
Robust Fluid Processing Networks

Citation Bertsimas, Dimitris, Ebrahim Nasrabadi, and Ioannis Ch.
Paschalidis. “Robust Fluid Processing Networks.” IEEE
Transactions on Automatic Control 60, no. 3 (March 2015):
715–28.

As Published http://dx.doi.org/10.1109/TAC.2014.2352711

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Version Author's final manuscript

Accessed Wed Dec 09 13:51:41 EST 2015

Citable Link http://hdl.handle.net/1721.1/98510

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

http://dx.doi.org/10.1109/TAC.2014.2352711
http://hdl.handle.net/1721.1/98510
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://libraries.mit.edu/forms/dspace-oa-articles.html

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 1

Robust fluid processing networks ∗

Dimitris Bertsimas, † Member, IEEE, Ebrahim Nasrabadi, ‡ Member, IEEE,
and Ioannis Ch. Paschalidis,§ Fellow, IEEE,

Abstract—Fluid models provide a tractable and useful ap-
proach in approximating multiclass processing networks. How-
ever, they ignore the inherent stochasticity in arrival and service
processes. To address this shortcoming, we develop a robust
fluid approach to the control of processing networks. We pro-
vide insights into the mathematical structure, modeling power,
tractability, and performance of the resulting model. Specifically,
we show that the robust fluid model preserves the computational
tractability of the classical fluid problem and retains its original
structure. From the robust fluid model, we derive a (scheduling)
policy that regulates how fluid from various classes is processed
at the servers of the network. We present simulation results to
compare the performance of our policies to several commonly
used traditional methods. The results demonstrate that our
robust fluid policies are near-optimal (when the optimal can be
computed) and outperform policies obtained directly from the
fluid model and heuristic alternatives (when it is computationally
intractable to compute the optimal).

Index Terms—Multiclass processing networks, fluid models,
robust optimization, scheduling, optimal control.

I. INTRODUCTION

In multiclass processing networks, we are concerned with
serving multiple types of jobs which may differ in their arrival
processes, processing times, routes through the network, and
cost per unit of holding time at the various servers of the
network. Such models are used in a number of applica-
tion domains including manufacturing systems, multiprocessor
computer systems, communication networks, data centers, and
sensor networks. A fundamental control problem in these
systems is that of sequencing. In particular, a sequencing
policy determines at every point in time which type of job
to serve at each server of the network.

Optimal sequencing decisions in a multiclass processing
network are in general dynamic and state-dependent, as a
decision depends on load conditions not only at the server
where it is to be made but also at other servers. Naturally,
uncertainties regarding the arrival and service processes further
complicate the problem. As a result, this problem is both
theoretically and computationally hard to solve optimally, even
for problems with a few number of servers and job types.
It can be formulated as a stochastic dynamic programming

* Research partially supported by the NSF under grants CNS-1239021 and
IIS-1237022, by the ARO under grants W911NF-11-1-0227 and W911NF-
12-1-0390, and by the ONR under grant N00014-10-1-0952.
† Sloan School of Management and Operations Research Center, Bldg. E40-

147, Massachusetts Institute of Technology, Cambridge, MA 02139, e-mail:
dbertsim@mit.edu.
‡ Operations Research Center, Massachusetts Institute of Technology, and

Department of Electrical and Computer Engineering, Boston University, e-
mail: nasrabad@mit.edu.
§ Department of Electrical & Computer Engineering, and Division of

Systems Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215,
e-mail: yannisp@bu.edu, url: http://ionia.bu.edu/.

problem but that does not lead to tractable approaches for
large instances. Thus, a number of researchers have attempted
to develop tractable approximations of the optimal policy (see
Bertsimas et al. [8], Chen and Mandelbaum [12], Harrison
[20], Harrison and Wein [22], and Kumar [25]). This led
to the study of Brownian models and fluid relaxations as
approximation techniques to multiclass processing networks.

The Brownian approach was first introduced by Harrison
[20] and further explored by Wein [50], [51], and other re-
searchers, including Laws and Louth [27], Taylor and Williams
[48], and Williams [53]. It approximates the processing net-
work in a heavy-traffic regime, that is, when the workload of
the system reaches its capacity limit. In several instances, a
policy can be constructed which is optimal in this limiting
regime. Brownian models typically make use of the mean
and variance of the associated stochastic processes in deriving
a simpler control problem. However, except for problems
that are essentially one-dimensional, this approach is itself
intractable.

On the other hand, fluid models are often tractable, but
ignore the variance of the associated stochastic processes.
They are deterministic, continuous approximations to stochas-
tic, discrete networks. Research on fluid models is mainly
motivated by the developments in the area of stability of
multiclass processing networks using the fluid model analysis.
A major breakthrough was the theory developed by Dai [15],
who showed that the stability of the processing network is
implied by the stability of its associated fluid model (see also
[12], [45], [16], [17], [47]).

There is also a close connection between the control of pro-
cessing networks and the optimal control of the corresponding
fluid models. There are several examples where the solution
of the fluid optimal control problem recovers significant infor-
mation about the structure of an optimal policy in the original
multiclass processing network (see, e.g., [3], [33], [38]). In
particular, Avram et al. [3] find explicit optimal solutions for
the associated fluid models of specific processing networks and
derive threshold policies for the optimal (sequencing) control
of these networks. They also show that the well-known cµ-
rule is optimal for a single-server processing network, as well
as, the corresponding fluid model.

Beyond special cases, several works have developed meth-
ods and guidelines for translating policies derived for the fluid
optimal control problem into an implementable control policy
for the stochastic, discrete network. Related work includes
[32], [4], [31], [5], [14], [34], [13]. Meyn [32] presents several
numerical experiments to evaluate the performance of discrete
review policies and proposes a policy based upon an affine
shift of the fluid policy which gives significant improvement in
his numerical experiments. A family of discrete review policies

2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

is also proposed by Maglaras [31] based on the BIGSTEP
approach introduced by Harrison [21]. These policies utilize
safety stocks to prevent starvation of resources in the stochastic
system and are shown in [30], [31] to achieve asymptotic
optimality and stability under fluid scaling. In workload mod-
els that account for work in the system for each server (see,
Meyn [35], [34] for a thorough description), translation from
a fluid policy to a policy for the stochastic system uses the
idea of hedging-point policies adapted from the inventory
control literature; these are essentially affine translations of
the fluid policy that protect against the risk of potentially high
cost. A comprehensive treatment of these models and policies
can be found in [35] which also provides specific guidelines
on selecting safety stocks and hedging points based on the
parameters of the stochastic system.

A related approach to synthesizing stable policies for the
stochastic system is to use tracking policies [4], [36]. Pascha-
lidis et al. [36], in particular, propose a class of (sequencing
and routing) policies that “drive” the state of the processing
network towards a pre-determined target (termed, “target-
pursuing” policies). An advantage of these policies is that they
are amenable to distributed implementation using local state
information. Using fluid model analysis, [36] shows that these
policies are in fact stable.

The study of fluid models in multiclass processing net-
works is also motivated from the existence of very efficient
optimization algorithms used to solve them. Fluid models for
processing networks can be formulated as a specially struc-
tured class of continuous linear programs called Separated
Continuous Linear Programs (SCLPs). These problems can be
efficiently solved using mathematical optimization techniques,
in contrast to the traditional diffusion control approach. During
the last decades, significant progress has been made in solving
SCLPs and their generalizations. In particular, Anderson et
al. [2] characterize the extreme point solutions to SCLPs and
show the existence of optimal solutions with a finite number
of breakpoints in certain cases. Pullan, in a series of papers
[39], [40], [41], [42], [44], extensively studies SCLPs. He
develops a detailed duality theory, conditions under which an
optimal solution exists with a finite number of breakpoints, as
well as, a convergent algorithm for solving SCLPs. Luo and
Bertsimas [29] propose a convergent numerical algorithm for a
larger class of SCLPs that is able to efficiently solve problems
involving hundreds of variables and constraints. Fleischer and
Sethuraman [18] present polynomial-time approximation algo-
rithms for solving SCLPs. Weiss [52] characterizes the form
of optimal solutions, establishes a strong duality result and
develops a solution algorithm using simplex pivot operations.

Despite extensive work on the optimal control of processing
networks, this body of research still lacks a unified tractable
and practical approach accommodating all salient features of
the problem. While fluid models are tractable, they ignore
the inherent uncertainties of the problem. This adversely
impacts the performance of the policies derived from the
fluid model. The majority of the approaches we reviewed
earlier for translating fluid policies to the stochastic system
were derived with stability being the key concern and attempt
to accommodate uncertainty by appropriately modifying the

optimal fluid policy. In our work we attempt to incorporate
uncertainty in the fluid optimal control problem. A traditional
way to handle uncertainty in optimization problems is to use
stochastic optimization, where the uncertain data are modeled
as random variables. However, this approach typically leads
to problems that are often intractable to solve. We refer to
Birge and Louveaux [10] and Shapiro [46] for more infor-
mation on stochastic optimization. Another approach intro-
duces stochasticity in the fluid model (resulting in a so-called
stochastic fluid model) but it can only be used in perturbation
analysis schemes, that is, producing gradient estimators of
policy parameters that can be leveraged to optimize specific
parametrized classes of policies (see Cassandras et al. [11]).
Yet another approach is to use robust optimization, which
treats the uncertainty in a deterministic manner and typically
leads to tractable problems. This approach assumes that the
uncertain parameters come from known sets and optimize
against the worst-case realization of the parameters within the
uncertainty sets. We refer to Ben-Tal et al. [6], Bertsimas et
al. [7] and the references therein for a survey on robust opti-
mization. It is this latter approach we introduce for multiclass
processing networks.

