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Projective Transformations for Interior Point Methods, Part I:

Basic Theory and Linear Programming

Abstract

The purpose of this two-paper study is to broaden the scope of projective
methods in mathematical programming, both in terms of theory and algorithms.
We start by generalizing the concept of the analytic center of a polyhedral system to
the w-center of a polyhedral system, which stands for weighted center, where there
are positive weights on the logarithmic barrier function for each inequality constraint
defining a polyhedron X . We prove basic results regarding contained and
containing ellipsoids centered at the w-center of the system X . We next shift our
attention to projective transformations for transforming the polyhedron X to
another polyhedron Z that turns the current point x into the w-center of the new
polyhedron Z . We work throughout with a polyhedron X that contains both
inequality and equality constraints of arbitrary format. We exhibit an elementary
projective transformation that transforms the current point x to the w-center of Z.

This theory is then applied to two different problems: solving a linear program
(of arbitrary form) and finding the w-center of a polyhedral system. Both problems
are instances of a canonical optimization problem involving a weighted logarithmic
barrier function. To solve a linear program, we minimize a weighted potential
function, and proceed as in other projective transformation algorithms for linear
programming. The advantages of our method are twofold. First, the algorithm is
completely general regarding the format of the linear program, and so naturally
accommodates equality and inequality constraints, upper and lower bounds, etc.
Second, it works with a weighted potential function, that intrinsically rescales the
problem in favor of the constraints with the largest weights. Thus, if the user has any
prior judgements regarding the likelihood of particular constraints being active in the
optimal solution, this judgement can be easily and systematically incorporated into
the formulation of the potential function, and hence into the algorithm itself. The
algorithm and analysis for the problem of solving the w-center of a polyhedral system
is presented in Part II of this study.

Keywords: analytic center, w-center, projective transformation, linear
program, ellipsoid, barrier penalty method.
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I. Introduction

The purpose of this two-paper study is to broaden the scope of projective

methods in mathematical programming, both in terms of theory and algorithms. We

start by generalizing the concept of the analytic center of a polyhedral system to the

w-center of a polyhedral system, which stands for weighted center, where there are

positive weights on the logarithmic barrier function for each inequality constraint

defining a polyhedron X . We prove basic results regarding contained and

containing ellipsoids centered at the w-center of the system X . We next shift our

attention to projective transformations for transforming the polyhedron X to

another polyhedron Z that turns the current point x into the w-center of the new

polyhedron Z . We work throughout with a polyhedron X that contains both

inequality and equality constraints of arbitrary format. We exhibit an elementary

projective transformation that transforms the current point x to the w-center of Z

This theory is then applied to two different problems: solving a linear program

(of arbitrary form) and finding the w-center of a polyhedral system. Both problems

are instances of a canonical optimization problem involving a weighted logarithmic

barrier function. To solve a linear program, we minimize a weighted potential

function, and proceed as in other projective transformation algorithms for linear

programming. The advantages of our method are twofold. First, the algorithm is

completely general regarding the format of the linear program, and so naturally

accommodates equality and inequality constraints, upper and lower bounds, etc.

Second, it works with a weighted potential function, that intrinsically rescales the

problem in favor of the constraints with the largest weights. Thus, if the user has any

prior judgements regarding the likelihood of particular constraints being active in the
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optimal solution, this judgement can be easily and systematically incorporated into

the formulation of the potential function, and hence into the algorithm itself.

In Part II of this study, the basic theory of Part I is applied to the problem of

finding the w-center of a polyhedral system X . We present a projective

transformation algorithm, analagous but more general than Karmarkar's algorithm,

for finding the w-center of X . The algorithm exhibits superlinear convergence. At

each iteration, the algorithm either improves the objective function (the weighted

logarithmic barrier function) by a fixed amount or at a linear rate of improvement.

This linear rate of improvement increases to unity, and so the algorithm is

superlinearly convergent. At each iteration, the algorithm either detects

unboundedness, or updates an upper bound on the optimal objective value of the

weighted logarithmic barrier function. The direction chosen at each iteration is shown

to be positively proportional to the projected Newton direction. This has two

consequences. On the theoretical side, this broadens a result of Lagarias regarding the

connection between projective transformation methods and Newton's method. In

terms of algorithms it means that our algorithm specializes to Vaidya's algorithm if it

is used with a line search, and so we see that Vaidya's algorithm is superlinearly

convergent as well. Finally, we show how to use the algorithm to construct well-

scaled containing and contained ellipsoids centered at near-optimal solutions to the

w-center problem. After a fixed number of iterations, the current iterate of the

algorithm can be used as an approximate w-center, and one can easily construct

well-scaled containing and contained ellipsoids centered at the current iterate, whose

scale factor is of the same order as for the w-center itself.
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The W-Center of a Polyhedral System

In [ 13 ], Karmarkar simultaneously introduced ideas regarding the center of a

polyhedral system, a projective transformation that centers a given point, and a

linear programming algorithm that uses this methodology to decrease a potential

function involving an objective function component and a centering component.

Karmarkar's ideas have since been generalized along a number of lines, both

theoretical and computational. Herein, we expand on Karmarkar's methodology in

at least two ways. First, we analyze the w-center of a polyhedral system

X = {x E R n I Ax < b, Mx = g} , defined as the the solution x to the following

optimization problem:

m
Pw: maximize ] w i ln s i

i=l

s.t. Ax+s =b

s> 0

Mx =g.

Note that P is a generalization of the analytic center problem first

analyzed by Sonnevend [ 20 ], [ 21 ]. Also note the P is defined for the most

general polyhedral representation, namely inequality as well as equality

constraints of arbitrary form. In P , the weights w i can be arbitrary positive

scalars, and for convenience they are normalized so that X w i = 1.
i=l

Let w = min {wi} . The main result for the w-center problem is that if x is the
i

w-center, then there exist well-scaled containing and contained ellipsoids at x as

follows. Let X = {x E R n I Ax <b, Mx = g} . Then there exist ellipsoids EIN
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and Eou T centered at x ,for which EIN c X c EOUT , and (EIN- X) =

( w/(1 - w))(EOUT - x ), i.e., the inner ellipse is a scaled copy of the outer ellipse,

with scaling factor w/(1 - w) . When all weights are identical, w = (1/m) e

and w = 1/m, and the scaling factor is w/(1- w) = 1/(m-1) . Essentially, the

scaling factor w/(1 - w) is (almost exactly) proportional to the smallest

(normalized) weight w i

Projective W-Centering for Problems in Arbitrary Form

Numerous researchers have extended Karmarkar's projective transformation

methodology, and and this study broadens this methodology as well. Gay [ 9 ] has

shown how to apply Karmarkar's algorithm to problems in standard form, and how

to process inequality constraints by implicitly converting them to standard form.

Later, Gay [ 10 ] shows how to process problems in standard form with upper and

lower bounds, as does Rinaldi [ 18 ]. Bayer and Lagarias [ 4 ] have added to the

theorectical foundations for linear programming by showing that for inequality

constrained problems, there exists a class of projective transformations for centering

a polyhedron about a given interior point x . However, their result is not

constructive. Anstreicher [ 2 ] has shown a different methodology for processing

problems in standard form, and in [ 7 ] the author gives a simple projective

transformation that constructively demonstrates the result of Bayer and Lagarias.

Even though linear programs in any one form (e.g., standard primal form) can be

either linearly or projectively transformed into another form, such transformations

can be computationally bothersome and awkward, and lack aesthetic appeal.

Herein, we work thoughout with the most general polyhedral system, namely

X = {x E R n I Ax < b, Mx = g . It obviously contains all of the above as special

cases, without transformations, addition or elimination of variables, etc. In sections



III and IV of this paper, we present an elementary projective transformation that

projectively transforms a general polyhedral system

X = {x E R n I Ax < b, Mx = g) to an equivalent system

Z = {z E R n I Ax < b, Mx = g) , and that results in a given point x (in the relative

interior of X ) being the w-center of the polyhedral system Z . The approach taken is

based on classical polarity theory for convex sets, see Rockafellar [ 19 ] and Griinbaum

[12 ].

A Canonical Optimization Problem

The results on the w-center problem are applied to the following canonical

optimization problem:

Pqp: minimize Fq p() = ln(q-pTx) - w i ln (b i- A ix )
x, s i=l

s.t. Ax + s =b

s>O

Mx = g

pTX < q

where X = {x E R n I Ax<b, Mx= g} is given. Note that problem Pq,p has two

important special cases: linear programming and the w-center problem itself. If

p = c is the objective function of a linear program maximization problem defined on

X = {x R n I Ax < b, Mx = g} , and if q is an appropriate upper bound on the

optimal objective function value, then Pq,p is just the problem of minimizing

Karmarkar's potential function (generalized to nonuniform weights w i on the

constraints). If p = 0 and q = 1, then Pq,p is just the w-center problem P In
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section V of this paper, we present a local improvement algorithm, completely

analagous and a generalization of Karmarkar's algorithm, for solving Pq,p

A General Linear Programming Algorithm

In Section VI of this paper, the previous results are specialized to linear

programming. Herein, we solve the problem

LP: maximize cTx

s.t. Ax < b

Mx = g

by means of weighted potential functions of the form

ln(U - cTx) - I wi ln(bi - Aix)
i=1

where U is a current upper bound on the optimal objective value, and the weights

w i are prespecified. The methodology for updating U is an extension of Todd and

Burrell [22 ]. It is shown that the number of iterations of the algorithm is

O( (1/w )L ), where L is the size of the instance of the linear program, and

w = min {wi} . Thus if w = (1 /m) e, the worst-case bound is O(mL), completely

analagous to other primal projective transformation algorithms for linear

programming.

