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Proof of Proposition 1

(a) The function g(x, z; y) = min{x, z} − min{x, y} is concave in (x, z) on the domain

x ≥ y and z ≥ y. Since concavity is preserved under nonnegative weighted integration,
∫
Ω:x≥y g(x, z; y)dF (x) is concave in z when z ≥ y, and so is

∫
Ω g(x, z; y)dF (x) because

g(x, z; y) = 0 when x ≤ y and z ≥ y. Subtracting β(z−y) maintains the concavity property.

Since concavity is preserved under maximization over a convex set (Boyd and Vandenberghe

2004), and given that D is convex, G(z; y) = maxF∈D
∫
Ω g(x, z; y)dF (x)−β(z−y) is concave

in z when z ≥ y. The case where z ≤ y is analyzed in a similar way.

However, G(z; y) is not necessarily concave on [0,∞). For instance, consider D as the

set of all distributions with support Ω. Then, G(z; y) equals (1− β)(z− y) when z ≥ y, and

−β(z − y) otherwise, and is therefore piecewise linear convex.

(b) Let G−(y) = maxz∈[0,y] G(z; y) and G+(y) = maxz∈[y,∞) G(z; y). For a fixed demand

distribution F ∈ D, −ΠF (y) is a convex function of y. Because convexity is preserved

under maximization (Boyd and Vandenberghe 2004), G−(y) and G+(y) are convex functions

of y, as well as ρ(y) (maximum of two convex functions). The function G−(y) is convex

nondecreasing since it is nonnegative and limy→0 G−(y) = 0; similarly, G+(y) is nonincreasing

since it is nonnegative and limy→∞ G+(y) = 0. Therefore, there exists some y∗ such that

G−(y∗) = G+(y∗), and this quantity y∗ minimizes ρ(y).

Proof of Theorem 1

Consider problem (4) with only the normalization constraint
∫ B
A dF (x) = 1. From Proposi-

tion 1, two cases need to be considered: when y ≤ z and when y ≥ z.

1



When y ≤ z, the distribution that solves (4) is a unit impulse at z and leads to a regret

of (1− β)(z− y). Maximizing the regret over all feasible z ∈ [y, B], we obtain a regret equal

to (1− β)(B − y).

When y ≥ z, the worst-case distribution is also a unit impulse at z and leads to a regret

of −β(z − y). The maximum regret, taken over all feasible z ∈ [A, y], equals −β(A− y).

From Proposition 1, the optimal order quantity y equates the two maximum regrets.

Proof of Theorem 2

When the mean is known, problem (5) can be formulated as the following semi-infinite linear

optimization problem:

minα0,α1 α0 + α1µ,
s.t. α0 + α1x ≥ min{x, z} −min{x, y}, ∀x ≥ 0.

(12)

(a) If z ≥ y, a dual feasible function is any straight line with ordinate α0 and slope α1

that is nonnegative for all x ≥ 0, lies above the line x − y between y and z, and above the

line z − y for all x ≥ z. There are two possible optimal solutions: either the straight line

that goes through the origin and (z, z − y), or the horizontal line at z − y. In the first case,

α0 = 0, α1 = (z − y)/z, and the optimal value of (12) is equal to (z − y)µ/z. In the second

case, α0 = z − y, α1 = 0, and the optimal value of (12) is equal to (z − y). Therefore, the

first case is optimal if and only if µ ≤ z.

(a.1) If µ ≤ z, the regret is equal to (z − y)(µ/z − β), which is concave in z. The regret,

optimized over all possible values of z ≥ µ, is maximized at z∗ =
√

yµ/β, if z∗ ≥ µ, and at

µ if z∗ ≤ µ. Replacing z with its optimal value simplifies the regret to

{
(µ− y)(1− β), if y ≤ βµ,

βy(
√

µ
βy
− 1)2, if y ≥ βµ.

(a.2) If z ≤ µ, the regret is equal to (z − y)(1 − β). The maximum regret, when it is

optimized over z ≤ µ, is attained at z = µ and equal to (µ− y)(1− β).

