜃 𝜃𝜃
∆𝑘𝑘(𝜃𝜃)(𝑦𝑦�𝑡𝑡𝜃𝜃)−�1−∆𝑘𝑘(𝜃𝜃)�(𝑦𝑦�𝑡𝑡𝜃𝜃)

∑ ∆𝑘𝑘�𝜃𝜃��𝜃𝜃�
    (18) 

The term ∑ ∆𝑘𝑘�𝜃𝜃��𝜃𝜃�  counts the number of cells that include variable 𝑘𝑘.  For a grid that 

includes every variable combination, this number is nearly equal to the number of cells that do 

not include variable 𝑘𝑘, but the counts are not identical unless we include a column in the grid 

for predictions that do not use any of the 𝑋𝑋 variables (for which the prediction value is always 

zero).  Thus, we divide by the number of cells that include variable 𝑘𝑘 regardless of whether a 

given cell contains 𝑘𝑘 or not. 

We can use the same computation method to measure a variable’s contribution to the 

reliability of a prediction, which we call relevance-based importance (RBI).6  We simply replace 

each grid cell’s prediction value with its adjusted fit.   

𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = ∑ 𝛼𝛼𝜃𝜃 𝜃𝜃
∆𝑘𝑘(𝜃𝜃)(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝜃𝜃)−�1−∆𝑘𝑘(𝜃𝜃)�(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝜃𝜃)

∑ ∆𝑘𝑘�𝜃𝜃��𝜃𝜃�
   (19) 
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RBI has several advantages over alternative measures of variable importance.  Linear 

regression analysis relies on t-statistics and their corresponding p-values, which only measure a 

variable’s marginal importance.  RBI, by contrast, captures a variable’s total importance.  RBI 

also captures conditional relationships which t-statistics fail to address. And unlike the Shapley 

value, which is the accepted standard for assessing variable importance in machine learning 

models, RBI accounts for the reliability of individual predictions.   

A final note on grid prediction.  For some prediction tasks, it may be preferable to select 

the subsample of players and predictive variables based on similarity rather than relevance.  

We need not worry whether we should use similarity or relevance to identify the optimal 

combination of players and variables.  We simply include both censoring rules as candidates in 

the grid.  However, even when we censor players based on similarity, we should still form the 

predictions as a relevance-weighted average of the retained players. 

 

Experiment Setup 

To illustrate how RBP is used to predict player outcomes, we apply it to predict wRC+ for MLB 

players.  The performance metric wRC+ stands for weighted runs created plus.  It combines a 

player’s batting outcomes into a single measure of runs created, adjusting for league and 

ballpark effects to facilitate comparison across players.     

Our training sample comprises 1,601 players with 200 or more plate appearances per 

season from 2015 through 2023.  Our prediction sample, which we use to compare player 

results cross sectionally, comprises 265 players with 200 or more plate appearances in the 2024 
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season.  Our prediction task is to predict each player’s wRC+ for the 2025 season.   

 We form our predictions based on the following set of predictive variables.  Appendix B 

gives definitions of these variables. 

Exhibit 2: Predictive Variables 

 

 

Results 

Transparency 

We first present several exhibits that reveal the transparency of RBP as we apply it to predict 

wRC+.   

Exhibit 3 shows a scatter plot of predicted wRC+ for players with 200 or more plate 

appearances in the 2024 season, reported as cross-sectional percentile ranks on the vertical 

axis, and their corresponding conviction levels based on fit, also reported as cross-sectional 

percentile ranks, on the horizontal axis.  These results yield two key insights.  First, conviction 

varies dramatically from one prediction to the next, even for predictions at similar levels.  This 

underscores the value of fit, which reveals the reliability of each prediction before it is made, 

thereby enabling teams to view more cautiously predictions that are likely to be less 

trustworthy.  Second, larger magnitude predictions tend be based on stronger patterns leading 

Contextual Factors Hitting Statistics Plate Discipline Batted Ball Profile Statcast Metrics
Batter handedness wRC+ BB % Pull % xwOBA
Age K % K % Oppo % Exit velocity
Plate appearences HR/PA Out of zone swing % Soft contact % Launch angle

WAR/162 In zone swing % Hard contact %
BABIP Out of zone contact % Ground ball rate
wOBA In zone contact % Fly ball rate

Called strike + whiff rate HR/FB
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to higher conviction, while lower conviction predictions based on weaker patterns tend to 

revert to the mean.  