Our contribution: We introduce a tractable approach that
captures both dynamic and uncertain characteristics in multi-
class processing networks. Our approach is to formulate the
fluid control model as an SCLP and use robust optimization
to deal with the uncertainty. We present insights into the
modeling power, tractability, and performance of the proposed
model. More specifically, our contributions are:

(i) Modeling power: We study fluid models in an uncertain
environment from the viewpoint of robust optimization
and introduce a robust fluid problem. We show that
the robust fluid model still remains within the class of
SCLPs. Thus, it preserves the computational tractability
of the classical fluid problem, and all solution techniques
for SCLPs remain applicable.

(ii) Insights: We consider a single-server processing network
and derive valuable insights about properties of an opti-
mal solution for the corresponding robust fluid problem.
In particular, we use complementary slackness optimality
conditions to develop a polynomial-time algorithm for
solving the robust fluid problem. Our results can be
seen as natural extensions to the cµ-rule and the optimal
priority policy for Klimov’s problem [9], in the presence
of parameter uncertainty.

(iii) Performance: We propose methods to translate an op-
timal solution for the robust fluid control problem to
implementable sequencing policies for the stochastic
network. Because uncertainty is handled at the robust
fluid problem, our methods do not need any distribu-
tional assumption on the stochastic network. Moreover,
translation of the resulting policy to the stochastic system
is more direct. We report extensive simulations results to
evaluate the performance of sequencing policies derived
from the robust fluid model. We compare the perfor-
mance of the proposed policies to several commonly
used heuristic methods. Our results show that for small-

BERTSIMAS et al.: ROBUST FLUID PROCESSING NETWORKS 3

size networks, the proposed policies yield near-optimal
policies (when the optimal can be computed) and for
moderate to large-size networks the performance signif-
icantly outperforms the heuristic methods.

The remainder of the paper is organized as follows. In
Section II, we formulate the fluid control problem of multiclass
processing networks as an SCLP. In Section III, we consider
uncertainty on arrival and service processes and investigate its
robust counterpart. We further propose two methods to trans-
late an optimal solution for the robust fluid control problem to
implementable sequencing policies. In Section IV, we develop
a polynomial-time algorithm to derive an optimal solution for
the robust fluid control problem of single-server processing
networks. In Section V, we report extensive simulation results
to evaluate the performance of the proposed approach and
compare it to other methods in the literature. Section VI
contains some concluding remarks.

Notational conventions: Throughout this paper, all vectors
are assumed to be column vectors and prime denotes the trans-
pose operation. We use lower case boldface letters to denote
vectors and for economy of space we write x = (x1, . . . , xn)
for the column vector x. We use boldface upper case letters
to denote matrices. We use e to denote the vector of all
ones and 0 for the vector of all zeroes. For a set S, we
write |S| to denote its cardinality. We use x(·) to denote a
function x : [0, T] → R and x(·) to denote a vector whose
components are real-valued functions defined on the interval
[0, T]. When it is clear from the context that x(·) is a vector
whose components are functions, we use x instead of x(·).
We use the lower case letter i to denote a job class, and use
the lower case letter j to denote a server. Finally, we use ∀t
to refer to all t ∈ [0, T], ∀i to refer to all job classes, and ∀j
to refer to all servers.

II. PROBLEM DESCRIPTION AND FLUID MODEL

In this section, we present a general framework for the fluid
control of multiclass processing networks. We first describe the
fluid model for a simple network considered by Harrison and
Wein [22] and then describe the general problem formulation.

A. Criss-cross network

Consider the processing network in Figure 1 composed of
three classes and two servers; class 1 and 2 jobs are processed
at server 1 and class 3 jobs are processed at server 2. Class 1
jobs arrive at server 1 with a rate of λ1 and class 2 jobs arrive
at server 1 with a rate of λ2. After a class 1 job completes
service at server 1, it moves to server 2 and turns into a job
of class 3. Once a class 3 job completes service at server 2,
it exits the system. After a class 2 job completes service at
server 1, it exits the system. For each class i, we let µi be the
the service rate of these jobs; that is, the rate at which jobs
are processed if the server processes class i jobs at its full
capacity.

Assuming that there are jobs in the system for all three
classes, the problem amounts to deciding whether server 1
should process class 1 or 2 jobs. To formulate this problem
as a fluid model, we let xi(t) denote the total (fractional in

general) number of class i jobs at time t and let ui(t) denote
the effort that the corresponding server – denote it by s(i) –
spends processing class i jobs at time t. This implies that

u1(t)

µ1
+
u2(t)

µ2
≤ 1,

u3(t)

µ3
≤ 1.

Assuming stability, let T be a large enough time so that
the system will empty by time T . To ensure that the system
reaches a state in which all of the classes are empty, it is
required to have sufficient capacity to clear the arrivals. More
precisely, the traffic intensity at both servers must be strictly
smaller than one, i.e.,

λ1

µ1
+
λ2

µ2
< 1,

λ1

µ3
< 1.

S1 S2

λ2

µ2

λ1

µ1 µ3

Fig. 1. Criss-cross network.

Let ci be the cost per unit time for holding a job of class
i in its corresponding buffer. The fluid control problem is to
find a control u such that the total holding cost of the jobs
in the system is minimized over the time interval [0, T]. This
problem is formulated as follows:

min

∫ T

0

c′x(t) dt

s.t. ẋ1(t) = λ1 − u1(t), ∀t,
ẋ2(t) = λ2 − u2(t), ∀t,
ẋ3(t) = u1(t)− u3(t), ∀t,
u1(t)

µ1
+
u2(t)

µ2
≤ 1, ∀t,

u3(t)

µ3
≤ 1, ∀t,

u(t),x(t) ≥ 0, ∀t.

(1)

B. A general formulation

Consider a processing network with m servers and n
different job classes. Each class i has an associated server s(i)
that processes jobs of class i. Jobs either leave the system or
change class as they move through the network. In particular,
if jobs of class i do not leave the system, they have a unique
next class r(i), that is, they join class r(i) when they complete
service at server s(i). The arrivals for each class i come from
other servers or from outside the system. We let λi be the rate

4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

of external arrivals for class i. We set λi = 0 if class i has no
external arrivals.

For each class i, we let the control variable ui(t) specify
the effort that server s(i) spends processing the jobs of class
i. The state variable xi(t) denotes the number of class i jobs
at time t in the system. The dynamics of the system take the
form

ẋi(t) = λi − ui(t)−
∑
j 6=i

ajiuj(t), (2)

where aji is either 0 or -1 depending on whether or not class
i receives arrivals from class j. Hence, routing in the network
can be represented by an n × n matrix A, such that aii = 1
for i = 1, 2, . . . , n, and aji = −1 if class i receives arrivals
from class j. The dynamics of the system in matrix form can
be expressed as:

ẋ(t) = λ−Au(t), (3)

where λ is the vector of external arrivals. In the criss-cross
network of Figure 1, we have

A =

 1 0 0
0 1 0
−1 0 1

 , λ =

 λ1

λ2

0

 .
By integrating both sides of Equation (3) with respect to t,

we get the following equation:∫ t

0

Au(s)ds+ x(t) = x(0) + λt, (4)

where x(0) is the given vector of the number of jobs at time
0.

Each server may process multiple job classes, each with its
own service rate. Let µi be the service rate of class i jobs.
Then, the service time is given by τi := 1/µi, that is, the
required time to process one unit of class i jobs. Moreover,
the fraction of the effort that server s(i) spends processing
jobs of class i at time t is given by τiui(t). Hence, the sum of
τiui(t) for all the classes processed at the same server must
be less than one. This constraint can be expressed as

Hu(t) ≤ e,

where H is an m× n matrix with components

hji =

{
τi, if s(i) = j,
0, otherwise.

Following the above discussion, the fluid control problem
can be formulated as follows:

min

∫ T

0

c′x(t) dt

s.t.
∫ t

0

Au(s)ds+ x(t) = x(0) + λt, ∀t,

Hu(t) ≤ e, ∀t,
u(t),x(t) ≥ 0, ∀t.

(5)

The state variables x can be eliminated from the formulation
of Problem (5). This can be done by substituting (4) in the

objective function of Problem (5) and using integration by
parts. It follows:∫ T

0

c′x(t) dt =

∫ T

0

c′
(
x(0) + λ−Au(t)

)
dt

= Tc′x(0) +

∫ T

0

(T − t)c′(λ−Au(t)) dt.