(b) On the other hand, if y ≥ z, the right hand side of the constraints is nonincreasing.

The optimal solution of (12) is α0 = α1 = 0 and is associated with a regret of −β(z − y).

The maximum regret, optimized over all values of z ≤ y, is equal to βy.

From Proposition 1, the quantity y balances the opportunity cost from ordering too much

with the opportunity cost from ordering too little. If y ≤ βµ, y∗ minimizes the maximum of
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the two following convex functions:

min
y≥0

max{βy, (1− β)(µ− y)}.

In this case, it is optimal to order y∗ = (1−β)µ. The condition y∗ ≤ βµ reduces to β ≥ 1/2.

If βµ ≤ y, y∗ minimizes the following expression:

min
y≥0

max{βy, βy(

√
µ

βy
− 1)2}.

The minimum is attained at y∗ = µ/(4β). The condition βµ ≤ y∗ translates into 1/2 ≥ β.

Proof of Theorem 3

Consider problem (4) with the normalization constraint
∫∞
0 dF (x) = 1, the constraint on the

mean
∫∞
0 xdF (x) = µ, and constraint on the median

∫ m
0 dF (x) = 1/2. By strong duality,

this problem is equivalent to the following semi-infinite linear optimization problem:

minα0,α1,α2 α0 + α1µ + α2/2,
s.t. α0 + α1x + α21{x≤m} ≥ min{x, z} −min{x, y}, ∀x ≥ 0,

(13)

where 1{x≤m} equals 1 whenever x ≤ m and zero otherwise. Because the median is known

to be m, z ≤ m if and only if β ≥ 1/2. As a result, it is optimal to order y ≤ m if and only

if β ≥ 1/2.

Case 1: β ≥ 1/2.

(a) If z ≥ y, a dual feasible solution of (13) is a straight line with ordinate α0, slope α1,

and possibly vertically shifted at m by an amount α2, that is nonnegative for all x ≥ 0, lies

above the line x − y between y and z, and above the line z − y for all z ≤ x. There are

two candidate optimal solutions: either a straight line going from (0, 0) to (z, z − y) and

vertically shifted by (z−y)(1−m/z) at m, or a horizontal line at z−y. In the first solution,

α0 = 0, α1 = (z − y)/z, and α2 = (z − y)(1−m/z), and the objective value of (13) is equal

to (z − y)(µ/z + (1 −m/z)/2). In the second solution, α0 = z − y, α1 = α2 = 0, and the

objective value of (13) is equal to (z− y). Therefore, the first solution is optimal if and only

if z ≥ 2µ−m.

(a.1) If z ≥ 2µ − m, the regret is equal to (z − y)(1/2 − β + (µ − m/2)/z), which is

a concave function of z. The regret, optimized over z ∈ [max{y, 2µ − m},m], attains its
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maximum at z∗ =
√

y(2µ−m)/(2β − 1) if z∗ ∈ [max{y, 2µ −m},m], at m is z∗ > m, and

at max{y, 2µ−m} if z∗ < max{y, 2µ−m}. Replacing z with its optimal value gives rise to

the following regrets when µ ≤ m ≤ µ/β:





(2µ−m− y)(1− β), if y ≤ (2µ−m)(2β − 1),

y(β − 1
2
)(

√
2µ−m

y(2β−1)
− 1)2, if (2µ−m)(2β − 1) ≤ y ≤ m2(2β − 1)/(2µ−m),

(m− y)( µ
m
− β), if y ≥ m2(2β − 1)/(2µ−m),

and when m ≥ µ/β, the regret equals





(2µ−m− y)(1− β), if y ≤ (2µ−m)(2β − 1),

y(β − 1
2
)(

√
2µ−m

y(2β−1)
− 1)2, if (2µ−m)(2β − 1) ≤ y ≤ (2µ−m)/(2β − 1),

0, if y ≥ (2µ−m)/(2β − 1).

(a.2) If z ≤ 2µ−m, the regret equals (1− β)(z − y) and is maximized at z = 2µ−m if

µ ≤ m, and at z = m if µ ≥ m.