It is important to contrast this prediction-specific detail with the assessment of 

conviction given by a model.  A linear regression model, for example, assigns the same R-

squared to all predictions, ignoring the vast differences in reliability across predictions as shown 

by exhibit 3.   

Exhibit 3: wRC+ Predictions and Convictions for the 2025 Season 

 

In addition to customizing each prediction task to account for a player’s specific 

circumstances, RBP reveals precisely how each previous player informs the prediction.  For 

example, exhibit 4 shows the 10 most important players for forming the wRC+ prediction for 

Juan Soto, which include Soto himself from previous seasons.  The product of the relevance 

weights of these players, shown in the third column, and the outcomes shown in the right-most 
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column, along with the weights and outcomes of all the other relevant players, gives the 

prediction of wRC+ for Soto.  Soto’s predicted wRC+ of 157 ranked at the 99.6th percentile 

among all players for the 2025 season.  At the 99.9th percentile, it also had extraordinarily high 

conviction.  It is reaffirming to note that Soto’s realized wRC+ for 2025 was 156.  Not 

surprisingly, the players who were most relevant for forming Soto’s prediction had similarly 

strong wRC+ outcomes for the seasons in which they were most relevant.   

Because RBP gives the identity of the players who are most relevant to each prediction, 

it enables us to observe the characteristics of those players that explain to their relevance.  

Exhibit 4, for example, shows which variables best explain the relevant players’ similarity to 

Soto.  It is important to keep in mind, though, that a player’s similarity also accounts for 

covariation across the predictive variables which is not shown here.  Nonetheless, this basic 

information about the players who are most relevant to the formation of Soto’s prediction, and 

which is unobtainable from a model, goes a long way in facilitating dialogue between analytics 

professionals, coaches, and scouts. 

Exhibit 4: Most Relevant Players for Prediction of Juan Soto’s wRC+

 

10 Most Relevant Players Season Weight wRC+ 
Juan Soto 2022 1.791% FB% C+SwStr% Z-Swing% 154
Juan Soto 2021 1.746% C+SwStr% wOBA HR/FB 146
Yordan Alvarez 2022 1.731% HR/FB xwOBA wOBA 170
Juan Soto 2023 1.667% Z-Swing% O-Contact% BABIP 180
Yasmani Grandal 2021 1.658% Hard% Pull% HR/PA 68
Aaron Judge 2022 1.546% xwOBA Oppo% Z-Contact% 172
Ronald Acuna, Jr. 2023 1.482% xwOBA HR/PA HR/FB 105
Mike Trout 2016 1.309% Z-Swing% wOBA FB% 180
Aaron Judge 2023 1.288% wOBA Pull% xOBA 218
Mike Trout 2018 1.267% C+SwStr% HR/FB O-Swing% 177

Most Similar Characteristics

Juan Soto
Mets, RF

Prediction Percentile: 99.6% Conviction Perentile: 99.9%
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Exhibit 5 presents the same information for Corbin Carroll.  RBP predicted that Carroll’s 

wRC+ would rank at the 77.7th percentile with conviction at the 62.6th percentile.  RBP predicted 

that Carroll’s wRC+ would improve from 107 to 114, but it underestimated the extent of 

improvement, as Carroll recorded a wRC+ of 139 in 2025.  This directionally correct but less 

accurate prediction is not surprising, as the conviction percentile was much lower for Carroll 

than the conviction assigned to Soto’s much more accurate prediction.  Together, exhibits 4 and 

5 highlight how RBP conditions each prediction on the specific attributes of the player for whom 

the prediction is made, which explains why each prediction is informed by different players.  To 

emphasize this point, it is worth noting that the weights of the most relevant players for Soto’s 

prediction are about twice as large as the 10 most relevant players for Carroll’s prediction.  This 

difference occurs because there are fewer players who are like Soto than Carroll; hence the 

relatively few relevant players for Soto are weighted more heavily on average than the greater 

number of relevant players for Carroll.   

