
Designing and Deploying Online Field Experiments

Eytan Bakshy
Facebook

Menlo Park, CA
eytan@fb.com

Dean Eckles
Facebook

Menlo Park, CA
deaneckles@fb.com

Michael S. Bernstein
Stanford University

Palo Alto, CA
msb@cs.stanford.edu

ABSTRACT
Online experiments are widely used to compare specific design
alternatives, but they can also be used to produce generalizable
knowledge and inform strategic decision making. Doing so often
requires sophisticated experimental designs, iterative refinement,
and careful logging and analysis. Few tools exist that support these
needs. We thus introduce a language for online field experiments
called PlanOut. PlanOut separates experimental design from ap-
plication code, allowing the experimenter to concisely describe
experimental designs, whether common “A/B tests” and factorial
designs, or more complex designs involving conditional logic or
multiple experimental units. These latter designs are often useful
for understanding causal mechanisms involved in user behaviors.
We demonstrate how experiments from the literature can be im-
plemented in PlanOut, and describe two large field experiments
conducted on Facebook with PlanOut. For common scenarios in
which experiments are run iteratively and in parallel, we introduce
a namespaced management system that encourages sound experi-
mental practice.

Keywords
A/B testing; online experiments; toolkits; methodology

Categories and Subject Descriptors
H.5.3. [Group and Organization Interfaces]: Evaluation /
methodology

1. INTRODUCTION
Randomized field experiments are central to contemporary de-

sign and development processes for Internet services. In the most
popular case, practitioners use “A/B tests” that randomly assign
users to one of two variations of a service. Doing so often allows
designers and developers to quickly identify the best choice of the
two. The Internet industry has distinct advantages in how orga-
nizations can use experiments to make decisions: developers can
introduce numerous variations on the service without substantial
engineering or distribution costs, and observe how a large random

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2566486.2567967.

sample of users (rather than a convenience sample) behave when
randomly assigned to these variations. So, in many ways, experi-
mentation with Internet services is easy.

For some organizations, randomized experiments play a central
role throughout the design and decision-making process. Experi-
ments may be used to explore a design space [19, 20, 33], better
attribute outcomes to causes [4, 14, 21], and estimate effects that
help decision makers understand how people react to changes and
use their services [3, 23, 35]. In this way, even early stages of
the user-centered design process can be informed by field experi-
ments. Such trials are not intended to optimize short-term objec-
tives through a pick-the-winner process; they instead aim to pro-
vide more lasting, generalizable knowledge. While experiments
that achieve these objectives often draw from experimental designs
used in the behavioral and social sciences, available tools do little
to support the design, deployment, or analysis of these more so-
phisticated experiments.

Although many routine experiments are simple to describe, the
realities surrounding their deployment can make their evaluation
quite complex. Online experimentation is highly iterative, such that
preliminary results are used to rapidly run follow-up experiments.
This necessitates changing or launching new experiments. Chang-
ing live experiments can easily result in statistical inferences that
are incorrect. From a development perspective, running follow-up
experiments can be time consuming and error prone because ex-
perimental logic is often mixed in with application code. Online
experimentation is also distributed across individuals and teams,
and over time. Distributed work can make it difficult to run experi-
ments simultaneously without interacting with other’s experiments
or complicating application logic. Combined, these features make
it so that experimentation can become so embedded in application
code that only a few engineers can correctly modify a particular ex-
periment without introducing errors in its design or future analysis.

In this paper, we discuss how Internet-scale field experiments
can be designed and deployed with PlanOut, a domain-specific lan-
guage for experimentation used at Facebook. Designers and engi-
neers working with PlanOut can view any aspect of a service as
tunable via parameters: e.g., a flag signaling whether a banner is
visible, a variable encoding the number of items in an aggregation,
or a string that corresponds to the text of a button. Experimen-
tal logic is encapsulated in simple scripts that assign values to pa-
rameters. Basic random assignment primitives can be combined to
reliably implement complex experimental designs, including those
that involve assignment of multiple experimental units to multiple
factors and treatments with continuous values. PlanOut scripts can
also be used as a concise summary of an experiment’s design and
manipulations, which makes it easier to communicate about, and
replicate experiments.

1

PlanOut is enough by itself to author one-off, isolated experi-
ments quickly. However, if experiments must be iterated upon, or
related experiments must run in parallel, additional infrastructure
is necessary. Such systems can be used to manage experiments and
logging, prevent interference between experiments. In this paper,
we introduce the architecture of a management system for such sit-
uations, and illustrate how iterative experiments can soundly run
and analyzed.

In sum, this paper contributes:

• A characterization of online experimentation based on
parametrization of user experiences,

• The PlanOut language, which provides a high-ceiling, low-
threshold toolkit for parameter-based experiments,

• Guidelines for managing and analyzing iterative and dis-
tributed experiments.

These contributions together articulate a perspective on how on-
line field experiments should be conceptualized and implemented.
This perspective advocates the use of short, centralized scripts to
describe assignment procedures at a high level. It results in experi-
mental practice that is more agile and encourages the production of
generalizable, scientific knowledge.

The paper is structured as follows. After reviewing related work
in Section 2, we introduce the PlanOut language in Section 3 and
show how it can be used to design both simple and complex ex-
periments. Then, in Sections 5 and Section 6, we describe how
distributed, iterative experiments can be managed, logged, and an-
alyzed. Finally, we discuss the broader implications and and limi-
tations of our work in Section 7.

2. RELATED WORK
The design and analysis of experiments is a developed area

within statistics that is regularly taught, with domain-specific el-
ements, to students in industrial engineering, psychology, market-
ing, human–computer interaction, and other fields [8, 16, 23, 31].
Tools for producing design matrices for factorial and fractional fac-
torial designs are available (e.g., in the R packages DoE, Design, and
rms). Such packages are useful for designing small scale studies,
but since the design matrix is created a priori, they are not well
suited for online settings where newly created experimental units
must be assigned in real-time and assignment may depend on unit
characteristics not available in advance.

The prevalence of randomized experiments in the Internet indus-
try and the tools developed there are only partially represented in
the scholarly literature. Mao et al. [24] created experimental frame-
works for crowdsourcing sites such as Amazon Mechanical Turk.
Several papers by Kohavi et al. present recommendations on how
to implement and instrument experiments [19], as well as common
pitfalls in analyzing experiments [12, 18].