(b) If z ≤ y, the dual constraints are piecewise linear decreasing. The optimal dual

solution is a horizontal line at zero, vertically shifted at m by an amount α2 = z − y. The

regret is equal to (1/2− β)(z − y) and maximized when z = 0.

The minimum regret quantity equates the regret from ordering too little (a) with the

regret from ordering too much (b). When µ ≥ m, y∗ solves the following:

min
y≥0

max{(1− β)(m− y), y(β − 1

2
)}

and is equal to y∗ = 2m(1− β).

When µ ≤ m ≤ µ/β, and y ≤ (2µ−m)(2β − 1), y∗ solves the following problem:

min
y≥0

max{(1− β)(2µ−m− y), y(β − 1

2
)},

and is equal to y∗ = 2(1 − β)(2µ −m). The condition y∗ ≤ (2µ −m)(2β − 1) simplifies to

3/4 ≤ β.

When µ ≤ m ≤ µ/β, and (2µ −m)(2β − 1) ≤ y ≤ m2(2β − 1)/(2µ −m), y∗ solves the

following problem:

min
y≥0

max{y(β − 1

2
)(

√
2µ−m

y(2β − 1)
− 1)2, y(β − 1

2
)},

and is equal to y∗ = (2µ−m)/(8β − 4). The conditions (2µ−m)(2β − 1) ≤ y∗ ≤ m2(2β −
1)/(2µ−m) simplify to 3/4 ≥ β ≥ 1/4 + µ/(2m).
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When µ ≤ m ≤ µ/β, and y ≥ m2(2β − 1)/(2µ−m), y∗ solves the following problem:

min
y≥0

max{(m− y)(
µ

m
− β), y(β − 1

2
)},

and is equal to y∗ = 2m(µ − βm)/(2µ − m). The condition y∗ ≥ m2(2β − 1)/(2µ − m)

simplifies to β ≤ 1/4 + µ/(2m).

Similarly, when m ≥ µ/β, y∗ = 2(1− β)(2µ−m) if β ≥ 3/4 and y∗ = (2µ−m)/(8β − 4)

otherwise.

Case 2: β ≤ 1/2.

(a) If z ≥ y, a dual feasible solution is a straight line with ordinate α0, slope α1, and possibly

vertically shifted at m by an amount α2, that is nonnegative for all x ≥ 0, lies above the

line x− y between y and z, and above the line z − y for all z ≤ x. There are two candidate

optimal solutions: either a line going with slope (z− y)/(z−m), passing through (m, 0) and

(z, z − y), and shifted vertically at m by an amount m(z − y)/(z −m); or a discontinuous

horizontal line, starting at zero, and shifted vertically at m by an amount z− y. In the first

solution, α0 = −α2 = −(z− y)m/(z−m) and α1 = (z− y)/(z−m), and the objective value

of (13) is equal to (z − y)(µ − m/2)/(z − m). In the second solution, α0 = z − y = −α2,

α1 = 0, and the objective value of (13) is equal to (z − y)/2. Therefore, the first solution is

optimal if and only z ≥ 2µ.

(a.1) If z ≥ 2µ, the regret is equal to (z − y)((µ − m/2)/(z − m) − β), which is a

concave function of z. The regret, optimized over z ≥ max{2µ, y}, attains its maximum at

z∗ = m +
√

(µ−m/2)(y −m)/β if z∗ ≥ max{y, 2µ} and at max{y, 2µ} if z∗ < max{y, 2µ}.
Replacing z by its optimal value leads to the following values of regret:





(1
2
− β)(2µ− y), if y min{2µ,≤ m + 4β(µ−m/2)},

(y −m)β(
√

µ−m/2
(y−m)β

− 1)2, if min{2µ,m + 4β(µ−m/2)} ≤ y ≤ max{2µ,m + (µ−m/2)/β},
0, if y ≥ max{2µ,m + (µ−m/2)/β}.

(a.2) If z ≤ 2µ, then the regret is equal to (1/2 − β)(z − y) and is maximized when

z = 2µ.