Notice that the first term is constant and does not depend on
the control variables u(t). Thus, Problem (5) can be rewritten
as

min

∫ T

0

(T − t)c′(λ−Au(t)) dt

s.t.
∫ t

0

Au(s)ds ≤ x(0) + λt, ∀t,

Hu(t) ≤ e, ∀t,
u(t) ≥ 0, ∀t.

(6)

We work within the space L∞([0, T]) of essentially
bounded measurable functions on [0, T] in which functions
that differ only on a set of measure zero are identified. In
particular, the components of u are assumed to be bounded
measurable functions on [0, T]. We say that a control u is
feasible if it satisfies the constraints of Problem (6) and denote
the feasible region of Problem (6) by F , i.e.,

F := {u ∈ Ln∞[0, T] | u is feasible for Problem (6)} .

Problem (6) belongs to the well studied class of SCLPs. This
class of problems has been first introduced by Anderson [1]
in order to model job-shop scheduling problems. Since then, a
number of authors (including Pullan [39], [40], [41], [43], [44],
Philpott and Craddock [37], Luo and Bertsimas [29], Fleischer
and Sethuraman [18] and Weiss [52]) have studied SCLPs
from different points of view. We next present some results
on duality of SCLPs developed by Luo and Bertsimas [29]
that we will use in Section IV.

The dual of Problem (5) is formulated as follows:

max −
∫ T

0

(x(0) + λt)′ dπ(t)−
∫ T

0

e′η(t) dt

s.t. A′π(t)−H′η(t) ≤ 0, ∀t,
π(t) ≤ (T − t)c, ∀t,
π bounded measurable with finite
variation and π(T) = 0,

η(t) ≥ 0, ∀t,

(7)

where the first integral in the objective function is the
Lebesgue-Stieltjes integral of the function x(0) + λt, with
respect to the function π(t), from 0 to T .

Suppose that u,x is a feasible solution for Problem (5)
and π, η is a feasible solution for Problem (7). Then, u,x is
optimal for Problem (5) and π, η is optimal for Problem (7)
if the following complementary slackness conditions hold (see

BERTSIMAS et al.: ROBUST FLUID PROCESSING NETWORKS 5

[29, Corollary 1]):∫ T

0

(
−A′π(t) + H′η(t)

)′
u(t) dt = 0,∫ T

0

(
Hu(t)− e

)′
η(t) dt = 0,∫ T

0

x(t)′ d
(

(T − t)c− π(t)
)

= 0.

(8)

III. ROBUST FLUID MODEL

In Problem (6), the components of the matrix H and vector
λ are treated as deterministic quantities. In this section, we
present a robust fluid model that will inject uncertainty in
the fluid model. This approach assumes that the uncertain
parameters come from known sets, called uncertainty sets. We
start our discussion by modeling uncertainty sets for the fluid
control problem and then investigate its robust counterpart
problem.

A. Modeling the uncertainty

In practice, arrival rates and service times are not only
uncertain, but also change over time. We let τi(t) be the
actual realization of the service time and λi(t) be the actual
realization of the arrival rate at time t for jobs of type i. We
assume that τi(t) can take values in the interval [τ̄i, τ̄i + τ̃i]
at each point in time t. We refer to τ̄i as the nominal service
time and to τ̃i as its deviation. We let zi(t) be the relative
deviation from the nominal service time at time t, that is,

zi(t) :=

{
τi(t)−τ̄i

τ̃i
, if τ̃i > 0,

0, if τ̃i = 0.

We restrict the service times to a set of vector-valued functions
τ (·) = (τ1(·), . . . , τn(·)) so that

τi(t) = τ̄i + zi(t)τ̃i, ∀i, t, (9a)∑
i:s(i)=j

zi(t) ≤ Γj , ∀j, t, (9b)

0 ≤ zi(t) ≤ 1, ∀i, t. (9c)

Here Γj is a given parameter in the interval [0, nj], where
nj is the number of job classes that are processed at server j,
i.e., nj = |{i | s(i) = j}|. This parameter controls the level
of the uncertainty in service times. The larger Γj is, the more
uncertain are the service times of jobs which are processed in
server j.

For a given τ (·), we consider an associated m× n matrix-
valued function H(·), where

hji(t) =

{
τi(t), if s(i) = j,
0, otherwise.

We define the uncertainty set U to be the set of all matrix-
valued functions H(·), where τ (·) is given by (9).

In a similar way, we model the uncertainty on the arrival
rates. For each class i and each point in time t, we assume
that λi(t) takes values in the interval [λ̄i, λ̄i+ λ̃i]. We refer to

λ̄i as the nominal arrival rate and to λ̃i as its deviation. For a
given vector λ(t), we let

ζi(t) :=

{
λi(t)−λ̄i

λ̃i
, if λ̃i > 0;

0, if λ̃i = 0.

We define the uncertainty set D to be the set of all vector-
valued functions λ so that

λi(t) = λ̄i + ζi(t)λ̃i, ∀i, t, (10a)∑
i:s(i)=j

ζi(t) ≤ ∆j , ∀j, t, (10b)

0 ≤ ζi(t) ≤ 1, ∀i, t. (10c)

If a class i has no external arrivals, we set λ̄i = λ̃i = 0. In
this case, ζi(t) = 0 for all t ∈ [0, T], and thus, class i does
not have any contribution in the summation on the left-hand
side of Inequality (10b).

B. Robust counterpart problem

Having defined the uncertainty sets as above, a control u
is called robust if it satisfies the constraints of Problem (6)
with respect to all possible realizations of uncertain data. Let
S denote the set of all robust controls. This means that u ∈ S
if and only if∫ t

0

Au(s)ds ≤ x(0) + λ(t)t, ∀λ ∈ D,

H(t)u(t) ≤ e, ∀H ∈ U ,
u(t) ≥ 0,

for all t ∈ [0, T]. We refer to a robust control with the best
worst-case cost guarantee as an optimal robust control. The
robust counterpart problem is to find such a control. This
problem is formulated as follows:

min
u∈S

max
λ∈D

∫ T

0

(T − t)c′
(
λ(t)−Au(t)

)
dt. (11)

Theorem 1. An optimal robust control can be obtained by
solving the following problem:

min

∫ T

0

c′x(t) dt

s.t.
∫ t

0

Au(s)ds+ x(t) = x(0) + λ̄t, ∀t,

Γjβj(t) +
∑

i:s(i)=j

(τ̄iui(t) + αi(t)) ≤ 1, ∀j, t,

αi(t) + βj(t)− ui(t)τ̃i ≥ 0, ∀j, i with s(i) = j,∀t,
u(t),x(t),α(t),β(t) ≥ 0, ∀t.

(12)

Proof: We first show that a control u is robust if and only
if there are α(·),β(·) ≥ 0 so that∫ t

0

Au(s)ds ≤ x(0) + λ̄t, (13a)

Γjβj(t) +
∑

i:s(i)=j

(τ̄iui(t) + αi(t)) ≤ 1, ∀j, (13b)

6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

αi(t) + βj(t)− ui(t)τ̃i ≥ 0, ∀j, i with s(i) = j, (13c)

for all t ∈ [0, T].
Given a control u, we have∫ t

0

Au(s)ds ≤ x(0) + λ(t)t, ∀t,λ ∈ D,

if and only if∫ t

0

aiu(s)ds ≤ xi(0) + min
λ∈D

λi(t)t = xi(0) + λ̄it, ∀i, t,

where ai is the ith row of the matrix A.
In addition,

H(t)u(t) ≤ e, ∀t,H ∈ U ,

if and only if

Zj(u, t) ≤ 1, ∀j, t,

where

Zj(u, t) := max
∑

i:s(i)=j

(τ̄i + zi(t)τ̃i)ui(t)

s.t.
∑

i:s(i)=j

zi(t) ≤ Γj ,

0 ≤ zi(t) ≤ 1, ∀i : s(i) = j.

Using strong duality for linear optimization problems, we
can write:

Zj(u, t) = min Γjβj(t) +
∑

i:s(i)=j

(τ̄iui(t) + αi(t))

s.t. αi(t) + βj(t)− ui(t)τ̃i ≥ 0, ∀i : s(i) = j,

αi(t) ≥ 0, ∀i : s(i) = j,

βj(t) ≥ 0.

This justifies constraints (13).
We now turn our attention to the objective function of

Problem (11). For a given robust control u ∈ S, we let

Z(u) := max
λ∈D

∫ T

0

(T − t)c′
(
λ(t)−Au(t)

)
dt. (14)

It follows from the definition of D that

Z(u) =

∫ T

0

(T − t)c′
(
λ̄(t)−Au(t)

)
dt

+ max

∫ T

0

n∑
i=1

(T − t)ciλ̃iζi(t) dt

s.t.
n∑
i=1

ζi(t) ≤ ∆j , ∀j,

0 ≤ zi(t) ≤ 1, ∀i, t.

