
I mplementation and Emirical Study of a Combined
Phase I - Phase II Potential Reduction Algorithm For

near Programming

Hitendra K. Wadhwa
Robert M. Freund

#3411-92-MSA March 1992

IMPLEMENTATION AND EMPIRICAL STUDY OF A COMBINED PHASE I - PHASE II
POTENTIAL REDUCTION ALGORITHM FOR LINEAR PROGRAMMING

by

HITENDRA K. WADHWA
and

ROBERT M. FREUND

IMPLEMENTATION AND EMPIRICAL STUDY OF A COMBINED PHASE I - PHASE II
POTENTIAL REDUCTION ALGORITHM FOR LINEAR PROGRAMMING

by

HITENDRA K. WADHWA
and

ROBERT M. FREUND

ABSTRACT

This paper consists of an implementation of an O(nL)-iteration combined
Phase I - Phase II potential reduction algorithm for linear programming. The
main distinguishing feature of this algorithm is that it allows the user to

specify the desired balance between the Phase I and Phase II objectives. This
paper presents an empirical study of this algorithm that is aimed at

investigating different aspects of the algorithm's behavior and the effects of

different parameters on its performance.

Contents

Section I

Section II

Section III

Section IV

Section V

Section VI

Section VII

Appendix A

Appendix B

: Introduction 5

: Balancing Phase I and Phase II objectives 7

: Summary of the algorithm 11

: Reformulation of standard form LP into required format 17

: Implementation issues and empirical results 23

: Conclusions 37

: References 40

: Tables 1 - 7 42

: Computer Programs 51

4

SECTION I

Introduction

This paper consists of an implementation of an O(nL)-iteration combined

Phase I - Phase II potential reduction algorithm for linear programming. The

main distinguishing feature of this algorithm is that it allows the user to

specify the desired balance between the Phase I and Phase II objectives. This

paper presents an empirical study of this algorithm that is aimed at

investigating different aspects of the algorithm's behavior and the effects of

different parameters on its performance.

In the last seven years a number of interior point algorithms for linear

programming, based essentially on Karmakar's new approach [6], have been

developed. Most of them have been "Phase II" algorithms, requiring an initial

feasible interior solution. The problem of getting this initial solution has been

addressed, as in the case of the simplex method, by developing a reformulated

"Phase I" problem on which these algorithms could then be applied to yield a

feasible interior solution.

Researchers in interior point linear programming methods have also sought

to develop combined Phase I - Phase II algorithms that would start from some

initial infeasible solution and proceed simultaneously to attain feasibility and

optimality, instead of following the above sequential Phase I - Phase II

approach. These methods are particularly valuable for facilitating "warm

starts", where one seeks to solve a slightly modified version of a linear

program by starting from the original LP's optimal solution. Anstreicher [1]

developed one such combined Phase I - Phase II algorithm based on

Karmakar's projective transformation approach, which was later modified and

improved upon by Todd [8]. The same two researchers later developed

combined Phase I - Phase II algorithms ([2], [8]) using the direct potential

function reduction approach developed by Gonzaga [5], Freund [3] and Ye [11].

These algorithms seek to simultaneously reduce two potential functions, which

may be appropriately termed the Phase I and Phase II potential functions, in

order to approach feasibility and optimality respectively. The algorithm

5

III

presented by Freund [4] also uses the same formulation of the linear

programming problem, and this algorithm forms the subject of this paper.

Unlike the algorithms of Anstreicher [2] and Todd [9], Freund's algorithm [4]

uses only one potential function to simultaneously move toward feasibility and

optimality. Anstreicher's and Todd's methods place equal emphasis on making

progress on the Phase I and Phase II objectives. LP users often need to place a

greater emphasis on one or the other of these two goals. The distinguishing

feature of Freund's method is that it allows the user to specify the balance that

the algorithm should maintain between the Phase I and the Phase II objectives

over the iterations, thus making it adaptable to the different goals of users.

In Section II, we comment on the aforementioned desirability of flexibly

balancing the two different objectives in a combined Phase I - Phase II

problem, and then describe how Freund's algorithm addresses this issue. The

algorithm itself is described in Section I11, which also includes a discussion of

some of its features and options. In Section IV we show how a linear program

in standard form with an initial infeasible solution can be converted into the

form required by the algorithm. In Section V, we discuss some implementation

details and present and discuss the findings of our empirical study. Finally, in

Section VI we summarize the study's findings and mention some unresolved

questions for future research.

Appendix A contains tables that are referred to in Section V. Appendix B

contains a copy of the computer programs that were developed as part of the

implementation process.

6

SECTION II

The need for a balance in the Phase I and Phase II objectives

Linear programming helps in modelling and solving a variety of operations

research problems, and consequently, the goals of different users can be quite

varied. Such differences in goals result, in practice, in the desirability for

having a flexible algorithmic environment that can be tailored to suit the

specific needs of a user. Desirable algorithmic features include, for instance,

the allowance for different tolerance levels for the accuracy of the optimal

solution (which all LP algorithms provide), or the ability to weigh differently

the goals of achieving feasibility and achieving optimality. The need for the

latter is illustrated by the following general cases:

(i) Branch and Bound: In using branch and bound techniques for solving

integer or mixed integer programming problems, lower bounds on

subproblems may be generated by solving their linear programming

relaxations. By getting good lower bounds very soon in the solution process,

branches can often be immediately pruned, and thus the focus here is often on

seeking efficient progress in the Phase II problem without paying much heed

to the Phase I problem. For these LPs, one may expect the user to want to

place more weight on the Phase II objective than on the Phase I objective.

(ii) Partial equilibrium problems: Certain partial equilibrium problems in

economics can be formulated as linear programs, with the optimal solution to

the linear program and the associated dual prices yielding the partial

equilibrium solution (see Wagner [10]). In such problems, the only feasible

solution that carries useful economic information is the optimal solution, and

so both Phase I and Phase II objectives carry importance.

(iii) Optimization with unclear/uncertain objectives : In a number of actual

optimization problems that can be modelled as linear programs, the 'real'

objective is not clear. This may be because of the unclear or uncertain nature

of some costs, or the presence of multiple goals and objectives. If at such times

the constraints are clearly formulated, then we have a situation where solving

the Phase I problem is of significantly greater import than the Phase II

7

problem, since the latter is relatively ill-defined. Clearly, in such a case the

Phase I problem carries much greater weight that the Phase II problem.

In searching for a method to integrate a flexible balancing of the Phase I and

Phase II objectives in a combined Phase I - Phase II algorithm, we must first

define a measure of the infeasibility and nonoptimality of any solution, and

then define a way in which more emphasis could be laid on reducing one over

the other. We describe now the manner in which Freund's method addresses

these issues.

Balancing Phase I and Phase II in Freund's algorithm

The algorithm in this paper follows the formulation of the combined Phase I

-Phase II problem developed by Anstreicher [2]. This involves solving the

following linear program:

LP z* = Min cTx
x

Ax = b

gTx = 0

x0

(2.1a)

(2.lb)

(2.lc)

where we are given an initial vector

"Phase I" problem:

LPI

x0 that is feasible for the following

Min x Tx

Ax = b

Tx 0

x0

(2.2 a)

(2.2b)

(2.2c)

and in fact, by virtue of its (assumed) infeasibility in LP, has TxO > 0. We are

also given an initial lower bound BO on the optimal solution value z* of LP. We

8

describe how one can convert a general linear program to the above form in

Section IV.

At any iteration k, the algorithm computes a new point xk , feasible for LPI,

and a new lower bound Bk on the optimal value z* of LP. We define Txk to be

the 'feasibility gap', a measure of the infeasibility at xk. The duality gap at xk is

(cTxk - z*) , a measure of the nonoptimality at xk.

The Phase I objective, then, is to reduce the feasibility gap Txk to 0, and,

similarly, the Phase II objective is to reduce the duality gap (cTxk - z*) to 0.

Since the optimal value z* is not known a priori, the algorithm instead uses Bk

as a surrogate for z*, and measures the nonoptimality at iteration k by the gap

(cTxk - Bk).

(Note: One may observe here that the generation of good lower bounds (so that

the Bk's are close to z*) would be important if these bounds are to be good

surrogates for z*, and this is one of the issues studied in the implementation

section of this paper.)

Now we are ready to describe the manner in which the algorithm balances the

Phase I and Phase II objectives. The user is provided with a parameter, ,

which can be set at the start of the algorithm to be any strictly positive real

number. The algorithm then ensures that at each iteration k, the current

point xk and the lower bound Bk satisfy the inequality:

cTx k - Bk < Txk (2.3)

Through this inequality, the parameter 3 acts as the sought-after balancing

mechanism, and we now show how this occurs.

Suppose first that the user would like to weigh the Phase II objective much

more than the Phase I objective. We would then expect him/her to choose a

small value for , say = .001. Why? Because, for this [3, (2.3) ensures that the

duality gap at each iteration is significantly smaller than the feasibility gap

9

III

(in fact, by at least a factor of 1000), and so the algorithm is laying much more

stress on reducing the Phase II gap than on reducing the Phase I gap, as

desired.

Suppose now that the user wants to weigh the Phase I objective much more

than the Phase II objective. Assume for a moment that the inequality (2.3) was

actually satisfied almost as an equality over the iterations. A large value of

(say = 1000) would then ensure that the progress over the iterations in the

Phase I objective would substantially dominate that in the Phase II objective.

Since (2.3) is actually an inequality, we do not actually have a guarantee that

this will happen as described, although from the nature of (2.3) and the large

value of chosen it would seem very likely that relatively greater progress

would be made over the iterations in the feasibility gap reduction. More

comments on this follow below.

Since can be any positive real number, the algorithm provides the user with

a lot of flexibility in how the two objectives may be weighed. Another way to

look at (2.3) is by dividing both sides of the inequality by Txk, which results

in:

cTxk Bk

Txk

This suggests that one can look at as the user-desired ratio of the duality gap

to the feasibility gap over the iterations. Thus, a higher value of would

correspond to greater emphasis being placed on feasibility gap reduction, and

a smaller value would correspond to greater emphasis being placed on duality

gap reduction, just as we saw above.