The main contributions of this algorithm are twofold. First, it is completely

general and can readily be implemented for problems in arbitrary form, without the

addition or elimination of variables, constraints, etc. Second, it is general in terms

w i . These weights can be chosen beforehand to reflect a user's priorof the weights
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judgement regarding the relative likelihood that a given constraint will be active (or

lie near) the optimal solution set. The ability to choose values of weights

beforehand has a negative and a positive consequence. On the negative side, the

worst case bound on the number of iterations is increased by choosing widely

varying weights, which will force 1 /w > > m. On the positive side, the weights

are a means to systematically and permanently rescale the problem so that

constraints of relative prior-judged importance are accorded that importance. This

permanent rescaling can be seen best as follows: in the absence of equality

constraints, the direction at a give iteration of the algorithm is computed using the

matrix Q = AT S 1W S-1A , where S 1 is the diagonal matrix of inverses of the

slack variables s = b - A x for the current point x , and W is the diagnonal

matrix with diagonal entries w 1 ,..., wm . The weights therefore scale the

contribution of the matrix AiTAi/ si2 to the matrix Q, wehre A i is the ith row of

A. This is directly analagous to rescaling the problem in an affine scaling algorithm,

see [ 6 ], [ 3 ], [ 25 ]. Karmarkar's algorithm and other algorithms based on centers

implicitly assign equal weight and likelihood to any constraint being active in the

optimal solution. The methodology developed herein is designed to add flexibility

in this assignment.

An Algorithm for the W-Center Problem

Part II of this study [ 8 ] applies the methodology and theory regarding the w-

center, projecting to the w-center, and the local improvement algorithm for the

canonical optimization problem Pq,p , to an algorithm to solve the w-center

problem Pw . Other algorithms for this problem have been developed by Censor

and Lent [ 5 ] and by Vaidya 23 ]. We present a projective transformation algorithm

for finding the w-center that uses the exact methodology used for problem Pq,p and
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for linear programming. The algorithm can be run with either a fixed steplength (in

the projective space) or with a line search.

This algorithm produces upper bounds on the optimal objective value at each

iteration, and these bounds are used to prove that the algorithm is superlinearly

convergent. We also show that the direction chosen at each iteration is

proportional to the projected Newton direction. Thus, if the algorithm is run with a

line search, it specializes to Vaidya's algorithm. Although Vaidya has shown that

his algorithm exhibits linear convergence, our approach and analysis demonstrate

that his algorithm is actually superlinearly convergent, verifying a conjecture of

Vaidya [ 24 ] that his algorithm might exhibit stronger convergence properties.

We also show that after a fixed number of iterations of the algorithm, that

one can construct "well-scaled" containing and contained ellipsoids at the current

iterate of the algorithm. If x X = {x E R n I Ax <b, Mx = g} is the current

iterate, one can easily construct ellipsoids FN and FOUT centered at x , with the

property that FIN CXC FOUT ,and (FoUT - x)= (1.75/w + 5) (FIN - x).

When all weights are identical, then this scale factor is (1.75m + 5) which is O(m).

In general, the order of this scale factor is O(1/w), which is the same as for the

ellipses EIN and EOUT centered at the optimal solution to Pw , whose scale factor is

(1 - w)/w = 1/ w -1.

Notation

Throughout this paper, A is an m x n matrix with m > n and M is a

k x n matrix with k < n. If s or w are m-vectors, then S or W refer to diagonal

m x m matrices whose diagonal entries are the corresponding components of s or w.
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Let e denote the vector of ones of appropriate dimension, and let e i denote the ith

unit vector.

II. The W-Center of a Polyhedral System

For given data (A, b, M, g), let X = x E R n

polyhedron, bounded or not, lying in R n. Let

(X;S ) = {(x,s) R x R m

I Ax<b,Mx=g}. X

I Ax+s=b, s0, Mx=g} and

S = {s R m I s > 0, s = b - Ax for some x satisfying Mx = g} . We will often refer to S

as the slack space of X or the slack space corresponding to X.

We define int X as the interior of X relative to the affine space

{x E R n I Mx = g}, and we define int (X; S ) =

{(x,s) R n x Rm I Ax + s = b, s > 0, Mx = g} and int S analogously.

Note that if X is bounded, so is S; and if S is bounded, either X is bounded or

contains a line. In either case, we say that X has bounded slack. If A has full rank, X

is bounded if and only if S is bounded.

Let w E R m be a vector such that w > 0 and w has been normalized so that

eTw = 1.

Consider the problem

Pw: maximize

s.t.

Zwi In s i
i

Ax+s =b

Mx = g

s> 0.

then is a
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This problem is a (weighted) generalization of the analytic center problem,

posed by Sonnevend [ 20 ], [ 21 ], and used extensively in interior point algorithms

for solving linear programming problems, see Renegar [ 17 ],

Gonzaga [ 11 ], and Monteiro and Adler [ 15 ], [ 16 ], among others.

Under the assumption that X is bounded and int X , then P will have a

unique solution, x, which we denote as the w-center of the polyhedral system X. To

be more precise, we should say that x is the w-center of the linear system defined by

(A, b, M, g), since the solution x to P is a function of the particular polyhedral

representation of X as the intersection of halfspace and hyperplanes, and not just of

the set X. However, it will be convenient in terms of notation to refer to x as the

w-center of X, as long as it is understood that X represents a specific intersection of

halfspaces and hyperplanes. The Karush-Kuhn-Tucker (K-K-T) conditions are

necessary and sufficient for optimality in Pw, and thus x is the w-center of X if and

only if x satisfies

(2.1a) A x+ s =b

(2.lb) Mx =g (2.1)

(2.1c) s>0

(2.1d) w T S' 1 A = TM for some r e Rk

Let w =min {wi} be the smallest component of w. Note w< 1/m

because of the normalization condition eTw = 1. Generalizing Sonnevend [ 20 ],

[21], we have the following properties of the w-center of X, that characterize inner and

outer ellipsoids centered at x.
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Theorem 2.1. Let X = {x E R I Ax < b, Mx =g} ,and let x be the w-center of

X. Let EIN = {x e R I Mx = g, (x- x)TAT S-lw S-1A(x- x) < w/(1- w) I

and EoT = {xE R n I Mx=g, (x- x)TAT S-1W S-1A(x- x) (1- w)/ w

Then EIN C X c EOUT 

Before proving this theorem, we make the following remark:

Remark 2.1. (EIN- x ) = ( W/(1- w))(EouT - x ) , i.e., the inner ellipse is a scaled

copy of the outer ellipse, with scaling factor w/(1- w). If w=(l/m)e,then

w = 1/m, and so the scaling factor is

The proof of Theorem 2.1 is a

Proposition 2.1.

{se Rm I

w/(1- w) = 1/(m-1)

ided by the following three propositions:

If x is the w-center of X, then S lies in the simplex A w =

s > O, wT S-1 s = }

Proof: If se S,then wT S-1 s = wT S-1 (b - Ax) for some x X, and so

wT S-ls=w S -1 ( s + A x - Ax) = wT S-1 + wT S- A(x- x) From (2.1d),

this latter expression equals wT TM(x- x) = wT = wT e = 1, since

M(x- x) =g-g=O.

Proposition 2.2. Suppose r e Rm and r satisfies

rTWr < w/(1- w). Then Iri < 1 for each i.

It suffices to show that r i < 1, i = 1,..., m. For each i, consider the

max ri

s.t. rTWr < wj/(1 - wi)

wTr = O.

.

Proof.

wTr = O and

program

(a)

S-1 S-1

(V)
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The optimal solution to this program is

r* = (1/(1 - w i ))( -w i e +

a = (1 - w i )/(2w i) and

ei = 2cxWr + 3w. Notice that ri = 1.

wj/( - wi)

e i ) , with K-K-T multipliers

, = 1 , which satisfy the K-K-T conditions

Thus if rTWr < w/(1- w) 

Uand wTr = 0 then r i < 1.

Proposition 2.3. Let x be the w-center of X. If s E RM satisfies wT S-ls = 1

(s- s )T S-lW S-l ( - s) w/(1 - w) , then O < s i < 2 s i.

Proof. Let s be as given in the proposition. Let r= S-l(s - s).

hypotheses of Proposition 2.2, and hence

Thus O < s i < 2 s i

Then r satisfies the

I ri I

.

Proof of Theorem 2.1. We first prove that X c EOUT By Proposition 2.1, S c A?.

The extreme points of Aw a:

point satisfies (( i/W i ) ei -

(1- w)/ w.

( si/w i ) ei , i = 1,..., m. Note that each extreme

s) S-1W S-1 (( si/w i ) ei - = (I-w )/Wi

Thus, by the convexity of A w , every se S

(s- )T S-1W S- 1 (s- s)

(x- x)AT S-1W S-1A(x-

< w/(1 - w) But (s- s)=-A(x- x),so

x) w/(1- w) . This shows that X c Eour

We next show that EIN cX. Let x e E EN, and let s be the slack

corresponding to x, i.e., s = b - Ax.

(x- x)AT S-1W S-1A(x- x) <

Then (s- s)T S-1W S-1 (s-

w/(1- w).

Also, similar to Proposition 2.1, it is straightforward to show that

and

satisfies

s) =

< 1, i M., m



wT S-1s = 1. Thus by Proposition 2.3, s > 0.