(15)

By taking the dual of the maximization problem, we obtain

Z(u) =

∫ T

0

(T − t)c′
(
λ̄(t)−Au(t)

)
dt

+ min

∫ T

0

m∑
j=1

∆jyj(t) dt+

∫ T

0

n∑
i=1

wi(t) dt

s.t. y(t) + wi(t) ≥ ci(T − t)λ̃i, ∀i, t,
y(t),w ≥ 0, ∀t.

Here, the minimization problem is independent of u. As
a result, finding an optimal robust control reduces to the
following problem:

min

∫ T

0

(T − t)c′
(
λ̄(t)−Au(t)

)
dt

s.t.
∫ t

0

Au(s)ds ≤ x(0) + λ̄t, ∀t,

Γjβj(t) +
∑

i:s(i)=j

(τ̄iui(t) + αi(t)) ≤ 1, ∀t, j,

αi(t) + βj(t)− ui(t)τ̃i ≥ 0, ∀t, i, j : s(i) = j,

u(t), α(t), β(t) ≥ 0, ∀t.
(16)

This problem is equivalent to Problem (11) by setting

x(t) = x(0) + λ̄t−
∫ t

0

Au(s)ds, ∀t.

It follows from Theorem 1 that the uncertainty on arrival
rates does not play any role in determining an optimal robust
control and the robust counterpart problem only relies on the
nominal values of the arrival rates. Hence, in the rest of the
paper, the arrival rates are assumed to be deterministic and are
denoted by λ.

C. Robust policies

Having being able to solve the robust fluid problem, the
next step is to translate optimal robust controls to a dynamic
scheduling policy for the control of stochastic multiclass
processing networks. Here, we present a simple approach,
which is known as model predictive control in control theory
and engineering practice (see, e.g., [19], [26], [28], [49]). The
derived policy is similar to the discrete review policies (see,
e.g., [21], [32], [31]), where the system state is reviewed at
discrete points in time and at each such point control decisions
are made using the optimal control policy of the associated
fluid control problem. In our case, however, the impact of
uncertainty has been dealt with at the fluid control level.

In model predictive control, control decisions are made at
control epochs, i.e., at discrete points in time when the state
of the system is changed due to job arrivals and departures.
The main idea is to solve the robust fluid problem at every
control epoch and use the first step of the optimal (fluid)
control as the current sequencing decision. At the next epoch,
we solve the robust fluid control problem again, and so on.
Formally, to find a policy at the control epoch t, we set xi(0)
to be the number of class i jobs at that epoch. We then solve
Problem (11) and let u∗,x∗ be an optimal robust solution. It
is known that Problem (11) has a piecewise constant optimal
control and the algorithm developed by Luo and Bertsimas
[29] finds such a solution. More precisely, there is a partition
{t0 = 0, t1, . . . , tq = T} of the time interval [0, T] so that u∗

is constant over [tk−1, tk) for all k = 1, . . . , q. This means that
the control u∗(tk−1) is optimal if the state (that is, number
of jobs in the system) is x(tk−1). In particular, u∗(0) is an

BERTSIMAS et al.: ROBUST FLUID PROCESSING NETWORKS 7

optimal control at the epoch t. For each class i, we let

p∗i :=
u∗i (0)∑

k:s(k)=s(i) u
∗
k(0)

.

This implies that
∑
i:s(i)=j p

∗
i = 1 for each server j. We then

use the following sequencing policy for the jobs at server j:
Robust fluid policy (RFP): give priority to a job
class i with highest value p∗i . If there exists more
than one such job classes, break ties arbitrarily.

We note that for specific problems, we may use particular
rules to break ties. With the above policy, each server will
be processing at most one job at a time. The computational
tractability of this model predictive control scheme depends
on (a) how efficiently one can solve Problem (11) and (b)
how many times one has to solve Problem (11). Regarding
issue (a) we notice that Problem (11) is an instance of
SCLP with 2n + m control variables, n state variables, and
n + m + nm constraints. In general, solving an SCLP is
NP-hard since it includes as special case the minimum cost
dynamic flow problem, which is weakly NP-hard (see [24]).
However, the problem is computationally tractable in the
sense that one can solve large instances. In our simulation
experiments in Section V we use the algorithm of Luo and
Bertsimas [29] which can handle hundreds of variables and
constraints. Regarding issue (b) above, we note that in general
one may need to solve a large number of SCLPs – one at
each control epoch. In Section V-A we introduce a heuristic
that helps reduce this number significantly. Our numerical
examples in Section V will show that our approach is tractable
as one can handle processing networks with tens of job classes
and tens of servers.

IV. A SINGLE-SERVER SYSTEM

In this section, we show that one can find an optimal control
for the robust fluid problem in polynomial time under certain
conditions. We consider a single server processing network
with n jobs. We let λi be the arrival rate, µi be the processing
time, and ci be the holding cost per unit of time for class i.
The problem is to schedule the jobs so as the total holding
cost is minimized. It is well known that an optimal policy for
this problem is to give priority to a class i with highest ciµi –
the well known cµ-rule. We show that the robust fluid control
problem also yields a priority policy that can be computed in
polynomial-time.

The control problem for processing the jobs on a single
server is formulated as follows:

min

∫ T

0

c′x(t) dt

s.t.
∫ t

0

ui(s) ds+ xi(t) = xi(0) + λit, ∀t, i,
n∑
i=1

τiui(t) ≤ 1, ∀t,

u(t),x(t) ≥ 0, ∀t,

(17)

where τi := 1/µi is the service time for class i jobs.
We assume that service times are subject to uncertainty and

fluctuate over time while the arrival rates are deterministic.
For each class i and each point in time t, we let the actual
realization of the service time lie in the interval [τ̄i, τ̄i + τ̃i],
where τ̄i is the nominal service time and τ̃i is the deviation
from its nominal value. We assume that the total relative
deviation from the nominal service times is bounded by Γ.
Then, by Theorem 1, the robust counterpart of Problem (17)
is:

min

∫ T

0

c′x(t) dt

s.t.
∫ t

0

ui(s) ds+ xi(t) = xi(0) + λt, ∀i, t,
n∑
i=1

(ui(t)τ̄i + αi(t)) + Γβ(t) ≤ 1, ∀t,

ui(t)τ̃i(t)− αi(t)− β(t) ≤ 0, ∀t,
u(t),x(t),α(t), β(t),≥ 0, ∀t.

(18)

We next describe how to construct an optimal solution
u∗,α∗, β∗ for this problem by solving at most n linear
optimization problems. The basic idea is that at each point
in time t, the structure of u∗,α∗, β∗ depends on the number
of jobs in the system at time t. More specifically, we let
u∗(t) := v∗(t), α∗(t) := ρ∗(t), β∗(t) := ξ∗(t), where
v∗(t),ρ∗(t), ξ∗(t) is an optimal solution for the following
linear optimization problem:

max

n∑
i=1

(T − t)civi(t)

s.t.
n∑
i=1

(
τ̄ivi(t) + ρi(t)

)
+ Γξ(t) ≤ 1,

vi(t)τ̃i − ξ(t)− ρi(t) ≤ 0, ∀i,
vi(t) ≤ λi, ∀i : xi(t) = 0,

v(t),ρ(t), ξ(t) ≥ 0.

(19)

We refer to this problem as LO(t).
Initially, we have t = t0 := 0, at which point x(0) is given.

We solve LO(t0) and obtain an optimal control v∗(t0). We
serve the jobs with this policy until a class, say class 1, is
depleted, that is x1(t1) = 0 where t1 is the depletion time
of class 1. More precisely, we set u∗(t) := v∗(t0) for all
0 ≤ t < t1. At time t = t1, a switch occurs and the policy is
revised. To do that, we solve LO(t1) to find an optimal policy
v∗(t1) at time t1. We use this policy to serve jobs until another
job class, say class 2, is depleted. Let t2 be the depletion time
of class 2. We then set u∗(t) := v∗(t1) for all t1 ≤ t < t2.
We continue this procedure until all classes are depleted, at
which point and thereafter, an optimal policy is to serve each
job class i with rate λi and no jobs will be held in the network.

The above procedure requires solving at most n linear op-
timization problems and yields a piecewise-constant solution
u∗,α∗, β∗ for Problem (18) with breakpoints t0, t1, . . . , tn so

8 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

that

u∗(t) :=

{
v∗(tk−1), if tk−1 ≤ t < tk,

v∗(tn−1), if tn ≤ t ≤ T,

α∗(t) :=

{
ρ∗(tk−1), if tk−1 ≤ t < tk,

ρ∗(tn−1), if tn ≤ t ≤ T,

β∗(t) :=

{
ξ∗(tk−1), if tk−1 ≤ t < tk,

ξ∗(tn−1), if tn ≤ t ≤ T,

(20)

where v∗(tk−1), ρ∗(tk−1), ξ∗(tk−1) is an optimal solution for
LO(tk−1).

Theorem 2. The solution u∗,α∗, β∗, given by (20), is optimal
for Problem (18).

