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Abstract. A semi-definite program (SDP) is an optimization problem of the form
minimize C ® X subjecttoA; * X =b; ,1=1, ..., m, where the variable X isa
matrix in R™ and X is restricted to be a symmetric and positive semi-definite matrix
(X = 0), and" " denotes the inner product on matrices. When an SDP problem
satisfies a regularity condition (akin to the Slater condition) on the primal and the dual,
it is well-known that interior-point methbdologies from linear programming can be
extended to yield theoretically and practically efficient algorithms for SDP. However, a
non-regular SDP problem can be poorly behaved, even having a finite duality gap
whether or not the primal and/or the dual program attain their optima. We examine the
complexity of finding approximate solutions to instances of SDP, even in the possible
absence of any regularity condition, by an algorithm that is an extension and
generalization of infeasible-interior-point path-following algorithms. Our main results,
Theorem 6.1 and Theorem 6.2, give complexity bounds on the number of Newton steps
needed by the algorithm to find an approximate solution to an instance of SDP, even
with no regularity assumption. These complexity bounds are subject to the
interpretation of the sense of approximation, when the problem and/or its dual attain or
do not attain their optimal values, and when there is a zero or a positive duality gap.
The bounds in these theorems depend on the desired feasibility and optimality
tolerances, the initial feasibility and optimality gaps, the size n of the variable matrix
X, and two (relative) condition numbers 81 and 8;. The condition numbers 61 and
82 depend on the problem instance and the desired optimality tolerance, and are
measured using a norm induced by the starting point of the algorithm, and so are
relative to the initial starting point. When a regularity condition is satisfied, then the
algorithm and the bounds obtained specialize to the best complexity bounds known for

(well-behaved) instances of SDP.

Key words: semi-definite program, positive semi-definite matrix, interior-point method,

condition number, Newton method, linear program.




1. Introduction

This study is concerned with the efficiency of computing an approximate
solution of a semi-definite program (SDP):

P: minimize CeX
X
s.t. Aj* X=Db;, i=1,..., m
X=0,

where C, A; (i=1,..., m ), and X are nxn matrices, X is symmetric, the " o "
operation is the inner product on matrices (also, C o X =trace (CX)),and " ="
denotes the Lowner partial order,i.e, X » Y (X > Y)denotes that X-Y is
symmetric and positive semi-definite (positive definite), and where (P) is not necessarily
assumed to satisfy any regularity condition. Let zp denote the optimal value of (P),
and note that without any assumptions, it is possible that Zp = +e ,2zp = —oo ,and
that zp might not be attained even if zp is finite. The problem (P) is seen as a

-~ generalization of the linear programming problem and has important applications in
(smooth) constrained optimization (see Alizadeh [1], [2], [3], Nesterov and Nemirovskii
[21], Jarre [15]), combinatorial optimization (see Alizadeh [3], Delorme and Poljak [12],
Goemans and Williamson [14], and Lovasz and Schrijver [17], for example), and in

systems and control theory (see [11], for example).

Recently, much attention has been focused on the use of interior-point methods
for solving the SDP problem, spurred by the work of Alizadeh {1}, [2], [3], and by
Nesterov and Nemirovskii [21], who independently demonstrated the theoretical
effectiveness of interior-point methods for SDP, and the practical use of interior-point
methods has been explored in Alizadeh et. al. [4], [5], Boyd and El Ghaoui [10], Rendl et.
al. [23], [24], and Vandenberghe and Boyd [27], [28], for example. Indeed, if (P) and its
dual satisfy a regularity condition akin to a Slater condition, then most of the
methodology and complexity results stemming from the application of interior-point
methods to linear programming carry over and are applicable with suitable minor
modification to the SDP problem, see for example, [1], [2], [3], [21] cited above, plus
Kojima et. al. [19], Jarre [15], Boyd and El Ghaoui [10], and Vandenberghe and Boyd [27],

[28]. However, all of these applications of interior-point methods rely on a suitable



regularity condition on (P), namely that both (P) and its dual (see below) each have
strictly positive definite feasible solutions, or a stronger assumption. The contribution of
this study is the development of an algorithm and associated complexity analysis for the
efficient approximate solution of (P) in the possible absence of any regularity condition.
The algorithm is given in Section 4, and the complexity results are presented in Theorem
6.1 and Theorem 6.2 of Section 6 . The interpretation of these complexity results in the
absence of a regularity condition on (P) is also presented in Section 6 immediately

following the statements of the two theorems.

By constructing a suitable Lagrangian function, one obtains the following dual

program (D) of (P):
D: maximize bTy
y,S
m
s.t. Y yviAi+5=C
: i=1

yeR™ , S5 »0,

see, for example, Alizadeh [3]. If X and (y, S) are feasible for the primal (P) and the
dual (D), respectively, then the duality gap isseentobe C * X - b ty=X*520,
see A.6 in the Appendix. Let zp denote the optimal value of (D). Under the
regularity condition that the primal has a positive definite feasible solution X > 0 and
the dual has a feasible solution (y, S) with S > 0, then it is well-known that both the
primal and dual problem attain their optima and that there is no duality gap, ie.,

zp = zp, see Alizadeh [3] for example. In the absence of any regularity condition, the
optimal duality gap can be positive and the primal and/or the dual might not attain

their optima. For example, consider the following SDP instance:

P1: nm“ﬂuz"x'e {10}.x
00
s.t. [01}°X=2
| 10




The dual of P1 is:

D1: maximize 2y
s.t. [ 1 -y } =0.
-y 0

Note that the optimal value of P1 is zp; = 0, but that this value is not attained

X11 =€, X12 = X1 =1, X992 = L isfeasible foranv & > 0 ). However, the
c y

optimal value of D1 is zpy; = 0 and is attained (justset y = 0).

A second example is:

P, nimize 0 1 0 . x
X 1 0 0
L 0 0 0 4
0 0 0 ]
s.t. 0 1 0 _°X=0
L 0 0 0

0 0 0
0 0 1 |*X=0

L 0 1 0 J

0 -1 0 ]
-1 0 0 * X =10

. 0 0 2 |

X=0




The dual of P2 thenis

maximize
Y1,¥2:¥Y3,Y4 1OY4
i 0 1 +vy4 -y2 i
s.t. 1+ ys -Yy1 -¥s3 =0

-y2 ~-y3 -2Y4

It is straightforward to verify that P2 has an optimal value of zpy = 0 ,attained at

00
00 |-
005

and that D2 has an optimal value of zp; = —10 , attained at

>
¥
I
| A
oo

yi =0,y =0,y3 =0,and yz =-1.

Therefore, P2 and D2 have a finite optimal duality gap of Zp) — zpp = 10 ,even
though they both attain their optima.

Note that problem D1 has no positive definite solution, nor do problems P2 or
D2 . Borwein and Wolkowicz ([6], [7], [8], [9]) develop a dual problem for problems like
(P) that yields no optimal duality gap, by constructing the dual based on the smallest
face of the primal cone that contains the primal feasible region. However, this
construction is not computationally tractable without prior knowledge of the structure

of the relative interior of the primal feasible region, and so it is not pursued herein.

Also, we point out that it is possible to have an SDP instance such that the primal
feasible region contains only irrational points, even if all of the data for the SDP is
rational. Delorme and Poljak [12] construct an SDP that is a relaxation of the problem

MAXSAT, and they show that for the 5-cycle, that the optimal value of the SDP is

32 ___. By combining their primal and dual problems into one problem with a
25 + 515

constraint enforcing a zero duality gap, one easily constructs a feasible region based on

rational data that contains no rational points.



Given the possibility that an instance of SDP may not attain its optimum, may
exhibit a finite duality gap, and/or may have no rational feasible points, we are
motivated to seek an approximate solution to (P) and (D), i.e., a solution X that is
almost feasible for (P), asolution (y, S) that is almost feasible for (D), and thathas a
duality gap X ¢ S that is no greater than a given optimality tolerance £*. This paper
develops an algorithm, based on Newton's method, for computing such an
approximately feasible and approximately optimal solution to (P) and (D), and also
develops a complexity analysis of the algorithm. The main complexity results, Theorem
6.1 and Theorem 6.2, give upper bounds on the number of Newton steps needed by the
algorithm to find approximate feasible and approximately optimal solutions to an
instance of SDP, even with no regularity assumption; However, because the algorithm
computes only approximate solutions, these complexity bounds are subject to
interpretation. Remarks concerning the interpretation of the bounds to cases when (P)
and/or (D) attain or do not attain their optimal values, and when (P) and (D) have a
zero or a positive duality gap, are presented immediately following Theorem 6.1 and
Theorem 6.2. The bounds in these theorems depend on the desired feasibility and
optimality tolerances, the initial feasibility and optimality gaps, the size n of the
variable matrix X, and two (relative) condition numbers 81 and 85 . The first
~ condition number, 8 1, measures the distance from the starting point to the set of feasible
solutions, roughly speaking, using norms induced by the starting point. The second
condition number, & ;, measures the minimum norm of approximately-optimal
solutions, roughly speaking, again using norms induced by the starting point. When a
regularity condition is satisfied, then the algorithm and the bounds obtained specialize
to the best complexity bounds known for (well-behaved) instances of SDP.