(b) If z ≤ y, the dual constraints are piecewise linear decreasing. The optimal dual

solution is a horizontal line at zero, and is associated with a regret of−β(z−y) and maximized

when z = m.
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If y ≤ min{2µ,m + 4β(µ−m/2)}, y∗ solves the following problem:

min
y≥0

max{(1
2
− β)(2µ− y),−β(m− y)},

and is equal to y∗ = 2µ + 2β(m − 2µ). The condition y∗ ≤ 2µ is always satisfied since, by

Markov’s inequality, 2µ ≥ m. Furthermore, the condition y∗ ≤ m + 4β(µ −m/2) becomes

β ≥ 1/4.

If m + 4β(µ−m/2) ≤ y ≤ m + (µ−m/2)/β, y∗ solves the following problem:

min
y≥0

max{(y −m)β(

√√√√ µ−m/2

(y −m)β
− 1)2,−β(m− y)},

and is equal to y∗ = m + (µ−m/2)/(4β). The condition y∗ ≥ m + 4β(µ−m/2) simplifies

into β ≤ 1/4, and the condition y∗ ≥ 2µ translated into β ≤ 1/8; since only one of the

two conditions must hold, the condition β ≤ 1/4 is sufficient. Furthermore, the condition

y∗ ≤ m + (µ−m/2)/β trivially holds, which allows us to disregard the third case, when the

regret equals zero.

Proof of Theorem 4

Following Popescu (2005), the closed convex set of symmetric distributions D can be gener-

ated by pairs of symmetric Diracs. Using this characterization, the dual problem (5) can be

formulated as follows (Popescu 2005):

minα0,α1 α0 + α1µ,
s.t. 2α0 + 2µα1 ≥

min{µ− x, z}+ min{µ + x, z} −min{µ− x, y} −min{µ + x, y}, ∀0 ≤ x ≤ µ.

The dual problem can easily be solved geometrically. A dual feasible solution is a horizontal

line, lying above the piecewise linear function described by the right-hand side of the con-

straint. By symmetry, the mean is equal to the median. As a result, y, z ≥ µ if and only if

β ≤ 1/2.

Case 1: β ≤ 1/2. When z ≥ y, the ordinate of the line is equal to z − y. The associated

regret, (1/2 − β)(z − y), is maximized at z = 2µ. When z ≤ y, the ordinate of the line is

equal to zero. The associated regret, −β(z − y), is maximized at z = µ. Equating both

regrets, (1/2− β)(2µ− y) = −(µ− y), gives rise to the robust order quantity y = 2µ(1− β).
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Case 2: β ≥ 1/2. When z ≥ y, the ordinate of the line is equal to 2(z−y). The associated

regret, (1− β)(z − y), is maximized at z = µ. When z ≤ y, the ordinate of the line is equal

to z−y. The associated regret, (1/2−β)(z−y), is maximized when z is zero. Equating both

regrets, (1−β)(µ−y) = −(1/2−β)y, gives rise to the robust order quantity y = 2µ(1−β).

Proof of Theorem 5

Following Popescu (2005), the closed convex set of unimodal distributions with mode M ,

D, can be generated with M -rectangular distributions (i.e., uniform distributions over a

segment bounded by M). With this representation, the dual problem (5) can be formulated

as follows (Popescu 2005):

minα0 α0,

s.t. α0(M − x) ≥ ∫ M
x min{ξ, z} −min{ξ, y}dξ, ∀A ≤ x ≤ M,

α0(x−M) ≥ ∫ x
M min{ξ, z} −min{ξ, y}dξ, ∀M ≤ x ≤ B.

(14)

The dual problem can easily be solved geometrically. A dual feasible solution is a piecewise

linear function, passing through (M, 0), with slope −α0 before M and α0 after M , lying

above the piecewise quadratic function described by the right-hand side of the constraint.

Six cases need to be considered, depending on the relative order of z, y, and M .