As one may have observed, in order for the parameter f3 to provide very

effective balancing control, (2.3) must hold close to equality over the

iterations. Whether this actually does happen or not cannot be investigated

theoretically, however, and this makes a strong case for an empirical study of

the algorithm's behavior with respect to (2.3). Such a study formed an

important part of this paper' research, and is described in Section V.

1 0

SECTION III

The algorithm

This section contains a description of the algorithm that forms the subject of

this paper' study. It is assumed that there is given a linear programming

problem in the form (2.1), with an initial solution x0 and an initial lower

bound B. The next section will describe how one can reformulate an LP in the

standard form into one of the type (2.1).

Among the inputs required are q, which must satisfy q n+l + In+l, >0, the

balancing parameter, and two tolerance specifications, tola and tolb.

Notation

For any vector z, Z will denote the diagonal matrix whose diagonal is the

vector z.

For any vector z, Z1:k will denote the vector consisting of the first k

components of z

For any vector g Rb and matrix M E Raxb with full row rank, gM will denote

the projection of g in the null space of M, i.e., gM = [I - MT(MMT)-IM]g

Summary of the algorithm

Inputs: A,b,c, , 3, xO,BO,q, tola, tolb

Step O(Initialization) k = 0

e = (1,1...1) E R n

e' = (eT,1)T

to = B0 - (-fg + c)TxO

Step l(Rescaling and reinitialization)
- XkX = xk

t = tk

11

III

B = Bk

A=AX

{ = (U T,)T
Step 2 (Updating lower bound using Fraley's restriction of the dual)

Solve FDx cTi _- TX - X TS

0(XE,) + Xs + n(e- x) = (Xc

s>O

t- t+ max [B,zj }-B

B-- max (B, zi }

Step 3 (Compute Primal Direction)

A
A1 = -X +TX

dl = (q/TX)'Al--

0e

t

eA 1

If "Tdl 2 O

d=dl

else

A2 =t,T

d2 = (q/A2)T A2- e'A2

d=d2

Step 4. (Line-Search of Potential Function)

12

zx- = Max(,.n, s

a= ArgMina
n

qlog[4T(3 - aXdl:n)]- Z log(ij-ocjdj) -log (t- atdn+l)
j=1

s.t. x- aXdl:n > O

t- actdn+ 1>0

xk+l -

tlc+l -tk+1 --

Bk+I +.

X- dXdl:n

t- -an+l

B

check)

If gTx < tola and (c'Tix- B) < max(1, Ici}) tolb

end

else

k = k+1

go to step 1

Notes on the alorithm

In order to get a better understanding of

family of linear programming problems:

LPB

the algorithm, consider the following

Min,,t

Ax = b

(-bt+c)Tx + t = B

x >0, t > 0

with B z*.

13

(3.1a)

(3.lb)

(3.1c)

------ --- ____ __ -----

&gp__j (Optimality

III

For B = z*, it can be shown that the optimal value of LPB is 0, and that an

optimal solution to LPz* is also optimal for LP (2.1) (see Freund [4]). The

algorithm presented above solves LP (2.1) by considering a sequence of LPB's

with increasing B values that approach z*.

Taking an interior point approach, the algorithm replaces the family of LPB's

by the following family of potential reduction problems:

n

PRB Minx, t f(x,t) = qlog(Tx)- ~ log(xj)- log(t) (3.2)
j=1

Ax = b

(-bt+c)Tx + t = B

x > 0, t > 0

with B < z*.

At the start of any iteration, the algorithm has a solution x and a lower bound B

to LP (2.1). The algorithm updates the lower bound B by using a two
dimensional restricted version of the dual of LP. This is the Fraley Dual FDx

defined in step 2. For two different derivations of this restricted dual problem,

see Todd [9] and Freund [4].

(Note: FD can be solved as a two-dimensional linear program with n

inequalities in the variables 0 and q . One way of doing so is by using a

Fourier-Motzkin elimination procedure, and this was the technique used in the

implementation process discussed in this thesis.)

Once the lower bound has been set at B, LP becomes the current problem,

and the algorithm tries to move from x towards the solution for LPB by moving

in the direction d in step 3.

The direction dl is the projection of the rescaled gradient of the potential

function (3.2) in the null space of the constraints (3.la-b).

14

The algorithm enforces monotonicity in the Phase I objective function (Tx),

and so, if -dl is an ascent direction for this function, the algorithm instead

uses the direction -d2, which is the projection of the rescaled gradient of the
potential function (3.2) in the null space of the constraints (3.la-b) and the

constraint

TX = O

After determining the direction of movement d, the algorithm performs a line

search so as to get the maximum feasible decrease in the potential function.

Todd and Burrell [71 have shown that the potential function (3.2) is

quasiconvex, and so a line-search is easily performed by using, for example, a
binary search procedure on the derivative of the potential function with
respect to a over the interval a [O,u), where

u = mini,.+ { 1/d: d i > }

Such a binary search procedure was used in the implementation of the

algorithm that is described in this paper.

'tola' and 'tolb' are the tolerance levels for the Phase I and Phase II

objectives. In our implementation of the algorithm, we used a different

stopping procedure from the one defined in step 5, and this is described in

Section V.

Modifications

1. Early feasibility: The early feasibility option allows the user to test whether
the direction of movement d =X d (computed in step 3) will allow for a Phase I
solution, by testing whether X - at dl:n is feasible for LP for some value of a.

The constraints in LP (2.1) are:

Ax =b (2.1a)

gTx=0 (2. b)
x 2 0 (2.1c)

15

III

Now A(- aXdl:n)= A - aAd = b - O = b,

and so (2.1a) is satisfied.

In order for X- aXdl:n to satisfy (2.lb), a must be given the value a =

Tx/4TXdl:n. But then, in order for x- aXdl:n to satisfy the last set of

constraints (2.1c), we need

47-x/4TXdl:n < l/di , 1<i<n. (3.3)

Thus, if the inequalities in (3.3) are satisfied, then - (V4TXdl:n,)Xdl:n is a

feasible interior solution for LP. We may then proceed to directly use a Phase

II algorithm from this iteration onward.

The effect of this 'early feasibility' option on the algorithm's performance is

an issue that the theory is unable to resolve, and a part of our empirical study

in Section V is directed towards investigating this.

2. 'Rotation' instead of 'Parallel Shift' : The algorithm above may be modified in

the following manner:

Instead of maintaining a constant value of the balancing parameter through

the iterations, this value may be changed whenever the lower bound B

increases in a manner that would cause the hyperplane

(-X + c)Tx = B

to be rotated about the fixed affine space x: cTx = B + 0 4Tx° and Tx =TxO I
instead of being shifted parallel to itself as above (o is the initial value of).

The results in Freund [4] related to the complexity analysis of the algorithm

can be extended to show that the above modification also leads to an O(nL)-

iteration algorithm. The actual modification would involve the following

addition to step 3:

3k+1 - 0+ (BO_Bk+l)/Tx0

16

SECTION IV

Converting a standard form LP into required format

This section contains a description of the manner in which an LP in the

standard form with an accompanying (possibly infeasible) initial solution can

be converted into the combined Phase I - Phase II format (2.1) that is used by

Freund's algorithm.

The standard form of the LP is:

LP z* = Minx x

Ax=b

Suppose we have a linear program in the above form, where A is an m x n

matrix with row rank m. Suppose also that 0 is a given, possibly infeasible

solution, and that B0 is a given lower bound on z*. B0 may be a 'good' lower

bound known to the user, or it may be an artificial bound. Todd [9] has

developed an algorithm to generate a reasonable lower bound. In Section V,

we will investigate the ability of Freund's algorithm to generate 'good' lower

bounds very early in the solution process.

If x0 does not satisfy the constraints

Ax = b

we replace £x by the solution to the problem:

Minx ix - 0II

s.t. Ax=b (4.1)

17

(4.1a)

(4.lb)

This solution is given by x + AT(AAT)I-b, where x is the projection of x in

the null space of the matrix A, We denote this new initial solution by £x also.

Then we have

Ax = A(x +AT(AAT) lb) =O + b = b

(Note: The optimization problem described above seeks to find the 'x that is

closest to x0 (in terms of its euclidean distance from ; °) among those that

satisfy (4.1). Actually, any of the solutions to (4.1) might be acceptable

replacements of x° for our purpose.)

If x° > 0, we have a feasible interior solution to LP and we do not need to solve a

Phase I problem - we may instead use any of the interior point Phase II

algorithms (such as those of Ye [11], Freund [31, Gonzaga [5]) to solve LP. So let

us assume that xj O for some j.

Let h e R n be such that:

b • rAh for any real number r, (4.2a)
h0O, and (4.2b)

0 + h> (4.2c)

An h R n that satisfies (4.4b)and (4.2c) is easily derived; if such an h does

not satisfy (4.2a) also, it can be perturbed to give us the desired vector.

LP is equivalent to:

LP2 z* = Min^x w c;x

Ax=b (4.3a)

x +wh > 0 (4.3b)

w=O (4.3c)

where now (, w) = (, 1) satisfies all of the above constraints except (4.3c).

Let x = x + w h. We can then write LP2 in terms of the variables (x, w) as:

18

LP 3 z* =

Ax- wAh = b

x 0

w=O

(4.4a)

(4.4b)

(4.4c)

We define x = x° + h. Then (x, w) = (x0 , 1) satisfies all of the above constraints

except (4.4c).

We will now eliminate w from LP3 . Assume that Ah * 0 (otherwise LP does not
need a Phase I). Premultiplying (4.4a) by (Ah)T, we get:

(Ah)TAx - wllAhll 2 = (Ah) T b , which gives

T = AAx hTlAb
w= h AAx4 A- b

IIAhP IIAhP

and so LP becomes equivalent to:

z* = Minx T[I - (hhTATA)/IIAhII2] x + (cTh)(hTATb)/ IAh2ll

[I - (AhhTAT)/IIAhll2] Ax =

[I- (AhhTAT)/llAhll 2] b

x >0

hTATAx = hTATb

We note that x satisfies all of the above constraints except for (4.5c)

(4.5a)

(4.5b)

(4.5c)

We are now almost done; only constraint (4.5c) needs some further attention.

We need to replace it by a constraint of the form Tx = 0.