Exhibit 5: Most Relevant Players for Prediction of Corbin Carroll’s wRC+ 

 

10 Most Relevant Players Season Weight wRC+ 
Juan Soto 2022 0.923% O-Contact% WAR/162 BABIP 154
Trent Grisham 2022 0.806% HR/PA BB% GB% 90
Juan Soto 2023 0.769% K% Z-Swing% C+SwStr% 180
Max Kepler 2018 0.766% HR/PA EV xwOBA 122
Lars Nootbaar 2022 0.732% GB% FB% WAR/162 118
Mookie Betts 2017 0.691% wRC+ BB% O-Contact% 185
Max Kepler 2016 0.674% Soft% Hard% Z-Swing% 94
Jason Heyward 2016 0.672% Pull% Z-Swing% LA 89
Rowdy Tellez 2022 0.665% wOBA BB% Z-Swing% 78
Alex Bregman 2018 0.637% EV Z-Swing% Hr/FB 167

Corbin Carroll
Diamondbacks, RF

Prediction Percentile: 77.7% Conviction Perentile: 62.6%

Most Similar Characteristics
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Thus far, we have shown that RBP reveals the specific reliability of each prediction, 

unlike R-squared which treats the reliability of all predictions the same.  And we have shown 

that RBP precisely quantifies how each previous player informs a current player’s prediction and 

why these previous players are informative.  This information is unknowable for predictions that 

come from models.  We now turn to RBP’s evaluation of predictive variables.   

Exhibit 6 shows the contribution of each predictive variable to the wRC+ prediction (CTP) 

for the 2025 season.  The gray bars show the 20th to 80th percentile range of the variables’ 

contributions across all players for whom we formed predictions.  The lines within the gray bars 

represent contributions to the wRC+ prediction for the median player.  The blue diamonds show 

the contributions of each predictive variable for Juan Soto’s wRC+ prediction, while the red 

diamonds show this measure for Corbin Carroll’s wRC+ prediction.   
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Exhibit 6: Contribution of Predictive Variables to wRC+ Predictions for Soto and Carroll 
Relative to All Players 

 

The key takeaway from exhibit 6 is the variation in the contribution of the variables 

overall, and especially between Soto and Carroll.  For example, most variables had a larger 

impact on Soto’s wRC+ prediction than on Carroll’s prediction.  This difference reflects the fact 

that there are more useful patterns to predict Soto’s outcome than there are for Carroll.  In 

other words, the impact of each predictive variable for Carroll’s prediction is mitigated by noise 

and is therefore less apparent.  A linear regression model’s beta, by contrast, would judge the 



22 
 

contribution of each predictive variable to be proportional to the same beta coefficient for Soto 

and Carroll and all other players.   

Exhibit 7 shows how each predictive variable contributed to the reliability of each 

player’s prediction of wRC+ for the 2025 season, as measured by RBI.  Again, the gray bars show 

the 20th to 80th percentile range, the lines within the gray bars represent the median player, and 

the red and blue diamonds show RBI for Soto and Carroll, respectively.  
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Exhibit 7: Relevance-Based Importance for wRC+ Predictions for Soto and Carrol 
Relative to All Players 

 

Exhibit 7 reinforces the importance of obtaining prediction-specific information.  

Whereas a t-statistic would assign the same average importance of a variable to all players, 

exhibit 7 shows that the influence of the predictive variables differs substantially across players.  

For example, all the predictive variables enhanced the reliability of Soto’s prediction, which is 

unsurprising given the conviction (99.9th percentile) assigned to his prediction.  But in Carroll’s 

case, most of the predictive variables contributed very little to the reliability of Carroll’s 
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prediction, which is consistent with the lower conviction level associated with Carroll’s 

predicted wRC+.   

 Exhibit 8 compares the player-specific information given by RBP with analogous 

information that would come from a linear regression model.  We should note here that 

machine learning models have even less transparency than a linear regression model. 

Exhibit 8: Transparency of RBP versus Linear Regression Analysis 

 

Efficacy 

We have so far given compelling evidence that RBP offers remarkable visibility into the 

formation of individual predictions.  Additionally, RBP measures the unique reliability of each 

prediction, the contribution of each predictive variable to the reliability of each prediction, and 

the contribution of each predictive variable to the magnitude of each prediction.  RBP’s ability 

to yield this nuanced information extends far beyond the capabilities of linear regression 

RBP Linear Regression Analysis

     Observations RBP precisely quantifies how each player 
informs the prediction.