The notation used in this paper is presented below. In Section 2, we define a
parametric family of SDP problems and a parametric family of SDP barrier problems,
that will be (approximately) solved parametrically to-obtain an approximate solution to
(P)and (D) . Basic properties of this parametric family are presented as well. Section 3
presents a Newton method for the barrier problem, and derives properties of the
Newton direction. Section 4 contains the algorithm, based on Newton's method, for
finding an approximate solution to the problem (P) and its dual (D). This algorithm can
be viewed as an extension (with certain modifications) of the algorithm developed in
[13]. In Section 5, we define two relative condition numbers, §1and §,, that are

important in the complexity analysis. The condition numbers §; and §, depend on




the problem instance and the optimality tolerance, and are measured using a norm
induced by the starting point of the algorithm, and so are relative to the initial starting
point. Interpretations of these two condition numbers are also given in Section 5.
Section 6 contains the main results of the paper, in Theorem 6.1 and Theorem 6.2.
Theorem 6.1 presents an upper bound on the number of iterations (Newton steps) of the
algorithm needed to obtain an approximately feasible solution to (P) and (D). Theorem
6.2 presents an upper bound on the number of iterations of the algorithm needed to
obtain an approximately optimal solution to (P) and (D). The interpretation of these
bounds, in light of the sense of approximation of solutions and in cases where (P)
and/or (D) are not well-behaved, is also presented in Section 6. These bounds depend
on the desired feasibility and optimality tolerances, the initial feasibility and optimality
gaps, the size n of the variable matrix X, and the two (relative) condition numbers &1
and 87 . Section 7 contains proofs of some of the results, and Section 8 contains
concluding remarks. Finally, the Appendix reviews some basic properties of traces of

matrices and norms of matrices.
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Notation: Let R™X? (S"*X1) denote the set of real (real and symmetric) n x n matrices,
and let I denote the identity matrix. If M is a square (nx n) matrix, the trace of M is

n .
denoted as tr(M) = ¥ M;j;, and tr (A B) is often denoted as A * B. The Frobenius
i=1

.n n s
norm of M is defined as ||M||=,/Z Y M%‘- = /tr (MTM), and the p-norm of
i=1 j=1

n n 1/
the matrix M (considered as an n2-vector) is || M|]p = | >, 3 [Mj|P P for
i=1 j=1

pe [1,]. Thus ||M|| = ||M||2. The spectral norm of M is denoted
[M| = max {||Mx]] | |Ix|I €1} (where ||x}]| is the Euclidean norm of x ). When

M is a symmetric matrix, then |M| = max {|1;(M)|}, where A1 (M), ..., An (M)
i

are the n ordered eigenvalues of M, ie, A1(M) 2 ... 2 An (M). Let A (M) denote
the vector of ordered eigenvalues of M, ie, A(M) = (A1(M), ..., An (M))T. Let
SIXN (SRXN) denote the set of real symmetric positive semi-definite (positive-definite)

" "

matrices in R1*", We denote the Léwner partial ordering on (S"*") by "x", and we



write A>B ifandonlyif A-Be SR2X0 A . B ifandonlyif A-B e S73" . In
particular, if Me S{*™ , then A(M) 2 0 and [M| = A1 (M).

If ve R" isavector, then || v| |p is the usual p-norm, ie.,

n 1/ :
Ivilp = ( )y IV]‘]P) P for p € [1,e]. The n-vector of ones is denoted by e.

]=

If X > 0 isgiven, X canbe used to induce a norm over SM"X™ as follows. Let
V be obtained as a factor of X, i.e, X = VV', thendefine ||M||x = ||VIMV]|. In

Section 5 it is shown that this norm is well-defined, i.e., if X = VVT = NNT , then
HVIMV]| = [INTMN]|, and so [|M]|x does not depend on the choice of

factorization of X.

2. Parametric Families of SDP Barrier Problems

Consider a semi-definite program (SDP) of the form

P: .miniinize CeX
s.t. AieX=b;, i=1,..., m (2.1a)
X=0 ,

where the data for P is thearray (A1, ..., Ap, b, C ) which satisfies
Ay, ..., Apn, CeS™XN be R™ . (Note that there is no loss of generality in
assuming that Ay, ..., Ay, C are symmetric matrices.) An easily derived dual of P

is given by:




D: maximize bT y
y,S

m
s.t. Y yiAi+S=C (2.1b)
i=1

1=

yeR™, S0,

see Alizadeh [3], for example. Let zp and zp denote the optimal values of P and D,

respectively.

For ease of notation, we denote by A ¢ X them-vector (A1 * X, ..., Ay * X )T.

m
We also denoteby y A thematrix Y, yjA;. One easily derives thatif X and (y, S)
i=1

are feasible solutions of P and D, then the dualitygap C ¢ X - bTy satisfies
CeX-bTy=XeS20 ,byAs. Intheabsenceof aregularity condition on P
and/or D, there is no guarantee that P and/or D will be feasible, will attain its

" optimum if it is feasible, or that the duality gap zp- z p will be zero.

Given a feasibility tolerance €f > 0 and an optimality tolerance £* > 0, a
triplet (X, y, S) isan (&f, ¢ )-solution of P and D if (X, y, S) satisfies: |

ef (2.2a)

|A » X -b]2 <
llyA +S-C | < ef | (2.2b)
CeX-bTy < g’ (2.2¢)

The triplet (X, y, S) isan ef-feasible solutionof P and D if (X, y, S) satisfies
(2.2a) and (2.2b), and is called an &* -optimal solutionif (X, y, S) satisfies (2.2¢). '

Let ( X .Y, S ) be a starting point that will be used to initiate the algorithm,

that satisfies:




X 0 (2.3a)
3 0 (2.3b)
XS = BI for some 8 > 0. (2.3¢)

Conditions (2.3a) and (2.3b) simply state that X and § are positive definite (symmetric)
matrices, and condition (2.3¢) is an analog of the ”centering condition" typically used in
interior-point methods for linear programming. Note that one obvious way to generate
(2, v, g)istoseti= 3 =1, y=0.

The starting point (

dual family of SDPs:

P(e): minjém'ze
s.t.

and

D (g): m;x/irrgize
s.t.

X .y, S ) can be used to create parametric primal and

(c+e[Fa+8-c])ex

AeX =b + g[AeX-b]

Ate=1,(X,y, 5 =(X, 5, §) istfeasiblefor P(), D(e). At £=0, P () is P

and D(e) is D.

Let zp (¢) and z'p (€) denote the optimal values of P (¢) and D (g),

respectively.

10



Proposition 2.1. If P and D both have feasible solutions, then P (¢) and D (¢) both

have feasible solutions, and zp (€) = zp (€), forall € > 0. Furthermore,
zp < lm infzp (8 < lm sup zp (€) S zp .
e—=0" e—>0"

Proof: Because both P and D have feasible solutions, zp and zp are finite. For any
8:> 0, there exists X and (?, §) feasible for P and D, respectively, such that
CeX<zp+6 and bTy 22z} - & . Thenforany € > 0, X¢ =

eX + (1 - €)X isfeasible for P (¢) and (ye,Se) =

(e +(1-¢)7, e85+ (1-¢ )3 ) is feasible for D (g) . Since X > 0 and S»0,
Xeg> 0 and S, > 0, whereby zp (€) = zp (€), see Alizadeh [3] for example. Also

note that

z*P(e)s[C+e(§A+§—C)] * X,

=(1—e)C-[e§<+(1—e)i]+e[§A+ §}'(83\(+(1—€)5(—)

=(1—e)2C-Y+s(1—s)C°/>Z+e[§A+/S\]-(e§+(1—e)5(—)

s(l—s)z(z}+8)+e(1—s)c°>’(L+e[§?A+§]-(e§+(1—e)2).