19

LP4

Min, w '~ r

Define A = [I, - (AhhTAT)/IIAhlI 2]A

c = [I. - (hhTATA)/IIAhll 2]Tc

and b = [I - (AhhTAT)/IIAhll2]b

where Ir is the identity matrix of size r x r.

We note that b 0, for otherwise b = [(hTAT)b/l IAhlI2]Ah, which contradicts

condition (4.2a) on h.

We now choose an i for which bi * 0. Let a = hTATb/bi. Then (4.5c) can be

replaced by

(-aAi.+ ATAh)Tx = 0

Note that (-aAi.+ ATAh)TxO = (-aAi.+ ATAh)T(xO + h)

=- aAiTxO + hTATAxO - aA i Th + hTATAh

= - a([Im - (AhhTAT)/IIAhll 2]A)iT + hTAab -

a([Im - (AhhTAT)/IIAhll2]A)i.Th+ IlAhl 2

=-a [Im - (AhhTAT)/IIAhI2]iTA x + hTATh -

a([Im - (AhhTAT)/IIAhll 2]A)i.Th + IIlAhI12 (4.6)

Now, ([I m - (AhhTAT)/IIAhlI2]A)h = Ah - (AhhTAT)(Ah)/l IAhll 2

= Ah - (Ah)(hTATAh)/IIAhll 2

=Ah - (Ah)llAhll 2/llAhll2

=0,

and so a([Im - (AhhTAT)/IIAhll 2]A).Th = 0

Thus, from (4.6)

(- aAi.+ ATAh)TxO = - a [I m - (AhhTAT)/IIAhlI 2]TA "i + hTAab - 0 + IIAhll2

20

- [Im - (AhhTAT)/11Ahll21] b + hTAlb + IlAh11 2

=-abi+ hT ATb + IIAhli 2

- (hTATb/bi.)bi. + hTArb + IIAhll 2

= IIAhll2

>0

Define = -aoAi+ ATAh. Then, from above, we have TxO > 0.

Also, LP4 is equivalent to:

LP5 z* = Min x cTx + (Th)(hTATb)/llAh12

Ax = b

Tx = O0

X > 0 ,

(4.6a)

(4.6b)

(4.6c)

with x being feasible for the related Phase I problem:

LP5 - I Minx Tx

Ax = b

Tx 0

with TxO> 0.

Removing the constant term (ch)(hTATb)/llAhl 2 from the objective function

of LP5 , we arrive at the desired format (2.1) for our linear program. x is the

initial solution and B = BO - (Th)(hTATb)/IIAhlI 2 is the initial lower bound.

In addition to having the problem set up in the above manner, the algorithm

also requires that the starting point x satisfy:

(-- + c)TxO < B0 (4.7)

where is the user determined balancing parameter (> 0).

21

(

To do this, we proceed as follows. If the above x does in fact satisfy (4.7), we

are done. If not, then consider x + w0 h, where

w 0 = max{O, (cTx0 - BO)/(IIAh1 2)} (4.8)

We note that :

Since h 0 and w0 > 0, so x0 + w0 h > 0.

Ah = ([Im - (AhhTAT)/IIAhll 2]A)h = 0, as shown earlier, and so

A(xO + w0h) = AxO = b

(-p + c)T(xO + w0h) = -pTXO + CTXO -o°kTh + WOcTh (4.7)

Now cTh = ([I n - (hhTATA)/I IAhll2]TC)Th

= cT[In - (hhTATA)/IIAhll 2] h

= cTh cT(hhTATA)h/llAhll2

= cTh - cTh(hTATAh)/ IAhl 12

=0

and Th = (-aAi.+ ATAh)Th

= 0 + hTATAh

(since Ah = ([Im -(AhhTAT)/IIAhll2]A)h = 0, as shown above)

= IIAh ll2 .

So, from (4.7),

(-I3 + c)T(xO + w°h) = -tTxO + cTxO -o 0 IIAh l12

-Tx 0 + cTXO -IIAhll2(cTxO - B0)/(P3Ahll 2)

- .TxO + cTx 0 (TxO - BO)

= -.3TxO + B0

< B since 4TxO > 0, and P > 0.

Hence x + w°h satisfies all the required constraints, and can be used in place

of x° as the initial solution.

22

SECTION V

The implementation study is concerned with investigating certain issues

pertaining to the algorithm's performance and behavior. This section contains

a discussion of these issues, an analysis of the empirical results, and some

comments on the implementation itself.

Issues studied

1. Stopping Criterion: What is a practical and efficient strategy for getting the

algorithm to compute a solution that lies within desired Phase I and Phase II

tolerance limits?

2. The effect of the balancing parameter : Does the ratio

cTxk - Bk

Txk

actually lie quite close to the value of the parameter 5 over the sequence of

iterations?

3. Generation of good lower bounds: How good is the Fraley dual lower bound

updating procedure described in step 2 of the algorithm's summary in Section

III ? How is the algorithm's performance affected by the use of a good initial

lower bound instead of an artificial one?

4. Effect of the parameter q: q is the multiplier on the "log(,Tx)" term of the

potential function in PRB (Section III), and features in Step 3 of the

algorithm's summary in Section III. What value should the parameter q be

given? Does the algorithm perform better for some values of q over others?

5. Effect of the early feasibility option: What effect does the inclusion of this

option have on the algorithm's performance? Can we characterize the

situations in which this option improves or worsens the performance of the

algorithm?

23

I11

6. Different 'Parallel Shift' approaches versus 'Rotation': How does the
'Rotation' version of the algorithm compare with the 'Parallel Shift' approach?
In the 'Parallel Shift' case, what is the best setting for the parameter 3 from a
performance-based perspective (i.e., ignoring the Phase I - Phase II

balancing consideration)?

Before referring to these issues, some aspects of the testing and

implementation process are discussed next.

Implementation and testing details

Programming Language: The algorithm was encoded in MATLAB, a
mathematical software package that provides a convenient programming
environment for matrix-based problems, and itself uses LINPACK and EISPACK

algorithms. MATLAB deals with real numbers in double precision. Since the
aim of the research was to study certain basic algorithmic issues, the nature of
the code developed was not in itself a primary consideration, though, as

mentioned later in this section, certain numerical issues did need to be
resolved. The iteration count was used as the measure of the algorithm's

performance.

Test Problems: The empirical testing was done on a library of test problems

that consisted of two sets of 15 problems each. One set of problems had the

constraint matrix A to be of size 50 x 100, and the other set of problems had the

constraint matrix A to be of size 25 x 50. In this thesis, the terms 'Size 100' and
'Size 50' will be used to denote the sizes of problems belonging to the former
and latter categories respectively. Each of these LP problems was generated
randomly in the manner described below.

A random LP problem of size 100 was generated as follows: A constraint
matrix A of size 50 x 100 was generated with each element of the matrix being

derived from a standard Normal distribution, independently of the other
elements. Two vectors, R1 0 0 and a' e R100 were also generated, with each

element of the two vectors being derived from a uniform [0,1] distribution,
again independently of the other elements. Then b E R 50 was derived as b =
Ax. An LP in the standard form (4.1) was then provided by the data (A, b, c).

24

Note that this LP has an interior solution x. Also, since c > 0 (by the manner
in which it was derived), and every feasible x also satisfies > 0, the optimal

solution to this LP must also be non-negative, and so B = 0 is a (hopefully,
good) lower bound on this LP. In fact, given any feasible solution x, we have

the following result:

BO0 z* <cx<n = 100.

Since the intent was to start the algorithm from an infeasible point, and x' was
already an interior feasible solution to the LP, an initial infeasible vector
Oe R 100 was still needed. This was generated by deriving each of its elements

from a standard Normal distribution, independently of the other elements.
Thus, the complete data for the problem was given by ((A, b c, x and B°).

Random LP problems of size 50 were derived similarly.

The procedure described in Section IV was then used to arrive at a transformed

version of each LP on which the algorithm could be directly applied.

Base Case: To test various issues, one needed to either study some aspect of the
algorithm's behavior under some specific setting of an algorithmic option or
parameter, or compare the algorithm's performance under two or more
alternative settings of some such option or parameter. A base case was set up
in order to fix a 'default' setting for each of these algorithmic options and

parameters. These settings under the base case are given below:

Base Case

(q, b, tola, tolb and 'early feasibility' are defined in Section III)

q = n+l + n+ I (n = size of the problem)

I=1

No early feasibility option

tola = tolb = 10-3

Good lower bound (that which was derived from the
problem generation process described above).

25

The value of q chosen provides an O(nL)-iteration limit on the algorithm's

convergence. A value of 1 implies that an equal emphasis is being sought

between Phase I and Phase II gap reduction over the iterations. The reasons

for choosing the above tolerance levels is given later.

Numerical Issues: As the iterates x get close to the optimal solution, some of

their coefficients become very small in value. This can lead to certain

numerical problems in practice that may stall progress in the final stages of

the solution process. One problem in particular is the high degree of

inaccuracy in the computation of the search direction d caused by the bad

conditioning of the matrix [(Al)(A1)T] and its inverse (see Step 3 of the

algorithm in Section III). Unless these numerical issues are resolved, the

algorithm may perform very inefficiently in practice near the optimum , and

this may distort the implementation results to varying extents. The task of

devising algorithmic and implementation strategies that circumvent these

problems falls in the domain of numerical analysis and computation, and the

research described here was not concerned with tackling these issues.

Unfortunately, in the testing process some significant numerical problems in

the context described above did emerge. These led to a need to devise a

practically sound manner of dealing with the final stage of the solution

process (including the choice of a suitable stopping criterion). Some of the

test cases on which the problems persisted had to be ignored in the final

compilation and analysis of the results.

The numerical problems discussed above precluded the use of tight tolerances,

for given the level of computational imprecision in the final stages, such

tolerances would not be effective. After testing some cases with the tolerance

levels of 10-5, 10-4 and 10-3, the last one was chosen as the value for both tola
and tolb, since the computer program was unable to achieve the higher levels

of precision consistent with the tighter tolerances. This low level of precision

by the program was unexpected and somewhat puzzling, and the probable

26

III

causes behind this behavior were not immediately apparent to the author or

his advisor.