Proof: It follows from the construction of u∗,α∗, β∗ that
it is feasible for Problem (18). To prove it is optimal, we
construct a dual feasible solution for the dual of Problem (18)
which satisfies optimality conditions with u∗,α∗, β∗. Based
on Bertsimas and Luo’s [29] dual formulation (7) for SCLPs,
the dual of Problem (17) is formulated as follows:

max −
∫ T

0

(x(0) + λt)′ dπ(t)−
∫ T

0

η(t) dt

s.t. πi(t)− τ̄iη(t)− τ̃iγi(t) ≤ 0, ∀i, t,
n∑
i=1

γi(t)− Γη(t) ≤ 0,

γi(t)− η(t) ≤ 0, ∀i, t,
πi(t) ≤ (T − t)ci, ∀i,
π bounded measurable with finite
variation and π(T) = 0,

η(t) ≥ 0, ∀t.

(21)

Suppose that u,α, β is a feasible solution for Problem (18)
and π, η, γ is a feasible solution for Problem (21). It follows
from the complementary slackness optimality conditions (8)
that u,α, β is optimal for Problem (18) and π, η, γ is optimal
for Problem (21) if the following conditions are met:∫ T

0

n∑
i=1

(
πi(t)− µ̄iη(t)− τ̃iγi(t)

)
ui(t) dt = 0,

∫ T

0

(
1− Γβ(t)−

n∑
i=1

(τ̄iui(t) + αi(t))
)
η(t) dt = 0,

∫ T

0

(
Γη(t)−

n∑
i=1

γi(t)
)
β(t) dt = 0,

∫ T

0

n∑
i=1

(
η(t)− γi(t)

)
αi(t) dt = 0,

∫ T

0

n∑
i=1

xi(t)d
(
πi(t)− (T − t)ci

)
= 0.

(22)

We next construct a feasible solution for Problem (21),
which satisfies the above optimality conditions. To that end,
we take the dual of Problem (19) and obtain the following

linear optimization problem:

min θ(t) + λ′δ(t)

s.t. δi(t) + τ̄iθ(t) + τ̃iqi(t) ≥ (T − t)ci, ∀i,

Γθ(t)−
n∑
i=1

qi ≥ 0,

θ(t)− qi(t) ≥ 0, ∀i,
δ(t),q(t), θ ≥ 0,

δi(t) = 0, ∀i : xi(t) > 0.

Let q∗(t), δ∗(t), θ∗(t) be an optimal solution for this problem.
We define

π∗(t) :=

{
(T − t)c− δ∗(tk−1), if tk−1 ≤ t < tk,

(T − t)c− δ∗(tk−1), if tn−1 ≤ t ≤ T,

γ∗(t) :=

{
q∗(tk−1), if tk−1 ≤ t < tk,

q∗(tn−1), if tn ≤ t ≤ T,

η∗(t) :=

{
θ∗(tk−1), if tk−1 ≤ t < tk,

θ∗(tn−1), if tn ≤ t ≤ T.

It is easy to verify that π∗,γ∗, η∗ is a feasible solution
for Problem (21). Moreover, by the complementary slackness
conditions for linear optimization, we can show that u∗, ρ∗,
ξ∗ and π∗,γ∗, η∗ satisfies the optimality conditions (22). This
completes the proof.

We notice that Problem (19) can be viewed as the robust
counterpart of a maximization problem, where a class i with
highest ci/τ̄i must be selected. More specifically, when all
service times are deterministic, that is, τ̃i = 0 for all classes
i, Problem (19) is simplified as

max

n∑
i=1

(T − t)civi(t)

s.t.
n∑
i=1

τ̄ivi(t) ≤ 1,

vi(t) ≤ λi, ∀i : xi(t) = 0,

v(t) ≥ 0.

(23)

This problem gives priority to a class i with highest ci/τ̄i.
Thus, our approach provides an alternative proof for the opti-
mality of the cµ-rule when all service times are deterministic.
Further, the robust fluid model retains its original structure and
Problem (19) can be seen as the robust version of Problem
(23), thereby providing a robust generalization of the cµ-rule.

A. Klimov’s Problem

Next, we show that all the above results can carry over to
Klimov’s problem – a single server queue with probabilistic
feedback (see Klimov [23], Bertsimas et al. [9], and references
therein). Specifically, a pij fraction of class i jobs are fed back
as jobs of class j and a pi0 fraction of class i jobs leave the
system. As before, the problem is to schedule the jobs so as
the total holding cost is minimized. The corresponding control

BERTSIMAS et al.: ROBUST FLUID PROCESSING NETWORKS 9

problem is formulated as follows:

min

∫ T

0

c′x(t) dt

s.t.
∫ t

0

Au ds+ xi(t) = x(0) + λt, ∀t,
n∑
i=1

τiui(t) ≤ 1, ∀t,

u(t),x(t) ≥ 0, ∀t,

(24)

where A is an n× n matrix with aii = 1 for i = 1, 2, . . . , n,
and aij = −pij for i 6= j. One can use Gauss–Jordan
elimination to verify that the matrix A is invertible. Then,
Problem (24) can be rewritten as

ZCQ = min

∫ T

0

c′x(t) dt

s.t.
∫ t

0

wi(s) ds+ xi(t) = λit, ∀i, t,

τ ′A−1w(t) ≤ 1, ∀t,
A−1w(t) ≥ 0, ∀t,
x(t) ≥ 0, ∀t.

(25)

This problem is the same as Problem (17), but with different
matrix coefficients. Therefore, all previous techniques can be
extended to Problem (25) and one can show that its robust
counterpart is solvable in polynomial-time.

V. SIMULATION RESULTS

In this section, we provide simulation results to compare the
performance of the robust fluid policy to several alternative
policies in the literature. There are several motivating reasons
for this simulation study. First, we wish to test how close is
the performance of the proposed policy to the performance of
the optimal policy in small-size networks, where the optimal
can be computed. The second purpose is to test whether
the robust fluid policy outperforms several heuristic policies
on moderate to large-size networks. The third purpose is to
examine the effect of the uncertainty set on the performance
of the robust policy. More precisely, we assume that the total
relative deviation of the service times from their nominal
values is bounded by Γ for each server and investigate the
sensitivity of the robust policy to the parameter Γ. In addition,
we seek to test the performance the robust policy against
heuristic alternatives under various distributions of arrival and
service processes. To that end, we simulate external arrivals
and service times under a hyper-exponential distribution and
investigate the performance of the robust fluid policy when
the Coefficient of Variation (CoV) increases. Finally, we are
interested in the computational efficiency of our approach,
which relates to how frequently we have to solve Problem
(11) in order to obtain a sequencing policy for each possible
network state. We comment on the latter issue in the next
subsection.

A. Computational remarks

The robust fluid policy described in Section III-C requires
solving Problem (11) for each state to compute an optimal
control. It is computationally intractable to enumerate and
evaluate the optimal control for all states on moderate to
large-size networks since the number of possible states grows
exponentially in the number of job classes. Instead, we propose
a heuristic method to approximate optimal controls and speed
up the computational time.

We first notice that some states may never appear during a
simulation of the system. Therefore, we solve the robust fluid
model only when the system reaches a new state. Let n be
the vector representing the number of jobs in each class of
the system at the current epoch. We set x(0) = n and solve
Problem (11). Let u∗,x∗ be an optimal solution, where u∗ is
piecewise constant with breakpoints t0 = 0, t1, . . . , tq = T .
This solution does provide an optimal policy when the state is
x∗(t1), . . . ,x∗(tq−1). In particular, the optimal control u∗(0)
on the first step yields a policy to sequence the jobs at the
current epoch (when the state is n), and for k = 1, . . . , q − 1
the control u∗(tk) is optimal if the system reaches the state
x(tk). We can therefore, maintain this information and use it
whenever these particular states are reached, which helps to
avoid re-solving Problem (11) if we already know the optimal
control for a state.

In general, x∗(t1), . . . ,x∗(tq−1) are fractional, while the
number of jobs in the system is integer. Suppose that the
system reaches a state n at some later epoch and there is
some k so that |ni − x∗i (tk−1)| ≤ ω and ni > 0 if and only
if x∗i (tk−1) > 0 for all i, where ω ≥ 0 is a given parameter
to control the accuracy of the heuristic. Then, we apply the
control u∗(tk−1) to sequence the jobs at the servers. We show
in our simulation experiments that the performance of the
robust policy is rather insensitive with respect to the parameter
ω, while it reduces significantly the number of calls to a solver
for Problem (11).

B. Network examples

We consider four different processing networks under var-
ious parameter scenarios. The problem is to determine a
dynamic sequencing policy at each server so that the long-run
average expected number of jobs in the system is minimized.
The external arrivals are Poisson with class-dependent rates,
and the service times are exponentially distributed with class-
dependent rates. Let λ be the vector of mean arrival rates and
τ be the vector of mean services times. When solving the
robust fluid problem to derive a robust policy for each state,
we set the nominal values of external arrival rates to λ and the
nominal values of service times to τ with an allowed deviation
of 0.25τ so that the total relative deviation from the nominal
service times at each server is bounded by Γ. More precisely,
we set c := e, λ̄ := λ, τ̄ := τ , τ̃ := 0.25τ in Problem (11).