Existing experimentation tools include associating experiments
with “layers” (at Google and Microsoft [18, 32]) or “universes”
(at Facebook), such that all conditions in the same layer are mu-
tually exclusive. Some tools (e.g., Google Analytics, Adobe Tar-
get) include mechanisms for associating condition identifiers with
configuration information (e.g., dictionaries of parameters and their
values).

While the types of experiments we focus on in this paper are de-
signed to inform product decision-making, other experiments are
run simply to optimize a single outcome variable. For example, an-
other active area of development focuses on implementing heuris-
tics for optimizing stochastic functions (e.g., multi-armed bandit
optimization) [22, 30].

3. THE PLANOUT LANGUAGE
The PlanOut language separates experimental design from ap-

plication logic and focuses experimenters on the core aspect of an
experiment: how units (e.g., users, items, cookies) are randomly
assigned to conditions, as defined by parameters (e.g., settings for
user interface elements, references to ranking algorithms). PlanOut
promotes a mental model where every aspect of the site is parame-
terizable, and experiments are a way of evaluating user experiences
defined by those parameters.

This approach encourages experimenters to decompose large
changes into smaller components that can be manipulated indepen-
dently. In doing so, experimenters are better equipped to attribute
changes in user behavior to specific features and thus inform design
decisions. Decomposition also allows experimenters to more eas-
ily iterate on experiments so that some features remain fixed while
others change.

Experimenters use PlanOut by writing a PlanOut script, which
may then be executed via an API for each unit (e.g., user or user-
story combination). Each script indicates which inputs are used for
assignment, how random assignment should occur, and the names
of parameters that can be accessed via the API and logged. PlanOut
scripts are executed sequentially. In later sections, we introduce a
number of scripts for both standard and complex experiments.

From a systems perspective, PlanOut is a way of serializing ex-
periment definitions (e.g., as JSON) so they can be easily stored
and executed on multiple platforms, such as layers of backend
and frontend services, and mobile devices. Serialized PlanOut
code (Figure 1c) can be generated and edited through a domain-
specific language (DSL) (Figure 1a) or graphical user interfaces
(Figure 1b). The DSL is presented in the remaining sections, but
many of these examples could alternatively be formulated through
the use of graphical interfaces.

The PlanOut DSL and its syntax are minimal. The primary con-
tribution of the language is in providing a parsimonious set of op-
erations for thinking about, designing, and implementing experi-
ments. Because of this, we spend little time discussing the lan-
guage itself or its built-in operators. A complete list of operators
can be found in the documentation for the reference implementa-
tion of PlanOut.1

3.1 Functionality
We begin our discussion of PlanOut by giving several illustrative

examples of how scripts and operators work. We first describe a
simple A/B test and show how it can be generalized into factorial
designs. Then we consider how experimental designs that involve
multiple types of units in the randomization of a user interface ele-
ment can be used to estimate different effects. Finally, we discuss
conditional evaluation (e.g., for pre-stratification), and other oper-
ators.

3.1.1 A/B test
The most common type of experiment involves uniform random

selection — for example randomly assigning users to one of several
button colors or text options. This can be accomplished via the
uniformChoice operator,

button_color = uniformChoice(
choices=[’#3c539a’, ’#5f9647’, ’#b33316’],
unit=cookieid);

Here, each cookieid is assigned deterministically to one of three

1An open source implementation of a PlanOut interpreter and API
is available at https://github.com/facebook/planout.

2

button_color = uniformChoice(
 choices=['#3c539a', '#5f9647', '#b33316'],
 unit=cookieid);

button_text = weightedChoice(
 choices=['Sign up', 'Join now'],
 weights=[0.8, 0.2],
 unit=cookieid);

{"op":"seq", "seq":[
{"op":"set", "var":"button_color", "value":
 {"op":"uniformChoice",
 "unit":{"op":"get", "var":"cookieid"},
 "choices":["#3c539a", "#5f9647", "#b33316"]}},
{"op":"set", "var":"button_text", "value":
 {"op":"weightedChoice",
 "unit":{"op":"get", "var":"cookieid"},
 "weights":[0.8, 0.2],
 "choices":["Sign up", "Join now"]}
 }
]}

(a)

(c)

(b)

Sign up Sign up Sign up

Join now Join now Join now

button_color

bu
tt

on
_t

ex
t

(d)

Figure 1: A factorial experiment in PlanOut. (a) PlanOut language script (b) a graphical interface for specifying simple PlanOut experiments (c)
a JSON representation of serialized PlanOut code (d) an illustration of the proportion of cookieids allocated to each parameterization. Note that
because we use weightedChoice() to assign button_text, more cookies are assigned to “Sign up” than ‘’Join Now”.

possible button colors. In application code, the experimenter
will later be able to evaluate this PlanOut script for a particular
cookieid (e.g., in the case of a Web-based sign-up form), and re-
trieve the runtime value through the variable name button_color.

3.1.2 Multifactor experiment
Creating a full factorial experiment means setting multiple vari-

ables that are evaluated independently. For example, suppose we
wanted to manipulate not just the color of a button but also its text.
The script for this experiment is given in Figure 1a, and includes
two operators, a uniformChoice and a weightedChoice. We use
weightedChoice to assign (on average) 80% of the cookies to have
the button text “Sign up”, and 20% to have the text “Join now”. Set-
ting these two parameters as shown in Figure 1 generates 2×3 = 6
conditions, whose proportions are summarized in Figure 1d.

3.1.3 Conditional execution
Many experiments cannot be described through fully factorial

designs, e.g., in the case where some values of one parameter
may only be valid when another parameter is set to a particular
value, or assignment probabilities are dependent on another vari-
able. PlanOut thus includes operators for conditional control flow,
such as if / else, boolean operations (i.e., and, or, not), compari-
son operations (e.g., ==, >=) and array indexing.

Consider a scenario where we wish to control the population of
users receiving a new translation feature so that a higher proportion
of US users receive the feature. To accomplish this, one could pass
in both a userid and country to the PlanOut interpreter, and use
conditional logic,

if (country == ‘US’) {
has_translate = bernoulliTrial(p=0.2, unit=userid);

} else {
has_translate = bernoulliTrial(p=0.05, unit=userid);

}

or alternatively, via array indexing,

strata_p = [0.05, 0.2];
has_translate = bernoulliTrial(
p=strata_p[country == ‘US’],
unit=userid);

Here, arrays are zero-indexed and true/false evaluate to 1 and 0,
respectively.