Analysis and discussion of results

1. Stopping Criterion: At first, the stopping criterion described in Step 5 of the

algorithm's summary in Section III was used. However, in a number of cases

the solution process was significantly affected by the factors outlined in the

discussion on numerical issues above. Typically, the Phase I objective value

would come within the tolerance limits before the numerical problems started

playing a dominating role - after that point, the directions computed were

highly inaccurate, and in many cases convergence to within tolerance limits

in the Phase II objective required an extremely large number of additional

iterations (with the algorithm having to be stopped in some cases before it had

satisfied the Phase II tolerance level).

The following stopping procedure was then applied:

If fT < tola and (cTx- B)< maxl, IcTl)tolb

End

else if TIx < tola

Solve the linear program

LPII Min, cTx

Ax = b

Tx = Tx

x> 0

using as the initial interior feasible solution and B = B + (Tx) 0'

as the initial lower bound, where 0', along with some ar', s', is the
solution to the restricted dual FD- of step 2 that was solved to give

the present lower bound B.

(The reasons for this step are provided below.)

27

III

This LP has an initial interior feasible solution, and so any of the 'Phase II '

interior point algorithms can be applied to solve it. An implementation of the
potential function reduction algorithm described in Freund [3] was used for

this purpose.

The rationale for arriving at the above final-stage procedure is as follows: One

intuitively suspects that, given the numerical problems, an important reason

for the algorithm's bad behavior in practice after it has achieved the desired
Phase I reduction could be its persistence with the 'Phase I potential function'

n
f(x,t) = qlog(4Tx)- I log(xj)- log(t)

j=l

to determine directions of movement d when it is Phase II convergence that is

required. Hence one may think of shifting to some 'Phase II potential

function' after the Phase I tolerance is achieved. We could thus look at the

'feasible region' given by

Ax = b

0 < STx < T

x 0 ,

and try to reduce the Phase II gap to satisfy the tolerance limit tolb within this

region. Given the manner in which the problem is derived from the original

LP (2.1), it can be shown that the problem

Minx cTx

Ax = b

x0 ,

has the same optimal solution as the problem

Min cTx
X

28

Ax = b

TX T-jI

x> 0.

One final ingredient still needs explanation: the specification of the lower

bound B. To see why B is a valid lower bound on the linear program (LPII),

consider the family of linear programs

LPa Min, cTx

Ax = b

4Tx = a

x> 0.

Note that LP is the same as LP(4.1), which is the problem being solved.

The dual of LPa is given by

Da Max>,E bTX + alc

ATX+, < C

Note that the feasible region for D is independent of a.

Now suppose that B is the current lower bound on LP(4.1), and that is the

current iterate. Also assume that B is not the initial lower bound B. Then,

from the algorithm's summary in Section III, it is clear that B must have been

derived in Step 2 as the solution value to a restriction FD of the dual Do of LP

(2.1) (note that may be different from since the lower bound may have

been updated to B at an earlier iteration). Hence, there is some solution

(0',l',~a') to FD- for which the objective value equals B. Since FD is a
restriction of D0,so in fact there is some solution (', p.') of Do for which the

objective function value equals B. It can also be easily seen from looking at
how FD is a restriction of Do, that in fact jt' = 0'. Since the feasible region of

all the Da's are the same, and the objective function is given by bTX + 4, so

for a = Tx there is a solution (.', 0') to Da with objective solution value equal to

B + (TR) t', and this must then be a valid lower bound on LP.

29

The above modification did result in resolving the numerical problems for

most test problems, though for some problem instances the algorithm's

performance continued to be hampered by them. These instances were

therefore excluded from the final compilation and analysis of the empirical

results, and an asterisk has been printed in place of any data for such cases in

the tables that follow.

2. The effect of the balancing parameter : As mentioned in Section I, an

important question that needs to be studied empirically is whether, over the

sequence of iterations, the ratio

= cTxk-Bk (5.1)
Txk

does in fact lie quite close to the value of the parameter . To investigate this

issue, the value of rk was recorded after each iteration of the algorithm for a

number of test problems. Table 1 provides some information on this matter.

The following inferences are easy to draw from this table:

* For higher values of (1), r lies quite close to 3.

* For very low values of , rk is often negative in many problem instances,

which implies that for those instances the iterates are more or less tracing a

'known-superoptimal' path to the optimum solution.

(Note: When the ratio (5.1) is negative, we have cTxk < Bk, and so, in such a case,

the objective value at the current solution is known to be lower than the

optimal solution value z*. This is what is meant by the solution being 'known-

superoptimal'.)

We note that the ratio (5.1) staying quite close to implies that the iterates are

staying quite close to the constraint

(-{3+c)Tx + t = B (3.lb)

30

III

of the problem LPB. This helps in giving us an intuitive understanding for the

inferences drawn above. When is large, the constraint (3. b) intuitively

looks like the feasibility constraint

gT =0 (2.lb)

and so the attraction force by the 'qlog(4Tx)' term of the potential function

(3.2) will serve to attract the iterates close to the constraint. When is small,

however, the constraint (3.lb) is intuitively very different from the

feasibility constraint, and in this case the "-log(t)" term of the potential

function will serve to repel the iterate from the constraint. Hence, in this

case, the iterates may not lie consistently close to this constraint, and thus rk

may not remain close to over the iterations.

3. Generation of good lower bounds: Step 2 of the algorithm's summary in

Section III describes the use of a Fraley dual (a restriction of the dual of the

original problem) in updating the lower bound at the start of each iteration.

As mentioned in Section II, it seems important that the algorithm be able to

compute good lower bounds on the optimal solution value in a timely manner.

To explore this aspect of its behavior empirically, and also to answer the

question of how the performance of the algorithm is affected by the use of

good versus artificial initial lower bounds, the base case algorithm was applied

to each of the test problems of size 100 with the good initial lower bound being

replaced by an artificial bound of B°= -105). The lower bounds generated over

the iterations were recorded.

We term the case of using a good initial lower bound (the base case) as Case I

and that of using an artificial initial lower bound as Case II. The 'Case I' and

'Case II' columns of Table 2 provide data on the algorithm's performance in the

two cases. The algorithm performed quite unfavorably in Case II as compared

to Case I. This difference in performance may then be attributed to the

following factors:

1. The lower bounds used in Case I are, at least initially, much better than

those used for Case II.

31

2. The starting point in Case I is much closer to the feasible region than that

in Case II. (Here, our measure of the degree of closeness of a point x to the

feasible region is Tx. Note that this will be zero for a feasible point.)

The analysis provided here is more on an intuitive level, and these results can

be contradicted in odd circumstances. We notice, for instance, that for

problem 9 in Table 2, the algorithm took fewer iterations in Case II than in

Case I.

The first column of Table 3 shows the number of iterations taken by the

algorithm in Case II to generate the first good lower bound, and this points

towards the influence of the first factor. An intuitive explanation for why the

second factor may be true is given next.

The initial solution x has to satisfy

(-I + c)TxO < B0 (5.2)

Suppose first that we are starting from an artificial lower bound, so that B is

very negative. Then the initial solution x (= ";0 + h) that is derived from the

transformation process described in the first part of Section IV will probably

not satisfy (5.2), and we will instead have to apply the method discussed in the

last part of that section to arrive at a positive real number w for which x' =

x° + w°h satisfies this inequality. This x' will then be used as the initial point

for the algorithm. We now show why this new point x' will in general lie

much further from the feasible region than the previous point x0.

We recall that the degree of infeasibility of a point x is given by the feasibility

gap Tx. We note, as in Section IV, that Th = 0. Now since x' will satisfy (5.2),

we have

(-~ + c)T(XO + w0 h) < BO,

which implies -T(xO + w0h) + cTxO < B0 (5.3)

32

It is easy to see from (5.3) that Tx = T(xO + w0 h) will need to be much larger

than Tx°, and so x' is much further from the feasible region (for which Tx =

0) than x °.

Now consider the case where B is actually a good lower bound. Then either x°

will satisfy (5.2), and hence will be the starting point, or we will again use the

same process as above to arrive at an x" = x + w'°h which satisfies this

inequality. However, in this case, since B is much less negative than it was in

the case above, x" will not be shifted as far away from the feasible region as x'

was. Hence, it should be a starting point that lies much closer to the feasible

region than x'.

In order to seek any improvement in the algorithm's performance under an

artificial initial lower bound, we would have to focus on the second factor

mentioned above, since the first one is a direct and inevitable consequence of

using an artificial instead of a good bound. We would thus like to find a way by

which we can prevent a large shift away from x while initiating the solution

process. This objective led to the following modification to the first stage of

the algorithm. The algorithm would start from the given initial solution x °,

with (5.2) being satisfied by instead choosing a different initial value for 3,
which would be such that > (cTx0 - BO)/4TxO. This value of would be used

until the algorithm generated a 'good' lower bound (much less negative than

the artificial one), at which point the algorithm would shift over to the user-

specified value for , using the technique of Section IV if required in order to

ensure that the current iterate xk (or its derivative of the form xk + wh, for

some positive real number w) satisfied (5.2).

In this modified version of the algorithm, then, the solution process begins

from the x that is derived from the first part of Section IV, and the user-

specified 3 is only used once a good lower bound is generated. Interestingly,

the Fraley dual bound-updating technique, when used with this modified form

of the algorithm, turned out to be very effective. Tables 2,3 and 4 provide some

data on the results, which are now discussed.

On the problems of size 50, three versions of the algorithm were initially run:

1. The base case, with good initial lower bounds (Case I).

33

2. Same as above, except with artificial initial lower bounds (Case II).

3. Same as the above, except with the algorithm modified as described above.

(Case III)

Table 2 provides the iteration count for the three cases. We observe that not

just does the algorithm in Case III perform much better than that in Case II,

but it almost performs as well as the case with the good initial lower bounds

(Case I). In order to gain some more insight into the nature of the impact that

the modification in Case III had on the algorithm's behavior, the data shown in

Table 3 was collected. This table shows the number of iterations it took in Cases

II and III for the algorithm to generate a good lower bound. As can be seen,

this number was much higher in Case II that in Case III. This implies that in

fact the effect of the two factors mentioned in the beginning of this part of

this section cannot be considered independently of each other, for the second

factor seems to influence the first one: solutions that are far away from the

feasible region result in poor bounds being generated, and solutions that are

near the feasible region help in generating good bounds.

Table 4 shows the number of iterations taken by the algorithm for the

problems of size 100 for Cases I and III.