Mx = g. Thus x E X.

Thus Ax < b, and since x e EIN,

.

Proposition 2.4. Let x be the w-center of X. For each i = 1,.. ., m, for any

(b i - Aix) <

For any x eX, let s = b- Ax. By Proposition 2.1,

so Si ( si/w i ) ,i.e., b i -Aix < ( si/w i )

wT S-1 s = 1, s 0,

.

Remark 2.2. Assume that X is bounded and int X • o. Given w > 0, the w-center

of X is unique. However, for a given vector x, there will be many weight vectors w

such that x is the w-center. Let s be the slack at x. If

{w E R I w > 0, and x is the w-center of X =

s > 0, then

{w R I w > 0, and wT S-1A = TM for some x E Rk}.

The above remark serves as a basis for the following intriguing composition

theorem.

Theorem 2.2. Let X = {x I Ax < b, Mx = g} and assume X is bounded and

int X o,and let X = R I ATX = MTi for some rX Rk, > 0} .

Then for any w E R m , w > 0, there is a unique slack vector s e S and a

unique Xe EX such that w i =

Proof. For a given w R, w > 0, let x be the (unique) w-center of X and s

its corresponding slack. Then upon setting = S- l w, we have by (2.1) that

TA = TM for some X E Rk.

13

xE X,

Proof:

si/wi

xi i, __11... IM.

.
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The last result of this section characterizes the behavior of the weighted-

logarithmic barrier function I
i=l

w i n (b i - Aix) near the w-center of X. This

lemma parallels similar results for the uniformly weighted center in Karmarkar [ 13 

and Vaidya [ 23 ]

Lemma 2.1. Let x be the w-center of X, let

direction that satisfies Md = 0 , and

s =b-A x,andlet de R n bea

dTAT S - l W S- Ad < w). Then for all

a satisfying 0 a < 1,

w i In (b i - Ai( x + ad))
i=1

The proof of Lemma 2.1 makes use of the following inequality, repeated here as

Proposition 2.5. If Iel < ca < 1, then n (1 + ) E

Proof: The Taylor series for In (1 + e) yields

in (1 + ) = -

J

-= C- I2
2(1 - I 1)

2

2(1 - a)

Proof of Lemma 2.1: Let r= S -1 Ad. Then wTr = wT S - 1 Ad =

some 7r E Rk by (2.1d). Furthermore rTWr < w/(1-

Iril < 1, i=l,...,m.

w) . Thus by Proposition 2.2,

m

Now, 
i=l

W i In (b i - Ai( x + ad))

m
I=
i=1

W i ln( s i)
2 c)

2(1 -)
(1w
1I- w)

£2

2(1 - a)

(-)j

Y_, j
00 iIj

j=2 

2i
22- 

j=2

r TMd = O0for

m

i=1
Wi n ( si (1 -a ri ))
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m m
= Z wiln( si) + s wiln(l -ri)

i=l i=l

m m m (a ri)2

> C wiln ( si) + i 2(1-) (by Proposition 2.5)
i=l i=1 i=l

m a 2 rTWr
Wi In si - awTr - 2(1 - a)

i=l

m - a2 w

wi ln 2(1 ) (1- w)
i=l

III. Projective Transformations

The approach to projective transformations developed herein is based on polars

of convex sets, see e.g. Rockafellar [ 19 ] and Griinbaum [ 12 ]. In order to motivate and

clarify the exposition, we will (for the moment) assume that X = { x E R n I Ax < b)

has an interior and is bounded (and hence, in the notation of the paper, that (M,g) is

nil).

Let x be a given element of int X ,and s = b - A x. Then the polar of

(X- x) is given by = {y R n I yT(x- x) 1 for all x X} and

by a theorem of the alternative, this is equivalent to

tj= {y E R n I y=ATXforsome > 0 satisfying XT s= 1}. Thus y consists of

nonnegative weighted combinations of rows of A, where the weights must satisfy

T s = 1. Note also that the set J should formally be subscripted by x, since it

depends parametrically on x through the slack s. However, for notational

convenience, we will not use this subscript, except where the choice of x E int X is

not clear from the context.

The following properties of 1J can readily be established, see [19] or [12].

(3.1a) tJ is a combinatorial dual of X.
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(3.1b) is bounded.

(3.1c) tJ contains the origin in its interior.

(3.1d) For any y int t , yT(x- x) < 1 for all x E X 

(3.1e) int

(3.1)

= y y = ATX for some X >0 O satisfying XT s = 1}.

Property (3.1e) gives a convenient way to generate points in int yJ, namely by

taking strictly positive combinations X of rows of A, for which X > 0 and T s = 1.

We now consider a projective transformation of X by using a vector y in the

interior of y,as follows. Let x E int X be given, and y E int 1J be given. Let the

projective transformation g() : X - Rn be defined by

z= g(x) =

Note that because

x- x

1-yT(x - x) 

yT(x- x) <1 for all x X

for all x X.

(because yE int ty ), then g()

is well-defined.

To see that

g(x) =

g() is a projective transformation, rewrite

(I- yT)x + ( xyT x)

(-yT)x + (1 + yT x)

Also note that g( x) = x, i.e. g(.) leaves x fixed, and that g(.) preserves

directions from x,i.e., if x + ad X,then

g( x + cd) - g( x) = yd for some

Let Z be the polyhedron

Z = {z E R n I (A- syT)z < b- syT x}

define (Z;T) = {(z, t) R n x R m I (A- syT x)z +t = b- syT x, t> 2 O

g() as

y >0.

and
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and T analogously. The following lemma shows the equivalence of (X; S)

under the projective transformation g(-).

and.(Z; T)

Lemma 3.1. Let X = {x R I Ax < b} be bounded, and let x E int X be given, and

y E int tj be given. Let Z= {z E Rkl (A- syT)z _b- syT x . Then

i) The projective transformation g(x) = x +
X- X

1 - yT(x- x )
maps X onto Z,

the faces of X onto faces of Z, and Z is of the same combinatorial

ii) The inverse of g(-), given by x = h(z) =

Z onto X.

Z- X

1 + yT(z- x)

Proof. Because y E intt / yT(x- )<1 for all x E X , so g(.) is

well-defined. If z = g(x), then

(A- syT)z = A x- syT x +

<Ax- sy x

= Ax- syTx+

Ax- syTx -A x + syT x

1-yT(x- x)

+
b- syTX - Ax +

1-yT(x- x)

syT xSy X

s=b- YTX,s- b- sy ,

so z Z . Furthermore, the inequality in constraint i of Ax < b is satisfied strictly

or not if and only if the same inequality is satisfied in (A - syT)z c

b- syT x. It is straightforward to show that h(.) is the inverse of g(-) and both maps

then are onto. U

g(.) maps

type as X .

maps
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Remark 3.1. If we use the symbol P to denote the polar of a set P, then

y = (X - x )° . Then Lemma 3.1 is a constructive representation of the fact that the

translation of the polar X ° of X is equivalent to a projective transformation of the

set X, see Griinbaum [ 12 ]. One can easily verify in Lemma 3.1 that = (X - x )°,

and Z - x is the polar of the translated polar ( (X - x)° - y) , i.e.,

Z= x+ [(X - x)° y] .

Lemma

X = x R n I

3.1 easily extends to the more general case of X, i.e.,

Ax < b, Mx = g}, where X is not necessarily bounded.

Define

(Z; T) = {(z, t) R n x R m I (A- syT)z + t= b- syT x, t> O, Mz = g}

with Z and 7 defined analogously.

The maps g(.) and h(.)

(Z; T) as follows. For (x; s) E

can be extended to map between (X; S) and

(X; S) define

(z, t) = g(x; s) = x +
x- X

1-yT(x- x )'

5

1 -yT(x- )
D e (Z;T).

For (z; t) (Z; 7) , define

(x, s) = h(z; t) = x +
z- x t

1 + yT(z- x)' + yT(z- x)
E (X;S)

If g(.) and h(.) are given by (3.3) and (3.4), we will refer to y as the projection

parameter for g() and h(.), and will refer to g(-) and h() as the projective

transformation induced by y. It is straightforward to verify that g(x; s) E (Z; T) and

h(z, t) E (X; S) . We shall refer to g(x), g(s), h(z), h(t) as specific vector components of

the above maps.

(3.2)

(3.3)

(3.4)
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In the case when X is bounded, Lemma 3.1 directly extends to:

Theorem 3.1. Let X e {xe R I Ax<b, Mx=g} beabounded

polyhedron. Let x intX be given, and let s =b-A x. Let y e R n be chosen so

that

for some > 0 satisfying T s =1. Let (Z; T) g(.), and h(.) be defined

as in (3.2), (3.3), (3.4).

i) The transformation g(x; s) is well-defined for all (x; s) E (X; S) .

ii) g(.;.) maps (X;S) onto the set (Z; T), and

Z and X are of the same combinatorial type.

iii) the inverse of g(.;.) is given by h(.;-) and h(.;.) maps (Z; T)

onto (X; S) . .

The proof of Theorem 3.1 is the same as that of Lemma 3.1. One need only

check that Mz = g if and only if Mx = g.

Theorem 3.1 has assumed that the set X e {xe Rn I Ax<b, Mx=g}

bounded. In applying the theorem to polyhedra encountered in practice, this may not

be a valid assumption, and one may not even know whether the set X is bounded

or not.