Therefore lm sup zp (€) < zp + & . Asthisis true forany & > 0, itis also true
e—>0"

for 8 = 0 . A similar argument for the dual problem completes the proof. ®

Given ( 2 y

, 5.5 ) satisfying (2.3), the parametric logarithmic barrier problem
inducedby (X, 5, S)

is defined as:
BP (@,€): minimize (c+el5a+8-c])ex-om (det (X))
st AeX=b+e[AeX~b] (2.4)
X =0,

11




where ® > 0 is a barrier parameter and & controls the extent of infeasibility of X in
the original problem P . The matrix X solves BP (o, g) if and only if there exists (y, S)
that satisfy:

AeX=b+e[A®X=b], X0 (2.5a)
JA+S=C+e[JA+5-C],5%0 (2.5b)
XS = ol. (2.5¢)

Note that for ¢ = 0 and ® = 0, then a solution (X,y.,S) of 2.5)solves P and D,
since (2.5a) and (2.5b) ensure primal and dual feasibility and (2.5¢) ensures a zero duality
gap. We also remark that from (2.3) we have that (X, y, S5, m,¢g) =

(X y, S 9, 1) satisfies (2.5). Given (X, y, S, o, €) = (X y, S 9, 1) as
a starting point, we would like to solve (2.5) parametrically in ¢ and © as € — 0 and
® — 0. However, since (2.5¢) is a nonlinear equationin X and S, we cannot in
general solve (2.5) exactly. Instead we will consider the following conditions, which
define a y—approximate solunon to BP (o, ¢) for a given constant y (we will typlcally
‘use Y = 1 ):

AeX=b+e[AeX=-b], X0 (2.6a)
VA +S=C+e[JA+5-C] (2.6b)
|- (A)vTsv|| <y, where X = VVT. (2.6¢)

Note that (2.6a) and (2.6b) correspond to (2.5a) and (2.5b). However, (2.6¢) is different.
If X is factorized into X = VVT, then note that (2.6¢) is a weaker condition than
(2.5¢), since if XS = o1, then VVT S = oI, and rearranging yields I - (A)vT

SV = 0. Alsonote from A.13 that (2.6¢) is satisfied or not independent of the
I-(YvTsv]|| = |1 - (4)NTSN|| wherever VVT = NNT.

factorization, i.e., l

This being the case we observe:

Proposition 2.2. For v 2 0, (X, y,5,0,¢) = (3\(, ’}7, §, @, 1) isa y-
approximate solution of BP (®, € ) = BP (3, 1 ) n

12




We also have:

Proposition2.3. If (X,y,S) isa y-approximate solution of BP (0, €) and € 2 0,
o>0,v<1, then

(1) X is a feasible solution of P (g)

(i) (y.S) is afeasible solution of D (g)

(iii)  the duality gap satisfies ®(n - Viy)< X * S< o (n + MY).
Proof: (i) and (ii) are appareht from (2.6a) and (2.6b) since (2.6¢c) implies that S = 0 . To
prove (iii), let R = I - .(%VTSV in (2.6c). Then ||R|| € ¥. We have XS = tr (XS)

=tr(VVTS) = (VISV)=wtr(I-R)=no - o tr(R). However,
n n

|tr (R)] = 'Z Ri|s\ A ), Rizi < 4 |[|R]|| £ vy, completing the proof. M
i=1 i=1 :

Motivated by Proposition 2.1 and Proposition 2.3, we would like to solve for a

Y —approximate solution of BP (®, € ) for a sequence of valuesof ¢ — 0 and ®w — 0.

3. Newton's Method

Suppose that (X, §, S ) isa given y-approximate solution to BP (@, € )
forgiven € 2 0, @ 2 0, and we want to obtain a y —approximate solution (X, y, S)
to BP (B®, o €) for some given values of a and B that are used to update € = 0L€
and ® = Bw. Here we describe a Newton method for this problem.

We start with a "re-scaling” of the data that generalizes the re-scaling used

commonly in interior-point methods. Using the ideas in Alizadeh [3], we first factorize:
X = vvVT, (3.1a)
and define:

Ai{V,i=1,..., m, (3.1b)

13




c = VTcv. 3.1c)

Then, keeping in mind that € = & and © = B® for given values of o and B, we
define the following Newton equations to obtain a Newton direction D € S™X™ and
dual multipliers y e R™.

AieD=(a-1)g(A; e X=-b;),i=1,..., m, (3.22)
m — — g —=To—= J—
> ViAi+BBI-BoD=C+at(§A+ VSV-C). (32b)

(The equations (3.2) are derived by re-scaling BP (@, ¢ ) using (3.1) and writing down
the optimality conditions for the quadratic approximate of BP (®, ¢ )at X = X and
(0, &)= (B®, a ). Therefore, equations (3.2) will always have a unique solution in
D, and will have a unique solution in y if the matrices A1, ..., Ay are

m
independent, i.e., if there is no nontrivial solution v, ..., vy of Y viAij=0.)
i=1

Note from (3.2b) that D will be a symmetric matrix because

A1, ..., Am, S , C, 1 are symmetric matrices. Note also that the Newton
equations (3.2) use only primal re-scaling. Primal-dual re-scaling (see Alizadeh et. al.
[4], [5], Kojima et. al. [19]) may be preferable in practice, and this issue is discussed in the

concluding remarks in Section 8.

Because D is a Newton direction for the "re-scaled" problem, we will define the

point induced by the Newton direction D to be:

X = V[+D]V?! (3.3a)
for the primal and
—5-T V15 -1
S = BwV [I-D]V™, (3.3b)

for the dual, with y given from the solution to (3.2).

14




We have the following Lemma concerning this method.

Lemma 3.1. Suppose that (X, ¥, 'S ) is ay-approximate solution of BP (@, €) for
v < 1 and that o and P are given scalars. Let (D, y) be the solution of the Newton
equations (3.2), and let (X, S) be defined from (3.3.) Then, if || D|| < v7, (X, y, 5) is

ay—approximate solutionof BP(B®, o €).

Proof: We must show that (X, y, S) satisfies (2.6) for e = € , ® = B®@. Direct
substitution can be used to verify (2.6a) and (2.6b) as follows. For i = 1, ..., m,

AjeX

1
o >
<|
> <
-
+
<
s
2|
T
e
pd|
+
s
®
<|
S|
2
H
1]
o
+
|
>
>
|
o2
=
<|
-
>
<|
o

using (3.3a), (3.2a),.and A.land A.2, showing (2.6a).

From (3.1), (3.2b), and (3.3b) we have

T T

VeV + 0g(5(VTAT)+ VI8V - ¥TcV)= ¥ yiVTA; T+ VsV,
) . i=1

Pre-multiplying and post-multiplying by VT and V™!, we obtain

m ~ ~
ZyiAi+S=C+on'e‘(yA+S—C),
i=1

showing (2.6b). Also, |D| < ||D|| € v < 1 (see A7), andso -1 < A; (D) <1,
i=1,..., n,whichimpliesthat I - D » 0Oand I + D » 0, which proves that

X >0 and S > 0 from (3.3).

Finally, we must show that (2.6¢) holds. Because I + D > 0, wecan factorize

I1+D=UUT=UU forsomesymmetric U thatisasquarerootof I + D. From
' (33a) wehavethat X = VUUTV ! andso W = V U isa factor of X, ie,
X = WWT | Therefore, to prove that (2.6c) holds, we will show that
HI -1 wTsw “ < y. Note from (3.3b), that I - L WTSW =
pa Bo

I- E%UTVT(BE)V'T(I— D)V'VU =1-UT(1-D)U =

15




N-U(21-U2)U=1-2U0"+U" =(U2-1)(U2%2-1)= D2, because U is

symmetric and so ul=vuU. Therefore, via A.9,

”I( )WTSW“-—HD2H<||DH2<Y which completes the proof. B

Lemma 3.1 states that if the current point { X, Y, S)isay —approximate
solution of BP ( W, € ) , and that if the norm of the Newton direction D is not larger
than vy, then the new point (X, y, S) willbeay —approximate solution of
BP(B®, x €).

4. The Algorithm for Finding an Approximate Solution of SDP

In this section, we present an algorithm for finding an approximate solution of
the SDP problem P. The data for the algorithm is the data for P
(A1, ..., An, b, C ), thedata for the starting point (X v, ) (assumed to
satisfy 2.3), the feasibility and optimality tolerances (&f, £* ), and the constant y used
to define a y~approximate solution of BP (®, ¢). We will now make the further
assump’aon that the initial duahty gap exceeds the optimality tolerance, i.e.,
X 5 =n® satisfies X » S > ¢* . (This assumption can be enforced simply by
rescaling X and/or S ) The algorithm appears below, with an explanation of the steps

given following.

Algorithm (A1, ..., Am,b,C, X, 5,5, ef,¢*,v)

B = 1+ 027
Vi - 4T
e = (¢ /)ae g pll, ¢/ fl5as S-c ]

Step 1 (Evaluate Current Point) ( X, Y, TS»_) = (Xk, yk, sk ), € =¢ek, ®=0k

Factor X = \7\7T , and compute
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IfE<e and X © S < ¢*, halt.

IfE<e¢ and X ¢ S>¢e", gotoStep2.

If £> ¢ and (HY||§ + ||§||5(\)(%) <om(1+y + B), gotoStep3.

If £> ¢ and (H>_(H§ + H§H5(~)(%) >2on{1+y + B), gotoStep4.

4.1)

“.2)

(4.3)

(4.4)

Step 2 (Shrink @). Set o = 1. Solve (4.5) for (D, y) and the smallest value of B:

AijeD=0,i=1,..., m

m I _ . P o A— —=TA— J—
S yi&i+pwl-poD=C+ E(jA+ VISV -T)
i=1 '

tr(D?2) <y

o =2 —&

Go to Step 5.