Linear regression analysis offes no 
visibiltiy into the influence of individual 
players on the formation of the prediction.

     Conviction
Fit measures the unique reliability of each 
prediction, which across all predictions, 
aggregates to R-squared. 

R-squared only measures a model's 
reliability.  It assigns the same level of 
conviction to all predictions. 

     Contribution to prediction value
CTP measures the contribution of each 
predictive variable to the value of each 
prediction.

Linear regression analysis judges the 
contribution of each predictive variable to 
be proportional to the same beta 
coefficient for all players.

     Contribution to prediction reliability
RBI measures how each preditive variable 
uniquely contributes to the reliability of 
each prediction.

A t-statistic assumes that each variable is 
equally important to all predictions.
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analysis and other model-based approaches to prediction.  We now turn our attention to RBP’s 

predictive efficacy.  

Exhibit 9 shows the realized wRC+ for players with 200 or more plate appearances in the 

2024 season.  The first row shows the outcomes for players who were predicted to be in the 

top half of all players, while the middle row shows the outcomes for players predicted to be in 

the bottom half of all players.  The third row gives the spread between the outcomes of players 

who were predicted to be in the top half set against those predicted to be in the bottom half. It, 

therefore, serves as a measure of prediction efficacy. 

The first column of results shows the efficacy of linear regression analysis.  These results 

reveal that linear regression analysis effectively anticipated the average difference between 

players who delivered more favorable results from those who performed less well.  The second 

column reports the results given by RBP across all predictions, including those predictions 

known in advance to be less reliable.  It reveals that RBP predicted the difference between 

above average outcomes and below average outcomes equally as reliably as linear regression 

analysis.  For most datasets RBP would produce a larger spread than linear regression analysis, 

because it would capture nonlinearities that linear regression analysis would fail to detect.  The 

equivalence in the spreads of both approaches reveals that, in this dataset, the relationship 

between the predictive variables and the wRC+ outcomes is linear, which removes the 

opportunity for RBP to extract additional information.  Nevertheless, RBP offers a critical 

advantage over linear regression analysis, which is highlighted in the next two columns.   
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The third column shows the results given by RBP for those predictions judged in advance 

to be the 50% most reliable predictions based on fit.  And the final column shows the results for 

those predictions anticipated by fit to be the 50% least reliable.  These two columns 

demonstrate that RBP can effectively separate trustworthy predictions from those that are less 

reliable.  By contrast, linear regression analysis gives no visibility into which predictions to trust 

and which to view with skepticism.  Given a spread of 34 for the trustworthy predictions versus 

only 2 for the doubtful predictions, RBP’s ability to anticipate each prediction’s specific 

reliability constitutes a huge advantage over linear regression analysis. 

Exhibit 9: Realized wRC+ for Players Predicted to Outperform  
Versus Players Predicted to Underperform  

 

             
 

Summary 

We described a new approach for predicting performance outcomes for MLB players called 

relevance-based prediction.  RBP forms predictions as weighted averages of past outcomes in 

which the weights are based on the relevance of previous players, measured in a 

mathematically rigorous and theoretically justified way.   

Then we described fit, which quantifies the prevalence of useful patterns in a dataset 

and which indicates the specific reliability of each individual prediction.  R-squared, by 

Linear
Regression All High Conviction Low Conviction

Analysis Predictions Predictions Predictions
High prediction 112 112 119 105
Low prediction 94 94 85 103
Spread 18 18 34 2

RBP
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comparison, measures only the average reliability of a prediction model.  We showed that fit 

converges to R-squared in the case of linear regression analysis when aggregated properly 

across all prediction tasks.   

Next, we introduced grid prediction, which uses fit to precisely blend the predictions 

that result from different combinations of players and predictive variables.  Crucially, the blend 

places greater emphasis on players and variables that are most useful for an individual 

prediction task.   