3.1.4 Experiments with multiple and nested units
Many effects are better understood through randomization of

units other than the user. For instance, while most standard A/B
tests are between-subjects designs, where users are randomly as-
signed to different experiences, some effects may be more precisely
estimated through a within-subjects design. These experiments can
be implemented by transitioning from a single experimental unit
(e.g., viewerid) to tuples of units.

Consider an experiment that manipulates whether a story in
users’ News Feed has its comment box collapsed (Figure 2a) or ex-
panded (Figure 2b). If an experimenter wanted to assign 5% of all
News Feed items to have a collapsed comment box, so that users
must click to see comments attached to a story, one could define
such an experiment by:

collapse_story = bernoulliTrial(p=0.05,
unit=[viewerid, storyid]);

The bernoulliTrial operator returns 1 with probability p, and 0
otherwise. By making unit a tuple, [viewerid, storyid], one
achieves a fully randomized within-subjects design, where each
user sees, in expectation, an independent 5% of posts with col-
lapsed comment boxes. This type of design may be used to estimate
the effect of collapsing individual stories on individual viewers’ re-
sponses to that story (e.g., likes, comments).

3

(a)

(b)

Figure 2: (a) A News Feed story whose comment box is collapsed and
(b) an expanded comment box. Different causal effects can be esti-
mated by randomizing the state of the comment box over different ex-
perimental units (e.g., source users, viewers, stories).

Other ways of assigning units can be used to estimate different
quantities. If one were to instead assign viewerids to conditions,
5% of users would see all stories collapsed, which could have large
effects on how viewers interact with all stories and how many sto-
ries they would consume. Had storyid been the randomized unit,
particular stories would be collapsed or not collapsed for all view-
ers. Because viewers are expected to comment at a higher rate
when the box is expanded, randomizing over just storyid can pro-
duce herding effects. These differences result from interference or
“spillovers” across conditions [1, 29], and highlights how support-
ing multiple experimental units can be useful for evaluating how
user interface elements affect complex user dynamics.

3.1.5 Extensions
PlanOut is extensible. If an assignment procedure cannot be

implemented using built-in operators, developers may write cus-
tom operators in a native language (e.g., PHP or Python), includ-
ing those that integrate with other services. PlanOut experiments
at Facebook often use custom operators that interface with gating
infrastructure, graph cluster randomization [34], and other exper-
imentation systems. Classes for random assignment are also ex-
tensible, so that procedures can be easily implemented using the
hashing methods described below.

3.2 Random assignment implementation
Many operators involve generating pseudo-random numbers de-

terministically based on input data (e.g., a user generally should be
assigned to a the same button color each time they load a particular
page). A sound assignment procedure maps experimental units to
parameters in a way that is deterministic, as good as random, and
unless by design, independent of other parameter values from the

same or other experiments. And because experiments can be linked
across multiple service layers (e.g., ranking and user interfaces), it
is important that any pseudo-random operation can be kept consis-
tent across loosely-coupled services that may be written in different
languages.

The PlanOut interpreter implements procedures that automati-
cally fulfill these requirements. Rather than using a pseudo-random
number generator, or directly hashing units into numbers, the in-
terpreter “salts” inputs to a hash function so that each assignment
(unless otherwise specified) is independent of other assignments,
both within and across experiments. Because the procedure based
off of standard hashing functions (i.e., SHA1), it is deterministic
and platform-independent. At a low level, this is done by prepend-
ing each unit with a unique experiment identifier and variable-
specific salt. Thus, the hash used to assign a variable such as
button_color is not just the input ID (e.g., 42), but instead, e.g.,
user_signup.my_exp.button_color.42, where user_signup is the
namespace of the experiment and my_exp is the identifier of the par-
ticular experiment (namespaces and experiments are more specifi-
cally defined in following sections).

4. EXAMPLE EXPERIMENTS
The preceding examples show how PlanOut is a low-threshold

language for implementing basic experiments. In this section we
demonstrate that PlanOut also has a high ceiling, in that complex,
scientific experiments can be concisely specified in only a few lines
of code.

4.1 Examples from prior research
We begin by demonstrating how one could implement two pub-

lished experiments from the social computing literature.

4.1.1 Experimenting with goal-setting
In an influential application of social psychological theory to on-

line systems, Beenen et al. [6] experimented with strategies for
encouraging users to contribute ratings to the movie recommenda-
tion service and online community MovieLens. In Study 2, they
randomly assigned users to an email that sets a goal for users to
rate movies. Users were either identified as being part of a group,
and having a group-level goal, or having an individual goal. The
goal was either specific or a “do your best” goal; if specific, it was
a number of movies to be rated in a week scaled by the size of the
group. This experiment could be implemented as:

group_size = uniformChoice(choices=[1, 10],
unit=userid);

specific_goal = bernoulliTrial(p=0.8, unit=userid);
if (specific_goal) {
ratings_per_user_goal = uniformChoice(
choices=[8, 16, 32, 64], unit=userid);

ratings_goal = group_size * ratings_per_user_goal;
}

This experiment could then be analyzed in terms of the per-person
specific goal, as in Beenen et al. [6]. There are multiple other
ways to implement this experiment, some of which correspond to
different choices about how to split logic between PlanOut and the
application code. For example, the actual text used in the emails
could be constructed in the PlanOut code, while the implementation
above follows from the judgement that it would be better to do
so in the application logic.Such choices can also depend on other
available tools, such as tools for automatically creating translation
tasks for new strings used in an online service.

4

(a) (b)

Figure 3: A within-subjects experimental design that deterministically
randomizes social cues presented to users. Example from Bakshy et al.
[3] when (a) 1 of 3 and (b) 3 of 3 cues are shown.

4.1.2 A social cues experiment with complex inputs
Consider an experiment on the effects of placing social cues

alongside advertisements from Bakshy et al. [3]. A small percent-
age of user segments were allocated to this experiment (see Section
5.1); for these users, some social cues were removed from ads. For
instance, if a user in the experiment had three friends that “like” a
particular Facebook page being advertised, then this user would be
randomly assigned to see one, two, or three friends associated with
the page (Figure 3). This experiment can be written as follows:

num_cues = randomInteger(
min=1, max=min(length(liking_friends), 3),
unit=[userid, pageid]);

friends_shown = sample(
choices=liking_friends, draws=num_cues,
unit=[userid, pageid]);

The input data to the PlanOut experiment would be userid, pageid,
and liking_friends, an array of friends associated with the page.
The script specifies that each user–page pair is randomly assigned
to some number of cues, num_cues, between one and the maximum
number of displayable cues (i.e., no more than three, but no greater
than the number of friends eligible to be displayed alongside the
ad). That number is then used to randomly sample num_cues draws
from liking_friends. That is, the script determines both the num-
ber of cues to display and the specific array of friends to display.