Step 3 (Shrink @ and g). Solve (4.6) for (D, y) and the smallest value of 6:

A;ieD=(a-1)g(a; e X-b;),i=1,...,m .

m — — —~— —
yiAi+POI-PpBD=C+oae(FA+ V

5=

w(D?) <y

= ——'———E*
TR
o =max{8, e /g}.
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(4.5a)

(4.5b)

(4.5¢)

(4.5d)

(4.6a)

(4.6b)

(4.6¢)

(4.6d)

(4.6€)




Go to Step 5.

Stepd4 (Expand @). Set oo = 1. Set B = B . Solve (4.7) for (D, y):

AieD=0,i=1,..., m . (4.7a)

m — — ~— T~
> yiAi+BoI-pwD=C + e(FA + VISV -C) (4.7b)
i=1

Go to Step 5.

Step 5 (Update Iterates)

X = V(1+D)VT

s = (o)V T (1-D)V?
e = aE

® = BE

(Xk*1, yk+1 gk+1) o (X y §), gk+l =g, ok+l =g .
K« k+1. GotoStep1.

We now given an explanation and partial rationalization of the steps in the
algorithm. In Step 0, the initial values of the algorithm are set. The constant B is
computed, and will be explained later. The constant €' is used to check for
approximate feasibility: if (X, 7, S ) isa y-approximate solution of BP (@, €)
and € < €', then from (2.6) it follows that (2.2a) and (2.2b) are satisfied, i.e, X and
( v, S ) are approximately feasible for P and D, respectively.

In Step 1, the data are first "re-scaled" as in (3.1). Then conditions (4.1) through

(4.4) are checked, and the algorithm proceeds differently according to which of the four
conditions are satisfied. If (4.1) is satisfied, it follows that (i, Y, §) satisfies (2.2)
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and so (Y, Y, §) isan (ef, ¢* )-solution of P and D. In this case, the algorithm
halts.

If condition (4.2) is satisfied, the algorithm proceeds to Step 2. In this case, (4.2)
indicates that ( X, 5y, S ) satisfies (2.2a) and (2.2b), and so X and ( v, S ) are
approximately feasible for P and D, respectively. Therefore, there is no need to
modify €, and so o issetto a = 1atStep 2. However, the duality gap X ¢ S isstill
larger than £*, and so we would like to shrink @ to B® for some valueof B < 1 and
as small as possible, and then solve the Newton equations (3.2) (which are given in
Step 2 as (4.5a) and (4.5b)) to obtain the Newton direction D and dual multipliets y.
From Lemma 3.1, the new iterate values will be a y—approximate solution of
BP (@, B €) solongas ||D]| < vy, orequivalency if tr(D2) < v (see A.3), and this
is stipulated in (4.5¢c). Finally, since we only need a duality gap of £*, from Proposition
2.3 (iii) we can restrict B to satisfy (4.5d). We will show at the end of this section that
Step 2 can be carried out efficiently, i.e., Step 2 requires hardly any more work than
solving the Newton equations (4.5a) and (4.5b) and using the quadratic formula.

We now focus on (4.3) and (4.4). If neither (4.1) nor (4.2) are satisfied, then
£ > ¢' and we would like to shrink both € and @ to new values € = o € and
©=B® for o« = B =& forasmall fraction 8 < 1 that is nicely bounded away from
1. However, we are not quite able to accomplish this. Instead, it may be necessary at
some iterations to leave € asitis (i.e, set o = 1), and insteéd increase @ by the scalar
quality E > 1 (defined in Step 0). Nevertheless, we will be able to bound the number
of iterations at which @ is increased. The logic that controls whether or not the
algorithm shrinks € and @, orinstead increases @ and leaves E as is, is determined

in (4.3) and (4.4), and will be discussed in Section 6.

If (4.3) is satisfied, the algorithm proceeds to Step 3. In this case, we would like
to choose a small value of § andset oo = & and B = 8, and then solve the Newton

equation (3.2) (stated here as (4.6a) and (4.6b)). However, as there is no need to decrease

B lower than ——E&°___ (for then the new iterate would have duality gap less than
® (n+ vmy)

£*), condition (4.6d) is introduced. Similarly, as there is no need to decrease o lower
than €'/ (for the new iterates will satisfy (2.2a) and (2.2b)), condition (4.6e) is
introduced. Also, from Lemma 3.1, we will need (4.6¢) to be satisfied to ensure that the
new iterate will be a y-approximate solution of BP (B @, o €). We will show at the
end of this section that Step 3 can be carried out efficiently, i.e., that Step 3 requires
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hardly any more work than solving the Newton equations (4.6a) and (4.6b), and using

the quadratic formula.

Finally, suppose that (4.4) is satisfied. Then the algorithm will go to Step 4,
where € is left unchanged (0. = 1) and @ is increased to ﬁ ® , where ﬁ is defined in
Step 0. Equations (4.7a) and (4.7b) are simply the Newton equations (3.1) for these
values. We will show thatif B = B then ||D|| <y in (4.7), and so the new iterate
values will be a y-approximate solution of BP ( £, P ). We will also demonstrate

an upper bound on the number of iterations that visit Step 4.

Last of all, in Step 5, the iterate values are updated as in (3.3), and the algorithm

continues.

We now discuss the efficiency of computations in Steps 2 and 3 of the algorithm.
Let us first examine Step 2. For B fixed, the Newton equations (4.5a, b) will yield a
unique value of D . Furthermore, it is easy to see from (4.5b) that D will be linear in
1/[3 , i.e., the solution D can be written as:

D=D +§( ), (4.8)

o

where it is straightforward from (4.5a, b) to compute D and G. We then test the lower

bound for B given in (4.5d) and check it L @n + 4ay)
€

(4.8) for which (4.5c) is satisfied, by performing the necessary arithmetic operations. If
(4.5¢) is satisfied, Step 2 is complete. If not, notice from (4.8) that tr (D2 ) is quadratic
in 1/5 , and so we can compute the lowest value of B such that (4.5¢) is satisfied by

yields a value of D in

applying the quadratic formula to the quadratic equation tr (D2 ) = v, which is
quadratic in 1/8 from (4.8). Thus Step 2 can be computed efficiently.

The same arguments used in the analysis of Step 2 also apply to Step 3, with
suitable modification. For fixed o and B, the Newton equations (4.6a, b) will yield a

unique value of D . Furthermore, it is easy to see from (4.6b) that D will be linear in
(1—) and in ( o ) ,1.e., the solution D can be written as:

B B

D=5+G( )+ﬁ"( ) (4.9)

o
=R
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where it is straightforward to compute D, G, and H, from (4.6a, b). Then the

inequality (4.6c) can be written as a quadratic inequality in the two variables ( 1@ ) and

( %— ), namely, (4.6c) becomes, via (4.9), the inequality:

oo () g

+2tr(5<_;)( )+2tr(5ﬁ)( )+2tr(€ﬁ)(lg)( )_<_y. (4.10)

L (4
B B

Wefirstset o = B = 8§, and then (4.10) is quadratic in ( -15 ) , and so we can use the

quadratic formula to find the smallest value of & satisfying (4.10). If & 2 m

and & 2 %" then o = B =9 is minimalinStepBand we are done. If not, we must

- also check the cases B = € and o = 8§, (whereby (4.10) is quadraticin a )

®(n + my)
and/or a = e—g— and B = & (whereby (4.10) is quadratic in Ly, and so in all cases,

B

Step 3 can be computed efficiently using the quadratic formula.

5. Condition Numbers Relative to the Starting Point ( X. 3.5 )

In this section, we define two condition numbers for the problem instance
(A1, ..., Ay, b, C ) of SDP, which will be denoted by &1 and 33. These

condition numbers are defined relative to the st'arting point ( X, v, E ) that is used to
start the algorithm. The first condition number, 81, is a function of the problem

instance (Al, ..., An ., b, C) and the starting point ()?, §, ’é) The second
condition number, 85, is a function of the problem instance (A 1, +-+, Am, b, C) ,
the starting point ( X, &, S ) , and the optimality tolerance &”. In Section 6, we will
give a complexity bound on the number of iterations of the algorithm that is needed to
solve SDP for an (&f, £*)-solution of SDP, that depends only on the initial
infeasibilities of X and ( v, S ) for P and D, the initial duality gap X ¢S, aswell

as n, ef, ¢*, and the condition numbers 81 and 63.

Before presenting the definitions of 81 and &7, we start with a property of

factorizations of matrices.
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Proposition 5.1. Let X = VVT = NNT »~ 0 . Then for any matrix M,
IVIMVI|| =|INTMN]|, and [VIMV]| = [NTMN].

Proof: [[VIMV]|]? = ¢(VIMTVVIMV ) = £ (MTVVIMVVT) =
r(MTNNTMNNT) = e (NTMTNNTMN ) = |[NTMN]||?, which establishes the
first equality. To prove the second equality, note that [VIM V| =

max{“VTMVxH l [x]] € 1}. Let X be a vector where this maximum is achieved, and

let y = N1V . Then |y[|? = xTVIN-TNT v% = xTVIV-TV1 vix = X]|? <
1, andso [NTMN|*2 [NTMN¥||? = yINTMTNNTMNJ =
xTVININTMIVVIMV X = X' VIMTVV TMV X =[|[VITMV X||* = [VvTMV ]2
A parallel argument shows that IN TMN! < ,V TMV[, completing the proof. M

Definition 5.1. Suppose X > 0. Define the (relative) Frobenius norm of a matrix
Me S™X™ tobe ||M||y = || VIM V|| where X is factorized into X = VVT, and
define the (relative) spectral norm tobe [M| y = |[VTM V| where X is factorized into

X=vvT,

From Proposition 5.1, [[M ||, and |[M |, are well defined.

