Large language models require a new form of oversight: capability-based monitoring
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Abstract

The rapid adoption of large language models (LLMs) in healthcare has been accompanied by scrutiny
of their oversight. Existing monitoring approaches, inherited from traditional machine learning (ML),
are task-based and founded on assumed performance degradation arising from dataset drift. In
contrast, with LLMs, inevitable model degradation due to changes in populations compared to the
training dataset cannot be assumed, because LLMs were not trained for any specific task in any
given population. We therefore propose a new organizing principle guiding generalist LLM monitoring
that is scalable and grounded in how these models are developed and used in practice: capability-
based monitoring. Capability-based monitoring is motivated by the fact that LLMs are generalist
systems whose overlapping internal capabilities are reused across numerous downstream tasks.
Instead of evaluating each downstream task independently, this approach organizes monitoring
around shared model capabilities, such as summarization, reasoning, translation, or safety guardrails,
in order to enable cross-task detection of systemic weaknesses, long-tail errors, and emergent
behaviors that task-based monitoring may miss. We describe considerations for developers,
organizational leaders, and professional societies for implementing a capability-based monitoring
approach. Ultimately, capability-based monitoring will provide a scalable foundation for safe,
adaptive, and collaborative monitoring of LLMs and future generalist artificial intelligence models in
healthcare.



The enthusiasm and rapid uptake of generalist artificial intelligence (Al) models, in particular large
language models (LLMs), in healthcare has spurred much discussion of their evaluation and oversight
for clinical applications. But less attention has been paid to the core assumptions about model
performance degradation that underpin monitoring strategies, but that break down in the case of LLM
use. Here, we propose a new capability-based monitoring framework that is better aligned with how
LLMs are trained and used in practice, and describe implementation considerations for this novel
approach.

Traditionally, Al implementations in healthcare have been focused on bespoke Machine Learning
(ML) models trained for a single task using datasets from defined, bounded populations (Figure 1, ML
Paradigm). These models assume that training and test data come from the same underlying
distributions. When this assumption is violated, overfitting occurs, leading to degraded performance
on new datasets.”? ML models trained for a particular task, such as sepsis prediction,® on bounded,
labeled clinical datasets reflecting (hopefully) their target clinical population, will always be to some
extent overfit (that is, only performant for the task and populations they were trained on).34 Because
of this, performance degradation post-deployment is a given: models will always degrade because
populations and outcome distributions inevitably change compared to data the model was trained
on."? This has led, sensibly, to model-specific post-deployment monitoring for expected degradation.

In contrast, the emergence of generalist LLMs fundamentally challenges these prior assumptions
driving performance monitoring. Despite not being trained using in-distribution clinical data or
specifically for clinically-relevant tasks, LLMs can still capably summarize clinic visit transcripts into
note drafts (ambient documentation),>¢ answer clinical questions,’ translate patient instructions,? and
more. Inevitable model degradation due to changes in populations compared to the training dataset
cannot be assumed, because LLMs were not trained for any specific task in any given population
(Figure 1, LLM Paradigm). Many—probably most—clinical tasks will be “out-of-distribution” for the
LLM training set, which is massive and often unknown anyway. Thus, traditional notions of ML
overfitting and performance degradation do not straightforwardly apply. Performance variation due to
LLM “overfitting” now occurs due to prompting, knowledge evolution, cultural shifts, and deployment
environments, not training dataset distributions defined by input features and labels. While we
shouldn’t anticipate degradation due to overfitting in the traditional sense, we do expect that an LLM
will behave differently across populations in ways that are not necessarily predictable.

The generalist properties of LLMs make them powerful and drive uptake,® but also complicate
monitoring. Accordingly, for LLMs and other similar generalist models, monitoring frameworks must
evolve. Ongoing task-based oversight is not only impractical as LLMs drive task expansion, but also
undesirable because it will leave us blind to shared vulnerabilities. We therefore propose a new
organizing principle guiding generalist LLM monitoring that is grounded in how these models are
developed and used in practice: capability-based monitoring.