In our simulation experiments, we report the performance
of the best robust fluid policy, denoted by RFP, which cor-
responds to the best value of Γ > 0 found by doing several
simulation runs. Notice that when Γ = 0, the robust fluid
model reduces to the classical one. In this case, we denote

10 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

the fluid policy with FP. In order to evaluate the efficiency of
our proposed approach, we calculate the percentage distance
of the robust fluid policy with the best other policies in the
literature and the percentage distance of the robust fluid policy
with the classical fluid policy. In particular, we report

E1 :=
Best other-RFP

Best other
× 100%, E2 :=

FP-RFP
FP

× 100%.

We first consider the criss-cross network of Figure 1, with
three classes and two servers. In order to examine the effect
of traffic conditions on the performance of the robust policy,
we consider various traffic conditions as in [36] and list them
in Table II, where the following abbreviations are used for
the traffic conditions: I.L. (imbalanced light), B.L. (balanced
light), I.M. (imbalanced medium), B.M. (balanced medium),
I.H. (imbalanced heavy), and B.H. (balanced heavy). In this
table, ρ1 and ρ2 are the total traffic intensities at servers 1 and
2, respectively, i.e., ρ1 := λ1/µ1 + λ2/µ2 and ρ2 := λ1/µ3.

TABLE I
NUMERICAL RESULTS FOR THE CRISS-CROSS NETWORK OF FIGURE 1

DP OTP Thr. FP RFP E1 E2

I.L. 0.671 0.678 0.679 0.678 0.677 -1.030 0.094
B.L. 0.843 0.856 0.857 0.857 0.855 -1.450 0.305
I.M. 2.084 2.117 2.129 2.162 2.133 -2.392 1.315
B.M. 2.829 2.895 2.805 2.965 2.920 -3.217 1.517
I.H. 9.970 10.13 10.15 10.398 10.096 -1.265 2.90
B.H. – 15.5 15.5 18.430 15.585 -2.111 12.780

TABLE II
PARAMETERS FOR THE TRAFFIC CONDITIONS OF TABLE I

λ1 λ2 µ1 µ2 µ3 ρ1 ρ2
I.L. 0.3 0.3 2 2 1.5 0.3 0.2
B.L. 0.3 0.3 2 2 1 0.3 0.3
I.M. 0.6 0.6 2 2 1.5 0.6 0.4
B.M. 0.6 0.6 2 2 1 0.6 0.6
I.H. 0.9 0.9 2 2 1.5 0.9 0.6
B.H. 0.9 0.9 2 2 1 0.9 0.9

In Table I, we report the performance of the different
methods for the data shown in Table II. In the second col-
umn, we list the optimal performance obtained via dynamic
programming, denoted by DP. We notice that DP is computa-
tionally intractable for the heavy traffic case (B.H.). In the third
column, we report the performance of an optimized target-
pursuing policy proposed in [36], denoted by OTP. In the
fourth column, we list the performance of a threshold policy
proposed in [22], denoted by Thr. This policy gives priority
to jobs of class 1 at server 1 if the number of jobs at server
2 is below some threshold; otherwise gives priority to jobs of
class 2. The results listed in the fourth column are for the best
such policy (i.e., optimized over the threshold). In the fifth
and sixth columns, we list the performance of FP and RFP,
respectively. Finally, in the last two columns, we report E1

and E2.
Here are our observations from Table I. The robust policy

performs better as the traffic intensity increases. More pre-
cisely, RFP performs a little bit better than FP from light
to moderate traffic scenarios, and significantly better under
the heavy traffic cases (in particular B.H.). In this case, we

TABLE III
NUMERICAL RESULTS FOR THE CRISS-CROSS NETWORK OF FIGURE 1

UNDER THE TRAFFIC CASE B.H. AND DIFFERENT COEFFICIENTS OF
VARIATION

CoV Thr. FP RFP E1 E2

1 15.370 18.430 15.585 -2.111 12.780
1.1 27.692 38.113 28.920 -7.695 20.512
1.2 37.992 48.076 37.979 -2.874 20.880
1.3 46.800 56.820 48.081 -0.777 23.007
1.4 58.213 75.980 57.627 -0.686 25.339

0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
pe

ct
ed

 N
um

be
r
of
 J
O
bs
 in
 th

e
Sy
st
em

Gamma

CoV=1

CoV=1.1

CoV=1.2

CoV=1.3

CoV=1.4

Fig. 2. Effect of Γ. Results for the criss-cross network of Figure 1 under
the traffic case B.H. for different coefficients of variation and values of Γ.

are within 2.1% of the threshold policy, which is conjectured
to be asymptotically optimal in heavy traffic [22], and we
outperform by more than 12.7% the fluid policy. Notice that
the threshold value in the threshold policy can be interpreted
as a safety stock protecting server 2 from starvation. Since
RFP performs close to the threshold policy in heavy traffic,
it is implied that the uncertainty incorporated in the fluid
model leads to maintaining some appropriate safety stock for
server 2; FP, on the other hand, is greedy and does not do that,
leading to worse performance.

In order to test the impact of the distribution of arrival rates
and service times, we simulate the external arrivals and the
service times under the hyper-exponential distribution with
different coefficients of variation. Tables III compares the
performance of the robust policy to the fluid policy and the
threshold policy under the heavy traffic case B.H. when the
Coefficient of Variation (CoV) is 1.0, 1.1, 1.2, 1.3, and 1.4.
We observe that the robust fluid policy performs as well as
the best threshold policy and both significantly outperform the
fluid policy. On average, we are within 2.33% of the threshold
policy and outperform by more than 3.14% the fluid policy.

To examine the effect of Γ, in Figure 2 we report the
performance of the robust policy for different values of Γ and
different coefficients of variation under the heavy traffic case
B.H. When CoV is close to 1.0, the performance of the robust
policy is rather insensitive with respect to the parameter Γ and
this makes intuitive sense. However, for larger values of CoV,
injecting more uncertainty into the fluid control problem can
lead to non-negligible performance improvements (about 20%
in some instances) compared to the performance under Γ = 0.

In order to find out how many times we have to solve

BERTSIMAS et al.: ROBUST FLUID PROCESSING NETWORKS 11

15.5

16

16.5

17

17.5

18

18.5

19

19.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
pe

ct
ed

 n
um

be
r
of
 jo

bs
 in
 th

e
sy
st
em

omega

Gamma=0.0

Gamma=0.25

Gamma=0.5

Gamma=0.75

Gamma=1.0

(a) Effect of ω on the performance of RFP.

20

200

2000

20000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r
of
 S
CL
Ps
 to

 b
e
so
lv
ed

omega

Gamma=0.0

Gamma=0.25

Gamma=0.5

Gamma=0.75

Gamma=1.0

(b) Effect of ω on reducing the number of times we solve Problem (11). Note
that the y-axis is in a logarithmic scale.

Fig. 3. Effect of ω. Results for the criss-cross network of Figure 1 under
the traffic case B.H. and different values of Γ and Ω.

Problem (11) and how the parameter ω helps to reduce these
times, we report in Figure 3 the performance of the RFP and
the number of times that Problem (11) is solved for different
values of Γ and ω under the heavy traffic case B.H. Here,
the number of arrivals is set to 1, 000, 000. We observe that
the number of times that Problem (11) is solved dramatically
decreases as ω increases, taking values ω = 0, 1, . . . , 20, while
the performance of the RFP is not too sensitive with respect
to ω. Moreover, as Figure 3 (b) highlights, the number of
SCLPs we need to solve is not very sensitive to the parameter
Γ which regulates the amount of uncertainty injected into the
fluid model.

The second example we consider is a network with six
classes and two servers as shown in Figure 4. Jobs of class 1
arrive according a Poisson process with a rate λ1 and they
visit servers 1,2,1,2, in that order, forming classes 1,2,3, and
4, respectively, and then exit the system. Jobs of class 2 arrive
according to a Poisson process with a rate λ2 and then visit
servers 1 and 2, forming classes 5, and 6, respectively, and then
exit the system. Servers 1 and 2 have exponentially distributed
service times with rates µ1 and µ2, respectively.

In Table IV, we compare the performance of our robust
policy with other methods for different traffic conditions as
listed in Table V, where the same notation and abbreviations

S1 S2

λ1

µ1 µ4

µ2 µ5

λ2

µ3 µ6

Fig. 4. A six-class network.

are used as in Table I. These parameters are taken from [36].
Both RFP and FP perform equally well from light to mod-
erate traffic scenarios, but in heavy traffic, RFP significantly
outperforms FP.