Case 1: z ≤ y ≤ M . The right-hand side is constant linear for x ≤ z, quadratic between

z and y, then increasing linear until M , and decreasing linear thereafter. The optimal dual

solution is such that the constraint is tight at A. Therefore, α0 = (z − y)(M − z/2 −
y/2)/(M − A), and the regret equals (z − y)(M − z/2 − y/2)/(M − A) − β(z − y). The

maximum regret is attained at z = M − β(M −A) or z = y, whichever is the smallest. It is

equal to zero when y ≤ M −β(M −A), and to (M − y−β(M −A))2/(2(M −A)) otherwise.

Case 2: z ≤ M ≤ y. The right-hand side is constant up to z, then quadratic between z and

y, with a change of concavity at M , and linear after y. An optimal dual solution is such that

the constraint is tight at A. Therefore, α0 = −1/2(M − z)2/(M −A), and the regret equals

−1/2(M − z)2/(M −A)−β(z− y). The maximum regret equals β/2(β(M −A)+2(y−M))

and is attained at z = M − β(M − A).

Case 3: M ≤ z ≤ y. The right-hand side is zero for x ≤ z and negative thereafter.

The optimal dual solution is equal to zero, and the regret equals −β(z − y). The regret is

maximized when z = M ; as a result, Case 3 is dominated by Case 2.
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Case 4: M ≤ y ≤ z. The right-hand side is zero for x ≤ y and increasing after; it is

convex between y and z, and linear beyond z. The optimal solution is such that the function

α0(x−M) crosses the constraint set at B, i.e., α0 = (z − y)(B − z/2− y/2)/(B −M). The

regret equals ((B− z/2−y/2)/(B−M)−β)(z−y) and is maximized at z = B−β(B−M).

At its maximum, the regret equals (B − y − β(B −M))2/(2(B −M)).

Case 5: y ≤ M ≤ z. The right-hand side is constant for x ≤ y, concave decreasing

between y and M , convex increasing between M and z and linear increasing after. The

optimal solution is such that the function α0(x − M) crosses the constraint set at B, i.e.,

α0 = ((z −M)(z/2 + M/2− y) + (z − y)(B − z))/(B −M). The maximum regret, attained

at z = B − β(B −M), is equal to (1− β)((B + M)/2− β(B −M)/2− y).

Case 6: y ≤ z ≤ M . The right-hand side is constant for x ≤ y, concave decreasing

between y and z, linear decreasing until M , and linear increasing thereafter. The optimal

solution is to have the slope of the function equal to the slope of the linear piece of the

constraint. Accordingly, α0 = z − y; the regret equals (1 − β)(z − y) and is maximized at

z = M ; as a result, Case 6 is dominated by Case 5.

The robust order quantity equates the regrets. Taking y ≤ M −β(M −A) is suboptimal,

since the regret when z ≥ y, equal to (1− β)((B + M)/2− β/2(B −M)− y) is larger than

the regret when z ≤ y, equal to zero. When M − β(M − A) ≤ y ≤ M , y minimizes the

maximum regrets:

min
y≥0

max{(M − y − β(M − A))2

2(M − A)
, (1− β)(

B + M

2
− β

B −M

2
− y)},

and is equal to y∗ = A +
√

(M − A)(1− β)(B(1− β)− A(1 + β) + 2βM). The condition

y ≥ M−β(M−A) is always satisfied. The condition y∗ ≤ M simplifies to M(1−2β(1−β)) ≥
β2A + (1− β)2B.

When y ≥ M , the robust order quantity minimizes the maximum regrets:

min
y≥0

max{β

2
(β(M − A) + 2(y −M)),

(B − y − β(B −M))2

2(B −M)
}

and is equal to B −
√

β(B −M)(B(2− β)− βA− 2M(1− β)). The condition y∗ ≥ M

simplifies to M(1− 2β(1− β)) ≤ β2A + (1− β)2B.
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Proof of Theorem 6

The dual problem (5) is similar to (14), with an additional variable associated with the

median:

minα0,α1 α0 + α1/2,

s.t. α0(M − x) + α1(min{M, m} −min{x,m}) ≥ ∫ M
x min{ξ, z} −min{ξ, y}dξ, ∀x ≤ M,

α0(x−M) + α1(min{x,m} −min{M, m}) ≥ ∫ x
M min{ξ, z} −min{ξ, y}dξ, ∀x ≥ M.