Capability-based monitoring is motivated by the fact that LLMs are generalist systems whose
overlapping internal capabilities are reused across numerous downstream tasks (Table 1). In this
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approach, tasks relying on the same underlying model and drawing on similar capabilities are
monitored collectively—acknowledging that some tasks engage multiple capabilities simultaneously.
For instance, the ability to summarize underlies a range of workflows with distinct contexts, such as
inpatient discharge summary generation, outpatient pre-charting, and ambient documentation.
Monitoring each task in isolation fragments oversight and risks missing cross-cutting vulnerabilities
that propagate across tasks. In contrast, capability-based monitoring (Table 2) provides a more
practical and comprehensive framework, enabling cross-task evaluation of shared operations, early
detection of systemic weaknesses, and identification of edge cases or rare errors that task-specific
monitoring might overlook (Figure 2). This is particularly critical for LLMs, which often struggle with
infrequent but clinically significant long-tail scenarios.’

LLM performance degradation arises when models overfit the multi-dimensional contextual factors
that shape their behavior. Intrinsic factors pertain to properties of the model itself, including its
alignment with professional standards and values, temporal currency (i.e., how up-to-date its
knowledge base is), reasoning quality, robustness to variation in input style or language, and
compute efficiency.'® Extrinsic factors involve human interaction, including the degree of human
oversight and the type and extent of human—model collaboration, both of which impact overall system
performance.'"'? Table 2 outlines monitoring dimensions and proposed metrics encompassing these
factors.

Not all dimensions currently validated have automatable monitoring approaches that are known to
correlate with human evaluation; many still require human review and gold-standard comparators'?
although LLM evaluation strategies and metrics, including gaps specific to healthcare, have been
extensively discussed in prior work.'3-'® Our framework aims to organize and prioritize metric
development and validation. Existing benchmarks in both general and clinical domains, while
imperfect, can also supplement real-world monitoring by identifying performance gaps within specific
capabilities.'®-21

Given the limited availability of validated metrics and ground truth labels they require, the LLM-as-
judge paradigm (where a separate model is used to evaluate outputs) is gaining traction as a flexible,
extensible monitoring method. We include LLM-as-judge as an automatable metric across several
dimensions, but emphasize that these secondary models also require validation and ongoing
oversight for each dimension in which they are applied (see Safety Guardrail Capability, Table 1).22

A monitoring strategy should not only identify errors, but lead to actionable corrections.'® Importantly,
performance degradation across dimensions does not always necessitate a full model update.
Limitations arising from intrinsic factors may often be addressed through prompt refinement, improved
tool integration, or adjustments to retrieval databases before modifying the underlying model. In
contrast, extrinsic factors may call for interventions such as enhanced interface design, user training,
or targeted education. We envision primary capability monitoring occurring on a per-LLM basis, as
each model is trained on distinct datasets that are typically opaque to the institutions deploying them.
Nevertheless, given the shared pretraining corpora and similar tuning paradigms among many LLMs,
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and the fact that it may not always be known when a vendor updates LLM’s weights, vulnerabilities
identified in one model should prompt systematic evaluation across related models.

As an example of the strengths of capability-based monitoring, envision an institution that has
implemented 3 tasks requiring strong summarization capabilities: hospital course summarization,
ambient documentation, and patient-facing discharge instructions (Figure 2). Missing information is
flagged sparsely in all 3 tasks, and the signal only becomes significant when grouped, enabling
identification that errors occur when input exceeds a context length threshold, thus a solution is
implementation of a new preprocessing step to reduce context length. Similarly, a rare token
(wordpiece) repeated many times in a single patient’s inpatient notes is found to trigger biased
language. Efficient simulations confirm this is a shared failure mode, so an input filter is implemented
for all summarization tasks, avoiding future potential errors for all summarization workflows.