TABLE IV
NUMERICAL RESULTS FOR THE SIX-CLASS NETWORK OF FIGURE 4

DP OTP FP RFP E1 E2

I.L. 0.663 0.671 0.75 0.72 -11.76 1.984
B.L. 0.798 0.803 0.923 0.912 -14.286 1.192
I.M. 1.966 2.01 2.301 2.21 -12.410 3.955
B.M. 2.56 2.59 3.024 2.952 -15.312 3.381
I.H. – 8.32 9.435 8.926 -7.284 5.401
B.H. – 13.6 15.670 14.081 -3.537 10.140

TABLE V
PARAMETERS FOR THE TRAFFIC CONDITIONS OF TABLE IV

λ1 λ2 µ1 µ2 µ3 µ4 µ5 µ6
I.L. 3/140 3/140 1/8 1/2 1/4 1/4 3/14 2/3
B.L. 3/140 3/140 1/8 1/2 1/4 1/6 1/7 1
I.M. 6/140 6/140 1/8 1/2 1/4 1/4 3/14 2/3
B.M. 6/140 6/140 1/8 1/2 1/4 1/6 1/7 1
I.H. 9/140 9/140 1/8 1/2 1/4 1/4 3/14 2/3
B.H. 9/140 9/140 1/8 1/2 1/4 1/6 1/7 1

In the next two examples, we are interested to see how well
the robust policy performs as the size of the network increases.
We consider an extension of the six-class network in Figure 4
to a network with m servers as shown in Figure 5. There are
3 · m classes of jobs in total and only classes 1 and 3 have
external arrivals according to a Poisson process with a rate
λ1 and λ2, respectively. We used the data in Table IV for the
B.H. case. In particular, we used λ1 = λ2 = 9/140 and the
service times for the odd servers S1, S3, . . . , S2bm/2c+1 are
the same as the service times for server 1, while the service
times for the even servers S2, S4, . . . , S2bm/2c are the same as
the service times for server 2 in the six-class network. Thus,
the total traffic intensity of each server is 0.9.

Table VI compares the performance of the proposed policy
with other heuristic methods for m = 2, . . . , 10. In this
table, LBFS refers to the last-buffer first-serve policy, where
a priority at a server is given to the class with highest
index. FCFS refers to the first-come first-serve policy, where
a priority at a server is given to jobs in order of arrival, and
the cµ-rule gives priority to the class i with highest ciµi.

We finally consider a reentrant network with m servers as
shown in Figure 6. Each server processes 3 classes of jobs,
and thus, there are 3 · m classes in total. Only class 1 has
external arrivals according to a Poisson process with a rate

12 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

S1 S2 Sm

λ1

µ1 µ4 µn(m−1)+1

µn(m−1)+2

µn(m−1)+3

µ2 µ5

λ2

µ3 µ6

Fig. 5. An extension of the six-class network.

TABLE VI
NUMERICAL RESULTS FOR THE REENTRANT FEED-FORWARD NETWORK

OF FIGURE 5

m cµ-rule LBFS FCFS FP RFP E1 E2

2 18.296 15.749 40.173 15.422 15.286 3.053 1.001
3 25.425 25.257 71.518 26.140 24.917 1.350 4.673
4 35.721 34;660 114.860 38.085 36.857 -6.340 3.225
5 43.314 45.110 157.556 45.962 43.628 -0.725 5.078
6 53.801 55.724 203.418 56.857 52.980 1.527 6.818
7 60.743 65.980 251.657 64.713 59.051 2.786 8.749

λ1. Service times are exponentially distributed with rate µi
for class i jobs.

Table VII compares the performance of the robust policy
with FP, LBFS, FCFS, and cµ policies for m = 2, . . . , 7.
Here, the total traffic intensity of each odd server is 0.896 and
the total traffic intensity of each even server is 0.8625.

TABLE VII
NUMERICAL RESULTS FOR THE REENTRANT NETWORK OF FIGURE 6 WITH

3 CLASSES PER EACH SERVER

m cµ-rule LBFS FCFS FP RFP E1 E2

2 18.199 15.911 16.341 15.422 15.663 10.085 8.663
3 26.937 30.001 27.154 25.955 24.015 10.82 7.450
4 34.934 40.167 35.633 32.014 29.925 21.241 6.525
5 42.387 57.056 47.969 40.113 36.901 14.359 8.009
6 51.945 66.042 56.996 48.781 44.261 12.942 9.265
7 59.958 87.136 71.002 54.711 48.418 14.792 11.502

We next summarize the major conclusions from our simu-
lation study.

1. In the criss-cross network of Figure 1, the performance of
our robust fluid policy is comparable to the performance of
the threshold policy proposed by Harrison and Wein [22].
Moreover, the relative difference between the performance
of the robust policy and the fluid policy increases as the
coefficient of variation increases.

2. In both the criss-cross network of Figure 1 and the six-class
network of Figure 4, the robust fluid policy outperforms the
fluid policy and the efficacy of the robust policy increases
with the traffic intensity.

3. In the reentrant feed-forward network of Figure 5, the
performance of the robust fluid policy is close to the
performance of the best other heuristic policies and is better
than the performance of the fluid policy as the number of
servers increases.

4. In the reentrant network of Figure 6, the performance of
our robust fluid policy outperforms the performance of the
heuristic ones as well as the fluid policy, and the efficacy

of the robust fluid policy seems to be stable as the number
of servers increases.

5. The performance of the robust policy is not very sensitive
with respect to the parameter Γ for systems with low
coefficient of variation (close to 1). When though the
coefficient of variation is larger, accommodating uncer-
tainty in the fluid control problem can lead to performance
improvements.

6. Finally, the number of times that Problem (11) is required
to be solved dramatically decreases as the parameter ω
increases, while the performance of the robust fluid policy
is not too sensitive with respect to ω.

VI. CONCLUSIONS

We presented a tractable approach to address uncertainty
in multiclass processing networks. Unlike other approaches
that make probabilistic assumptions, the proposed approach
treats the uncertainty in a deterministic manner using the
framework of robust optimization. It relies on modeling the
fluid control problem as an SCLP and characterizing its robust
counterpart. We showed that the robust problem formulation
still remains within the class of SCLPs, and thus, preserves
the computational complexity of the fluid control problem.

We also presented a way of translating the optimal controls
from the robust fluid model to the stochastic network using
ideas from model predictive control. Admittedly, we have not
established stability of the class of robust fluid policies we
introduced. This remains an open research question.

As our numerical results indicate, our approach leads to
effective scheduling policies that perform closely against the
optimal policy in small enough instances where the optimal
can be computed. In other instances, where near-optimal
policies can be derived in certain limiting regimes (e.g.,
policies based on heavy-traffic analysis), our policy performs
comparable to such policies even in the traffic conditions
that favor the alternative. More interestingly, in large enough
problem instances where neither the optimal nor near-optimal
alternatives exist, our policy clearly outperforms generic al-
ternatives. The proposed approach scales well and can handle
networks with tens of job classes and tens of servers.

REFERENCES

[1] E. J. Anderson. A Continuous Model for Job-Shop Scheduling. PhD
thesis, University of Cambridge, 1978.

[2] E. J. Anderson, P. Nash, and A. F. Perold. Some properties of a class of
continuous linear programs. SIAM Journal on Control and Optimization,
21:258–265, 1983.

BERTSIMAS et al.: ROBUST FLUID PROCESSING NETWORKS 13

S1 S2 Sm

λ1

µ1 µ4 µn(m−1)+1

µn(m−1)+2

µn(m−1)+3

µ2 µ5

µ3 µ6

Fig. 6. A reentrant network.

[3] F. Avram, D. Bertsimas, and M. Ricard. An optimal control approach
to optimization of multi-class queueing networks. In F. Kelly and
R. Williams, editors, Volume 71 of IMA volumes in Mathematics and its
Applications, pages 199–234, New York, 1995. Springer-Verlag.

[4] N. Bäuerle. Asymptotic optimality of tracking policies in stochastic
networks. Annals of Applied Probability, pages 1065–1083, 2000.

[5] N. Bäuerle. Optimal control of queueing networks: an approach via
fluid models. Advances in Applied Probability, 34(2):313–328, 2002.

[6] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization.
Princeton University Press, 2009.

[7] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications
of robust optimization. SIAM Review, 53(3):464–501, August 2011.

[8] D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis. Optimization of
multiclass queueing networks: Polyhedral and nonlinear characteriza-
tions of achievable performance. The Annals of Applied Probability,
pages 43–75, 1994.

[9] D. Bertsimas, I. Ch. Paschalidis, and J. N. Tsitsiklis. Branching bandits
and Klimov’s problem: Achievable region and side constraints. IEEE
Trans. Autom. Contr., 40(12):2063–2075, 1995.

[10] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming.
Springer-Verlag, 1997.

[11] C. G. Cassandras, Y. Wardi, B. Melamed, G. Sun, and C. G. Panayiotou.
Perturbation analysis for online control and optimization of stochastic
fluid models. Automatic Control, IEEE Transactions on, 47(8):1234–
1248, 2002.

[12] H. Chen and A. Mandelbaum. Discrete flow networks: bottleneck
analysis and fluid approximations. Mathematics of Operations Research,
16(2):408–446, 1991.

[13] M. Chen, I.-K. Cho, and S. P. Meyn. Reliability by design in distributed
power transmission networks. Automatica, 42(8):1267–1281, 2006.