The constraint set is the same as that in problem (14). A dual feasible solution is a piecewise

linear function, with slope changing at M and possibly at m, lying above the piecewise

quadratic function described by the right-hand side of the constraint. Four cases must be

considered, depending on the relative order of m and M , and whether β ≥ 1/2 or not.

Case 1: m ≤ M, β ≤ 1/2. (a) When z ≤ y ≤ M , the constraints are tight at zero

in an optimal dual solution, i.e., α0M + α1m = (z − y)(M − z/2 − y/2), and at m, i.e.,

α0(M −m) = (z − y)(M − z/2− y/2). The objective value of this solution is less than the

optimal solution proposed in Case 1 of Theorem 5 if and only if 2m ≥ M . The regret, equal

to (z − y)((M − z/2 − y/2)/(2(M − m)) − β), is maximized at z∗ = M − 2β(M − m) or

z∗ = y, whichever is the smallest. Thus, the maximum regret equals (M − 2β(M − m) −
y)2/(4(M −m)) if y ≥ M − 2β(M −m), zero otherwise.

(b) When z ≤ M ≤ y, the constraints are tight at zero in the optimal dual solution, i.e.,

α0M + α1m = −1/2(M − z)2, and at m, i.e., α0(M −m) = −1/2(M − z)2. The objective

value of this solution is less than the optimal solution proposed in Case 2 of Theorem 5 if

and only if 2m ≥ M . The regret, equal to −1/4(M − z)2/(M −m)−β(z− y), is maximized

at z∗ = M − 2β(M −m). Thus, the maximum regret equals β2(M −m)− β(M − y).

(c) When M ≤ z ≤ y, the optimal dual solution is a horizontal line at zero. The regret,

equal to −β(z− y), is maximized at z∗ = M . Thus, the maximum regret equals −β(M − y).

(d) When M ≤ y ≤ z, the constraints are tight at zero in an optimal dual solution, i.e.,

α0M +α1m = 0, and the last line segment is parallel to the constraint set, i.e., α0 = (z− y).

The regret, equal to (z − y)(1 −M/(2m) − β), is maximized at z∗ = y if β ≥ 1 −M/(2m)

and grows to infinity when z → ∞ otherwise. Thus, the maximum regret equals zero if

β ≥ 1−M/(2m) and tends to infinity otherwise.

(e) When y ≤ M ≤ z, the constraints are tight at zero in an optimal dual solution, i.e.,

α0M + α1m = (M − y)2/2, and the last line segment is parallel to the constraint set, i.e.,

α0 = (z− y). The regret, equal to (z− y)(1−M/(2m)− β) + (M − y)2/(4m), is maximized
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at M if β ≥ 1−M/(2m), and increases with z otherwise. Thus, the maximum regret equals

(M − y)(1 − M/(2m) − β) + (M − y)2/(4m) if β ≥ 1 − M/(2m), and tends to infinity

otherwise.

(f) When y ≤ z ≤ M , the constraints are tight at zero in the optimal dual solution, i.e.,

α0M +α1m = (z− y)(M − z/2− y/2), and the last line segment is parallel to the constraint

set, i.e., α0 = (z−y). The regret, equal to (z−y)((2m−z/2−y/2)/(2m)−β), is maximized

at z∗ = 2m(1 − β) or at M , whichever is the smallest. Thus, the maximum regret equals

(2m(1− β)− y)2/(4m) when β ≥ 1−M/(2m), and (M − y)((2m−M/2− y/2)/(2m)− β)

otherwise.

When β ≤ 1−M/(2m), the regret associated with ordering less than optimal is infinite,

and the minimax regret order quantity is not defined. If on the other hand, β ≥ 1−M/(2m),

having y > M is suboptimal because the regret of ordering too much (b) is increasing with

y while the regret of ordering too little (d) remains constant. When y ≤ M , the minimax

regret order quantity solves the following problem:

min
y≥0

max{(2m(1− β)− y)2 1

4m
, (M − 2β(M −m)− y)2 1

4(M −m)
},

and is equal to y∗ = m +
√

m(M −m)(1− 2β); the maximum regret equals (1− 2β)2(M −
2
√

m(M −m))/4. One can check that the conditions y∗ ≥ M − 2β(M − m) (a), and

y∗ ≤ 2m(1− β) (f) are satisfied under the assumption that M ≤ 2m. The order quantity y∗

is less than M because
√

(M −m)/m ≥ (M −m)/m and β ≥ 1−M/(2m).

