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Appendix. Preliminary technical results

In this section we establish some preliminary technical results. Using ¢ as defined by (8), we let

U(x) = —ax + 2b¢(z) + ¢ for some positive constants a, b, ¢ satisfying
b 2
— > e 34
P> (34)
Lemma 5. U(z) is strictly concave for x > €°.
Proof.
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T 2 Inz
< 0 since all three terms on RHS above are negative for x > e°
O

Lemma 6. Assuming (34) and e¢ > (c/b)?,

U(x) <0  Va>(18v*/a®)InIn(3b/a).

Proof. Since (18b%/a?) InIn(3b/a) > €, throughout the proof we restrict ourselves to the domain x > e°.
Since in addition x > (¢/b)?, we have bp(x) > by/x > c. In this range —az+2bg(z)+c < —ar+3bp(x) =

—ax + 3bvVxInlnx. This quantity is less than zero provided

()P >Pe,

Inlnzx a
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It is easy to check that x/Inlnx is a strictly increasing function with lim, ,(2/Inlnz) = co. Let zg

2 on z > e°. We claim that zp < 2a2Inlna. The assertion of

be the unique solution of z/Inlnz = «
the lemma follows from this bound. Let A = 2a2Inln«. Then

A 202 Inln o

InnA ~ In@2ha+n®a+In 2)

202 1Inl
> conha since In o > n® o and Ina > In 2
In(41n «)
2a%1Inl
> ﬁ since Ina > In(b/a) > 2e > 4.
=’
This implies g < A and the proof is complete. O

Proposition 2. Under the assumption (34)

sg% U(x) < 7(b*/a) Inln(b/a) + c.

Proof. Since a > 0, then the supremum in sup,~, U(x) is achieved. Let z* be any value achieving
maxg>o U(x). First suppose 0 < z* < €. It follows from the definition of ¢ in (8) that ¢(z*) = 1 and
thus U(z*) = —az* +2b+c. Using 0 < z* < e and assumption (34), it is straightforward to check that
U(z*) is indeed upper bounded from above by 7(b?/a) Inln(b/a)+ c. Next, we consider the case x* = €€,
and using the fact that a > 0, we obtain U(z*) < 2b-y/e¢lnln(e®) + c. It is again straightforward to
check that the aforementioned bound is upper bounded from above by 7(b%/a) Inln(b/a) + c.

We now consider the case * > e. By Lemma 5, x* is the unique point satisfying a%if*) =0, if it

exists. The remainder of the proof is devoted to the final case where we obtain

oU (z* b(=L: + Inlnz*
0= 0@ _ . Y ) (35)
oz* Va* Inln z*
Continuing further, (35) implies
va*Inln x* b A
—_—a = =a. (36)
Inlnz*+—= @

33



Note

x* 9

Inln z*

x*

< a? since Inlnz* > 1 for x > €€

2Inln z* nzx*
It is easy to check that z/Inlnx is a strictly increasing function for z > e® and lim, oo (z/Inlnz) = co.
(34) implies that there exist unique Zpyin and zpyayx satisfying

Lmin 2 Tmax 2
— =« — =«
Inln zmin 2InIn xmax

The monotonicity of x/Inlnz implies Tpin < * < Tpax. In order to complete the proof of the

proposition, we will first state and prove Lemmas 7 and 8.

Lemma 7. zpi, > o’Inlna and 2max < 402 Inlno.

Proof. Let B; = o?Inlna. Then

By B a?lnlna
InlnB;  Inln(a?lnlna)
21nl
o nha since Inlna > 1 for a > €%¢
Inln «
= o’

Thus since 1 is increasing for x > e, we have T, > B1 and the first assertion is established.

Let By = 4a?Inlna. Then

By 40 Inln o
2InlnBy  2Inln(4a2Inlna)
4a?Inlna
2In(2Ina +In® o + In4)
4a%Inlna
2In(41n«)

402 Inln o

> -
~ 4ln(lna)

since In o > n® q and Ina > In4
since Ina > 2e > 4.

= a2.

Thus, again since z/Inlnz is increasing for x > e, then the second assertion follows. O
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Lemma 7 and zyin < 2% < Tpmax imply

ZInlna < z* <4a’Inlna.

Lemma 8. VZmax InInxmax < 4alnlna.

Proof.

V Tmax 10 1N Zmax

IN

\/(4a2 Inlna)Inln (4a?Inlna) by Lemma 7

a\/4lnlna\/ln (21na—|—ln(3)a+ln4)

av4lnln ay/In (4 In a) since Ina > In® o and Ina > ln(eze) > In4

avV4lnlnav2Inlna since Ina > 4

and the lemma follows from the last step.

We now complete the proof of Proposition 2. We have

U(z")

IN

IN

IN

IN

—az* + 20z  Inlnz* + ¢

—aTmin + 20/ Tmax IN 1IN Tmax + ¢ since Tmin < ° < Tmax
—QTmin + 8balnlna + ¢ by Lemma 8

—ac’Inlna+ 8balnlna + ¢ by Lemma 7

7(b?/a)Inln(b/a) + c.
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