It is striking to note that in Case III (for both size 100 and size 50 problems),

despite starting from as low an artificial bound as 10-5, good bounds were

generated in an average of 2 iterations. As a consequence, the algorithm's

performance was not much different from that in Case I. This seems to imply

that with this modified approach, the value of knowing and using a good

initial lower bound is very little. This issue needs to be explored further.

4. Effect of the parameter q: Theoretically, q needs to satisfy

q > n+ + Fnj and q = O(n)

in order for the algorithm to provably converge in O(nL)-iterations. However,

in practice, it is useful to test different values of q before determining at what

value to set q.

34

The empirical results presented in Table 5 show the number of iterations taken

by the algorithm for all 15 problems of size 50 under five different settings of

q: q = n+2, n+1 + +1, n+l + (n+l), n+1 + (n+1)2, n+l + (n+1) 3. The data in the

table seems to suggest that the algorithm's performance, on the average,

improves as q is increased, though it seems to plateau between n+l + (n+l)

and n+l + (n+1) 3. It would be interesting to explore the algorithm's

performance for even higher values of q.

5. Effect of the early feasibility option: The Phase II procedure used in the

early feasibility option was a potential-reduction algorithm (with line

searches and Fraley dual lower bound updates) based on Freund's [3] approach.

Tables 6a and 6b provides comparative performance data between the base case

version and the case with the early feasibility option for the size 50 and size

100 problems. From the data in these tables we can infer that the early

feasibility option significantly enhances the performance of the algorithm,

by allowing the algorithm to concentrate exclusively on Phase II gap

reduction once it has achieved feasibility early on in the solution process.

There were some instances where this option seemed to make the algorithm

perform worse. Unfortunately, further inferences on when this option may

or may not be useful could not be drawn, since there was no clear pattern to be

observed in the tests performed.

6. Different 'Parallel Shift' approaches versus 'Rotation': The test problems

were solved by using seven different modifications of the base case algorithm.

These modifications were:

(i) [= 100, (ii) 5 = 10, (iii) [= 1, (iv) 5 = 0.1, (v) = 0.01

(vi) Fixing to = I in the initialization step of the algorithm (see Section

III) and then using the equation tO = BO - (-[5 + c)TxO to determine

the value for 5-

(vii) Using the 'Rotation' version of the algorithm (see Section III).

In this case, the initial value of was determined through the
equation to = BO - (-p5o + c)TxO, with tO = 1.

35

The results are shown in Tables 7a and 7b. The higher value of seem to
perform better, but the results cannot be termed conclusive, and so no definite
inferences could be drawn from them.

36

SECTION VI

This final section contains a brief outline of the main findings of the

empirical study, and a discussion of the important issues that need to be

explored further.

Main findings

The aim of the implementation and empirical testing was to explore certain

aspects of the algorithm's behavior. On the basis of the implementation

results, we can draw the following conclusions:

(1) For high values of (eg, fi>1), this parameter does provide an effective

balancing mechanism between the Phase I and Phase II objectives. This is a

very encouraging result, for it implies that the goal of providing this

flexibility in the solution procedure has been at least partly realized.

(2) Starting the algorithm with an artificial initial lower bound instead of a

good bound does not cause any significant deterioration in the algorithm's

performance. While the direct application of the algorithm with an artificial

bound causes it to perform relatively badly, the modified version described in

the previous section performs almost at par with the 'good initial bound' case.

In some sense, then, the knowledge of a good initial lower bound is not of

much consequence.

(3) The early feasibility option significantly enhances the performance of

the algorithm for problems that have a non-empty interior feasible region.

The last qualification is important for two reasons. Firstly, all the problems in

the test library did satisfy this assumption (see the problem generation

description in Section V), and secondly, our geometric intuition makes us

suspect that this result may actually not be true for problems where the

feasible regions lie in a 'lower-dimensional' space.

37

(4) Higher values of seem to work better than smaller values. This deduction

must be made with some caution, for the test results relating to this issue

cannot be termed conclusive.

(5) The optimal value of q is higher than n+l + n+ 1 . This result is not

surprising, for similar conclusions have been reached by researchers who

have studied the empirical behavior of other interior point linear

programming algorithms.

Open questions for future research

(1) What is the optimal setting for ? This question was only answered in part

by this study, and further work will have to be done before any firm

conclusions can be drawn.

(2) How is the algorithm's behavior and performance affected when it is

applied to a different set of problems? This study concerned itself with testing

the algorithm on a specific set of randomly generated problems. Does the

algorithm behave in a similar fashion when applied to problems that have

been generated randomly in a different manner, or have been derived from

actual applications?

(3) How does the algorithm perform on "warm start" problems? A "warm

start" problem is derived by perturbing an already-solved linear program, and

uses as its initial solution the optimal solution of the original linear program.

Such problems are often encountered in practice, and serve as an important

class of linear programming problems. The algorithm discussed in this thesis

could be applied to solve such linear programs, and it would be interesting to

study the empirical behavior of the algorithm on such problems.

(4) What is the relationship between the size of a problem and the number of

iterations taken by the algorithm to solve it? While the theory can provide us

with a worst-case bound of O(nL) on these iterations, an empirical study is

required to get some understanding of the "average-case" behavior of the

algorithm. Such a study would involve the solving of test problems of a

number of different sizes, and an analysis of the subsequent results to

38

number of different sizes, and an analysis of the subsequent results to

determine a functional relationship between the two variables mentioned in

the above question.

39

References

[1] K.M. Anstreicher, " A combined Phase I - Phase II projective algorithm

for linear programming", Mathematical Programming 43 (1989) 209-

223

[2] K.M. Anstreicher, " A combined Phase I - Phase II scaled potential

algorithm for linear programming", CORE Discussion Paper 8939, CORE

Catholic University of Louvain, Belgium, 1989

[3] R.M.Freund, "Polynomial-time algorithms for linear programming

based only on primal scaling and projected gradients of a potential

function", Mathematical Programming 51 (1991) 203-222

[4] R.M.Freund, " A potential reduction algorithm with user-specified Phase

I - Phase II balance, for solving a linear program from an infeasible

warm start", Technical Report No. 981, School of OR&IE, Cornell

University, Ithaca, NY, 1988.

[5] C.C.Gonzaga, "Polynomial affine algorithms for linear programming",

Mathematical Programming 49 (1990) 7-21

[61 N. Karmakar, "A new polynomial time algorithm for linear

programming", Combinatorica 44 (1984) 373-395

[7] M.J.Todd and B. Burrell, "An extension of Karmakar's algorithm for

linear programming using dual variables", Algorithmica 1 (1986) 409-

424

[8] M.J.Todd, "On Anstreicher's combined Phase I - Phase II projective

algorithm for linear programming", Technical Report No. 776, School of

OR&IE, Cornell University, Ithaca, NY, 1988, to appear in Mathematical

Programming

[9] M.J.Todd, "Combining phase I and phase II in a potential reduction

algorithm for linear programming", Technical Report No. 907, School of

40

(OR&IE, Cornell University, Ithaca, NY, 1990, to appear in SIAM Journal
on Optimization

[10] M.H. Wagner, "Supply-demand decomposition of the national coal
model", Operations Research 29 (1981) 1137-1153

[111 Y. Ye, "An O(n3 L) potential reduction algorithm for linear
programming", Mathematical Programming 50 (1991) 239-258

41

APPENDIX A

TABLE1

(The behavior of the ratio rk = (cTxk - Bk)/ STxk over the sequence of
iterations)

Size 50 Problems

Note: The numerical problems mentioned in this section caused the
computations over the last few (4-5) iterations to be quite imprecise, and
so these iterations have been ignored in the analysis.

The results mentioned below refer to the behavior of the above ratio
after the first 2-4 iterations.

b = 100: In all cases, rk was between 98 and 100

b = 10: In 14 of the 15 cases, rk was between 9.6 and 10

b = 1: In 12 of the 15 cases, rk was between 0.9 and 1

b = 0.1: Much more variation in the results; rk lay
between:

0.095 and 0.1 in 4 cases
0.05 and 0.1 in another 6 cases

For the rest of the problems, rk did not
consistently lie in any reasonable proximity to 0.1

rk lay beween 0.007 and 0.01 in 5 cases

For the rest of the problems, rk did not
consistently lie in any reasonable proximity to 0.1.
In many cases, rk was often negative.

42

(

b = 0.01:

TABLE 2
Base case with good vs. artificial initial lower bounds

Case I: Base case (with good initial lower bound)
Case II: Base case (with artificial initial lower bound)
Case III: Modified version, base case

(with artificial initial lower bound)

No. of iterations for algorithm to converge
Case I Case II Case III

Size 50
Problem No.

1
2
3
4
S
6
7
8
9

10
11
12
13
14

IS~~~

Average 23.2 38.7 23.1
St. Deviation 3.5 6.9 3.3

*: These problem instances were ignored since their solutions
were significantly affected by numerical problems.

43

29
46
44
41
45
35
46
31
27
45
39
37
48
34
34

20
2 2

20
2 1
25
24
2 1
29
2 1
3 1
2 1
24
20
2 6

1 7
2 3
20
2 1
2 3
25
2 8
22
27
20
2 8
2 1
2 3
2 1
2 7

TABLEf
Generation of good lower bounds
(Base case with artificial initial lower bounds)

Case II: Base case (with artificial initial lower bound)
Case III: Modified version, base case

(with artificial initial lower bound)

No. of iterations taken to generate first good bound
Case II Case III

Size 50
Problem No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Average
St. Deviation

5.3
3.2

1.6
1.1

44

1
9
10
9
9
2
9
4
2
7
4
4
5
3
2

1
3
2
1
2
1
5
1
1
2
1
1
I

III

TABLE 4

Base case with good vs. artificial initial lower bounds

Case I: Base case (with good initial lower bound)
Case III: Modified version, base case

(with artificial initial lower bound)

No. of iterations for algorithm to converge
Case I Case III

Size 100
Problem No.

1
2
3
4
S
6
7
8
9
10
11
12
13
14
15

Average 29.0 30.9
St. Deviation 3.6 4.1

* : These problem instances were ignored since their solutions
were significantly affected by numerical problems.