Theorem 3.2. Let X E {x R I Ax<b, Mx=g},let

given, and let y E R be given such that y = ATk, k > 0, XT s = 1. Let (Z; T), g()

and h() be defined as in (3.2), (3.3), and (3.4).

y = ATX

Then:

is

x E intX be

Then:
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i) The projective transformation g() induced by y is well-defined for all

(x; s) int (X; S) .

ii) g() maps int X onto int Z r {z R n I _yTz < 1 _ yT }

iii) The inverse of g() is given by h(.), and maps

intZ r {z R n I _yTz < _yT x} onto int X.

Proof. Suppose y = ATX where 0 and T s = 1. To prove (i) it suffices

to show that yT(x - x)

s =b- Ax.

< 1 for all x E int X .

Then s>0. yT(x- x) = TA(x- x) <

For any x E int X , let

Tb - TA = s= 1.

To show (ii), note that for any x E X, if z = g(x), then

T -y X +
-yT(x- x)

1 - yT(x - x)

I -yT <

-yTz =

< -yT x + 1, so that

1 -yT x} Also if x int X, then t = g(s) > 0, so that

g(x) E int Z . The proof of (iii) follows by direct substitution. 

Remark 3.2. Points in Z that satisfy -yTz = - yT x correspond to rays of X .

To see this, suppose z Z

r=z- x0.

and -yTz = 1- yT x.

Because z Z,(A- sy )z < b- sy

Then z x, so that the vector

r x and hence Az <

syTz. Then Ar = Az-A x < b-A x - syT x +

s- syT x + s(-I +yT x) = 0.

Suppose we are given data

A A A:
X = x Rn I A:

Thus r isarayof X.

- yTz
sy Z=

.

( ,b, M, and consider the set

x A A ,Mx= < b ·Mx g.

Define A to be the m x n matrix consisting of

zeroes, and define b = (, 1 )

A
A followed by a row of

, where m is chosen appropriately. Then

X= {x E Rn I Ax<b, Mx=g}

g(x) {z R n

b- syx +
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A
is equal to X , and the last constraint of Ax < b is Tx < 1 which is satisfied at strict

equality for all x. Now define (X; S) and (Z; T) as usual. Then Theorem 3.2 can

be strengthened.

Theorem 3.3. Let X = {x E R n I Ax < b, Mx = g} where the last (i.e., mth) row

of (A, b) is (0; 1 )T. Let x int X , let y = AT) for some A > 0 satisfying XT s= 1, and

let (Z; T) , g(.) and h(.) be defined as in (3.2), (3.3), (3.4). Then

i) The projective transformation g() given by (3.3) is well-defined for all

(x, s) (X, S) .

ii) g(.) maps int X onto int Z and maps faces of

Z that do not meet {z e R n I (A- syT)mz

iii) The inverse of

X onto those faces G of

=(b- syTx)m

g() is given by h() in (3.4), and h(.) maps intZ

int X . h(.) maps faces of Z that do not meet

(A - sy')mz

iv) If ze Z and (A- syT)

= (b - syT )ml onto bounded faces of X .

mz = (b- syT x)m, then r=z- x is a ray of

Proof: (i). If the last row of (A, b) is (0; 1)T, then the last row of the equivalent

constraint in (A - syT)z < b - syT x is -yTz < yT x. To prove (i), note that if x

E X,s = b- Ax, then sm = 1. Thus yT(x - x) = XTA(x- x) < Tb - A x =

XT s= 1, the strict inequality following from the fact that > 0 and Ax < b, Ax • b

due to the mth constraint. Thus g(-) is well-defined.

{z e Rn I

onto

X.
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(ii) Let F be afaceof X . Let x F and z = g(x).

Then -yTz = _yT x +
-yT(x x)

1-yT(x- x) < _yTx + 1 for all x E F. The mth
1 yT~x- x)

constraint of (A - syT )z < (b yT x) is just yTz < 1 - yT x. Thus no element z of

g( F) satisfies (A - SyT)m Z < (b - yT )m at equality.

(iii). Suppose z lies on a face G that does not meet

z E R n I (A - sy I)m Z SyT)m} ·

Then for all z E G, -yT z < 1 - yT x, so that 1 + yT (z- x) > 0, and h(.) is

well-defined on G. In order to show that h(G) is a bounded face of X, it suffices to

show that Z is bounded.

Let (z, t) E (Z; T). Then since y = AT, X > 0, and T s= 1, then for any t E T,

T t = T(b- sy T x) - XT(A-

= T(A x + s- sy T ) =

syT)z = T(b syT x)

XT s = 1, since XT(A - syT)= O and XT s=l.

Then the slack corresponding to z is bounded, lying on the simplex

{t E Rm l tO, XTt= ). Hence any ray r of Z would have to satisfy

(A- syT)r = 0. The last row of this system says -yTr = 0. Thus Ar = 0, and since A is

assumed to have full column rank, r = 0, and Z contains no rays, so is bounded.

(iv). This follows from the comments in Remark 3.2. .

We now comment on the generality of the projective transformation g(.)

presented in (3.3). Although it would appear that g(.) takes on a very restrictive form,

The next theorem shows that if g() is any projective

*1

this is not really true.
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transformation of X into R that leaves x fixed and preserves directions from x,

then g() can be expressed as in (3.3) for a suitable choice of y = AT) that satisfies

k20 and T s<1.

Theorem 3.4. Let X= {x R I Ax<b, Mx=g} be given, and let

be given. Let g(x) be a projective transformation from X into R n

1) g( x) = x, i.e., g(-) leaves

lim g( x +ad)-g(x)
a-O ry

that satisfies

x fixed,

= d, i.e., g(-) preserves directions from x.

Then there exists y E R n such that y = ATX, X 2 0,

- (x- x)
g(x)= x + - for all xeX.

1-yT(x x)

Proof: If g():

XT S < 1, for which

X -- R n ,then

Gx + h
g(x)=-kTx + 

for some n xn matrix G, n-vectors h and k, and scalar 1. By rescaling, if

necessary, we can assume that -kT x + = 1, so that the denominator is of the form

Then since g( x) = x, h= x-G x, so that

G(x - x) + x
g(x) =_kT(x - x) + 1

g( x + d)-g( x) (G + xkT)d

1- a kTd

lim
c-->O

(G + xkT)d
1 - kTd

= (G+ xkT)d =

implies G can be chosen so that

2)

xe intX

1- kT(x - x) .

Then and

d
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G =(I - xkT)

This yields g(x) =
(I- xkT)(x- x)+ x

1 - kT(x- x)
_- X-- X
X +)

1-kT(x- x)

Now, since g(.) must be well-defined, kT(x-

theorem of the alternative, this implies that k = ATX

XT s< 1, and r unrestricted in sign. Let y = ATX.

kT(x - ) = ky, since M(x - x) = 0, so that

x) <1 for all x X. Bya

+ MTr for some X 0, with

Then for all x X,

X- X
g(x) = x + T(X 

1 - yT(x- x)

In Section V, we will consider an optimization problem of the form

F(x) = In (q - pTx) -

Ax +s =

s >

Mx =

pTx <

m
DWi In s i
i=l

b

0

g

q.

Let x be a given point in int X and let s=b-A x,

Then if y is chosen so that y = AT,, XT s= 1, and g() : (X; S ) -- (Z; T ) is

the projective transformation induced by y and given by (3.3), program (3.5) is

transformed to

minimize

s.t.

(3.5)



minimize G(z) = n ([q -(q - pT x) yT - [p _ (q _ pT x)y]Tz )

(A- yT)z +

m

- xwilnti
i=l

t = (b- syT x)

t > O0 (3.6)

Mz

[p _ (q _ pT x)y]Tz

Lemma 3.2.

i) Under the conditions of Theorem 3.1 or Theorem 3.3, programs 3.5 and 3.6

are equivalent. For any x e intX, F(x)=G(g(x)). For any z E int Z,

G(z) = F(h(z)).

ii) Under the conditions of Theorem 3.2, for any x E int X, F(x) = G(g(x)). For any

z E int Z satisfying yTz < 1 _yT x, G(z) = F(h(z)).

Proof: Follows from direct substitution. .

IV. Projective Transformations to w-center a given Interior Point

Suppose we are given the set X = {x R n I Ax < b, Mx = g} , and a point

x int X, and we wish to find a projection parameter y so that x is the w-center

of the projectively transformed polyhedron Z .

Theorem 4.1. Let w > 0 be an m-vector such that eTw = 1. Let

X = x E R n I Ax< b, Mx = g ,let x e int X, let s= b-A x, and let y =AT S 1w.

Then x is the w-center of Z = {z E Rn I (A -yT)z _ b- yTx, Mx = g}.

Proof: By setting =

XTswT S-1 = w IS =W s~~

S-lw, the vector y satisfies y = ATX, X > 0, and

re = 1. Note that ( x, We must verify that

s.t.

25

s E (Z 7) .

[q-(q-c-pT -)yT x ]
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conditions (2.1a) - (2.1d) are satisfied in order to assert that x is the w-center of Z.

(2.1a), (2.lb) and (2.1c) are obviously true. Condition (2.1d) states that

wT S-I(A- syT) = tTM for some 7x E Rk. Let =O0. Then wT S-(A- syT) =

y-y=O = nTM. Thus x is the w-center ofZ. 