[14] M. Chen, R. Dubrawski, and S. P. Meyn. Management of demand-
driven production systems. IEEE Transactions on Automatic Control,
49(5):686–698, 2004.

[15] J. G. Dai. On positive Harris recurrence of multiclass queueing networks:
A unified approach via fluid limit models. Annals of Applied Probability,
5:49–77, 1995.

[16] J. G Dai and S. P Meyn. Stability and convergence of moments for
multiclass queueing networks via fluid limit models. IEEE Transactions
on Automatic Control, 40(11):1889–1904, 1995.

[17] J. G. Dai and G. Weiss. Stability and instability of fluid models for
reentrant lines. Mathematics of Operations Research, 21(1):115–134,
1996.

[18] L. Fleischer and J. Sethuraman. Efficient algorithms for separated
continuous linear programs: The multi-commodity fow problem with
holding costs and extensions. Mathematics of Operations Research,
30:916–938, 2005.

[19] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control:
theory and practice–a survey. Automatica, 25(3):335–348, 1989.

[20] J. M. Harrison. Brownian models of queueing networks with heteroge-
neous customer populations. In Stochastic differential systems, stochastic
control theory and applications, pages 147–186. Springer, 1988.

[21] J. M. Harrison. The BIGSTEP approach to flow management in stochas-
tic processing networks. Stochastic Networks: Theory and Applications,
4:147–186, 1996.

[22] J. M. Harrison and L. M. Wein. Scheduling networks of queues; heavy
traffic analysis of a two-station closed network. Operations Research,
38(2):1052–1064, 1990.

[23] G.P. Klimov. Time-sharing service systems I. Theory of Probability and
its Applications, XIX(3), 1974.

[24] B. Klinz and G. J. Woeginger. Minimum-cost dynamic flows: The series-
parallel case. Networks, 43:153–162, 2004.

[25] S. Kumar and P. R Kumar. Performance bounds for queueing networks
and scheduling policies. IEEE Transactions on Automatic Control,
39(8):1600–1611, 1994.

[26] M. Laumanns and E. Lefeber. Robust optimal control of material flows
in demand-driven supply networks. Physica A: Statistical Mechanics
and its Applications, 363(1):24–31, 2006.

[27] C. N. Laws and G. M. Louth. Dynamic scheduling of a four-station
queueing network. Probability in the Engineering and Informational
Sciences, 4(01):131–156, 1990.

[28] E. Lefeber, S. Lammer, and J. E. Rooda. Optimal control of a
determinstic multiclass queueing system by serving several queues
simultaneously. Technical report, SE Technical Report, Systems Engi-
neering Group, The Department of Mechanical Engineering, Eindhoven
University of Technology, 2008.

[29] X. Luo and D. Bertsimas. A new algorithm for state-constrained
separated continuous linear programs. SIAM Journal on Control and
Optimization, 37:177–210, 1998.

[30] C. Maglaras. Dynamic scheduling in multiclass queueing networks:
Stability under discrete-review policies. Queueing Systems, 31(3-4):171–
206, 1999.

[31] C. Maglaras. Discrete-review policies for scheduling stochastic net-
works: Trajectory tracking and fluid-scale asymptotic optimality. Annals
of Applied Probability, pages 897–929, 2000.

[32] S. Meyn. Stability and optimization of queueing networks and their
fluid models. Lectures in applied mathematics-American Mathematical
Society, 33:175–200, 1997.

[33] S. P. Meyn. Sequencing and routing in multiclass queueing networks part
II: Workload relaxations. SIAM Journal on Control and Optimization,
42(1):178–217, 2003.

[34] S. P Meyn. Workload models for stochastic networks: Value functions
and performance evaluation. IEEE Transactions on Automatic Control,
50(8):1106–1122, 2005.

[35] S. P. Meyn. Control techniques for complex networks. Cambridge
University Press, 2008.

[36] I. C. Paschalidis, C. Su, and M. C. Caramanis. Target-pursuing
scheduling and routing policies for multiclass queueing networks. IEEE
Transactions on Automatic Control, 49(10):1709–1722, 2004.

[37] A. B. Philpott and M. Craddock. An adaptive discretization algorithm
for a class of continuous network programs. Networks, 26:1–11, 1995.

[38] A. Piunovskiy. Controlled jump Markov processes with local transitions
and their fluid approximation. WSEAS Transactions on Systems and
Control, 4(8):399–412, 2009.

[39] M. C. Pullan. An algorithm for a class of continuous linear programs.
SIAM Journal on Control and Optimization, 31:1558–1577, 1993.

[40] M. C. Pullan. Forms of optimal solutions for separated continuous linear
programs. SIAM Journal on Control and Optimization, 33:1952–1977,
1995.

[41] M. C. Pullan. A duality theory for separated continuous linear programs.
SIAM Journal on Control and Optimization, 34:931–965, 1996.

[42] M. C. Pullan. A study of general dynamic network programs with arc
time-delays. SIAM Journal on Optimization, 7:889–912, 1997.

[43] M. C. Pullan. Convergence of a general class of algorithms for separated
continuous linear programs. SIAM Journal on Optimization, 10:722–731,
2000.

[44] M. C. Pullan. An extended algorithm for separated continuous linear
programs. Mathematical Programming, 93:415–451, 2002.

[45] A. N. Rybko and A. L. Stolyar. Ergodicity of stochastic processes
describing the operation of open queueing networks. Problems of
Information Transmission, 38:3–26, 1992.

[46] A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures on Stochastic
Programming: Modeling and Theory. SIAM, Philadelphia, 1994.

14 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

[47] A. L. Stolyar. On the stability of multiclass queueing networks: a relaxed
sufficient condition via limiting fluid processes. Markov Processes and
Related Fields, 1(4):491–512, 1995.

[48] L. M. Taylor and R. J. Williams. Existence and uniqueness of
semimartingale reflecting Brownian motions in an orthant. Probability
Theory and Related Fields, 96(3):283–317, 1993.

[49] J. S. H. van Leeuwaarden, E. Lefeber, Y. Nazarathy, and J. E. Rooda.
Model predictive control for the acquisition queue and related queueing
networks. In Proceedings of the 5th International Conference on
Queueing Theory and Network Applications, pages 193–200. ACM,
2010.

[50] L. M. Wein. Optimal control of a two-station Brownian network.
Mathematics of Operations Research, 15:215–242, 1990.

[51] L. M. Wein. Scheduling networks of queues; heavy traffic analysis of
a two station network with controllable inputs. Operations Research,
38:1065–1078, 1990.

[52] G. Weiss. A simplex based algorithm to solve separated continuous
linear programs. Mathematical Programming, 115:151–198, 2008.

[53] R. J Williams. Semimartingale reflecting Brownian motions in the
orthant. IMA Volumes in Mathematics and its Applications, 71:125–
125, 1995.

Dimitris Bertsimas received the M.S. and Ph.D.
degrees in Applied Mathematics and Operations
Research from the Massachusetts Institute of Tech-
nology (MIT), Cambridge, MA, USA, in 1987 and
1988 respectively.

He has been with the MIT faculty since 1988
and he is currently the Boeing Professor of Oper-
ations Research and the co-director of the Opera-
tions Research Center. His research interests include
optimization, statistics and applied probability and
their applications in health care, finance, operations

management and transportation. He has co-authored more than 150 scientific
papers and three graduate level textbooks. He is currently department editor in
Optimization for Management Science and former area editor of Operations
Research in Financial Engineering. He has supervised 53 doctoral students and
he is currently supervising 15 others. He is a member of the National Academy
of Engineering, and he has received numerous research awards including the
Morse prize (2013), the Pierskalla award (2013), the Farkas prize (2008), the
Erlang prize (1996), the SIAM prize in optimization (1996), the Bodossaki
prize (1998) and the Presidential Young Investigator award (1991-1996).

Ebrahim Nasrabadi received the M.S. and Ph.D.
degrees in Industrial Engineering and Mathematics
from Sharif University, Iran, and Technical Univer-
sity of Berlin, Germany, in 2003 and 2009, respec-
tively.

He was a Postdoctoral Associate at the Sloan
School of Management, Massachusetts Institute of
Technology, Cambridge, MA from September 2010
to June 2013, and in the Department of Electrical
and Computer Engineering at Boston University
from July 2012 to June 2013. His primary areas of

research include optimization and decision making under uncertainty and their
applications in supply chain management and inventory planning and control.

Ioannis Ch. Paschalidis (M’96–SM’06–F’14) re-
ceived the M.S. and Ph.D. degrees both in elec-
trical engineering and computer science from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, MA, USA, in 1993 and 1996, respectively.

In September 1996 he joined Boston University
where he has been ever since. He is a Professor and
Distinguished Faculty Fellow at Boston University
with appointments in the Department of Electrical
and Computer Engineering, the Division of Systems
Engineering, and the Department of Biomedical En-

gineering. He is the Director of the Center for Information and Systems En-
gineering (CISE). He has held visiting appointments with MIT and Columbia
University, New York, NY, USA. His current research interests lie in the
fields of systems and control, networking, applied probability, optimization,
operations research, computational biology, and medical informatics.