We now define the first condition number, &1, as follows:

81 = max{rn;(an—X'S(\A , ;rluréIS—Slg-1}. (5.1)
st. A*X=b st. yA+S=C
XESHXH SESI’IXI'I

7

This condition number is a géneralization of a similar idea developed in [13] and in
Kojima [18]. Note that 81 is nonnegative and is positive unless both X and (37 , S )

are feasible for P and D, respectively. The primal part of (5.1) measures how close X
is to the affine manifold { X | A ¢ X = b}, measured in the spectral norm induced by

o~ =

X . The dual part of (5.1) has an analogous interpretation.
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Remark 5.1. It is possible to ensure that &1 < 2 by an appropriate construction

of the starting point (5(\ .Y, S ) .

To see why this remark is true, consider the primal problem first, and compute
any symmetric matrix X that satisfies A ¢ X = b, and set X = (J|X||)I . Then
|x = Rl = (IXINX = (IXINT < 1+ (IXN)HX] < 2, since [IX]] 2 X1,

see A.7. Therefore the primal part of (5.1) will have objective value at most 2, and a

similar construction with the dual will produce &1 < 2.

Let X and (?, §) be optimal solutions to the problems defined in (5.1). Then

A‘S(’:b, li—sdf)z—lSS]

A useful property of the condition number § 1 is given below.

Proposition 5.2. Suppose X >0 and S > 0. Then

o l5-8ly < adlxlg,
and

@ X=Xz < adllsllg
Proof: Consider the factorizations X = VvV’ ,5 =00,

Then
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X =979, 8720707, and

8- 5l - Iv(s- 5l
- |[vT057(5- §)57To"V||
< |vTo6"%]||67(5- 5)57 (from A.10)
- 8" To]|]s - 3, (from A.14)
< 5,|0™%0]| (from 5.2b)
= 84Xy,

which shows (i). A parallel argument for (ii) completes the proof. W

The second condition number, 8, , is defined as follows, and depends on
(A1,...,An,b,C), the starting point (f(, v, 5 ), and the optimality tolerance €*:

82 = 82e7) = x T () (5 ex+8es) (53)

st AeX=b, Xx0
yA+S=C, Sx0
CeX-bTy<e*,

The constraints of (5.3) state that (X, y, S) must range over the values that are primal
and dual feasible and have a duality gap of at most £*. The objective function (save the
1/2n factor) can be written as

~-1

~-1 ~-1_ ~-T
X oX+8 °S=tr(V XV +
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(where X = VV and § = UU ) and so measures the sum of the (nonnegative)
eigenvalues of X and S, appropriately weighted and summed. In this way, 8 2(e *)

. ~=1 ~ =T ~ -1 ~ -T .
measures the 1-norm of the eigenvalue vectorof V.".XV ~ + U SU  andisa

measure of the minimum norm of feasible solutions with duality gaps less than or equal
to £*. A related interpretation of & 2(8 ") is seen from the following proposition:

Proposition53. 87 = 85(¢*) £ . min {max{[XlS(\-z, |S|§-1 }} (5.4)

VA+S=C, $x0
CeX-bTyc<er.

Here we see that &(e”) is bounded by the spectral norms of primal-dual feasible

solutions with duality gap at most £*, where the norms are induced by the starting

point (2, v, S).

Proof of Proposition 5.3: Let (X, y, S) solve (5.4). Then (X, y, S) is feasible for
(5.3), and '

-1 ~T ~-1 1

X T ex = VOV -X=tr({\7—X{\7_T)= i ?»i({\/'—1X{;—T)

i=1

Al AT
a| VX T l=n]Xls(\_1,

IA

where X = VV .

~l
Similarly, one easily obtains S = * S < n|S lg-l .

~ -1 ~=1 .
Theref 8 < 1 IX eX+8 e5)<l|X|aa+ L|S|rn
crefore 8 L )< Lixigs + Lisl
< max {|X|5(\—1, [S|§—1} |
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Remark 5.2 (Properties of 82(€*))

() 82(e*)is decreasing in £”.

() If zp = zp andboth P and D attain their optimal values, then § 2( 8*) is
finite forall €* > 0.

(i) If zp = zpy and P and/or D does not attain its respective optimal value, then
82(e*) > +00 as e* 0.

(iv) If zp > zp, then 8(e*) is finite forall £* > zp - zp, and
82(€e*) = + o0 forall £* < Zp — 2D .

The properties follow directly from the definition of & 2 in (5.3). To illustrate property
(iii), consider example P1 of the Introduction. In order for X and (y, S) to be feasible
for P1 and D1, respectively, and have a duality gap of €, the value of X mustbe

e” 1

X =
1 a1
83(-

< -1
For any starting point X~0, X ¢ X = toeas e® — 0, and so
82 =082(e") > +wo ase* — 0.

The condition number & (e ”) is a generalization of similar ideas developed in

[13] as well as Kojima [18]. Note from Proposition 5.3 that as A ( X ) and Ap ( g)
increases, then the upper bound on & 2(8 *) decreases. In the special case when SDP is

simply a linear program of bit-size L, wecanset S = X = O (2L )I , and then § 2(8 *)

will be less than or equal to 1, and so (In(82))* will be zero.

The interpretation of 81 and §; as condition numbers relative to the starting

point (5\( .Y, S ) is due to Renegar [25].
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6. Complexity of the Algorithm for SDP

In this section, we analyze the complexity of the algorithm. We will prove two

main complexity results:

Theorem 6.1. Suppose ¥ = 1/4 . The algorithm will find an ¢ { -feasible solution of P
and D in atmost T iterations, where Ty satisfies

 N5a+8-cll

max{lIA')/(\—bI
n Y

Te<| (2+4m+30nd1)!

||+ lai(in 82071,

where 85 = §5(e*).

‘Theorem 6.2. Suppose Y = 1/4. The algorithm will find an & -optimal solution of P

and D in atmost T, iterations, where T, satisfies

A~ A~

To< (2+41/ﬁ+30n51){ln (@é)—-x—.s—)%Z(ln(Sz))*H+[4ﬁ(ln (82))%,

*

where 89 = 8 5(e*) .

Before proceeding with the proofs of these two theorems, we first interpret the two
complexity bounds for several different cases of the behavior of the semidefinite

programs P and D .

Case1: Zp = Zp and both P and D attain their optimal values. Firstnote in Theorem
6.1 that the iteration bound on T depends on the logarithm of the ratio

max {H AsX-b “2, yA+S-C H} /Ef; The smaller the initial infeasibility of the
starting point and the larger the feasibility tolerance €f, the smaller will be this ratio.
Also, the bound depends on n and on 81 and 8. The bound is linearin 81.
However, as pointed out in Remark 5.1, one can always ensure that 1 < 2 byan
appropriate construction of the starting point ( X, v, S ) . Also, in the very special case
- when the starting point ( X, v, §) is feasible for both P and D ,thend,=0, and the
bound T depends on vl similar to the best complexity bounds for linear

programming. The bound also depends on the logarithm of 87 = 0 o(e*). Recall that
8 is a measure of the minimum norm of feasible solutions of P and D with duality
gap less than or equal to €*. From Remark 5.2 (i) and (ii), 3 2{e*) < 8,(0) and 82(0)
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is a measure of the minimum norm of optimal solutions of P and D . Therefore, the
dependence of the bound on T on the logarithm of §, is reasonable, as the bound
depends on the logarithm of the norm of optimal solutions in a manner similar to linear
programming. However, whereas in the case of linear programming this bound can in
turn be bounded by the size of the data (i.e., O(L)) , there is no corresponding data-
dependent bound for SDP. As discussed in Alizadeh [3], for example, there are
instances of P where the optimal solution grows double-exponentially in the dimension
n of the problem, and for those instances In(3 7) is exponential in n . Nevertheless, if
one accepts the notion that the logarithm of the norm of the optimal solution is a
reasonable measure of the difficulty of the problem, then both §1 and &, enter the
bound on T in a reasonable way. The iteration bound on T, in Theorem 6.2 is similar,
and dependson 81, In (32), and the ratio of the initial to the desired duality gap.
The smaller the initial duality gap and the larger the optimality tolerance £*, the
smaller will be the ratio. Finally, from Remark2.1, the primal and dual objective
function values of the iterates ( Xk, yk, gk ) will each approach the interval

(27 - e, zp +¢&* Jas ef goes to zero. In this way, as both ef an &* go to zero,
the final iterative values of the algorithm will approach feasibility and optimal objective
function values in the limit. However, a bound on the rate of convergence of this limit

‘has not been determined.