45

---��-���--�-----

TABL 5
Base case with different values of g
q = n+l + (n+l)t

No. of iterations for algorithm to converge
t= 0 0.5 1 2 3

Size 50
Problem No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Average 26.3 23.1 19.5 19.9 17.5
St. Deviation 2.5 3.4 3.6 5.2 2.8

* : These problem instances were ignored since their solutions

were significantly affected by numerical problems.

46

24 20 15 16 *
25 22 19 19 21
25 21 15 16 15

* 20 16 15 14
29 21 18 22 21
30 25 21 30 *
28 24 19 17 17
25 21 18 19 17
28 29 24 * *
24 21 17 15 15
27 31 23 21 22
23 21 24 19 19
27 24 18 17 17
23 20 19 20 15
30 26 27 32 *

III

TABLE a
Base case along with the early feasibility option

I-II: Total number of iterations to converge
II only: Iterations in the Phase II stage only

(after achieving early feasibility)

No. of iterations
Base Case

Size 50
Problem No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Average
St. Deviation

20
22

20
21
25
24
21
29
21
31
21
24
20
26

23.2
3.5

for algorithm to converge
With E.Feas.

I - II II only

17
18
19
19
18
14
15
12
14
15
12
12
14
14
17

15.3
2.5

7
8
7
0
7
7
10
6
11
6
10
9
6
7
3

6.9
2.8

* : These problem instances were ignored since their solutions
were significantly affected by numerical problems.

47

. .

TABLE 6b
Base case along with the early feasibility option

I-II: Total number of iterations to converge
II only: Iterations in the Phase II stage only

(after achieving early feasibility)

Size 100
Problem No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Average
St. Deviation

No. of iterations for algorithm to converge
Base Case With E.Feas.

I -II II only

29.0
3.6

18.0
6.6

9.3
2.7

* : These problem instances were ignored since their solutions
were significantly affected by numerical problems.

48

12
10
17
22
19
18
21
16
14
38
16
11
21
17
18

3 1
24
2 8
29
3 0
2 8
3 0
3 3
3 1

3 7
22
2 8
2 8
2 7

8
4
8
1 4

9

1 0
1 1
8

1 3
6
6
1 0
1 0

TABLE 7a
Base Case under seven different scenarios:
'Parallel Shift' with different 's. Constant slack and 'Rotation'
C.S.: 'Constant Slack' option Rtn: 'Rotation' option

Number of iterations for algorithm to converge
Beta

100 10 1 0.1 0.01 C.S. Rtn
Size 50

Problem No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
27

16
18
19
22
17
19
23
20
23
23
21
21

17
21

16
18
22
23
19
20
21
22
22
21
19
26

20
22

20
21
25
24
21
29
21
31
21
24
20
26

22
25

22
25
27
26
24
29
25
23
22
27
24
26

24
29

25
27
26
32
25
27
29
26
25
28
27
27

Average
St. Deviation

20.4
3.1

20.5 23.2 24.8 26.9
2.6 3.5 2.1 2.1

21.7
3.6

* : These problem instances were ignored since their solutions
were significantly affected by numerical problems.

49

16
23
20
15
17
26
25
23
27
21
24
21
22
20
25

20
23
22
19
21
32
25
22
27
20
29
21
23
20
27

23.4
3.8

_ .
.

.. .. l .

111

(

TABLE b
Base Case under seven different scenarios:
'Parallel Shift' with different values of Beta. Constant slack and 'Rotation'
C.S.: 'Constant Slack' option Rtn: 'Rotation' option

Number of iterations for algorithm to converge
Beta

100 10 1 0.1 0.01 C.S. Rtn
Size 100

Problem No.
1
2
3
4
S
6
7
8
9
10
11
12
13
14
IS

24
26
26
31
32
27
29
30
28

30
19
22
25
25

33
28
35
30

30
32
31
34

36
23
32
30
31

31
24
28
29
30
28
30
33
31

37
22
28
28
27

Average 28.1 26.7 29.0 31.2 34.8 28.9 29.4
St. Deviation 23.4 6.3 9.9 11.7 12.3 6.1 3.6

* : Thse problem instances were ignored since their solutions
were significantly affected by numerical problems.

50

2 2
3 2
24
3 3
3 4
3 6
2 8
2 6
1 9

3 2
25
2 1
3 1
3 1

44

27

3 6

3 3

4 1

34

3 7

3 9

3 5

3 2

25

3 6

3 2

3 6

3 2
2 6
2 8
2 7
3 5
27
26
4 1
3 7
20
34
24
2 1
29
2 6

3 0
25
2 7
2 8
2 8
3 1
2 8
3 6
29
27
3 6

. 2
2 8
3 6
2 9

Ill

APPENDIX B

The following computer programs, coded in MATLAB, are included in this

appendix:

1. PLP : This program includes the Phase I - Phase II algorithm that forms the

subject of this paper.

2. PLPPHASEII : This program solves the Phase II linear programming

problem, and uses the algorithm described in Freund [3].

3. PPROCESS: This program takes a problem instance (of an LP in standard

form), and converts it to a problem in the required format, feeding the

resulting problem data into the program TESTRUN.

4. TESTRUN: This program calls repeatedly on the solver LP, each time with the

same problem, but with different settings of the algorithmic parameters.

5. FD : This program computes the solution to a Fraley dual problem.

6. FM : This program computes the solution to a two-variable LP, by using a

Fourier-Motzkin approach.

51

function [x,k,kk,error] = pip
(A,b,c,y,xl,K,B,i,f,l,p,q,file,fileratios,changeq)

%interior point combined Phase I - Phase II lp code

% i is an indicator for which line-updating procedure is to be used
% (i=O for constant slack, i=l for parallel shift, and i=2 for fixed point)

% f indicates whether to use the quadratic equation or the fraley dual method
% for updating the lower bound (f=0 for quad.eq., f=l for fraley dual)

%INITIALIZATION

n = max(size(c));
m = max(size(b));
xxx(l:n) = xl;
xxx(n+l) = K;
X = XXX';

alpha = (B- c'*x(l:n) - K)/ (y'*x(l:n));
L = alpha*y + c;

kk=O;
% 'kk' is the iteration counter for the phase II problem when the
% 'p=l' option is used.

r = .8;
k=0
% k is the iteration counter
tol = 10^(-3);
fprintf(file,'tolerance = %7.5g\n',tol)

while y'*x(l:n) > tol I abs(c'*x(l:n)-B) > tol*max(1,abs(c'*x(l:n)))

fprintf(file,'(%5.4g,', (c'*x(1 :n)-B)/(y'*x(1 :n))
fprintf(file,' %5.4g)', B)

if y'*x(l:n) < tol
A2 = [A ;y'];

b2 = [b;y'*x(l:n)];
Bound = B + xfdnew*(y'*x(l:n));

fprintf(filc,"\n Phase I is within tolerance, so I am into PhaseII!\n')
fprintf(file,' %5.4g (old), %5.4g (new)\n', c'*x(l:n),c'*xfeas)

[xphaseII,kk] = plpphaseII (A2,b2,c,x(l:n),Bound,f,l,changeq);
x = [xphaseII;O];
k k + kk;
return

end

k = k+l;

52

if k==50
return

end

% PROJECTION AND RESCALING

X = diag(x(l:n));
Yy = X*y;
Aa = A*X;
cc = X*c;
LI = alpha*Yy + cc;
e = ones(Yy);
yp = Proj(Aa,Yy);
ep = Proj(Aa, e);
cp = Proj(Aa,cc);
Lp = alpha*yp + cp;

if f== 1

% SOLVE THE FRALEY DUAL

cfd(1) = -(yp'*e) + (e'*Yy);
cfd(2) = ep'*ep - n;
Afd = yp;
Bfd = e - cp;
bfd = cp;

[xfd, yfd, eel = fd (Afd, Bfd, bfd, cfd);

if ee == 2

error = 'fraley is unbounded in lpnew'

% fd unbounded implies LP is infeasible

return

elseif ee == I

% if ee were = 0 then the fd would be infeasible, so we'd ignore it

bound = - cfd(l)*xfd - cfd(2)*yfd - cp'*ep + cc'*e;

if bound > B
xfdnew = xfd;

if i == 0
alpha = (bound - c'*x(l:n) - x(n+l))/ (y'*x(l:n));

L = alpha*y + c;
LI = alpha*Yy + cc;
Lp = alpha*yp + cp;

53

elseif i ==

- x(n+l) = x(n+l) + bound - B;

elseif i == 2

al = 1/(y'*xl);
bl = (-K-c'*xl)/(y'*x1);
a2 = 1 - (y'*x(l:n))/(y'*xl);
b2 = (K+c'*xl)*(y'*x(l:n))/(y'*xl) - c'*x(l:n);

x(n+l) = a2*bound + b2;
alpha = al*bound + bl;

L = alpha*y + c;
Li = alpha*Yy + cc;

Lp = alpha*yp + cp;
end

B = bound;

end

end
end

%
% COMPUTE d (IN RESCALED SPACE)

gdummy(l:n) = (q/(y'*x(l:n)))*Yy - ones(Yy);
gdummy(n+l) = -1;
g = gdummy';

Adl = [Aa zeros(b);Ll' x(n+l)];
dl = Proj(Adl, g);

if Yy'*dl(l:n) >= 0
d = dl;

else
Ad2 = [Adl;Yy' 0];
d2 = Proj(Ad2, g);

d = d2;
end

% PRIMAL OR DUAL UPDATE (NO DUAL UPDATE IN CASE OF FD)

if p--- I
dd = X*d(l:n);
feas = (y'*x(l:n))/ (y'*dd);
xfeas = x(l:n) - feas*dd;
chk = xfeas >= zeros(c);

54

�

if ones(c)'*chk == n
eee = eye(n);
for j = 1:n

if y == eee(1 :n,j)
% then we need to eliminate the jth variable, which'll always be 0
% for jj = :n
% ifjj <j
% A2(1:m,jj) = A(I:m,jj);
% c2(jj) = c(jj);
% xf(jj) = xfeas(jj);
% elseif jj > j
% A2(1:m,jj-1) = A(1:m,jj);
% c2(jj-1) = c(jj);
% xf(jj-1) = xfeas(jj);
% end % of the " if " loop
% end % of the jj loop
% c2 = c2';
% xf = xf';

fprintf(file,'\n I am going into phaseII!\n')
fprintf(file,'Change in objective value: ')
fprintf(file,' %5.4g (old), %5.4g (new)\n', c'*x(l:n),c'*xfeas)

