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Abstract: Given a system of m linear inequalities in n unknowns of

the form Ax < b, a constraint index i is called always-active if Ax <

b has a solution and every solution satisfies Aix = b i. Our interest

lies in identifying the set of always-active constraints of Ax b by

solving one linear program generated from the data (A,b).
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Given a system of m linear inequalities in n unknowns, of the

form

Ax < b, (*)

a constraint index i is called always-active if Ax < b has a solution

and every solution satisfies Aix = bi, i.e. the ith constraint is

active in every solution. In large optimization problems where the

constraint set is given by the system (*), identifying the always-

a-ctive constraints before processing the problem enables the user to

explicitly reduce both the dimension of the feasible region and the

number of constraints, and has the potential therefore to simplify the

original problem. Our interest lies in identifying the set of always-

active constraints by solving just one linear program generated from

the data (A,b).

A first attempt (also noted by several of our colleagues) is to

solve

maximize eTy
x,y

Ax+y < b (P1)

0 < y < ce

where e is the vector of ones of appropriate dimension and is

positive and "sufficiently small." A suitable value of seems

however hard to determine. If the data (A,b) is integer (or

rational), then Orlin has pointed out [3] that a sufficiently small 

can be predetermined (using arguments similar to those used in the

ellipsoid method).
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Our first solution is closely related to (P1), and employs

homogenization as similar to those reducing questions about polyhedra

to questions about convex cones. Consider the linear program:

maximize eTy
x,y,a

Ax+y-ba < 0 (P2)

a > 1

We have the following straightforward result:

Proposition 1. If the system (*) is feasible, then (P2) is feasible

and finite, and for any optimal solution (x*,y*,a*) to (P2), the set of

always-active constraint indices is the set ily* = 0). Furthermore,

x*
is an element of the relative interior of (xeRnlAx < b}. If

the system (*) is not feasible, then (P2) is infeasible. [X]

Another linear program that identifies all of the always-active

constraints is obtained through consideration of the following

problem.

maximize t
x,t (P3).

subject to: Ax+et < b

Obviously, (P3) is always feasible, t* < 0 if and only if there is no

solution to (*), and t > 0 if and only if there are no always-active

constraints. When t*=O, it can easily be shown that if x* and X* are

optimal values of (P3) and its dual (D3), namely

minimize XTb
X

subject to: ATX = 0 (D3),

eT = 1

> O
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then if Xi > 0, the ith constraint is always-active, and if Aix* < bi,

than the ith-constraint is not always-active. If we could ensure that

we have a strictly complementary pair of optimal solutions to (P3) and

(D3) (i.e. X i > 0 or bi - Aix*> 0 for each i), then we could identify

for each constraint whether or not it is always-active. This is

accomplished by solving the following linear program:

maximize e

x,X,t,e

subject to:

(1) Ax + et < b

(2) ATX = 0

(3) eTX = 1 (P4)

(4) -bTX + t = 0

(5) X-Ax-et-ee > -b

(6) X > 0

Constraints (1) represent primal feasibility, constraints (2), (3) and

(6) represent dual feasibility, contraint (4) represents strong

duality, and a positive value of in constraints (5) represents

strict complementarity of X and (b-Ax) when t=0. Tucker's strict

complementarity theorem [4] ensures that a positive value of e will

exist if (*) has a solution. We have:

Proposition 2. If (P4) is infeasible, then (*) has no always-active

constraints. If (P4) is feasible, then it is finite, and for any

optimal solution (x*,X*,t*,e*), we have:

(i) If t = 0, the set of always-active constraint indices is the

set (i*kXi > 0) and x* lies in the relative interior of

{xERnAx < b).
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III

(ii) If t* > O, there are no always-active constraints.

(iii) If t* < 0, the system (*) has no solution. [X]

Instead of the system (*), we could have worked with the system

Ax=b, x> O, (**)

whereby the always-active constraints would correspond to null

variables of (**), i.e. variables xj such that xj=O in every solution

to (**), see Luenberger [2]. Determining null variables is also of

interest in the recent linear programming algorithm of Karmarkar [1].
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