Implementing capability-based monitoring creates new challenges, implications, and benefits for
healthcare organizations (Table 3). Key challenges for developers in healthcare organizations
include: a) capability and monitoring dimensions are not yet fully scoped and taxonomized, and will
increase over time, b) it is not feasible to manually monitor all of these metrics for all models, and c)
human oversight and task-specific monitoring will likely still be required for very high risk applications.
Developers can address these challenges by a) developing visualization-based dashboards and
defining evaluation frequency and thresholds for error detection, b) engaging in two-tiered monitoring
with automated screening by Judge LLMs and existing automated metrics (high-frequency, low-cost)
and human review of flagged cases (low-frequency, high-interpretability), and c) experimenting with
various techniques for addressing human automation bias, over-reliance, and de-skilling in order to
provide effective human oversight of models deployed in high-risk tasks.

Key challenges for organizational leaders in healthcare organizations include: a) decentralized
capability-based monitoring at the business unit-level gives business unit leaders more control, but
risks missing cross-cutting vulnerabilities, b) merely detecting performance degradation through
capability-based monitoring is not sufficient, c) individuals may develop LLM implementations via
prompt refinement for private use and not report these to the organization for monitoring, and d) use
of LLMs can deskill healthcare workers, making it difficult to take LLMs offline when deterioration is
detected. Organizational leaders can address these challenges by a) centralizing capability-based
monitoring while working with business unit stakeholders to identify and create specific data views
and functionality required by these decentralized stakeholders, b) identifying who is accountable for
diagnosing the root cause of degradation, and developing a set of methods for root cause diagnosis
and restoring model performance, c) providing recognition, rewards and resources to individuals for
formalizing new models, and d) instituting requirements that professionals regularly practice high-
impact tasks without Al, to maintain proficiency.

While capability-based monitoring should enable more practical and robust oversight, future work is
needed to realize its full potential at scale. First, our proposed capabilities and metrics are likely not
exhaustive, and we encourage the community to contribute to a comprehensive taxonomy of each.



Although more streamlined than task-based monitoring, there are still many ways an organization
may wish to visualize capability across models and business units.?® Research into the optimal
visualizations and interface for such monitoring tools will be needed to make sure they are usable and
sustainable. Evaluation frequency and thresholds for error detection across all monitoring dimensions
will need to be defined and refined as we gain experience implementing LLMs. The quality
assurance, process improvement, and statistical quality control fields will play an important role in
developing these thresholds. Finally, because many institutions will use the same underlying LLMs for
various tasks, there is an enormous opportunity to extend this strategy to a collaborative monitoring
commons across institutions. While capability-based collaborative monitoring will not require sharing
data or models, it will require standardized documentation and logging of LLM use. Active uptake and
expansion of efforts such as MedLog, a protocol for event-level clinical Al logging, will be critical in
realizing this vision.*

In the LLM era, “overfitting” in healthcare Al has shifted from model training to prompt, context, and
workflow over-adaptation, making the traditional distinction between in-distribution and out-of-
distribution clinical data far less predictive of performance. Monitoring of generalist Al, exemplified by
LLMs, should be fit-for-purpose: designed to address how LLMs are trained and used in practice, not
simply extended from traditional models that have different performance and generalization
assumptions. As such, the unit of monitoring must evolve from tasks to capabilities, tracking shared
behaviors across contexts. Capability-based monitoring is at once technically necessary and
organizationally scalable. Healthcare systems, vendors, and regulators should adopt capability-based
frameworks to ensure safe, equitable, and sustainable deployment of generalist Al.
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Figure 1. lllustration of train and test data distributions in traditional Machine Learning (ML)
models vs. Large Language Models.
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Figure 1. lllustration of train and test data distributions in traditional Machine Learning (ML)
models vs. Large Language Models (LLMs). In traditional ML models, it is assumed that test data
come from the same underlying distribution (i.e., in distribution; Hospital A, Time A in the figure). As
models are applied to different real-world data distributions such as evolution over time (e.g., Hospital
A, Time B) and/or new settings (e.g., Hospital B), performance optimized and reported on in-
distribution data is no longer reliable. Instead, performance is anticipated to degrade due to overfitting.
In LLMs, models are trained from large, general datasets and learn general abilities. All clinical
datasets are out of distribution and traditional notions of ML overfitting and population drift due not
straightforwardly apply.



Figure 2. Aggregating Task-Level Signals via Capability-Based Monitoring Reveals Shared Failure
Modes.
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Aggregating signals across tasks sharing the summarization capability reveals a clear degradation pattern.