A(:,j) = [];
c(j,:) = [1;
xfeas(j,:) = [1;

[xphaseII,kk] = plpphaseII (A,b,c,xfeas,Bf,l,changeq);

% Now we need to restore the jth variable

x = [xphasell(l:j-1);O;xphaselI(j:n);O];
k = k + kk;
return

end % of the " if y==eye..." loop
end % of the j loop

% you still want to make sure that xfeas has no zero components; if there
% are some, too bad

chk2 = xfeas > zeros(c)+tol;

if ones(c)'*chk2 == n
A2 = [A;y'];
b2 = [b;O];

fprintf(file,'\n I am going into phaseII!\n')
fprintf(file,'Change in objective value: ')
fprintf(file,' %5.4g (old), %5.4g (new)\n', c'*x(l:n),c'*xfeas)

[xphaselI,kk] = plpphaseII (A2,b2,c,xfeas,B,f,l,changeq);
x = [xphaseII;0];

55

-- -~ ~ ---- -- -- -----~ -" ^'-~~-~---~- ~~~

k=k+kk;
return

else
error = 'some x component went to 0 on shooting to feasibility'

fprintf(file,'some x component went to 0 on shooting to feasibility\n')
return

end
end % of the " if ones(c)'*chk == n" loop

end % of the " if p = 1 " loop

if norm(d) >= r-tol
if 1--=1

% now for a line search

% first, find an upper bound for a, the step length

tt = 0;
upper = [];
for t = l:n+1

if d(t,1) > 0
tt = tt + 1;
upper(tt) = 1/d(t,1);

end
end

if Yy'*d(l:n) > 0
tt = tt + 1;

upper(tt) = (Yy'*e)/(Yy'*d(l:n));
end

if tt > 0
upbd = min(upper);

else
keyboard
return

end
% NOW WE HAVE TO EXPLORE a IN THE RANGE [0, upbd]

Iwbd = 0;
a = (upbd + lwbd)/2;

da = d./([e;l] - ad);
fa = -q*(Yy'*d(l:n))/(Yy'*e - a*Yy'*d(l:n)) + sum(da);

j = 0;
while abs(fa) > 10^(-3)

j =j+l;
if fa < 0

56

III

lwbd = a;
else

upbd = a;
end

a = (upbd + lwbd)/2
da = d./([e;1] - ad);

fa = -q*(Yy'*d(l:n))/(Yy'*e - a*Yy'*d(l:n)) + sum(da);

% if j = 10, you wanna end
ifj == 10;

fa = 0;
end

end

% at the end of it all, you've got your step size 'a'

elseif 1=0
stepsize = I + norm(d) - ((1+2*norm(d))A.5)
a = stepsize/norm(d);

end
% ... of the "if =1 " loop

x = x - a*diag(x)*d;

% make sure the step shouldn't be a '+'; also the rescaling of d
else

if f=1
error = 'fraley yields small d in lpnew'

return

elseif f--=0

gp = (q/(y'*x(l:n)))*yp - ep;
% Solve the quadratic for updating B

if i - 0

% CONSTANT SLACK CASE

cbarl = [gp', -1];
wbarl = [yp', 0];
vbarl = [cp', x(n+l)];

[al,a2,a3] = qq (cbarl', wbarl', vbarl', r);

% updating L

alpha = max(roots([al,a2,a3]));
L = c + alpha*y;
B = L'*x(1:n) + x(n+l);

% PARALLEL SHIFT CASE

57

elseif i =-- 1

cbarl =[gp', -1];
wbarl = [zeros(gp)', 1];
vbarl = [Lp', 0];

[al,a2,a3] = qq (cbarl', wbarl', vbarl', r);

B = B + max(roots([al,a2,a3])) - x(n+l);
x(n+l) = max(roots([al ,a2,a3]));

% I'm assuming you want the bigger root since it should correspond to
% the bigger of the B' s.

pAdl = [Aa zeros(b);Ll' x(n+l)];
pdl = Proj(pAdl,g);

% pcccp = norm(pdl);
if Yy'*pdl(l:n) < 0

% check: should it be > instead?

% case of d2 , parallel shift:

RobA = [Aa, zeros(b) ; Yy' 01;
cbar = Proj(RobA, g);
wbar = Proj(RobA, [zeros(gp); 1]);
vbar = Proj(RobA, [LI; 0]);

[al,a2,a3] = qq(cbar, wbar, vbar, r);

B = B + max(roots([al,a2,a3])) - x(n+l);
x(n+l) = max(roots([al,a2,a3]));

% pA2 = [RobA; LI', x(n+l)];
% pd2 = Proj(pA2,g);

end

elseif i--2

% FIXED POINT CASE; to be ignored at present

al = 1/(y'*xl);
bl = (-K-c'*xl)/(y'*xl);
a2 = 1 - (y'*x(l:n))/(y'*xl);
b2 = (K+c'*xl)*(y'*x(l:n))/(y'*xl) - c'*x(l:n);

a3 = a2/al;
b3 = b2 - (a2*bl/al);

% I am assuming that a higher alpha corresponds to a higher B; check

% check the al, a2, bl, b2 above

58

vbar = [cp+ bl*yp; b2];
wbar = [al*yp ; a2];
cbar = [gp ; -1];

[aal, aa2, aa3] = qq(cbar, wbar, vbar, r);
B = max(roots([aal,aa2,aa3D);

% RobA2 = [Aa zeros(b); vbar' + NewB*wbar'];

% Robd2 = Proj(RobA2, g);
% theta = -(cbar'*(vbar + NewB*wbar))/(norm(vbar + NewB*wbar)A2);
% Robd22 = cbar + theta*vbar + theta*NewB*wbar;

x(n+l) = a2*B + b2;
alpha = al*B + bl;
L = alpha*y + c;
LI = X*L;
Anew = [Aa zeros(b); L1' x(n+l)l;

dlnew = Proj(Anew,g);

if Yy'*dlnew(l:n) < 0

% put in the d2 stuff here

RobA = [Aa zeros(b);Yy' 0];

vbar = Proj(RobA, [cc+bl*Yy; b2]);
wbar= Proj(RobA, [al*Yy; a2]);
cbar = Proj(RobA,g);
[aal, aa2, aa3] = qq(cbar, wbar, vbar, r);
B = max(roots([aal,aa2,aa3]));
x(n+l) = a2*B + b2;
alpha = al*B + bl;
L = alpha*y + c;

end

end
% ... of the " if i= O or I or 2 " loop

end
% ... of the" if f= O or 1 " loop

% plot([O,x(1)l],[B,B-apha*x(l)])
% pause(.9)
%counter=1

end

59

III

... of the " if norm(d) > r or otherwise ... " loop

end

% ... of the " while y'*x(l:n) ... " loop

return

60

function [x, k] = plpphasellI (A,b,c,xfeas,B,f,l,changeq)

% This function solves the problem:

% min c'x st Ax=b, x>=O

% starting form the initial feasible point xfeas and a lower bound B
% on the optimal solution value. It uses a projected gradient -
% potential reduction approach.

%INITIALIZATION

n = max(size(c));

if changeq == 1
q = (n+l);

elseif changeq == 2
q = n+ (nA.5);

elseif changeq == 3
q = n + n;

elseif changeq == 4
q = n +(nA2);

elseif changeq = 5
q = n +((n)^3);

end

x = xfeas;

r = .8;
k = 0;
% k is the iteration counter

tol = 10^(-3);

while (c'*x - B) > tol*max(1,abs(c'*x(l:n)))
k = k+1;

if k=50
return

end

% RESCALING AND PROJECTING

e = ones(c);
X = diag(x);
Aa = A*X;
cc = X*c;
ep = Proj(Aa,e);
cp = Proj(Aa,cc);

61

if f -- 1

% SOLVE THE ONE-DIMENSIONAL VERSION OF THE FRALEY DUAL

% You wanna solve: max (-e'cp + cc'e) + (n - e'ep)lambda
% s.t. lambda(e - ep) <= cp

ii = 0;
jj =O;
II = [];
JJ = [1;

for tt = l:n

if (e(tt) - ep(tt)) > 0
ii = ii+l;
II(ii) = cp(tt)/(e(tt)-ep(tt));

elseif (e(tt) - ep(tt)) < 0
jj =jj + 1;
JJ(jj) = cp(tt)/(e(tt)-ep(tt));

end

end

% Now, II contains a list of the upper bounds on lambda, and JJ contains
% a list of the lower bounds

if ii -- 0
if (n - e'*ep) > 0

e=2
return

end
end

% The above case corresponds to the dual being unbounded, so that the lp
% is infeasible; this is a screw up, since you had a feasible solution
% to the lp to start with!

if jj - 0
minlambda = max(JJ);
maxlambda = min(II);

if maxlambda >= minlambda
% then the dual is feasible

lambda = maxlambda;
bound = (-e'*cp + cc'*e) + (n - e'*ep)*lambda;

else
bound = B;

end
else

lambda = min(IIl);

62

��

III

bound = (-e'*cp + cc'*e) + (n - e'*ep)*lambda;

end
if B < bound

ch = 1;
else

ch=O;
end
B = max(B, bound);

end % of the " if f = 1" loop

% NOW TO COMPUTE d (in rescaled space)

g = (q/(c'*x - B))*cc - e;

d = (q/(c'*x - B))*cp - ep;

if cc'*d < 0
d = Proj([Aa;cc'],g);

end

if norm(d) > r-tol
if =-I

% now for a line search

% first, find an upper bound for a, the step length

tt = 0;
upper = [];

for t = :n

if d(t,1) > 0
tt = tt + 1;

upper(tt) = /d(t,1);
end

end

if tt > 0
upbd = min(upper);

else
error = 'error in linesearch in pphaseII'

return
end

% NOW WE HAVE TO EXPLORE a IN THE RANGE 0, upbd]

63

lwbd = 0;
a = (upbd + lwbd)/2;

da = d./(e - a*d);
fa = -q*(cc'*d)/(cc'*e - a*cc'*d - B) + sum(da);

j = 0;
while abs(fa) > 10^(-3)

j =j+1;
if fa <0

lwbd = a;
else

upbd = a;
end

a = (upbd + lwbd)/2;
da = dJ(e - a*d);

fa = -q*(cc'*d)/(cc'*e - a*cc'*d - B) + sum(da);

% if j = 10, you wanna end
ifj = 10;

fa =0;
end

end

% at the end of it all, you've got your step size 'a'

elseif -- O
stepsize = I + norm(d) - ((1+2*norm(d))A.5);

a = stepsize/norm(d);
end

% ... of the "if 1=1 " loop

x = x - a*diag(x)*d;

else

if f=1
error = 'fraley in pphaseII yields small d'

fprintf(file,'\nfraley in lpphaseII yields small d\n')
elseif f==O

% Solve the quadratic for updating B

al = r*r - (ep'*ep);
a2 = 2*q*cp'*ep;
a3 = -q*q*(cp'*cp);

delta = min(roots([al,a2,a3]));
if delta < 0

delta = max(roots([al,a2,a3]));
end

64

check that norm d(delta) = r

B = cc'*e - delta;
end

% ... of the "if f = 0 or 1 " loop

%%% plot([0,5-----------------------------------],[B,B])
%%% pause(.9)

end
% ... of the " if norm(d) > r or < r " loop

end
% of the initial " while (c'*x - B) > tol" loop
return

65

function pprocess (n,k)

% This program generates k random problems of size (n/2,n), processes
% them to get them into the desired format, and feeds them to a solution
% and output module.