Case2: Zp = 2 ;3 L but P and/or D does not attain its respective optimal value. (This
case arises, for example, in Karisch et. al. [16].) All of the above remarks from Case 1
still pertain to this case, except those concerning the role of §, . Recall that §,is a
measure of the minimum norm of feasible solutions of P and D with duality gap less
than or equal to £ * . For any given positive value of £*, §, = 8,(&*) will be finite.
However, from Remark 5.2 (iii), 85 = 83(€*) — + o as £* — ( . Therefore, the
boundson T¢ and T, willgoto +e as €* — ( . (One natural question concerns
how quickly In (8,(e*)) growsas £* approaches zero. The author has not been able
to create an example where In (85(e*)) grows exponentially in either n or in the size
of the data (L), and it would be interesting to find such an example.) Again, if one
accepts the notion that the logarithm of the minimum norm of & *-optimal solutions of P
and D is a reasonable measure of the difficulty of finding an & *-optimal solution, then

asin Case 1,8, enters theboundon T¢ and T, in a reasonable way.

Case 3: P _and D exhibit a nonzero duality gap.ie., Z,;D > Z;) . From Remark 5.2 (iv),

82(e”) = + e whenever £* < z} - 2}, . Therefore, when the optimality tolerance is
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less than the duality gap, the bounds in Theorem 6.1 and Theorem 6.2 are both +eo and
so have no value whatsoever. Itis curious to note, however, that in the case when the
optimality tolerance is greater than the duality gap,ie, €* > zp - zp , thenthe
bounds in these theorems are finite and all of the relevant remarks in Case 1 and in

Case 2 remain valid. (However, it is hard to conceive of an instance of P where one
might know the value of the finite duality gap a priori.) From Remark 2.1, as ef goesto
zero the primal and dual objective function values of the final iterates ( Xk, yk, g k )
will approach the interval [zp -¢*, zp +¢" ] in the limit. However, once again a

bound on the rate of convergence of this limit has not been determined.

The proof of Theorem 6.1 and Theorem 6.2 will follow as a consequence of the

following five Lemmas. The first Lemma gives a bound on the size of the Newton step.

Lemma 6.1. Suppose (X, ¥, S ) isa y-approximate solution of BP (@, £€) and
y<1.Letae[0,1]and B > 0 begivenandlet (D, y ) be the solution of the
Newton equations (3.2) via (3.1). Then

pis 2+ LBl B )Es,R]ly + LtZaiisllg.

B (1-v)o
Proof: Let X = V V © . We first have
”1 _ _szTgv” - HL(I - 17757+ B 1||
pa B ® B
< L|(1-LV75V)||+ 1= Bl
B ® B
¢ Yy l-Bla (from (260). 6.1)
B B
Next, let (i, v, S') be the optimal solutions to the problems defined in (5.1), and so
(X, ¥, §) satisfy (5.2). Thenfor i=1, ..., m,

Ao (D-FHX-X)T N (a-1)g)=(e-1)e(A; « X-bi)
5 b
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from (3.2a) and (3.1b) and (5.2a).

From (3.2b), (3.1b), (2.6) and (5.2b) we have

(1-o)E VT(§—§) V)}

[D+( +B vIsv-

- __1__2‘1 (yi-Fi+(1-a)E5

- (1-a)Ey;) A}

TV (X-

~

X

(6.3)

)] =0.

D] < “I LT §\7+(1B%)§V (5-8) ||+ -w)||¥R-R)TT]
< 7 IIEB' agf‘f) |177(8-8)%]|+ e - )| TR -K) 7]
(from (6.1))
1 (1 glle & —
- B Y, ﬁﬁl Bg)e{]s-sH§+s(1-a)|]x-xl,l>—(-1
1-B |l ~ 1- A o~
< B v " | (m)e”g--sHX+(~°«1(_w°_(‘6)||x—xHg (from A.11)
J=Blm, 0-0)Es g, L EQ-a) 5 115
< B BN gs 51||X“S+(1__7)_0351H5HX
where the last inequality follows from Proposition 5.2. W

The next Lemma shows that every iteration of the algorithm is a v -approximate

solution of BP (®, ¢ ).
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Lemmaé.2. For’k =0,1, ..., (Xk, yk, sk ) is a y-approximate solution of
BP (0k, ek).

Proof: The result is obviously true for k = 0, from Proposition 2.2. Now supposing
that (XX, yk, s¥) isa y-approximate solution of BP (wk, £k ), we must show
that (X**+1, yk+1 gk+1) isay_approximate solution of BP (wk+1, gk+1).
From Lemma 3.1, this will be true if the Newton direction D satisfies || D]| < vy at
each iteration. There are three cases to consider, depending on whether the algorithm
visits Step 2, 3, or 4, at iteration k. If the algorithm visits Steps 2 or 3, then (4.5¢c) or

(4.6c) ensures that
Dl =u(DTD) =t (D?) <y,

- 50 ||D|| £ v7 as needed. If the algorithm visits Step 4, then from Lemma 6.1, with

-~

o=1and = B,

Bl me 77 from the construction of B at Step 0.

Therefore in any of the cases, ||D || £ v¥, and so the new iterate willbe a v -
approximate solution. M

The next two Lemmas bound the values of o and B at Steps 2 and 3.

Lemma 6.3. Suppose that Y = 1/4 . If the algorithm is at Step 2, then unless

© = —E&° B mustsatis <1- 1
P n++my P fy P 2+4m

Proof: We firstshow thatfor o =1 and 1 2B =2 1- il , that tr(Dz)S Y .

i+ ¥y
To see this, note from Lemma 6.1 that
1-B Yy, 1-B Y + 40
DI <« Y+l A=t A &
I B § B B B
I+ Y
< =
< &= (y+Mm)-Mm=v7
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Therefore tr(D2) = ||D||2 < v, and so the smallest value of B satisfying (4.5) must

be less than or equalto 1 - Rl k) SR S 1l _ m
M+ vy 2+4 4

Lemma 6.4 Suppose that v = 1/4 . If the algorithm is at Step 3, then unless

*

B mustsatisfy B < 1 ~ 1

B = £ .
2+4+0 +30nd,

B(n+my)’

Also, unless o = € /g, then o must satisfy

1

as<l-—-— .
2+4+m+30nd,

Proof: It is sufficient to show thatif oo = B = §, and if

12821 - 1 ,
2+4+m+30nd,

then tr(D?2 ) < y . To see this, note from Lemma 6.1 that

[ID]]

IN

BY-+ ! ;3 P+ (1) B od(%)&”ﬂlg + ___((i — j)

RA gg—;—i%al(uing +1I5l)

IA

YA (1-3) 2
T - SH..__ﬁzn(m)h + v+ B) (from (4.3)

IN

IN

g + v _ 1-38 2.75 i =1 B<15
Hxh ﬁi+( 5 )(2n51)(a7—5-) (since y = 1/4 and § < 1.5)

- (522 )as,

Va+ R _ gz, 25 ns; - 225n8;
o 38 3

IA
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/4 + i + 223 nd;
= 3 - 225
5 (V‘r_l+ 3 1‘151)

_ 1/4(1 + 4 m+ 30n81) _ i(41/1'—1'+ 301’181)
4

5

IA

(2 + 447 + 30n 81) - 12(41/r—1+ 30nd;) =1 =vy.

1
4

Therefore, tr(D2) = ||D}|? < v, and so the smallest value of § satisfying (4.6) will
1

be less than or equal to 1 - .
2+4+n+30nd;

The last Lemma gives a bound on the number of iterations that visit Step 4.

Lemma 6.5. Suppose that y = 1/4 . Let T4 be the number of iterations of the algorithm
that visit Step 4. Then A -

Tys <4m(In(82))7)]. W
The proof of this Lemma is deferred to the next Section.

Proof of Theorem 6.1:

At the start of the algorithm, €0 = 1 . In order for (xk, yk, Sk ) tobean ef-
feasible solution of P and D, £k must be less than or equal to €', where &' is
defined in Step 0 of the algorithm. Examining the rules for the choice of o in Steps 2,3,
and 4 of the algorithm, notice the algorithm only visits Step 2 after ek < &' . Therefore,
in order to bound the number of iterations before €k < ¢', it is sufficient to bound the
number of iterations k that the algorithm visits Step 3 and Step 4and ek > &' . Let T3
and T4 denote the number of iterations k that the algorithm visits Step 3 and Step 4,
~and ek > &', respectively. From Lemma 6.5, we know that T4 < [4vn(In (82) )*].
In order to bound T3, note from Lemma 6.4 that unless o = € '[g at Step 3 (implying
ek+1l = ¢ = o € = ¢'), thatat Step 3 we must have

a<1- 1 )
2 +4+m + 3000,
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max{HA ® S(\—b Hz,

5A+8-C II}H
ef

Let T (2+4+m +30nd1)In

-(2+4+/M+30n8, ) In (&").