4.2 Experiments deployed using PlanOut
The following represent a sample of experiments that have been

designed and deployed using PlanOut at Facebook.

4.2.1 Voter turnout experiment
In an extension and replication of prior experiments with voter

turnout [7, 9], an experiment assigned all voting-aged US Facebook
users to encouragements to vote in the 2012 Presidential Election.
This experiment involved assigning users to both a banner at the top
of the screen and eligibility for seeing social stories about friends’
self-reported voting behavior in News Feed. We show a subset of
the parameters set by this experiment.

has_banner = bernoulliTrial(p=0.97, unit=userid);
cond_probs = [0.5, 0.98];
has_feed_stories = bernoulliTrial(
p=cond_probs[has_banner],
unit=userid);

button_text = uniformChoice(
choices=[“I’m a voter”, “I’m voting”],
unit=userid);

We can see that has_banner is 1 for 97% of users. Then,
we define cond_probs to be the conditional probability that one

would show feed stories given that has_banner is either 0 or
1. We assign has_feed_stories using a bernoulliTrial() with
p=cond_probs[has_banner], so that those with the banner have a
high chance of also being able to see the feed stories, and those
without a banner have an equal probability of being able to see or
not see the feed stories. Finally, the button text for the call to action
in the banner is subject to experimental manipulation (provided that
the user is in the has_banner=1 condition). Analyses can then ex-
amine effects of the banner, effects of social stories about voting,
and its interaction with verb/noun phrasing [9].

4.2.2 Continuous-treatment encouragement design
Encouragement designs [17] randomize an inducement to a be-

havior of interest so as to evaluate the inducement or study the be-
havior’s downstream effects. In online services, it is common to
encourage users to engage with a particular entity, user, or piece
of content. For instance, if having more ties on Facebook is hy-
pothesized to increase long-term engagement, one could establish
a causal relationship by randomizing whether or not some users
receive recommendations for additional friends.

Evidence suggests that users who receive more feedback on
Facebook are more likely to become engaged with the site [10].
If there is a (forward) causal relationship between these variables,
then changes to the site that affect how much feedback users receive
can in turn affect user engagement and content production.

The following experiment examines this hypothesized effect by
randomizing encouragements for friends to engage with a source
user’s content. It also illustrates random assignment involving mul-
tiple units. As mentioned in Section 3.1.4, expanding or collapsing
News Feed stories can affect engagement with stories. The script
below randomly assigns each source user to a proportion, such that
on average, that proportion of the source’s friends see a collapsed
comment box when stories they produce appear in News Feed.

prob_collapse = randomFloat(min=0.0, max=1.0,
unit=sourceid);

collapse = bernoulliTrial(p=prob_collapse,
unit=[storyid, viewerid]);

Each source user is assigned to a probability prob_collapse in
[0, 1]. Then, each story–viewer pair is assigned to have a collapsed
comment box with probability prob_collapse. To carry out this as-
signment, we invoke the PlanOut script from the part of News Feed
rendering logic that determines whether stories’ comment boxes
should be expanded or collapsed, using sourceid, storyid, and
viewerid as inputs (more discussion of the application interface is
covered in Section 5.3.1).

There a number of possible ways this experiment can be ana-
lyzed. First, one can identify the effect of modulating feedback en-
couragements on the total amount of feedback a user’s stories get.
Second, we can test our original hypothesis that feedback causes
users to engage more with the site (e.g., log in more often or pro-
duce more content). One can look at the effect of the assignment to
different values of prob_collapse on users’ engagement levels, or
use an instrumental variables analysis [17, 27], which combines es-
timates of effects of the encouragement on feedback received and
engagement, to estimate the effect of feedback on users’ engage-
ment.

5. RUNNING EXPERIMENTS
We have discussed ways of designing and executing randomized

assignment procedures, but have not described how experiments
are managed, tested, and logged. Here we define an experiment
to refer to a PlanOut script combined with a target population for

5

which that script was launched at a specific point in time. From the
perspective of the experimenter and logging infrastructure, differ-
ent experiments are considered separately.

In the following subsections, we describe a broader technical
context for running experiments. This supporting infrastructure in-
cludes: a system for managing and logging experiments, including
a segmentation layer which maps units to experiments, a launch
system which provides default values for parameters not subject to
experimental manipulation, an API for retrieving parameters, and a
logging architecture which simplifies data analysis tasks.

5.1 Namespace model of site parameters
Field experiments with Internet services frequently involve the

manipulation of persistent parameters that are the subject of multi-
ple experiments, whether conducted serially or in parallel. We use
a namespace model of parameters to support these practices.

Experimentation is frequently iterative; as in scientific research,
a single experiment is often not definitive and so requires follow-
up experiments that manipulate the same parameters. A second
experiment with a near-identical design may be used to more pre-
cisely estimate effects, or might include new variations suggested
by the first’s results or other design work. Continual redesigns and
development might also change the effects of the parameters, thus
motivating the need for additional experiments.

Likewise, multiple experiments manipulating the same aspects
of a service are frequently run in parallel, sometimes by different
teams with minimal explicit coordination. Two teams may manip-
ulate (a) the same features of the same service, (b) independent fea-
tures of the same service (e.g., font size and items per page), or (c)
different layers of the same service (e.g., link colors and the rank-
ing model which selects which items are to be displayed). In these
cases, it is helpful to have an experimentation system that can keep
track of and/or restrict which parameters are set by each experi-
ment. This requires that experimentation tools be cross-platform
and can handle allocation of units to multiple experiments started
at different times by different teams.