Remark 4.1. In the above theorem, y = AT STw. Thus the system (A - syT ) z <

b- syT x can be written as

(A- swT S-1A)z < b- yT x

The constraint matrix is thus a rank-one modification of A, and need not be explicitly

computed. The original inequality system for X is Ax < b and can be written as

A(x - x) < s; the inequality system for Z can be written as

(I - swT -1 ) A(z - x) < s. Thus the latter system in this form is a rank-one

modification of the original inequality system.

Next, note that Theorem 4.1 is a constructive form and a generalization of an

existence theorem of Lagarias [ 14 , which in our notation asserts the existence of a

projective transformation that will result in x begin the (1/m)e - center of the

transformed polyhedron. Theorem 4.1 is constructive, and covers the more general

case of non-equal positive weights w i , i = 1 ,..., m , and both inequality and

equality constraints. Theorem 4.1 is also a generalization of the projective

transformation construction in [ 7 ].

Relation of Theorem 4.1 to Karmarkar's Standard Form

The projective transformation development of Section III and this section

distinguishes between the polyhedral space X and the polyhedron's slack space S.

A given projective transformation g() given by (3.3) will'map points in X to points

in Z , and points in the slack space S of X to points in the slack space T of Z.

_ ___ ��



The distinction between X

Theorem 4.1

and S, and Z and T, becomes important in relating the

to Karmarkar's form for solving a linear program.

Consider Karmarkar's original form

X= {xe Rn I Ax=0, eTx=1, x0} .

Then for every x E X, the corresponding slack S on the inequality contraints is s = x,

so that S =X. If x e X isapointin intX , then s = x > 0, and directly adopting

Theorem 4.1 with w

M ={e T I

Z = {zE R n I A

= (1/n) e,

g = 1 I
A=-I, and b=0, yields

z=0, eTzl, [-I + (1/n) eT X-l]z x}

which does not look at all like Karmarkar's transformed space, which we denote by R:

R = (r E Rn I AXr = 0, eTr = 1, r 2 0} .

It is straightforward to verify that the space T of slacks on Z is characterized as:

T = {te R n I At=0, eT X-lt=l, t>0} .

Thus R is just an (affine) rescaling of 7, i.e., r = X-t E k for any t = T and

t= XrE T for any r e R. In this way, we see that Theorem 4.1 specializes to

Karmarkar's projective transformation when viewed in terms of the slack spaces

involved.

The next two sections and Part II of this study are devoted to applications of the

results in sections II, III, and IV. In section V, we define a canonical optimization

problem and present a local improvement algorithm. In section VI, this material is

27
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applied to the linear programming problem. In Part II of this study, this material is

applied to the problem of finding the w-center of X , i.e., the point that solves the

program:

Pw. maximize

subject to

m
I wi ln (b i -A i x)
i=l

Ax + s = b

s> 0O

Mx = g.

Section V develops the basic algorithmic step used in the applications in Section

VI and in Part II.

V. Local Improvement of a Cononical Optimization Problem

In this section, we consider the one-step improvement algorithm for the

problem:

Pq,p: minimize
x, S

s.t.

Fq,p(x) ln(q- pTx) -

Ax + s =b

s>O

Mx

PTx

where X = {x e R n I Ax <b, Mx = g} is given, as well as the data

weight vector w > 0 which satisfies eTw = 1. We make no assumptions regarding

the data (q, p).

In the spirit of Karmarkar's algorithm, suppose x is the w-center of X and

q . Then we can improve the value of Fq,p(x)

I w i n (b i -Aix)
i=1

(5.1)

= g

q,p p and the

that p x < be taking a step in the
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direction d that maximizes qTx over the inner ellipse EIN defined in Section II.

The direction d is the solution to the following optimization problem:

maximize pTd

s.t. dTAT S-1W S-1Ad < w/(1- w)

-Md = 0

If program (5.2) has a unique solution, that solution is given by

Gp /(1- w)
(5.3)

where G is the matrix defined by:

Q= AT S-1W S-1A (5.4)

G= [Q-1 - Q-1MT(MQ-lMT)-IMQ-1] (5.5)

If A has full column rank and M has full row rank, then G is well-defined.

It is straightforward to check that G is positive semi-definite and that pTGp = 0 if and

only if p lies in the row space of M, i.e., if p = MTnt for some x E Rk . In this latter

case, due to the presumption that x is the w-center of X , then x is the unique

optimal solution to program Pq,p given in (5.1). Furthermore, unless x is the

optimal solution Pq,p , then the denominator of (5.3) is well-defined, and

given in (5.3) - (5.5) is the unique solution to program (5.2).

The extent of improvement in Fqp(x) by moving from x in the direction d

will depend on the optimal objective value of the program (5.2).

pT d = pTGp w/(1- w) , and is proportional to the s

This value is given by

calar y defined below:

(5.2)

d as
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(qpT x) (5.6)

The value of y will depend on how much of a guaranteed improvement we

can expect as we move from x in the direction d. The numerator in (5.6) is pT d

times (1 - w ) / w, a normalization factor. The denominator in (5.6) represents the

maximum improvement in pTx that we could possibly hope for.

Theorem 5.1. Let x be the w-center of X , let d be the direction that solves (5.2)

which is given by (5.3), (5.4), (5.5) when A and M have full rank. Let y

determined by (5.6), and suppose that pT x < q. Then

i) if y (1- w)/ w,then Pq p is unbounded from below.
q, p

ii) if <(1- w)/ w, then

< Fq,p(x) + +
a2

2(1 - a)j
for all Oc (<1.

Before proving this theorem, we state two immediate consequences.

Corollary 5.1. If a=1-

x+ a d) Fqp ) -W 

Proof: The value of
1

71 +2y

is that value of a which maximizes

2
y a - over the interval

2(1 - a)
< a<l1. The result follows by direct

substitution .

be

Fq,p( x + d)

1

1 + 2y
, then

Fq,p( - J1 +;27)
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Corollary 5.2. If pT < q < max {pTx I X E EOUT} , where EOUT is the ellipse

containing X centered at x defined in Theorem 2.1, then y > 1, and so

Fq,p( x + .42 d) < Fq,p( x) -(.267)( w/(1l-

Proof: We first prove that - y > 1.

solution d satisfies

pT(x + d(1- w)/ w) = max pT>
x Er

w)) .

Note that by design of program (5.2), its

q. Thus

p T
q ,whereby = q.pT 

(q-p )

Next, substituting y = 1 and = .42 in Theorem 5.1 (ii), we obtain the desired

conclusion. .

(Note that Corollary 5.2 is a slight sharpening of the bound of 1/5 improvement

in Todd and Burrell [ 22 ] . )

Proof of Theorem 5.1: Suppose first that y2> (1 - w)/ w. Let x =

y> (1- w)/ w,then p T d q- p T x.

(q _ pT x)(1 - (). Thus, as a - 1, then

(5.2) and Theorem 2.1, x X

x + ca d. Because

Thus q- pT x a =q_ pT x pT d <

ln(q- pT x ) ---) -. As a consequence of

for all 0 < c < 1. In order that Fq,p( x + cO d) be

bounded from below as oc -- 1, we need -w i In (b i - Aixa) -- +oo as c - 1 for

each i = 1,... ,m , i.e., A d = s. We now show that this cannot occur. Note that

since x is the w-center of X, then wT S-1A = rTM for some 7 E Rk, by (2.1d).

C1-Wj
w)

if = 1/3

PT - T -(1 - -)/ Mr 
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Then, if A d = s, we would have 1 = wT s = wT S-'IA d = rM d = 0, since

M d = 0 (from 5.2), a contradiction. Thus P is unbounded from below.q, p

Next, suppose

q-pTx t = (q- pT x)

1- w
< - , and

w

I1 - ay (l w-w

again let x = x+a d for 0<a<l.

and hence

ln(q - pT x) < ln (q - pT x) + ln(1 - ay 1- w < ln(q- pT x) - ay _ -I
1- w)

because In(1 + c) < c

Furthermore, from

for any >-1.

Lemma 2.1,
m

i=1i=l

Wi ln( s)
a2

+
2(1 -a)

Combining these two inequalities yields

Fq,p( x + d) < Fq,p( x)
+ 1 [-

a2 1
2(1 - ca) 

The last two results of this section give two bounds on the value of pTx for

x E X, if the w-center of X is known.

Lemma 5.1. Let x be the w-center of X

pTx < p x +

Let p E R n be given. Then for all x e X

pT d(1- w)/ w

where d is given by (5.3).

Proof: By design, x + d is the solution to problem of maximizing x over x e EIN.

By Remark 2.1, x+ (1- w)/ w maximizes pTx over x EOUT. Because

X c Eour , pT x pT x+ pT d(1- w)/ w

Then

w 

.

Wi In (bi - Aixa)

for all x r= .
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Note that Lemma 5.1 parallels the bounding methodology in Anstreicher [1].

Lemma 5.2. Let x be the w-center of X Let p E R n be given. Then for all x e X

pTx < pT x + max (- S-1AGp)i
i

where G is given by (5.4), (5.5).

Proof: Let x E X be given, and let s = b - Ax. Because x is the w-center of X,

M(x- x)=0 and wT S-1A = TM for some 7x e Rk. We first show that

pT(x - x) = -T S 1W S-1AGp (5.7)

To see this, note that pT(x - x) = (x - x)TQGp = (x - x)T (AT S 1W SA)Gp =

( S- S)T S-1W S-1AGp = wT SAGp - sT S-1W S-1AGp

= xMGp_ sT S-1W S-1AGp

max pT(x x) =

s.t. Ax + s =b

Mx = g

s 0

= _sT S- 1W S-1AGp

max - pTGAT S-1W S-1s

s.t. Ax+s =b

Mx = g

wT S-1s = 1

s> 0

, since MG = O. Thus

< max - pTGAT

s.t. wT S-1 s

S-W Ss

=1

s 0

= max (- S-1AGp)i
i

- max _ pTGAT s-l1

eT = 1

),0
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The first equality in the above string follows from (5.7) and because wT S-ls = 1 is a

redundant constraint. The inequality results due to a relaxation of the constraints.