Figure 2. Aggregating Task-Level Signals via Capability-Based Monitoring Reveals Shared
Failure Modes. Individual monitoring shows sparse quality issues across hospital course discharge
summarization, ambient documentation, and patient instructions. Aggregated capability-level monitoring
exposes a shared vulnerability when context length exceeds a threshold, enabling corrective
preprocessing that restores performance across all summarization workflows.



Table 1. Generalist Large Language Model Capability Families

Capabilities

Core capability

Examples

Summarization

Ability to compress text, preserve relevant
facts, prioritize appropriate facts and
documents

Hospital course summary generation for
discharge notes, ambient documentation

Information Extraction

Identify and capture structured data from
unstructured documentation Extract
discrete fields, classification

Trial matching, medical coding, automated
registry curation, medical coding

Classification

Assign predefined codes or categories to
standardized concepts

Patient portal triage, outcome prediction,
medical coding

Decision
support/Question
answering

Given inputs, provide appropriate clinical
rationale or justification

Clinical decision support, insurance appeals,
patient question-answering

Simplification

Generate patient-friendly language (lay
and multi-lingual), reply to patients

Patient education, discharge instructions,
machine translation

Translation

Multi-lingual translation and
communication

Translation of patient-facing information, real-
time translation in clinic

Information Retrieval

Identify and retrieve appropriate
documents for an incoming query

Literature search, chart curation

Safety Guardrail*

Decide when to answer or block a
response, safe completion, filter toxic
language

Auditing models, hallucination detection, LLM-
as-judge

Abbreviations: LLM: Large Language Model




Table 2. Monitoring dimensions and proposed metrics

Monitorin | Descriptio | Example Example Priority monitoring dimensions for each capability family
g n metrics that automated
dimensio require metrics
n human labels Summarizati | Informatio | Classificati | Decision Translati | Informatio | Safety
on n on support/Qu on n retrieval | Guardrail
Extraction estion
answering
Informatio | Faithfulness | % factual LLM-as-judge X X X X X X X
n quality to inputs, errors in Medical
and factual sampled knowledge
accuracy correctness | outputs scored | benchmarks
by human
expert
Reasoning | Internal Human expert | LLM-as-judge X X
logic of review Medical
output and reasoning
clinical benchmarks
soundness
Style Clarity, Human expert | Automated X X X
readability, | review readability
tone metrics
appropriate LLM-as-judge
ness
Sycophanc | Ability to Human expert | LLM-as-judge X X X
y and decline review Sycophancy
refusal unsafe or benchmarks
behavior uncertain
requests
Input Stability Human expert | Overlap metrics | X X X X X X X
robustness | under review LLM-as-judge
and changing Text-based
feature prompts, statistics (e.g.,
drift data quality input tokens)
Equity Performanc | N/A Distribution of X X X X X X X
€ across other metrics
subgroups across
(demograph subgroups,
ics, including raw

specialties)

distribution and




fairness metrics
End-user Human edit | N/A Edit distance, X X X
preference | rates, acceptance
acceptance rate
ratios,
escalation
frequency
Toxicity Presence of | Human expert | LLM-as-judge X
toxic, review Toxicity and
stigmatizing bias
,or benchmarks
otherwise
inappropriat
e language
Process Costs, N/A Tokens, costs, X X X
energy, FLOPs, latency
time per unit time (to
understand
usage) and per
query (to
understand
potential LLM
behavior
changes)

Abbreviations: LLM: Large Language Model; FLOPS: Floating point operations per second



Table 3. Monitoring Implementation and Oversight Design

New Monitoring Challenges with
LLMs

Implications for Practice

Benefits

Limitations

Specific Recommendations

Implications for Developers

Task-based monitoring fragments
oversight and misses cross-cutting
vulnerabilities

e Create registries/ dashboards that
visualize performance metrics per
capability, not per task

e Scalability and reduced
redundancy in compliance
and auditing

e Capability and monitoring
dimensions not yet fully
scoped and taxonomized, and
will increase over time