The solution to support these practices within the PlanOut frame-
work is to use parameter namespaces (or namespaces for short).
This is a natural extension of thinking of the experimentation sys-
tem as being how many parameter values are read in application
code; often these parameters are an enduring part of the service,
such that, over time, many experiments will set a particular pa-
rameter. Each namespace is centered around on a primary unit
(e.g., users). A new experiment is created within a new or exist-
ing namespace by allocating some portion of the population to a
PlanOut script.2

5.2 Experiment management
Experiments can be managed as follows: for each namespace,

hash each primary unit to one of a large number (e.g., 10,000)
of segments, and then allocate individual segments to experi-
ments. This segment-to-experiment mapping may be maintained
in a database or other data storage system. Similar to segmentation
systems discussed in prior work [32], when a new experiment is

2Any two experiments which set the same parameter must be mu-
tually exclusive of one another (i.e., must assign parameter values
only for disjoint sets of units). More generally, consider the graph
of experiments in which two experiments are neighbors if they set
any of the same parameters. It is then natural to require that all
experiments in the same connected component to be mutually ex-
clusive. This motivates the idea of using namespaces to group pa-
rameters that are expected to be set by experiments in the same
connected component of this graph.

pa
ra

m
et

er
as

sig
nm

en
ts

...

se
gm

en
ts

PlanOut script

namespace-specific segment mapping

API

Figure 4: Blocks of segments (e.g., multiple buckets of user ids) are
assigned to experiments, which map experimental units to parameters
in a way that is uncorrelated with the segmentation.

created, it is allocated a random set of segments. These segments
are deallocated once the experiment is complete.

Each experiment’s script makes no reference to these segments,
such that random assignment to parameter values within each ex-
periment is independent of the segmentation (Figure 4).3 This
feature is accomplished via the hashing method described in Sec-
tion 3.2, and reduces the risk of carryover effects [8] that might
occur if whole segments from one experiment were all assigned to
the same parameterizations and subsequently reallocated to a dif-
ferent experiment [18, 19].

Namespaces can be represented in experimentation management
tools as a dashboard of currently running experiments along with
a listing of parameters for that namespace. When an experiment
is complete, its segments can become available for future experi-
ments. When iteratively experimenting, new versions of an exper-
iment can be created and allocated new segments. For example,
when experimenters need to increase precision by experimenting
with more units, engineers can duplicate the experiment definition
and allocate additional segments to the experiment. Increases in
size are often coupled with changes to the experiment definition,
e.g., adding new parameterizations similar to promising versions.
Such iteration is generally preferable to modifying the existing ex-
periment, which can frequently produce problems in analysis (see
Section 6).

5.2.1 Parameter defaults
In some cases, all units will have a parameter set by an experi-

ment. For example, an experimenter working with a new parameter
in a new namespace may simply allocate all segments to an exper-
iment. But in other cases, some units will not have a particular
parameter set by any experiment. Then the value of the parameter
used for those units can be set in some other way. Often, this would
reflect the status quo and/or what values are currently believed to

3This corresponds to what Kohavi et al. [18] call “local random-
ization”. It requires that each experiment have its own dedicated
control group, which they identify as the approach’s lone disadvan-
tage.

6

week 1: launch initial PlanOut script with many conditions
week 2: launch same script to more segments

week 4: launch new script with fewer conditions to more segments

experiment 1 2 3 -

pa
ra

m
et

er
as

sig
nm

en
ts

Figure 5: An illustration of how namespaces are used to launch experiments. Segments (vertical regions) are randomly allocated to experiments;
here we order the segments by which experiment they were allocated to. Segments not allocated to experiments use the default parameter values.
Results from each experiment are generally analyzed separately. Horizontal lines distinguish conditions in each experiment; dotted lines indicate the
conditions removed in experiment 3.

be optimal. This same value is likely assigned by other experiments
(e.g., if they include “control” conditions).4

More technically, if a request for a parameter is made but that
parameter is not set by an experiment (i.e., the unit is not assigned
to an active experiment, or the unit is assigned to an active exper-
iment that does not set the parameter), then some specified launch
value is used. If this launch value is not specified, or the experi-
mentation service fails, the default specified in the application code
is used instead. Other extensions, such as having launch values
vary depending on unit characteristics (e.g., country) may also be
implemented in a straightforward way.

5.2.2 Workflow for iterative experimentation
We summarize how the tools presented here fit together by de-

scribing an iterative experiment (Figure 5). First, we created a
namespace for a particular user interface, implemented front-end
code to retrieve parameter values from that namespace immediately
before rendering UI elements, and set the default launch values to
settings that had previously been hard-coded in PHP. In our case,
logging for the outcomes of interest was already instrumented, so
no additional instrumentation was needed.

Then, we scripted an initial PlanOut-based experiment and
launched it to a small set of users (experiment 1 in Figure 5). Af-
ter one week of observing that the experiment did not cause sta-
tistically significant decreases in key metrics, this same script was
launched to roughly 8 times the number of users (experiment 2).
Results were initially analyzed using internal tools, and then in
greater detail using R. Because the experiment was expected to have
long-term effects, results from each experiment were analyzed sep-
arately even though they used the same script. We found that the
primary outcomes were clearly worse under parameterizations in-
volving a particular parameter value, and that higher values of a
second parameter appeared to increase one outcome at the expense
of another outcome.

Based on these results, we created a new PlanOut script that did
not include clearly suboptimal parameterizations, and extended the
range of the parameter we hypothesized to represent an important
tradeoff. This new script was launched in a third experiment to an
additional segment of users (experiment 3 in Figure 5), and ana-
lyzed for several weeks.

4From a statistical perspective, it may seem that not counting these
units as part of a control group makes for inefficient analysis. This
is sometimes true, but doing so would place additional require-
ments for standard analyses to be correct (e.g., requirements on
the history of values assigned to units not in experiments). When
these requirements are satisfied, an analyst could make use of that
data as needed.

After considering longer-term results from the three experi-
ments, we decided on a parameterization to use as a default for all
users. We de-allocated all segments, set a new default parameteri-
zation, and created a new, smaller experiment that assigned users to
the new and original parameterizations with equal probability. This
fourth experiment, commonly referred to as a “backtest”, is used to
evaluate the efficacy of the launch decision after a long period of
time.

While this type of backtest is easy to implement and avoids the
potential for downstream errors in analysis, there are a number of
possible ways we could have run the backtest. If a prior experi-
ment (e.g., experiment 3) had reasonable power for the comparison
between the old and new defaults, we could continue to run that ex-
periment and disable all other parameterizations. Users assigned to
disabled parameterizations would take on the new default parame-
terization, but would not be used in the subsequent analysis of the
experiment. This approach can be particularly attractive if the ex-
periment is expected to have time-varying effects, or if one wanted
to minimize changes to individual users’ experiences. A third op-
tion would involve running a new experiment in the unallocated
segments, if there are enough such segments after experiments 1–
3.