The next equality follows by substituting = W Sl1s The final equality is the

solution to the linear program in . Thus for any x E X ,

pT(x- x) < max (- S-1AGp)i
i

.

Lemma 5.2 parallels the bounding methodology in Todd and Burrell

The bound in Lemma 5.2 is sharper than the bound in Lemma 5.1.

Proof: Note that Gp = pT d(( - w)/ w) d. Thus the bound in Lemma 5.2 can be

expressed as

pTx < pT +

It thus suffices to show that

pT d((1- W)/ W) max (- S-1A d)i
i

max (-S-1A d)i
i

< 1. Let

because x is the w-center of X, wTr = 0. Also, by (5.2), rTWr < w/(- -w).

Thus by Proposition 2.2, r i < 1 for every i=1,...,m. 

VI. A Linear Programming Algorithm

In this section, we apply the material of sections II through V to solve the

linear programming problem:

Note that

[ToBu ].

Lemma 5.3.

r=- S-1A d. Then
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LP: maximize cTx

s.t. Ax<b

Mx = g

Note that this form of LP has as special cases the Dantzig "primal standard

form" (by setting A =-I, and b = ) , the standard "dualform" (by setting (M, g) to

be nil), and problems with upper and/or lower bounds (by imbedding submatrices of I

or - I in A). The algorithm we employ is thus directly applicable (with no

transformations, either explicit or implicit) to a linear program of arbitrary general

format.

We do, however, make the following assumptions regarding the LP:

6.1a) There is a known upper bound U on the optimal objective value of LP.

6.lb) There is a known point x that satisfies s = b -A x > 0 and M x = g.

6.1c) The last row of (A, b) is (0,..., 0; 1).
(6.1)

6.1d) A is m x n and has rank n.

6.1e) M is k x n and has rank k.

6.1f) The set of optimal solutions to LP is a bounded set.

Assumptions (6.1a) appears to be somewhat restrictive. However, in

applications, a practictioner usually knows a bound on the optimal objective function

for any linear program that he or she happens to be working with. If no bound is

available, one can modify the method of Anstreicher [ 1 ] for finding such a bound.

Assumption (6.1b) states that we are given a feasible point in the interior of all of the



36

inequality constraints. This further presumes that the set of always-active inequality

constraints is either null or has been identified previously and has been moved into

the "Mx = g" constraints.

Assumption (6.1c) is trivial. One can always append a row of zeroes to A and a

component of 1 to b. This assumption is essentially an engineering construction to

get around certain problems caused by an unbounded feasible region, and allows us to

apply Theorem 3.3.

Assumptions (6.1d) and (6.1e) assert that our constraint matrices have full rank.

Although this is not necessary, it avoids multiple solutions to problems such as 5.2, and

it avoids the need to state results in terms of pseudoinverses. For the more general

setting, where full rank is not assumed, see Gay [ 9 ], [ 10 ]. The most troublesome

assumption is (6.1f). We have no convenient way to avoid this assumption, which

may be violated in practical problems. However, this assumption is endemic to all

treatments of projective transformation algorithms that have appeared (for example,

Karmarkar [ 13 ], Anstreicher [ 1 ], Gay [ 9 , and [ 10 ]).

Before presenting the full algorithm with unknown optimal objective value, we

first present a version of the algorithm that works when the optimal objective value of

the LP is known. The data for the problem then is [A, b, M, g, c, U, w, x, ]i where x

lies in int X = {x E R n I Ax < b, Mx = g} , U is the known optimal objective value,

w is a vector of weights satisfying eTw -= 1, and w > 0, and > 0 is a tolerance on

the optimality gap. Recall that by assumption (6.1c), that the last row of (A, b) is

presumed to be (0,..., 0; 1).
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The linear programming algorithm is:

Algorithm 1. (Known optimal objective function value)

Choose w R m so that w>0 and eTw = 1. Set w= min {wi}.
i

Step 1. Set s=b-A x, y=AT Slw.

Step 2. (Projective Transformation)

Step 3. (Compute direction in Z space)

Set A = A- syT

C = C - (U-cT )y

Set Q = AT S-1W S-1 A

Set G =- - Q-1 MT(MQ-IMT )-1 MQ 1

Gc I w
Set d=

c-r c 1- w

Step 4. (Take step in transformed space Z )

Set a = .42

Set ZNEW = x + ad

Step 5. (Transform back to original space X )

XNEW = X +
ZNEW - X

1 + yT(ZNEW - X)

Step 6. (Stopping Criterion) Set X = XNEW - If U- cT x <

Otherwise go to Step 1.

At Step 0, a weight vector in w is chosen. Implicit in Karmarkar's original

algorithm and its variants is the choice of w = (1 /m) e, so that equal weight is given

to every inequality constraint. However, the user may have some prior belief that

Step 0.

£, stop.
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certain constraints are more likely or less likely to be active at an optimal solution.

These priors could then be chosen to attach more or less weight to a particular

constraint. See the introduction for a further discussion regarding the choosing of

weights.

The performance measure of the algorithm will be the following potential

function:

FU, c(X) = ln(U -
m

cTx) - E Wi ln(bi - Aix)
i=l

At Step 2 of the algorithm the

polyhedron X is projectively transformed to the polyhedron Z defined in (3.2). By

Theorem 3.3, the projective transformation g( ) given by (3.3) maps int X onto int Z.

The objective function constraint cTx < U is projectively transformed to

[c- (U -cT x)y]Tz [U-(U- cT x)yT x] , i.e., ZTz < U, where ' is defined in

Step 2 and U = U- (U-cT x)yT x, see (3.5) and (3.6). Thus, by Lemma 3.2, the

problem

minimize FU, (X)

subject to x e X

is equivalent (under the projective transformation g( ) ) to

minimize G (z) = n (U -

subject to z E Z

is defined in Step 2, and b = b- sy T x . According to Theorem 4.1, x is

the w-center of Z .

In Step 3, we define the direction d by optimizing'over the inner ellipse EIN

Z . This direction is given by (5.3), (5.4),

m

Tz) - E
i=l

where A

w i In ( i - Aiz)

defined about the w-center x of the set
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and (5.5), where X is substituted for A, Q is substituted for Q, for G, and for

p. In Remark 6.2, we will show that the operations outlined in this step can be

performed, unless x solves LP. In Step 4, the new point in Z is defined by moving a

step length a in the direction d, where c = .42.

Because O is the maximum value of ZTz for z e Z, and Z c EOUT,

U < maxt CTz I z EOUT} . From Corollary 5.2 we have

Go, C (ZNE W ) < Go, ( x) - (.267) 

In Step 5, ZNEW is projectively transformed back to X by XNEW = h( ZNExW )-

According to Lemma 3.2,

FU, c (XNEW ) < FU, c() - (.267) e

Note that if w = (1/m)e, then w = 1/m and the guaranteed decrease at each

step is the .267/(m - 1) . Furthermore, if 1/ w O(m), then the guaranteed decrease

at each step is .267/ 0O(m) . In general, if 1/ w is O(mk), then the guaranteed

decrease at each step is O(m -k) . Thus if L is the size of the problem instance, the

algorithm can be terminated after O(Lmk) iterations, so long as the set of optimal

solutions is bounded. The number of operations needed to perform each iteration is

O(m3) (from Step 3), so that the overall complexity of the algorithm is O(Lm3 + k)

operations. However, using Karmarkar's methodology (or the modification due to

Anstreicher [ 2 ]) for solving for an inexact solution to the least-squares problem (5.2),

the number of operations should be able to be reduced to O(Lm 2 5 + k) . With

w = (1/m) e, then k = 1, and the number of operations is O(Lm3 5).
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Remark 6.1. Use of line search. Steps 4 and 5 can be replaced by a line search, as

was suggested by Todd and Burrell [ 22 ]. Because the projective transformation g(.)

preserves directions from x one can perform the line search in the space X directly.

Specifically, Steps 4 and 5 can be replaced by finding a value of 5 for which

Fu, c ( x + 5d) is minimized. As shown in Todd and Burrell [ 22 ], there will be only

one local minimizer of Fu c ( x + 5d) for > 0. The search could be started at the
.42

value = 1 + .42 yTd / which corresponds to cx = .42 in the projectively transformed

space.

Remark 6.2. Computing d in Step 3. We first will show that the matrices needed in

Step 3 have appropriate rank. First, we show that A has full (column) rank. If Az = 0,

then Az = syTz. However, the last row of A is (O.. , 0) , so that smyTz = 0, and so

yTz = 0, because sm = 1. Thus Az = 0. But by (6.1d), z =0. Therefore, A has rank n,

and thus Q = T S-1W S-1 A has rank n and its inverse exists. Finally, because M

has full row rank, (M -1MT) has rank k, and its inverse exists.