Develop visualizations of capability-
based dashboards

Define evaluation frequency and
thresholds for error detection

Audit and log LLM use in a
standardized fashion, e.g. using
MedLog?, extended to include
capability family/families for the task

Not feasible to manually monitor all
of these metrics for all models

e Implement existing automatic
metrics and identify gaps therein

e Develop new automated metrics
based on identified gaps

e New automated metrics may
include Judge LLMs: generative
models used to evaluate outputs of
other LLMs

e Scalable, continuous, and
low-cost oversight

° Need to “audit the auditor”
via periodic human
calibration

Recommend tiered model:

e Automated screening by Judge LLMs
and existing automated metrics (high-
frequency, low-cost)

e Human review of flagged cases (low-
frequency, high-interpretability)

Some truly high risk
implementations will merit their own
individualized oversight, (e.g.
models making treatment
recommendations without a
human-in-the-loop)

e Maintain risk-stratified evaluation of
an emerging technology. High risk
devices still need the appropriate
clinical testing before being
integrated and monitored

e For models that are integrated,
there will be a risk threshold at
which organizations decide they
still need individualized monitoring,
but that will be the minority of
cases

e Human oversight of very
high risk models

e Humans may miss errors due
to automation bias, over-
reliance, and de-skilling

e Work with clinicians to investigate the
feasibility of lim-as-judge or other
monitoring method for a tiered
approach over time

Difficult to support the needs of
diverse stakeholders (health
system leaders, clinical experts,
and technical personnel that are
distributed across the organization)
with a standardized set of metrics

e |dentify key stakeholder groups;
conduct participatory design
sessions with diverse stakeholders
to develop prototypes of monitoring
dashboards

e Supports teams of health
system leaders, clinical
experts, and technical
personnel that are
distributed across the
organization as they monitor
and respond to model
deterioration

e Varied levels of technical
expertise and knowledge may
limit communication and
understanding of metrics

e While streamlined compared
to task-based monitoring,
rapidly expanding capabilities
may require ongoing
reassessments

e |dentify specific data views and
functionality required by different
stakeholders

e Periodically re-evaluate monitoring
needs with stakeholders as models
advance




Identified performance degradation
will need to be addressed

Develop standardized approach for
root cause analysis

Develop methods for correcting
LLM performance

Create back-up strategies for
critical LLM-mediated functions

Enables resilient model
ecosystem that is robust to
failures

LLM performance
degradation will not always
require model fine-tuning;
rapid prompt engineering
and agentic updates may
solve the problem.
Capability-based monitoring
enables shared solutions
across workflows

Limited insight and control
over vendor LLMs
Increasingly complex agentic
systems with tool use and
retrieval complicates root
cause identification and
resolution

The same fix may not always
work for all tasks, increasing
workload

e Create best practices for manual
review of errors, prompt review, and
agentic system review

e Maintain ongoing communication and
collaboration with vendors

e Ensure failure is due to LLM itself and
not the surrounding architecture,
which may be less generalizable

e Establish and maintain a database of
example inputs for all workflows to
confirm shared failure mode and
resolution

e Maintain shared database of errors
and solutions

Implications for organizational
leaders

Capability-based monitoring at the
business unit-level provides control
for business-unit leaders, but risks
missing cross-cutting vulnerabilities

e Centralize capability-based
monitoring

e Centralized monitoring by
capability reduces
monitoring burden across
hundreds of use cases, and
enables cross-context
evaluation of shared
operations, early detection of
systemic weaknesses, and
identification of edge cases
or rare errors

Centralization reduces
customization of solutions for
each business unit and
reduces the overall
responsiveness to business
unit needs

Capability-based monitoring
appropriate for post-
deployment monitoring is not
a substitute for initial needs
assessment and evaluation

e Build team and resources to centralize

capability-based monitoring

e |dentify specific data views and
dashboard functionality required by
business unit stakeholders

Continue to perform initial needs
assessment and evaluation by model

Merely detecting performance
degradation is not sufficient

Identify who is accountable for
diagnosing the root cause of
degradation, and applying
strategies to restore model
performance