5.3 Integration with application code

5.3.1 Application programming interface
At runtime, application code needs to retrieve parameter val-

ues within a namespace for particular units. This can be done
by constructing an object which interfaces with management
and logging components. For example, retrieving the parameter
collapse_story associated with a particular viewer-story pair in
the comment_box namespace might be invoked by instantiating an
experiment object for the input units, and request the needed pa-
rameters:

exp = getExp(‘comment_box’,
{‘viewerid’: vid, ‘storyid’: sty})

collapse_story = exp.get(‘collapse_story’)

The management system would then map the units to a segment
within the comment_box namespace, which gets mapped to an ex-
periment and its respective PlanOut script. The script is executed
with the input data, and if the script that sets a parameter requested
by get(), the value is returned and the event is logged. If the re-
quested parameter is not set, then the parameter default (described
in Section 5.2.1) is used. Because assignment procedures bear
some computational cost, and are generally deterministic, parame-
ter assignments can be cached.

7

5.3.2 Testing experiments and parameter values
When designing experiments, engineers often need to be able to

test a service under a range of parameter values. While PlanOut
scripts can be difficult to interact with directly (as they are not
written in a native language, like PHP), they can still be tested
and debugged in situ with a small amount of additional infrastruc-
ture. In particular, by providing developers with a way to override
or “freeze” parameters so that they maintain a prespecified value
throughout a PlanOut script’s execution, one can test assignment to
conditions even if few units (or combinations of units) are assigned
to them, without modifying any application or PlanOut code.

This functionality can be surfaced to Web developers via URL
query parameters. Freezing the has_feed_stories parameter to 1
in the voter turnout experiment described in Section 4.2.1 (running
within the vote2012 namespace) may then be accomplished by ac-
cessing a URL like:

http://...php?ns_vote2012=has_feed_stories:1

Freezing also allows one to test downstream effects of differ-
ent inputs. Overriding userid or has_bannner may in turn change
whether feed stories are shown. Combinations of parameters can
also be frozen by specifying a list of parameters to be set, e.g.
has_banner:1,has_feed_stories:0. Overrides for mobile appli-
cations or backend services may alternatively be set through server-
side management tools.

5.4 Logging
Logging occurs automatically when get() is called, so that there

is a record of the exposure of units to the experiment. By default,
the namespace, the experiment name, all input data, and variables
set by the PlanOut script are logged. This type of exposure log-
ging has a number of benefits, including simplifying downstream
data analysis and increasing statistical power by distinguishing be-
tween units that may have been affected by assignment and those
that are known to be unaffected. (For example, many users who are
assigned to be in an experiment may not actually arrive at the part
of the site that triggers the manipulation, and thus their outcome
data should not be included in analysis in the normal way.) As with
experimental assignment, caching of prior exposures help reduce
load on experimental infrastructure. It is also sometimes desirable
to log auxiliary information not related to the assignment, includ-
ing user characteristics or events (i.e., “conversions”). This might
be done through a separate method (e.g., log()) in the experiment
object. Exposure logging, combined with the management system,
prevents a number of common pitfalls we have observed at Face-
book. These benefits are discussed in the following section.

6. ANALYZING EXPERIMENTS
While domain-specific aims and especially complex experimen-

tal designs will often require custom analysis, much analysis of
online experiments can be automated in support of their routine
and valid use in decision making. This eliminates common sources
of errors in analysis, makes results more directly comparable, and
reduces the burden of running additional experiments. This kind
of automation is easy to accomplish with PlanOut experiments be-
cause their scripts directly encode a representation of their param-
eters, values, and design. A complete description of accompanying
systems for analyzing experiments is beyond the scope of this pa-
per, but we discuss how the design of PlanOut interacts with com-
mon analyses, automated or not.

Logging only users who have received the treatment (versus an-
alyzing the entire population who could could have potentially be

exposed) improves statistical inference in two ways. First, it can
substantially decrease the variance of estimated treatment effects
when the number of users exposed to an experimental manipulation
is small relative to the number who are assigned (e.g., in the case
of a less commonly used or new feature). This reduces risk of Type
II errors, in which an experiment has an effect, but experimenters
are unable to detect that effect. Secondly, exposure logging focuses
experimenters on a more relevant sub-population whose outcomes
are plausibly affected by the treatment.

Explicit logging of labeled input units and assigned parameter
values affords flexibility in terms of automated analysis. Many
relatively simple designs can be fruitfully analyzed by computing
summary statistics for outcomes of interest for each unique combi-
nation of parameter values. Since parameters are logged for each
exposure, analyses of full or fractional factorial designs that make
use of this structure can also be automated. For example, ques-
tions about main effects of factors (e.g., “does button color have
any average effect?”) can be answered via an analysis of variance.
Representation of the experiment in terms of parameters can also
make it easier to automatically use this structure in estimating ex-
pected outcomes for each condition. For example, systems can fit
penalized regression models with the main effects and all relevant
interactions, thus “borrowing strength” across conditions that have
the same values for some parameters [15]. These types of model-
based inference also help reduce the risk of not being able to de-
tect clinically significant changes. We have found that when these
forms of analyses are not possible, engineers and decision mak-
ers tend to avoid more complex experimental designs, like factorial
designs, because they tend to be underpowered, even though they
have a number of benefits for improving understanding and identi-
fying optimal treatments.

6.1 Analyzing iterative experiments
Iteration on experiments with PlanOut occurs primarily through

creating new experiments that are variants of previous experiments.
By default, these experiments are then analyzed separately, which
avoids several problems that can occur when attempting to pool
data from before and after a change in experimental design. For
example, adding additional users to an existing experiment but as-
signing them to new conditions means that these users are first ex-
posed to their treatment more recently than other users; compar-
isons with other conditions can be biased by, e.g., novelty effects
or cumulative treatment effects.

There are some cases where two similar experiments can be an-
alyzed together. For example, if two experiments’ PlanOut scripts
are identical but have different numbers of segments allocated to
them and are started at different times, they can be pooled to-
gether to increase power, though this changes what is estimated to a
weighted average of potentially time-varying effects. This may re-
sult in underestimation or overestimation of treatment effects, and
highlights the ways in which gradual product rollouts might be bet-
ter represented as experiments. More sophisticated automatic se-
lection of analyses that pool data across experiments remains an
area for future work.