Next, we show that the denominator in the computation of Step 3 is positive,

unless x solves LP. As mentioned in Section V, the matrix G is positive

semi-definite, and ZTGc = O if and only GZ = 0 if and only if Z lies in the row

space of M, i.e., if Z = MT x for some r e Rk. Thus ZTz is constant (and

equals Tg) for all z Z, and so x is optimal in the transformed linear program:

LP: maximize ZTz

s.t. z Z

However, because U is the optimal value of LP, then U - (U - c T x ) yT x is the

optimal value of LP, i.e., T x = U, whereby x solves LP.
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Remark 6.3. Computing d in Step 3 efficiently.

At first glance, the computation of d appears to require working with the

matrix Q = A S- 1W S -1 A, and .A=A- syT can be completely dense if y has

all nonzero components (which it will have in all likelihood), whereby Q can be

completely dense, even if Q = AT S 1W S-1 A is not dense. This could result in a

formidable amount of time to compute d, if n is large. Below, we show how to

compute d working only with the matrix Q, and thus avoiding the density problems

imposed by A and Q

It is elementary to see that Q = Q - yyT, so that Q is a symmetric rank-one

update of Q. Furthermore, d is the solution to the following optimization problem:

maximize T a

a

subject to aTQa < w/(1- w)

Ma = O

The Karush-Kuhn-Tucker conditions lead to the following determination of d:

First, solve the system

T -M] () 
-O 1 =

and then rescale dl

(6.2)

(6.3)
dl( w/(1- w))

to d=
J Td

Because Q yyT is a rank-one modification of Q, we can solve the above by solving

the two problems
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Q -M d c Q -M d

[ M O 'j () = [] and M (64)

By invoking the Sherman-Morrison formula for inverting a rank-one update of a

matrix, we set d l = d 2 + yTd2 d3, 1 2 + yTd2 3 . (6.5)
1-yTd 3 1yTd3

It is straightforward to show that -yTd 3 < 1 in the above calculations, and that (d 1, 71 )

in (6.5) solves (6.2). Then d can be rescaled by (6.3). Note that solving systems

(6.4) necessitates computations with the matrix Q = AT S-1W S -1 A and not Q .

Remark 6.4. The composition of the direction d.

From (6.4) and (6.5), we see that dl (and hence d) is composed of the weighted

sum of two directions d2 and d3 . The direction d2 is the projection (in the

Q-norm) of = c - (U - cT x) y onto the null space of M, and d3 is the Q-norm

projection of y onto the null space of M. Let G be the Q-norm projection matrix,

i.e., G = Q-1 - Q-1MT(MQ-1MT)-1MQ-1 . Then

dl = G (c+ _yTd3 - (U-cTx ) y

and so dl is composed of a weighted sum of 'the Q-norm projection of c onto the

null space of M and the Q-norm projection of -y. The direction Gc corresponds to an

affine scaling direction (see Remark 6.6), and the direction -Gy corresponds to a

Newton direction for finding the w-center of X (see Part II of this study) . Thus, we

see the relation that dl (and hence d) is composed of an affine scaling direction plus

a Newton direction for finding the w-center of X .
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Remark 6.5. Specializing the Algorithm to standard form LP with Lower and Upper

Bounds.

In the case when the problem LP has the form

maximize cTx

s.t. Mx = g

l<x<u,

with some components of 1 or u equal to -oo or +oo, respectively, the matrix A of

inequality constraints will be composed of two submatrices, one a submatrix of the

n x n identity matrix, I, the other a submatrix of -I. Thus Q = AT S 1W S-1 A will

be a diagonal matrix D and the expression for d in Step 3 as given in (6.4)

simplifies to

d2 = [ D-1 D-1MT(M D-1MT)-IM D-l1] 

(6.6)

d3 = [ D-1 D 1 MT(M D-1MT)-M D-l]y

with dl and then d computed from (6.5) and (6.3). Gay [ 10 ] has previously shown

that the addition of upper bounds to a standard form linear program only adds to the

expression of the diagonal matrix in the computation of the new direction for a

standard form linear program. This methodology parallels his own.

Remark 6.6. Relation of Algorithm to Other Variants of Karmarkar's Algorithm

Notice that if y is set equal to zero at Step 1, instead of setting y = AT S-w,

that no projective transformation is involved,and the steps of the algorithm then
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correspond exactly to an affine scaling algorithm (see Dikin [ 6 ], Barnes [ 3 ], Vanderbei

et al. [ 25 ]), with w = (1/m) e.

Also, Algorithm 1 corresponds to the inequality constrained algorithm of [7]

for the case w = (1/m) e and (M, g) are nil. From the discussion at the end of Section

IV, the projective transformations inherent in Algorithm 1 corresponds to an (affine)

scaling of Karmarkar's transformations, as applied to the slack spaces S and '. It

thus follows from Theorem 2.4 of Bayer and Lagarias [ 4 ] that the steps of

Algorithm 1 specialize to that of Karmarkar [ 13 ] for the case w = (1/m) e. Direct

(and laborious) computation can alternatively be used to show this fact. In a similar

manner, one can show that Algorithm 1 specializes to the projective variants of

Gay [ 9 ] and Rinaldi [ 18 ].

We now present the linear programming algorithm that assumes only an

upper bound U on the (unknown) optimal objective value. The data for the

problem is [A,b,M, g, c, U,w, x, c] where x lies in

int X = {x E Rn I Ax < b, Mx = g}, U is bound on the optimal objective value, w is

a vector of weights satisfying w > 0 and eTw = 1, and e > 0 is a tolerance on the

optimality gap. Recall that by assumption (6.1c), that the last row of (A, b) is

presumed to be (0,. .. , 0; 1). The algorithm presented below is a modification of

Algorithm 1, for the case of an unknown optimal objective value.

Algorithm 2. (Unknown optimal objective function value)

Step 0. Choose w E R' so that w>O0 and eTw= 1. Set w= min twi}.

Step . Set s= b - A x, y = AT S -lw.

Step 2. (Projective Transformation) Set A = A- syT
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Step 3a. (Update Objective Value Bound U)

Define Q = T S-1W S-1 A

Define G = -1 _ -1 MT(MQ-lMT )-l MQ-1

Define the function 0 2(f) = max (- S- 1 AG [c- ( - cT x] y ))i - + cT x .

i

If 2( U) > 0, let U remain as is.

If 02( U) < 0, then find a value P of in the interval [ cT x, U]

for which 0 2(

Set U - .

Set = c-( U- cT x)y.

Step 3b. (Compute direction in Z space)

C= c-(U- cT X)y

W

1-w

Step 4. (Take step in transformed space Z )

a = .42

ZNEW = X + ad

Step 5. (Transform back to original space X )

XNEW = +
ZNEW

1 + yT(ZNEW

- X

- x)

Step 6. (Stopping Criterion) Set x XNEW If U - cT x £, stop.

Otherwise go to step 1.

I) =0.

d= G
d \FCT CZ-
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This algorithm is identical to Algorithm 1 except for Step 3a, where the

objective function value bound is possibly updated. Notice in Step 3a that U

decreases (though not strictly ) at each iteration. Also notice that solving 02( ) = 0

can always be accomplished if 02( U) < 0. To see this, note first that because

wT S -1 A = 0 in Step 3a, that 02(cT x) = max - S- 1 AGc}i > 0. Thus, because

02( U) < 0 and 02(_) is a continuous (piecewise-linear) function, there exists

[cT x, U] for which 02( 3) = 0. The determination of P can be

accomplished in O(m2) operations. Note that Step 3a is an exact analog of the

method of Todd and Burrell [ 22 ] for updating the objective function bound.

Complexity of Algorithm 2.

Algorithm 2 is essentially a generalization of the algorithm in Todd and

Burrell [ 22 ], and hence our analysis parallels their own. Our first job is to show that

the updating procedure defined in Step 3a produces a valid bound for cTx over

x E X . By presumption, at the start of step 3a, U is a valid obund for cTx over

x E X. If 02( U) > 0, then U remains unchanged, and is still a valid bound.

Thus we need only be concerned of the case when 02( U) < 0 . In this case, we solve

for p E [cT x, U] such that 02( ) = 0. (Our previous discussion has established

that such a value of exists and can be computed in O(m2) operations.)

Proposition 6.1. Each time the upper bound U in Algorithm 2 is strictly decreased,

the new value of U is a valid upper bound for cTx over x E X. In particular, the

vectors

it = S-W S-AG [c-( U- c T x)] + ( U- cT x) Slw
(6.7)

= (MQ-1MT)-MQ-1 [c-( U - cT x)y]
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are a feasible solution to the dual of LP, with dual objective value equal to U.

Proof: Whenever the value of U is strictly decreased, then 02( U) = 0. Let us

define r= G [c-( U -

max { s-1 Ar }i
i

T x)y] .C C
Then 02 ( U) = 0 is equivalent to

- U + cT X =0

In order to show that ( , ) are feasible for the dual, we need to show that

AT x + MT X = c, and i2 O0. First, note that since wT S- A = 0, then

AT S-1W S-lAr = AT S-1W S-lAr

= AT S-1W S-lAr

- y S-1W S-1Ar

- y wT s- 1 r = AT S-1W S-lAr.

Thus AT = AT S-1W S-lAr + ( U - T x) AT S-lw

= T S-1W S-1 Ar

= Qr +

+

(U- cT )y

= Q [c-( U - cT x)y] + (U- cT )y

= [I- MT(MQ-1MT)-l MQ1] [tc-( U - cT x)y]- X Y - cT )y

= [c-( U- T x)y]C )Y - cT X)y = c -MT .

Thus AT + MT X = c.