Develop a set of methods for root
cause diagnosis and for restoring
model performance

Identify who needs to be informed
of model issues, including taking
models offline

Ensures that degradations in
model performance will be
addressed and estimated
ROI will continue to be
realized

Limited insight and control
over vendor LLMs
Increasingly complex agentic
systems with tool use and
retrieval complicates root
cause identification and
resolution

The same fix may not always
work for all tasks, increasing
workload

Maintain ongoing communication and
collaboration with vendors

Review failures with business unit
leaders to ensure comprehensive
understanding of failures and fixes
Establish collaborations with other
institutions to share identified errors
and resolutions

Use of LLMs can deskill healthcare
workers, making it difficult to take
LLMs offline when deterioration is
detected

e Institute requirements that
professionals regularly practice
high-impact tasks without Al, to
maintain proficiency

Can enable early detection
of Al-induced deskilling in
high-expertise domains

Tradeoffs between deskilling
solutions that minimize
deskilling and those that

e Institute requirements that
professionals regularly practice
mission critical tasks without Al, to
maintain proficiency




e |everage simulation technology to
maintain task proficiency

impose additional time and
effort demands

Lack of clear regulations makes it
difficult to determine monitoring
metrics

e Integrate with regulatory and
accreditation processes by
partnering with government affairs
teams to create awareness of
government agencies/regulatory
bodies iteratively developing
governance policies

e  Supports the iterative
development of metrics
based on changing
regulations

e Al technology will continue to
move faster than external
regulations

Craft internal governance principles
and governance process in advance
of regulations

Continue to monitor external
regulations to align internal process
with new regulations

Speed of change in models makes
it difficult to determine which
capabilities should be monitored

e Assign responsibility for external
environmental scanning for new
model capabilities

e Supports the monitoring of
new capabilities

e Related capabilities may
help anticipate future needs
and failure modes

e Potential for cross-
institution collaboration to
learn from others’
experiences

e Automated evaluation metrics
will lag behind capability
emergence, requiring more
intensive initial manual
oversight

e Emerging capabilities may
initial resemble more
traditional task-based, single
workstream monitoring which
may require bespoke
visualizations and metrics

e Potential increased
computational resource
requirements for new models
and monitoring thereof create
a bottleneck limited by the
institutional infrastructure
and/or cost

Establish internal team to review the
literature for new capabilities,
monitoring methods, and solutions
Institute best practices for integrating
a new capability family into monitoring
dashboard

Create communication structure for
developers, informatics, and clinical
team members to report gaps in
capabilities

Maintain reporting pathways for ad
hoc error detection and requirements
for critical harm reporting

Create strategy for prioritizing model
assessments to manage
computational/cost resources

Individuals may develop LLM
implementations for private use
and not report these to the
organization for monitoring

e Develop pathways and incentives
for reporting bespoke workflows to
organization

e Supports monitoring of all
models being used by
organization members

e Ease of developing new LLM
workflows complicates
identification and tracking of
all uses

e Need for additional resources
to identify and integrate uses
into centralized monitoring
systems

Reward formalization of models:
Provide recognition and rewards for
formalizing new models

Increase benefits associated with
formalization: Provide resources for
integration of models into EMR
system so can be part of everyday
workflow

Implications for professional
associations

Different sophistication in LLM
monitoring across institutions

e Develop shared benchmarks and
reference frameworks across
institutions

e Supports unified registries,
clearer accountability, and
consistent safety reporting

e In-house technical expertise
required

e LLM-extrinsic monitoring
dimensions may be highly

Encourage sharing of frameworks,
benchmarking strategies, and other
monitoring resources via publication,




sensitive and unique to presentation, and funding

specific institutions opportunities

e Formalize working groups and special
conferences/workshops for
dissemination and training

Inconsistent safety reporting e Collaborative “monitoring e Supports unified registries, * Institutions must commit to e Centralized nationwide database for
commons” for healthcare Al safety clearer accountability, and logging LLM use according to reporting LLM issues
consistent safety reporting shared protocols and
taxonomies

Abbreviations: LLM: Large Language Model; ROI: Return on Investment.