6.2 Units of analysis
Many online experiments use a small number of standard types

of units, for which outcomes of interest may already be available
in data repositories. For example, most experiments at Facebook
involve random assignment of user IDs, and the standard desired
analysis involves analysis of behaviors associated with user IDs.
Other cases can be more complex. For example, an experiment may
randomly assign users and advertisements, userid–advertisementid

8

pairs, to parameter values, but it may be necessary for an analysis to
account for dependence in multiple observations of the same user
or ad to obtain correct confidence intervals and hypothesis tests [2,
11]. Inspection of a script can identify the units for which differ-
ent parameters are randomized, which can be used in subsequent
selection of methods for statistical inference.

7. DISCUSSION
Randomized field experiments are a widely used tool in the Inter-

net industry to inform decision-making about product design, user
interfaces, ranking and recommendation systems, performance en-
gineering, and more. Effective use of these experiments for under-
standing user behavior and choosing among product designs can
be aided by new experimentation tools. We developed PlanOut to
support such scalable, randomized parameterization of the user ex-
perience. Our goal has been to motivate the design of PlanOut
using our experiences as experimenters and by demonstrating its
ability to specify experimental designs, both simple and complex,
from our work and the literature.

One aim of conceptualizing experiments in terms of parameters
and enabling more complex experimental designs is that online ex-
periments can be more effectively used for understanding causal
mechanisms and investigating general design principles, rather than
simply choosing among already built alternatives. That is, PlanOut
aims to support uses of randomized experiments more familiar in
the sciences than in the Internet industry. For example, the primary
purpose of the social cues experiment described in Section 4.1.2 is
not to decide whether it is better to show fewer social cues along-
side ads (doing so was expected to and did reduce desired behav-
iors), but to estimate quantities that are useful for understanding an
existing service, allocating design and engineering resources, and
anticipating effects of future changes.

In addition to being a means for deploying Internet-scale field
experiments, we have found PlanOut to be useful aid for describing
and collaborating on the design of complex experiments, well be-
fore they are deployed. We hope others will also find the notation to
be a clear way describe their experiments, whether in face-to-face
settings or documentation of published research. The PlanOut lan-
guage itself may also be applicable to other types of experiments,
such as those conducted on Amazon Mechanical Turk [25].

There are important limitations to online experiments in general
and PlanOut in particular. As others have argued, randomized ex-
periments cannot effectively replace all other methods for learning
from current and potential users [28] and anticipating effects of fu-
ture interventions [13]. Most notably, random assignment of users
to a new version of a service requires that that version is built and
of sufficient quality. Nielson [28] additionally argues that A/B tests
encourage short-term focus and do not lead to behavioral insights.
While this is perhaps a fair critique of many widespread experimen-
tation practices, PlanOut is designed to run experiments that lead
to behavioral insights, modeling, and long-term learning.

Even though field experiments are the gold standard for causal
inference, their results are also subject to limitations. Because the
underlying effects can be heterogeneous and dynamic, results of a
field experiment from one time and one population may not gener-
alize to new times and populations [5, 23, 35]. One hope that we
have for PlanOut is that it encourages more sophisticated behav-
ioral experiments that allow estimation of parameters that are more
likely to generalize to future interfaces. PlanOut and the associated
infrastructure also make it easy to replicate prior experiments. Fi-
nally, standard experimental designs and analyses do not account
for one unit’s outcomes being affected by the assignment of other
units (e.g., because of for peer influence and network effects) [1,

29]. In the presence of such interference, user behavior can sub-
stantially change post-launch behaviors as connected users interact
with one another [34].

PlanOut has more specific limitations with respect to designs
where one unit’s assignment depends on the assignment of a large
number of other units. Random assignment schemes that involve
optimizing global characteristics of the experimental design are
thus more difficult to implement directly using built-in operators.
This includes pre-stratified or block-randomized designs [8, 16]
that use sampling without replacement in a prior, offline assignment
procedure, but in online experiments these designs usually offer
minimal precision gains.5 Assignment schemes such as graph clus-
ter randomization [34], which involves partitioning the social net-
work of users, require offline computation. In such cases, PlanOut
may simply be a useful framework for providing a consistent in-
terface to accessing information about units (e.g., the results of the
graph partitioning) that has been computed offline through a cus-
tom operator and then assigning parameter values based on that
information. Sequential experimentation techniques, such as multi-
armed bandit heuristics [30] are another such example where cus-
tom operators are generally needed.

We have only briefly discussed how online experiments should
be analyzed. From our experience, the availability of easy-to-use
tools for routine analysis of experiments has been a major factor
in the adoption of randomized experiments across product groups
at Facebook; so the automation of analysis deserves further atten-
tion. This also suggests another area for future research: How
should we best evaluate new tools for designing, running, and an-
alyzing experiments? We have primarily done so by appealing to
prior work, our own professional experiences, and by demonstrat-
ing the expressiveness of the PlanOut language. Deciding whether
an experiment was “successful” or effective can depend on broader
organizational context and hard-to-trace consequences as an exper-
iment’s results diffuse throughout an organization. Some of the
most effective experiments directly inform decisions to set the pa-
rameters they manipulate, but other well-designed experiments can
be effective through broader, longer-term influences on beliefs of
designers, developers, scientists, and managers.

8. ACKNOWLEDGEMENTS
As described here, PlanOut is only a small piece of the broader

set of experimentation tools created by our colleagues. At Face-
book, PlanOut runs as part of QuickExperiment, a framework de-
veloped by Breno Roberto and Wesley May. The perspective we
take on how experiments should be logged and managed is greatly
influenced by previous tools at Facebook and conversations with
Daniel Ting, Wojciech Galuba, and Wesley May. The design of
PlanOut was influenced by conversations with John Fremlin, Brian
Karrer, Cameron Marlow, Itamar Rosenn, and those already men-
tioned. Finally, we would like to thank Brian Davison, René
Kizilcec, Winter Mason, Solomon Messing, Daniel Ting, and John
Myles White for their comments on this paper. René Kizilcec built
the PlanOut GUI in Figure 1(c). John Fremlin built the PlanOut
DSL to JSON compiler.

9. REFERENCES
[1] Aronow, P., and Samii, C. Estimating average causal effects

under interference between units. Manuscript, 2013.
5The differences between the variance of a difference in means
from a pre-stratified design and a post-stratified estimator with a
unstratified design is of order 1/n2 [26]. This difference is thus of
little importance for large experiments.

9

[2] Bakshy, E., and Eckles, D. Uncertainty in online experiments
with dependent data: An evaluation of bootstrap methods. In
Proc. of the 19th ACM SIGKDD conference on knowledge
discovery and data mining, ACM (2013).