% Code modified on Oct 23 to accomodate the program Problems

if n -- 10
if n-=50

if n -= 100
error = 'n should be 10,50 or 100!!'
return

end
end

end

m = round(n/2);

for counter = l:k

% "counter" is the number of random problems to be worked on.

% rand('normal')
% A = rand(m,n);
% while rank(A) < m
% A = rand(m,n);
% end % ... of the 'while..' loop

% rand('uniform')
% x = rand(n,1);
% c = rand(n, 1);

[A,x,c] = problems(counter,n);

b = A*x;
xl = AMb;

[hi = geth(xl);

% Now we have A, b. xl, and h such that Axl = b, xl + theta*h > 0 for
% some theta > 0

if h =- 0

66

% then you are feasible
% PUT IN SOMETHING HERE!

end

H = - A*h;

% Now to find a j for which H(j) -= 0

j= 1;
while H(j) 0

j =j+l;
end

% theta = (1/H(j))*(b(j) - A(j,1)y(1) - A(j,2)y(2) -)

AAA = A;
bbb = b;
A(j,:) = [;
b(j) = 1(;

for jj = I:m-1

if jj<j

for i = l:n
AAoj,i) = A(jj,i) - (H(jj)/HO))*AAA(j,i);

end

bb(jj) = b(jj) - (H(jj)/H(j))*bbb(j);

else

for i = 1:n
AA(jj,i) = A(jj,i) - (H(jj+I)/H(j))*AAA,i);

end

bb(jj) = b(jj) - (HO(j+l)/H(j))*bbb(j);

end
end

% Make sure bb is a column vector

[rowbb,colbb] = size(bb);
if rowbb == 1

bb = bb';
end

67

for i = l:n
(cc(i) = c(i) + (AAA(j,i)/H(j))*(c'*h);

end

% Make sure that cc is a column vector

[rowcc,colcc = size(cc);
if rowcc == 1

cc = cc';
end

lb = (bbb()/H(j))*(c'*h);

% Now for the Yy = u constraint (that was derived from the 'theta = O'
% constraint)

Y = A(j,:)'/H(j);
u = b(j)/H(j);

if u -= 0

% Now to find a k for which bb(k) = 0

k= 1;
while bb(k) = 0

k = k+l;
end

alpha = bb(k)/u;

Y = AA(k,:)' - alpha*Y;

end %.. of the 'if u -= O....' loop

% Finding the initial point yl

theta = 0;
for i = I:n

if h(i) -=O
theta = max(theta, -xl(i)/h(i));

end

end

theta = theta + 1;

yl = xl + theta*h;

if Y'*yl < 0
Y = -Y;

else
if Y'*yl == 0

68

�� � �

err = 1;
error = 'The initial solution is feasible';

end
end

% At this point you have processed the original randomly generated problem:

% min cx st Ax = b, x >=0,

% with initial point xl (st Axl = b)

% and lower bound 0

% to yield the following problem in the desired format:

% min cc'y st AAy = bb, Yy = 0, y>--0,

% with initial point yl (st AAyl = bb, yl>=0, but Yy>O)

% and with lower bound lb

ptestrun2(AA,bb,cc,Y,y 1 ,lb,counter,h)

end % ... of the 'counter = ... ' master loop

return

69

function testrun(A,b,c,Y,xx,lb, counter)

% This routine takes the data A,b,c,Y,x,lb from the function 'process' and
% solves a number of lp's using 'lpnew'. The output is fed into the
% file 'output.testrun2', using the routine 'output'.

n = max(size(c));
file = 'testing';

number = 0;
% number keeps count of the number of lps solved in testrun2,
% and is part of the output

% LINE SEARCH: this option is always on
1=1;

% EARLY FEASIBILITY

for p=O:l

% LINE SHIFT

i=1

% FRALEY DUAL
f=l;

%for f = 0:1

% LOWER BOUND
for bound=1:2
if bound==1
B = lb;
else
B = -10000;
end

70

(

rsl·sllll·srrr�·-·---------�___

t

% SLACK
K=l;

% q: This takes 5 values

% for changeq = 1:5

% if changeq == 1
% q = (n+2);
% elseif changeq == 2
% q = n+1+ ((n+l)A.5);
% elseif changeq == 3
% q = n+1 + n+l;
% elseif changeq = 4
% q = n+1 +((n+1)^2);
% elseif changeq = 5
% q = n+1 +((n+1)A4);
% end

for changeq=1:2

if changeq == 1
q = n+1+ ((n+1)^.5);

else
q = n+1 +((n+1)A3);

end

fprintf(file,'Here ar- the (duality gap)/(feasibility gap)')
fprintf(file,' and the B(lb) numbers: (ratio, B)\n')
fprintf('ratios', \ncounter = %3.0f, number = %3.0f\n',counter,number)

[x,k,kk,error] = lp(A,b,c,Y,xx,K,B,i,f,l,p,q,file);

number = number + 1;

output(file,K,B,c,Y,x(1 :n),i,p,f,q,k,kk,error,number,counter)
output2(fileq,k,kk,counter,number,changeq,n,i,p,B)

% Now for a bunch of 'end' statements for all the loops
end % q

% end % K
end % B

% end % f
% end % i

71

end % p
% end % 1

return

72

function [x,y,e] = fd(A,B,b,c)
% solves the fraley dual problem : min c(l)x + c(2) y s.t.
% Ax + By <= b

if c(l) -= 0

% then z = c(l)x + c(2)y implies x =

Al = (1/c(l))*A;
BI = B - (c(2)/c(l))*A;
[z,y,e]= fm(A1,Bl,b,0);

if e-=l
% then the lp is infeasible or unbounded

return
end

x = (l/c(l))*z - (c(2)/c(l))*y;
e=l;
return

elseif c(l)==0
if c(2)>=0

[y,x,e]= fm(B,A,b,0);

elseif c(2)<0
[y,x,e]= fm(B,A,b,l);

end
end

73

function [x,y,e = fm(A,B,b,i)

% this function solves min (if i=O) or max (if i=l) x, s.t. Ax+By <= b
% where A, B and b are column vectors

m = max(size(A));

il =0;
i2 =0;
jl = 0;
j2 = 0;

for t = :m

if B(t) > 0

% then y <= b(t)/B(t) - (A(t)/B(t))*x

il=il+l;
I1(il,1) = b(t)/B(t);
I1(il,2) = -A(t)/B(t);

elseif B(t) < 0

% then y >= b(t)/B(t) - (A(t)/B(t))*x

i2 = i2+1;
I2(i2,1) = b(t)/B(t);
I2(i2,2) = -A(t)/B(t);

elseif B(t) = 0
if A(t) > 0

jl=jl+l;
JI(jI) = b(t)/A(t);

% J1 = set of upper bounds on x

elseif A(t) < 0
j2=j2+1;
J2(j2) = b(t)/A(t);

% J2 = set of lower bounds on x

elseif A(t) =-- 0
if b(t) < 0

e=0;
return

end
% e = 0 implies problem is infeasible

end
end

end

% Now, size of 1 = (i1,2), size of 12 = (i2,2), size of J1 = jl, etc.

74

_Is�l

III

for t=l:il
for w=l:i2

% we have I2(w,1) + I2(w,2)x <= y <= I1(t,1) + l(t,2)x
% or [I2(w,2) - 11 (t,2)]*x <= Il(t,l) - I2(w,1)

if I2(w,2)-Il(t,2) > 0
jl=jl+l;
J 1(j1) = (I1(t,1)-I2(w,1))/(12(w,2)-Il(t,2));

elseif I2(w,2)-Il(t,2) < 0
j2=j2+1;
J2(2) = (I1(t,1)-12(w,1))/(I2(w,2)-I l(t,2));

elseif I2(w,2)-Il(t,2) == 0
if 2(w,1) > I(t,l)

e = 0;
return

end
% check the
% last part

end
end

above end, as well as if some other stuff is needed in this

end

% Now we have all lower bounds on x in J2, and all upper bounds in J1

if jl-= 0
if j2 -= 0

if max(J2) > min(J1)
e = 0;
return

end
end

end

if i -- 0
if j2 = 0

e = 2;

% e = 2 implies that the problem is unbounded
return

else

end
elseif i = 1

ifj ==

else

end
end

x = max(J2);

:0
e = 2;
return

x = min(JI);

% Now to find y

75

for t = l:il
IXl(t) = Il(t,l) + Il(t,2)*x;

end

for t = 1:i2
IX2(t) = I2(t,1) + I2(t,2)*x;

end

% Now IX1 = set of upper bounds on y and
% IX2 = set of lower bounds on y

% Actually, you don't need IX2 !!

y = min(IX1);
% check if this is OK, or if one still needs to check for infeasibility

e= 1;
end

76

iil9�DIDs� �__