Next, we show that 7r > 0. Note that

= S-W(SAr + ( U -

However, from (6.8) we have U- cT x> ( S1Ar)i for each i = 1,.. .,m,

whereby X 2 0. Thus ( , k) is feasible for the dual.

Furthermore, the dual objective value at

(6.8)

(u- c' x)y

cT x)e)

is



bT + gT = ST n + xTAT + XTMT 

= T( S-lW S-1Ar) + ( U - cT x) ST S-lw

+ XT (c - MT ) + TMT 

= wT SAr + ( U- cT ) + cTx

= 0 + (U- CT X) + CT x = U..

The performance measures of the algorithm are potential functions of the form

F Uc(x)= In( U -
m

cTx ) -
i=1

At Step 2 of the algorithm the

polyhedron X is projectively transformed to the polyhedron Z defined in (3.2). By

Theorem 3.3, the projective transformation g() given in (3.3) maps int X onto

intZ . The objective function bound constraint cTx < U is projectively transformed

to Tz < U, where = [c-( U - cT x) y ] is defined in Step 3b, and U =

U-( U- cT x) yT x , see (3.5) and (3.6). Thus, by Lemma 3.2, the problem

minimize

subject to

is equivalent (under the projective transformation

minimize Go (z) = ln(U - ZTz)
m

-
i=l

w i In (bi Aiz)

subject to z Z

where A is defined in Step 2, and b = b - syT x. According to Theorem 4.1, x is

now the w-center of Z.
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F ,c (x)

X X,

g(.) ) to

Wi In (bi - Aix) .
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In Step 3b, we define the direction d by optimizing over the inner ellipse EIN

defined about the w-center x of the set Z . This direction is given by (5.3), (5.4), (5.5),

where A is substituted for A, Q is substituted for Q, G for G, and ? for p. In

step 4, the new point ZNEW is defined by moving the steplength a in the direction d,

where ca = .42. We next aim to show that

GO (ZNEW) GOU ( x) -(.267) ( w/(1- w)) (6.9)

This will follow directly from Corollary 5.2 if we can show

Proposition 6.2. If U is defined as in the Step 3a of Algorithm 2, then

U< max { Tz I EEouT } , where U = U - ( U- cT x)yT x, and

= c-( U-cT x)y

Proof: At the end of Step 3a of Algorithm 2, we have a value U

02( U) > 0, either by modifying U or leaving U as is. Thus

U< cT x + max (- S-1 A G i 
i

This in turn implies that

= U- ( U-cT x)yT x < [C-( U -CT X)y]T X + max (- -1 AG )i ,
i

0j < Tx + max (- 1 AG i
i

However, by Lemma 5.3,

for which

i.e.



+ max (- S-1AG )i
i

I ZE EOUT

ZTx + Td(1- w)/ w =

}

Thus U < max{TZ I z EOUT} .

Thus (6.9) is true, and by Lemma 3.2,

F U, c(XNE) F U, c x) -(.267)( w/(1 - w)). (6.10)

We next use the following inequality borrowed from Todd and Burrell [ 22 ]:

Proposition 6.3. (Todd and Burrell [ 22 ). If U is the optimal value of LP, and

> U 2 U, and x e int X is given, then for all x E int X ,

F 1 (x) < F 1,( x °) -
.,C - ,C

implies

F u2 c(x) - < F 2 c(x°) - .

Proof: Parallels that in Todd and Burrell [ 22 ] . U

Inequality 6.10 and Proposition 6.3 are combined to yield the following:

Lemma 6.1. Let x, x1 ,..., be the iterates of Algorithm 2, and let U, U 1

values of the objective function upper bound at the end of Step 3a.

,. .. be the

Then

FUk (x k+1) < FUk (xo) - k( w/(1- w) ) (.267). ·

Thus, precisely as in Algorithm 1, the algorithm can be terminated after O(Lm) steps if

w = (I/m) e (and hence w/(1 - w) = 1/(m-1) ) so long as the set of optimal

ZT c x
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max { Tz

U 1
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solutions is bounded. And in general, if 1/ w = O(mk) , the algorithm can be

terminated after O(Lmk) iterations.

Exactly as in Algorithm 1, steps 4 and 5 can be replaced by a line search. See

Remark 6.1 for details. Also, exactly as in Algorithm 1, the main computational

effort lies in computing d efficiently. See Remarks 6.2 and 6.3 for details. Finally,

we note that as a consequence of Proposition 6.1, Algorithm 2 provides dual variables

for the objective function bounds at each iteration.

As remarked earlier, Algorithm 2 is simply a modification to Algorithm 1 that

uses the same essential methodology of Todd and Burrell [ 22 ] for updating the

objective function bound. Instead of using the function 2(/), we could have used

the function 01(p) given by

0([) = [c-( T x) y] )y] (1- w)/ w - + cT x

This function is the analog of Anstreicher's method [ 1 ] for updating the objective

function bound.





References

[ 1 ] Anstreicher, K.M. 1986. A monotonic projective algorithm for fractional
linear programming. Algorithmica 1, 483-498.

[ 2 ] Anstreicher, K.M. 1987. A standard form variant, and safeguarded
linesearch, for the modified Karmarkar algorithm, Yale School of
Organization and Management, New Haven, Conn.

[ 3 ] Barnes, E.R. 1986. A variations on Karmarkar's algorithm for solving
linear programming problems. Mathematical Programming 36, 174-182.

[ 4 ] Bayer, D. A., and J.C. Lagarias. 1987. Karmarkar's linear programming
algorithm and Newton's algorithm, AT&T Bell Laboratories, Murray Hill,
New Jersey.

[ 5 ] Censor, Y., and A. Lent. 1987. Optimization of 'log x' entropy over
linear equality constraints, SIAM Journal of Control and Optimization 25,
921-933.

[ 6 ] Dikin, I.I. 1967. Iterative solution of problems of linear and quadratic
programming. Dokl. Akadem. Nauk. SSSR 174, 747-748 [ English translation:
Sov. Math. Dokl. 8, 674-675.

[ 7 ] Freund, R. 1988. An analog of Karmarkar's algorithm for inequality
constrained linear programs, with a 'new' class of projective transformations
for centering a polytope, Operations Research Letters 7, 9-14.

[ 8 ] Freund, R. 1988. Projective transformations for interior point methods,
part II: an algorithm for finding the weighted center of a polyhedral system,
M.I.T. Operations Research Center working paper OR 180-88.

[ 9 ] Gay, D. 1987. A variant of Karmarkar's linear programming algorithm
for problems in standard form. Mathematical Programming 37, 81-90.

[ 10 ] Gay, D. 1987. Pictures of Karmarkar's linear programming algorithm.
Computing Science Technical Report No. 136. AT&T Bell Laboratories,
Murray Hill, N.J.

[ 11 ] Gonzaga, C.C. 1987. An algorithm for solving linear programming
problems in O(n3L) operations. Memorandum UCB/ERL M87/10.
Electronics Research Laboratory, University of California, Berkeley,
California.



[ 12 ] Grunbaum, B. 1967. Convex Polytopes. Wiley, New York.

[ 13 ] N. Karmarkar. 1984. A new polynomial time algorithm for linear
programming, Combinatorica 4, 373-395.

[ 14 ] Lagarias, J.C. 1987. The nonlinear geometry of linear programming III.
Projective Legendre transform coordinates and Hilbert Geometry. AT&T Bell
Laboratories, Murray Hill, N.J.

[15 ] Monteiro, R.C., and I. Adler. 1987. An O(n3 L) primal-dual interior
point algorithm for linear programming, Dept. of Industrial Engineering and
Operations Research, University of California, Berkeley.

[ 16 ] Monteiro, R.C., and I. Adler. 1987. An O(n3L) interior point algorithm
for convex quadratic programming, Dept. of Industrial Engineering and
Operations Research, University of California, Berkeley.

[ 17 ] Renegar, J. 1988. A polynomial time algorithm, based on Newton's
method, for linear programming. Mathematical Programming 40, 59-94.

[ 18 ] Rinaldi, g. 1985. The projective method for linear programming with
box-type constraints. Instituto di Analisi dei Sistemi ed Informatica del CNR,
Viale Manzoni 30, 00185 Rome, Italy.

[ 19 ] Rockafellar, R.T. 1970. Convex Analysis. Princeton University Press,
Princeton, N.J.

[ 20 ] G. Sonnevend. 1985. An 'analytical centre' for polyhedrons and new
classes of global algorithms for linear (smooth, convex) programming,
preprint, Dept. of Numerical Analysis, Institute of Mathematics Eotvos
University, 1088, Budapest, Muzeum Korut, 6-8.

[ 21 ] G. Sonnevend. 1985. A new method for solving a set of linear (convex)
inequalitites and its applications for identification and optimization,
preprint, Dept. of Numerical Analysis, Institute of Mathematics Eotvos
University, 1088, Budapest, Muzeum Korut, 6-8.

[ 22 ] M.J. Todd, and B. Burrelll. 1986. An extension of Karmarkar's
algorithm for linear programming using dual variables, Algorithmica 1
409-424.

[ 23 ] Vaidya, P. 1987. A locally well-behaved potential function and a simple
Newton-type method for finding the center of a polytope, AT&T Bell
Laboratories, Murray Hill, N.J.

_____________________



[ 24 ] Vaidya, P. 1988. private communication.

[ 25 ] Vanderbei, R.J., M.S. Meketon, and B.A. Freedman. 1986. A
modification of Karmarkar's linear programming algorithm. Algorithmica 1,
395-407.



vN.

a