[3] Bakshy, E., Eckles, D., Yan, R., and Rosenn, I. Social
influence in social advertising: Evidence from field
experiments. In Proc. of the 13th ACM Conference on
Electronic Commerce, ACM (2012), 146–161.

[4] Bakshy, E., Rosenn, I., Marlow, C., and Adamic, L. The role
of social networks in information diffusion. In Proc. of the
21st international conference on World Wide Web, ACM
(2012), 519–528.

[5] Bareinboim, E., and Pearl, J. Transportability of causal
effects: Completeness results. In Proc. of the Twenty-Sixth
National Conference on Artificial Intelligence, AAAI (2012).

[6] Beenen, G., Ling, K., Wang, X., Chang, K., Frankowski, D.,
Resnick, P., and Kraut, R. E. Using social psychology to
motivate contributions to online communities. In Proc. of the
2004 ACM conference on Computer supported cooperative
work, CSCW ’04, ACM (2004), 212–221.

[7] Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A. D. I.,
Marlow, C., Settle, J. E., and Fowler, J. H. A
61-million-person experiment in social influence and
political mobilization. Nature 489, 7415 (2012), 295–298.

[8] Box, G. E., Hunter, J. S., and Hunter, W. G. Statistics for
Experimenters: Design, Innovation, and Discovery, vol. 13.
Wiley Online Library, 2005.

[9] Bryan, C. J., Walton, G. M., Rogers, T., and Dweck, C. S.
Motivating voter turnout by invoking the self. Proc. of the
National Academy of Sciences 108, 31 (2011), 12653–12656.

[10] Burke, M., Marlow, C., and Lento, T. Feed me: Motivating
newcomer contribution in social network sites. In Proc. of
the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’09, ACM (2009), 945–954.

[11] Cameron, A., Gelbach, J., and Miller, D. Robust inference
with multi-way clustering. Journal of Business & Economic
Statistics 29, 2 (2011), 238–249.

[12] Crook, T., Frasca, B., Kohavi, R., and Longbotham, R. Seven
pitfalls to avoid when running controlled experiments on the
web. In Proc. of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM
(2009), 1105–1114.

[13] Deaton, A. Instruments, randomization, and learning about
development. Journal of Economic Literature (2010),
424–455.

[14] Farahat, A., and Bailey, M. C. How effective is targeted
advertising? In Proc. of the 21st international conference on
World Wide Web, ACM (2012), 111–120.

[15] Gelman, A. Analysis of variance — why it is more important
than ever. The Annals of Statistics 33, 1 (2005), 1–53.

[16] Gerber, A. S., and Green, D. P. Field Experiments: Design,
Analysis, and Interpretation. WW Norton, 2012.

[17] Holland, P. W. Causal inference, path analysis, and recursive
structural equations models. Sociological Methodology 18
(1988), 449–484.

[18] Kohavi, R., Deng, A., Frasca, B., Longbotham, R., Walker,
T., and Xu, Y. Trustworthy online controlled experiments:
Five puzzling outcomes explained. In Proc. of the 18th ACM
SIGKDD international conference on Knowledge discovery
and data mining, ACM (2012), 786–794.

[19] Kohavi, R., Longbotham, R., Sommerfield, D., and Henne,
R. Controlled experiments on the web: Survey and practical
guide. Data Mining and Knowledge Discovery 18, 1 (2009),
140–181.

[20] Kulkarni, C., and Chi, E. All the news that’s fit to read: a
study of social annotations for news reading. In Proc. of the
SIGCHI Conference on Human Factors in Computing
Systems, ACM (2013), 2407–2416.

[21] Lewis, R. A., Rao, J. M., and Reiley, D. H. Here, there, and
everywhere: Correlated online behaviors can lead to
overestimates of the effects of advertising. In Proc. of the
20th international conference on World wide web, ACM
(2011), 157–166.

[22] Li, L., Chu, W., Langford, J., and Schapire, R. E. A
contextual-bandit approach to personalized news article
recommendation. In Proc. of the 19th international
conference on World wide web, ACM (2010), 661–670.

[23] Manzi, J. Uncontrolled: The Surprising Payoff of
Trial-and-Error for Business, Politics, and Society. Basic
Books, 2012.

[24] Mao, A., Chen, Y., Gajos, K. Z., Parkes, D., Procaccia,
A. D., and Zhang, H. Turkserver: Enabling synchronous and
longitudinal online experiments. Proc. HCOMP ’12 (2012).

[25] Mason, W., and Suri, S. Conducting behavioral research on
Amazon’s Mechanical Turk. Behavior research methods 44,
1 (2012), 1–23.

[26] Miratrix, L. W., Sekhon, J. S., and Yu, B. Adjusting treatment
effect estimates by post-stratification in randomized
experiments. Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 75, 2 (2013), 369–396.

[27] Morgan, S. L., and Winship, C. Counterfactuals and Causal
Inference: Methods and Principles for Social Research.
Cambridge University Press, July 2007.

[28] Neilson, J. Putting A/B testing in its place, 2005.
http://www.nngroup.com/articles/putting-ab-testing-in-its-
place.

[29] Rubin, D. B. Statistics and causal inference: Comment:
Which ifs have causal answers. Journal of the American
Statistical Association 81, 396 (1986), 961–962.

[30] Scott, S. L. A modern Bayesian look at the multi-armed
bandit. Applied Stochastic Models in Business and Industry
26, 6 (2010), 639–658.

[31] Shadish, W. R., and Cook, T. D. The renaissance of field
experimentation in evaluating interventions. Annual Review
of Psychology 60, 1 (Jan. 2009), 607–629.

[32] Tang, D., Agarwal, A., O’Brien, D., and Meyer, M.
Overlapping experiment infrastructure: More, better, faster
experimentation. In Proc. of the 16th ACM SIGKDD
international conference on Knowledge discovery and data
mining, ACM (2010), 17–26.

[33] Taylor, S. J., Bakshy, E., and Aral, S. Selection effects in
online sharing: Consequences for peer adoption. In Proc. of
the Fourteenth ACM Conference on Electronic Commerce,
EC ’13, ACM (2013), 821–836.

[34] Ugander, J., Karrer, B., Backstrom, L., and Kleinberg, J. M.
Graph cluster randomization: Network exposure to multiple
universes. In Proc. of KDD, ACM (2013).

[35] Watts, D. Everything Is Obvious: *Once You Know the
Answer. Crown Publishing Group, 2011.

10