We then illustrated RBP by predicting wRC+ (weighted runs created plus) for MLB 

players who had 200 or more plate appearances in the 2024 season.  Our analysis highlighted 

the extraordinary transparency of RBP.  We reported how specific players contribute to the 

formation of individual predictions, which is almost always unobservable for predictions 

generated by models.  We reported the specific reliability of individual predictions in contrast 

to R-squared which only gives a model’s average reliability.  We showed the unique 

contribution of each predictive variable to the value of each prediction in contrast to a linear 

regression equation’s beta which assumes a predictive variable’s contribution to the value of a 

prediction is proportional to the same parameter value across all predictions.  And we reported 

the contribution of each predictive variable to the reliability of individual predictions in contrast 

to a t-statistic which only measures a variable’s average importance.   

Finally, we showed that RBP successively distinguished in advance players who 

produced more favorable outcomes from those who produced less favorable outcomes, and we 
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demonstrated that, unlike linear regression analysis, RBP could distinguish in advance which 

predictions to trust and which to discard or treat with caution.  
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Appendix A: Convergence of Relevance to Other Prediction Methods 

Convergence to Linear Regression Analysis 

The prediction equation corresponding to full sample linear regression equals: 

𝑦𝑦�𝑡𝑡 = 𝑦𝑦� + 1
𝑁𝑁−1

∑ 𝑟𝑟𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑁𝑁
𝑖𝑖=1     (A1) 

Expanding the expression for relevance gives:   

𝑦𝑦�𝑡𝑡 = 𝑦𝑦� + (𝑥𝑥𝑡𝑡 − 𝑥̅𝑥� 1
𝑁𝑁−1

∑ Ω−1(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥�′(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑁𝑁
𝑖𝑖=1    (A2) 

 To streamline the arithmetic, we recast this expression using matrix notation: 

𝑋𝑋𝑑𝑑 = (𝑋𝑋 − 1𝑁𝑁𝑥̅𝑥)     (A3) 

𝑦𝑦�𝑡𝑡 = 𝑦𝑦� − 𝑥̅𝑥𝛽𝛽 + 𝑥𝑥𝑡𝑡𝛽𝛽 − (𝑥𝑥𝑡𝑡 − 𝑥̅𝑥)(𝑋𝑋𝑑𝑑′ 𝑋𝑋𝑑𝑑)−1𝑋𝑋𝑑𝑑′ 1𝑁𝑁𝑦𝑦�   (A4) 

 Where: 

𝛽𝛽 = (𝑋𝑋𝑑𝑑′ 𝑋𝑋𝑑𝑑)−1𝑋𝑋𝑑𝑑′ 𝑌𝑌     (A5) 

 Noting that 𝑋𝑋𝑑𝑑′ 1𝑁𝑁 equals a vector of zeros, because 𝑋𝑋𝑑𝑑 represents attribute deviations 

from their own respective averages, we get the familiar linear regression prediction formula:   

𝑦𝑦�𝑡𝑡 = (𝑦𝑦� − 𝑥̅𝑥𝛽𝛽) + 𝑥𝑥𝑡𝑡𝛽𝛽     (A6) 

𝛼𝛼 = (𝑦𝑦� − 𝑥̅𝑥𝛽𝛽)      (A7) 

𝑦𝑦�𝑡𝑡 = 𝛼𝛼 + 𝑥𝑥𝑡𝑡𝛽𝛽      (A8) 
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Relationship to Large Language Models 

The key innovation that led to the success of large language models (LLMs) is the transformer, 

which is an information processing architecture based on attention mechanisms.  Relevance is 

conceptually similar to attention and offers a novel interpretation of these models.  

In the context of language processing, consider a sequence of words (or tokens) which is 

encoded as a vector, 𝑥𝑥𝑖𝑖.  The goal is to transform each word into an enriched vector, 𝑧𝑧𝑖𝑖, with 

new dimensions, which represents a refined contextual meaning of the word within the 

passage.  