Then after the algorithm visits Step 3 T times, the value of £ will satisfy

es(l— 1 )T
2 +44 +30nd;
whereby
lnsSTln(l— 1 )s -1 <k (g")
2+4++30nd4 2+4+m+30nd

andso € < ¢'. Therefore T3 < T, completing the proof. B

Proof of Theorem 6.2:

From Proposition 2.3, a bound on the duality gap at iteration k is
Xk o gk < pk (n + ¥iy). Therefore, in order for XX ¢ SX < g* , itis sufficient

that ok < -—ﬁ{/ﬁ— Thestartingval‘ueof wiswd=X-e S , and wk+1 < ok if
n+ ¥y

the algorithm visits Steps 2 and 3, whereas wk+1 > @k if the algorithm visits Step 4.
Let To, T3, and T4, denote the number of iterations that the algorithm visits Steps 2,
3, and 4, respectively, while the duality gap exceeds £*. After each visit to Step 4, ok
increases by the quantity B, and note that

B=1+ T =Y o714+ 1 <14+ 1, 6.5)
W-vy  4m-2 24/

at y = 1/4 . After each visit to Step 3, mk decreases by the quantity B where

351— 1 ,
2 +44M +30nd,




*

according to L 6.4 (unless ok+! = B®w = —& _, and
rding to Lemma 6.4 (unless B r1+“(ﬁﬂ{anso

(xk+1) e (sk*1) < e*, and e*-optimality is achieved). Similarly, after each visit to
Step 2, wk decreases by the quantity B where

p<s1- —1 _<1- 1
2 +44m 2+4+m +30nd;,
according to Lemma 6.3 (unless wk+1 = @ = —‘i’:———, and so
n+ My

(Xk+1) e (sk*1) < e*, and £* -optimality is achieved).

5X « §

LetT={(2+4«/ﬁ+30n81)[ln( . )+2(ln (82))+H. (6.6)

Then after T4 visits to Step 4 and a total of T visits to Steps 2 and 3, the value of ©

will satisfy
o < (w0)f1- 1 )T B8) , and
( )( 2+44m+ 30001 (B) anc se
Ino £ In(0d)+ TI (1— 1 )+Tln B
(00) § 2+ 4+m +30nd; : (5)
<m(Xe8/n)- T + T4 (from (6.5))

2+4m+30nd, 2+

Zn(§<-§/n)-ln.(5i<‘5 )—2(171(62))++2(ln(82))+

*

N

(from Lemma (6.5) and (6.6))

In (458; ) = In (n_—__“e; - )) < In (.____n f;ﬁ).

Therefore ® < €”/(n + y+f), and so the duality gap will be at most £” (from
Proposition 2.3).

Therefore Ty + T3 < T , and this inequality plus Lemma 6.5 shows that
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Ty+T3+Ty< (2+4w/f1‘+30n81){ln (Mu(lﬂ&g)‘r”
£

+ava(In(8))*, ™

7. Proof of Lemma 6.5

Note that if the optimization problem (5.3) is not feasible, then 85 = + e and
Lemma 6.5 is trivially true. Therefore, we suppose in this section that (5.3) is feasible. It
is easy to see that (5.3) attains its optimum at some point ( X", y*, 8" ) . We first
present two propositions, that are extensions of results in Mizuno [20] for the case of

linear programming:

Proposition 7.1. If (X*, y*, 8" ) is an optimal solution of (5.3) and (>_(, Y., §) isa
feasible solution of BP (@, £) for E€ [0, 1 ], then

(eX+(1-E)x") o5+ (88+(1-7)8")+ X (7.1)
=X ¢ 5 +(sX +‘(1 -E)X") e (e85 + (1 - £)s").

Proof: We have

=TAeX+(1-T)b- (b+e(ae X-b))=0
from (5.3) and (2.4). Similarly, we have from (5.3) and (2.4) that
| (5 +(1-E)y -7)a+ (eS8 + (1-%)s" -5)
=§(§A+ S)+(1- 7)c-(c + €(§A+ S-c))=o.
Combining these two expressions gives

(eX+ (1-8)x - X)e(e5+(1- )8
the desired result. M

-S ) = 0, and rearranging yields
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Proposition 7.2. If (X, y,S ) is a ¥ -approximate solution of BP (@, £) for some

e(0,1),and @ > —E&—, then
ve ( ) SR

(1151l + IKllg)(E) £ 20 (1 + 1) + 20 8( E)max {55, 1).

Proof: Let X = V9", 8 =G 0", be factorizations of X and §. Then
(lIsllg + lIxlly) = =ll97s7ll + [67xall)
< e(«(9757) + « (7%5)) (from ()
<SESeX+Xe5 (from (A.1 and A.2))
<Se(EX +(1-2)X")+ X « (g5 + (1 - E)8")
(from (A.6))

(from Proposition 7.1)

*

A

Fn(l+7)+228n+e1-B)(Kes +5 e X)+(1-8)2X" o 5

(from (2.3) and Proposition 2.3)

N

~ - + Oo-1 * — *
6n(1+y)+€26n+§(1—E)G(S Les X T ex )+(1—s)2.<-:
(from (2.3) and (5.3))

On(l+y)+820n+e(1-5)8(2nd2)+(1-E)2@n(l+7)

IA

(from (5.3) and the statement of the proposition)
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IA

20n(l+y)+28En(E+ (1 - £)8,)
<2@n(l+y)+ 28 &n(max{s,, 1 D)
Dividing both sides by @ proves the result. M

Proposition 7.3. All iterations of the algorithm satisfy

*

ok>._ &
n(l+7v)
Proof: For k=0, ®0 = § = (n@)(l/n) > £ > — e by the assumption that
n n(l+7v)
XeS> €* . Suppose mk > —-L*—-__, then we must prove that
PP n(l+y) o0 P
ok+1> 8- AtsSteplwith (X, 7,5, £, @) = (XX, yk, sk, gk, ok ),
n(l+vy)

either (4.1), (4.2), (4.3), or (4.4) will be satisfied. If (4.1) is satisfied, the algorithm halts
and there is nothing to prove. If (4.2) or (4.3) is satisfied, then (4.5d) or (4.6d) ensures

that ok+1=B@> & >___&"  1f(44)is satisfied,
P n++ay n(l+y) 44
ok+l = Bok > ok > € proving the result. M

n(l+vy)
Proposition 7.4. If the algorithm visits Step 4 at iteration k, then

@k < Gmax(s,, 1) and @X*1 < Gmax {§,, 1}.
gk ck+1

Proof: If the algorithm {(isits Step 4, then from (4.4) , Proposition 7.2, and Proposition
7.3,

2n(1+y+f§) < (H>_(H§+H§HS(\)(%) <2n(l+y)+2n ’é(%)max(ﬁz, 1).
Therefore

B < ’é( )max{82, 1},

Eljet

whereby
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@5=Q<(})6max(52,1}<’émax{82,1}. (7.2)
ek € B
Also, from (7.2), we have

~~

wk+1 - B(l)k < a
T v Bmax{d,,1}. W

Finally, we have:

Proof of Lemma 6.5: Note that €k is nonincreasing in k, thatis, ek never is increased

at any iteration because o. < 1 at every iteration (see Lemma 6.4). Therefore, if

gk = € < ¢' (condition (4.1) or (4.2)), then condition (4.3) or (4.4) cannot hold at any

subsequent iteration, so once the algorithm visits Step 1 or Step 2, the algorithm will

never visit Step 3 or Step 4 at any subsequent iterations. We will prove the result by

examining changes in the ratio ® k/e k when the algorithm visits Steps 3 or 4. When the
“algorithm is at Step 4,

(0k+1/gx+1) = Blwk/gx). _ (7.3)
When the algorithm is at Step 3,

(cok+1/€k+1)=max{S,E*/’(ﬁ(n+'yw/ﬁ)}> S .
(0k/ex) max {3, e'/g } " max{3, &' /&)

This last quantity will be equal to one, unless o = €' /g atStep3andso ek+1 = €' s0

the algorithm will next visit Step 1 or 2, never visiting Step 4 again. Therefore, for all
iterations prior to first visiting Step 1 or Step 2, & 11: is nondecreasing. Furthermore,
’ €

whenever the algorithm visits Step 4, (7.3) states that (D—kk- increases by the factor B.
€

Therefore, from Proposition 7.4,

(‘g—g)ﬁn < Omax{8,,1).

However, 0)8 = 8, sothat ET4 < max {83, 1}, (7.4)
€
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whereby (}-:)T4max{62, 1}21,
B

-~

andso T4ln (-1—) +In (max{d2,1})20.
B

Therefore T4 < (440 - 1 )(In (82))* < 4+& (In (52))1L
which implies
Ty < [4va(n (52))*]. m

8. Discussion and Concluding Remarks

We conclude this study with a discussion of several points concerning the
interpretation of the results contained herein and the relation to other avenues of

research investigation.