As noted in Vaswani et al. (2017), attention in a transformer model is determined by a 

set of three transformation matrices: 𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, and 𝑊𝑊𝑉𝑉, which compute what are commonly 

referred to as query, key, and value vectors from each word 𝑥𝑥𝑖𝑖.  To highlight the link with RBP, 

we characterize this as follows: 

𝑞𝑞𝑡𝑡 = 𝑥𝑥𝑡𝑡𝑊𝑊𝑄𝑄      (A9) 

𝑘𝑘𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑊𝑊𝐾𝐾      (A10) 

𝑣𝑣𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑊𝑊𝑉𝑉      (A11) 

𝑧𝑧𝑖𝑖 = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 � 𝑞𝑞𝑡𝑡𝑘𝑘𝑖𝑖
′

 √𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
� 𝑣𝑣𝑖𝑖𝑖𝑖     (A12) 

We may intuitively think of 𝑣𝑣𝑖𝑖  as representing the learned unconditional meaning of 

each word in the passage.  These values represent the dependent variable, and we want to 

predict the contextual meaning as a weighted average of 𝑣𝑣𝑖𝑖  for all words in the passage based 

on their relevance to 𝑥𝑥𝑖𝑖.  We may express: 
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𝑞𝑞𝑡𝑡𝑘𝑘𝑖𝑖′ = 𝑥𝑥𝑡𝑡𝑊𝑊𝑄𝑄𝑊𝑊𝐾𝐾𝑥𝑥𝑖𝑖′     (A13) 

Equation A13 matches the definition of relevance in Equation 1 from earlier, if we 

assume 𝑥̅𝑥 = 0 and we have 𝑊𝑊𝑄𝑄𝑊𝑊𝐾𝐾 rather than the inverse covariance matrix to relate 

circumstances to each other. In other words, the learned matrices 𝑊𝑊𝑄𝑄𝑊𝑊𝐾𝐾 amount to a square 

matrix that is used to evaluate relevance.  The letters used to characterize words are mostly 

arbitrary (compared to meaning), so learned mappings are necessary for language 

interpretation, whereas for meaningfully oriented data the inverse covariance matrix is well-

motivated.  

The softmax function serves as a censoring function that normalizes weights to sum to 

one, while also requiring them to be strictly positive.  Thus, the use of softmax effectively 

censors observations to focus on the most relevant subset, similar to partial sample regression. 

There are many other complexities to transformers.  We do not aim to provide a thorough 

accounting of how these models work.  We merely wish to point out the striking similarity 

between the essence of the attention mechanism used in these models and the principles of 

RBP described in this article. 
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Appendix B: Variable Definitions 

 

 

 

 

 

 

 

 

Batter Handedness Indicates if batter is left handed or not.
Age Age in years of the hitter.

Plate Appearances Plate appearances.
wRC+ Weighted runs-created plus. All-in-one hitting stat that measures total offensive production, 

then normalizes so league average is 100. (120=20% above league average hitter)

HR/PA Home runs per plate appearance.
WAR/162 Wins above replacement, prorated to 162 games played.
BABIP Batting average on balls in play.
wOBA Weighted on-base average, a rescaled version of OPS that better indicates the relative values 

of each batting outcome.
BB% Percentage of at bats ending in a walk.
K% Percentage of at bats ending in a strikeout.
Out of zone swing % Percentage of pitches outside the zone that are swung at.
In zone swing % Percentage of pitches in the zone that are swung at.
Out of zone contact % Contact rate on pitches out of the strike zone.
In zone contact % Contact rate on pitches in the strike zone.
Called strike + whiff rate Percentage of pitches that are called strikes or swings and misses.
Pull % Percentage of batted balls pulled.
Oppo % Percentage of batted balls hit to the opposite field.
Soft contact % Percentage of batted balls with low exit velocities.
Hard contact % Percentage of batted balls with high exit velocities.
Ground ball rate Percentage of batted balls that are ground balls.
Fly ball rate Percentage of batted balls that are fly balls.
HR/FB Home runs per fly ball.
xwOBA Expected wOBA based on exit velocity and launch angle.
Exit velocity Average exit velocity of batted balls.
Launch angle Average launch angle of batted balls.
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1 The descriptions of the features of RBP and variable importance follow closely language used from Czasonis, 
Kritzman, and Turkington (2022a, 2022b, 2023, 2024, 2025a, 2025b, and 2025c), but they are modified to fit the 
context of the current discussion. 
2 See Appendix A for proof of this result. 
3 We also show in the Appendix that our definition of relevance aligns with the key breakthrough that enables 
large language models such as ChatGPT. 
4 See Czasonis, Kritzman, and Turkington (2023) for proof of this result. 
5 See Czasonis, Kritzman, and Turkington (2022b) for proof of this result. 
6 See Czasonis, Kritzman, and Turkington (2025a) for a thorough description of relevance-based importance. 