Bounding the size of near-optimal solutions As discussed in Section 5, the (relative)

condition number &5 is a measure of the size of near-optimal solutions of (P) and (D),
ie., 87 is alower bound on the size of primal and dual solutions with a duality gap no
greater than the desired value £¢* (see (5.3) and Proposition 5.3, for example). In a
manner similar to many interior-point algorithms for linear programming (see Todd and
Ye [26] and [13]), the algorithm of Section 4 provides a lower bound on 85 whenever
the algorithm visits Step 4, as the following Lemma demonstrates:

Lemma 8.1: Suppose Y = 4. Let T4 denote the number of iterations of the algorithm

1
4
that visit Step 4. If T4 > 0 , then
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This Lemma provides a lower bound on 83, which from (5.3) or Proposition 5.3

provides a lower bound on the size of £” -optimal solution of (P) and (D).
Proof of Lemma 8.1 If 87 > 1 , then from (7.4) it follows that

822 (ﬁ)T4 ,

and the result follows by substituting v = % in the formula for B in Step 0 of the

algorithm. It thus remains to show that 8 > 1 if T4 >0 .

Suppose T4 > 0 . Then there is some iteration k where the algorithm visits
Step 4. From (7.2) it follows that

@—11:—<§max (82, 1), (8.1)
€ . .

However, from the proof of Lemma 6.5, it follows that

@0 < ok _ (8.2)

because -03—1 is nondecreasing in i for 0 < i < k . Combining (8.1) and (8.2) we obtain
gt

=09 .9 max {82, 1},
£

0

? =

et D)

whereby 8, >1. N

Rescaling and symmetric Newton directions. The Newton equations (3.2) were derived
by taking the quadratic approximation to the parametric logarithmic barrier problem

BP (®, € ) of (2.4) at the primal point X factorized and rescaled via (3.1). One pleasant
feature of this derivation is that the Newton direction D is automatically a symrﬁetric
matrix, since all of the other relevant matrices in (3.2b) are symmetric as well. This is
evidently due to the fact that only primal information X and its factorization V v ) is
used in the rescaling, and the Newton direction is derived for the primal problem via a
quadratic approximation. This is in contrast to other Newton methods for semi-definite

programming, which compute the Newton direction for the Karush-Kuhn-Tucker
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optimality conditions, and so use rescaling based on both primal and dual information.
In these methods, there is a need to symmetrize the Newton direction via techniques
that are explored in Kojima et. al. [19], Alizadeh et. al. [4], [5], Vandenberghe and Boyd
[27], and Nesterov and Todd [22]. However, from both a computational as well as an
aesthetic point of view, the use of primal-dual rescaling has advantages over the primal
rescaling used herein. Computational experience has demonstrated the typically
superior performance of primal-dual rescaling for linear programming, and so it is
reasonable to extrapolate that primal-dual rescaling would be superior as well for semi-
definite programming. Also, from an aesthetic point of view, primal-dual rescaling is
superior because it better reflects the natural duality and symmetry of the primal and
the dual problem, and uses more information than does primal-only rescaling. The main
reason that primal-only scaling has been used in this paper is its simplicity and the
relative ease of manipulating the arithmetic to derive the desired results. A practical
implementation of the algorithm in this paper should surely consider primal-dual
scaling. Furthermore, although it is reasonable to believe that the theoretical results in
this paper could be proved with a version of the algorithm that uses primal-dual
rescaling, it would be presumptuous to assume that such proofs would be "easily"

obtained.

- General behavior of semi-definite programming problems. One of the fascinating

features about semi-definite programming is that when an instance of SDP has a positive
definite feasible solution in the primal and in the dual (i.e., it satisfies a primal-and-dual
Slater condition), then the SDP instance is extremely well-behaved (optima exist for the
primal and the dual, with no duality gap, and virtually all of the linear programming
interior-point tools and methodologies can be extended to SDP). In this case SDP is as
well-behaved in theory and in practice as linear programming. In this study, we have
extended interior-point methods to derive certain results regarding the complexity of
obtaining approximate solutions in the case when an SDP instance does not satisfy a
primal-and-dual Slater condition. An interesting question is whether there are any
conditions weaker than the primal-and-dual Slater condition that will allow for an
instance of SDP to be well-behaved, i.e., to exhibit primal and dual optimal solutions

with no duality gap.
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Appendix

This appendix reviews some basic properties of the trace of a matrix and norms
n
defined on square matrices. Recall that tr (M) = Y My , A ¢ B =tr (AB),
i=1

/\/ n n 2
[IM]| = '21 '21 Mij,andlM]=m?i:lx {|Ai(M)]}, where
1= ]:

A1(M), ..., An(M) are the ordered eigenvalues of M. The following five

properties follow directly from these definitions:

Al Ae(BC)=AB+sC.

A2 AeB=BeA.

A3 |IM]| = Va(MTM).

A4 |IM]] = [IMT]]

A5 If RT = R, then ||RTMR|| = [[M]|| and [RTMR]| = |M].

A6 IfX>0and S>=0,then X ¢ S>20, and X « S = 0 ifand onlyif
XS =0.

Proof: Let X =VVT.ThenX ¢« S=VVT e 5=tr (VVTS)=t(VTSV)
(from A.1and A.2), and finally tr(VTSV ) 2 0 since VISV = 0.If
X ¢S =0, then tr(VISV ) = 0, whichimplies VISV = 0 . As S can
be factorized into S = UUT , wehave VIUUTV = 0 , sothat
VIU=0,and Xs=VVIUUT =v(vTUu)uT=0. =

A7 If M is symmetric, [M| < ||M]].

Proof: M =QDQT, where Q-1 = QT and D is a diagonal matrix, and Dj; isan

eigenvalue M, i=1...., n. Then ||M]|] = ¥Vtr(MTM) =

Ve(QDQTQDQT ) = Vu(D2) =~/ 3 DF >max|Dj|=|M|. =
i=1 1




A0

IfM » 0, [|M]| < tr (M).

From the proof of A.7,
/ n
[IM]] = 2 Z IDii| = 2 Dj =tr (D)

(DQTQ) =4 (QDQT )=t (M). m

l[AB[ < [[All][BI].

|| AB||

[

«/Z Z (Z AlkBk;)

i=1 j=

IN

VE ETEATE

- E R B

i=1 k=1

Al IIB]. =

If N is a symmetric matrix, then ||[BTNB || < |[BTB || [N]|
and |[BTINB||<|BTB||IN]|.

Let N = RTDR, RT = R™!, Ddiagonal,and BTB = QEQT ,
QT = Q, |E| = |BTB],
[IN|| = [ID]|, IN| = |D|. Because BTRTRB = BTB = QE 2 g12QT,

it follows from Proposition 5.1 that

IBTNB (| - |lB"RTDRE | = [|QE ¥ DE Q| - [[E D E |
= [IDE][.

However,as D and E arediagonal, ||[DE|| < |[|D]| |E| = ||N]|| |BTB]
and ||DE|| < |D|||E|| = IN|||BTB , proving the result. M

i1




VT§VH <y <1, where X = V—VT, then for any matrix M,

A1l IfHI—-}@-
lIM]lg-

Mllg < oedes

n.

ey

Proof: unR:I—%ﬁﬂgvaMnHRHS1,mdwbyAZHHSHRHsL

whereby A;(I-R)21-7,i=1,
1 .
1-v

Thérefore [(1-R)? <

ml

e

Let S = UU". Then 15(1 -R)! = VITTTIVT. Wehave:
uu Vv

vl - IS M

Mg = [[VIMT

|T™MT|| [ T T T VT (from A.10)

<

lIMllg | (1-R)?

Fll—:—ﬂ“MHg n

IfD,G,HeS™ ", and (D+ G)e (D-H) =0, then

A12
Dl < {IGI =+ [Tl
ID||2?+De (G-H)-G*H

<

Proof: [|D||? - [ID||[IG-H||-G « H
- (D+G)e(D-H)=0

Therefore, from the quadratic formula,
|G-H||+||[G-H|[2+4G «H _||G-H]||+|IG+H]||_ Gl +1HIl. =
2

Dl|=<
|| =

ii




A3

If 0-<VVT -NNT and S > 0, then

IATAl = |[AAT|| and |ATA| = |AAT].

HATA? = (ATAATA )= r (AATAAT)  (from Aland (A2)

r(AAT)T(AAT) = [|aAT|2.

To show the second equality, it suffices to show that ATA and AAT have
the same nonzero eigenvalues. To see this, let 8 # 0 be an eigenvalue of

ATA . Then there exists v # 0 such that ATAv = 6v . Thus
AAT(Av)=0(Av), andso 6 isaneigenvalueof AAT. m

If A » 0 and B issymmetric, A « B < tr (A) |B].

Let A = QDQT , where Q7! = QT and D is a nonnegative diagonal

matrix.

Then A * B r{QDQTB )= tr(DQTBQ)

= ¥ Di(QTBQ)j.

i

v



However, (QTBQ )i < |QTBQ]| = |B|, from AS.

Therefore A*B = ¥ D;i(QTBQ)s < ¥ Di|B| = tr (D)|B| = tr (A)|B]. W
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