Case 2: m ≤ M, β ≥ 1/2. (a) When z ≤ y, the constraints are tight at zero in the optimal

dual solution, i.e., α0M + α1m = (z − y)(M − z/2 − y/2), and at m, i.e., α0 = (z − y).

The objective value of this solution is less than the optimal solution proposed in Case 1 of

Theorem 5 if and only if 2m ≥ M . The regret, equal to (z− y)((2m− z/2− y/2)/(2m)− β)

is maximized at z∗ = 2m(1 − β) or z∗ = y, whichever is the smallest. Thus, the maximum

regret equals (2m(1− β)− y)2/(4m) if y ≥ 2m(1− β), zero otherwise.

(b) When y ≤ z, the optimal dual solution is α0 = z − y, and α1 = 0. The regret, equal

to (z−y)(1−β), is maximized at z∗ = m. Thus, the maximum regret equals (m−y)(1−β).

The minimax regret order quantity solves the following problem:

min
y≥0

max{(2m(1− β)− y)2 1

4m
, (m− y)(1− β)},

10



and is equal to y∗ = 2m
√

β(1− β); the maximum regret equals m(1− β)(1− 2
√

β(1− β)).

The condition y∗ ≥ 2m(1− β) (a) is satisfied because β ≥ 1/2.

Case 3: m ≥ M,β ≤ 1/2. (a) When z ≤ y, the optimal dual solution is a horizontal line

at zero. The regret, equal to −β(z−y), is maximized at z∗ = m. Thus, the maximum regret

equals −β(m− y).

(b) When y ≤ z, the constraints are tight at zero in an optimal dual solution, i.e.,

α0M +α1M = 0, and the last line segment is parallel to the constraint set, i.e., α0 = (z−y).

The regret, equal to (z− y)(1/2− β), is increasing with z. Thus, the maximum regret tends

to infinity as z →∞. Therefore, the minimax regret is not well defined.

Case 4: m ≥ M,β ≥ 1/2. (a) When z ≤ y ≤ M , the constraints are tight at zero in an

optimal dual solution, i.e., α0M + α1M = (z − y)(M − z/2− y/2), and the last segment is

parallel to the constraint set, i.e., α0 = z − y. The regret, equal to (z − y)((2M − z/2 −
y/2)/(2M)−β) is maximized at z∗ = 2M(1−β) or z∗ = y, whichever is the smallest. Thus,

the maximum regret equals (2M(1− β)− y)2/(4M) if y ≥ 2M(1− β), zero otherwise.

(b) When z ≤ M ≤ y, the constraints are tight at zero in an optimal dual solution, i.e.,

α0M +α1M = −1/2(M − z)2, and the last line segment is parallel to the constraint set, i.e.,

α0 = (z − y). The regret, equal to (z − y)/2− (M − z)2/(4M)− β(z − y), is maximized at

z∗ = 2M(1− β). Thus, the maximum regret equals (2β − 1)(2y − 3M + 2βM)/4.

(c) When M ≤ z ≤ y, the constraints are tight at zero in the optimal dual solution, i.e.,

α0M +α1M = 0, and the last line segment is parallel to the constraint set, i.e., α0 = (z−y).

The regret, equal to (z − y)(1/2− β), is maximized at z∗ = M . Thus, the maximum regret

equals (M − y)(1/2− β), and is dominated by (b).

(d) When M ≤ y ≤ z, the constraints are tight at m in an optimal dual solution,

i.e., (α0 + α1)(m − M) = (z − y)(m − z/2 − y/2), and the last line segment is parallel

to the constraint set, i.e., α0 = (z − y). The regret, equal to (z − y)((2m − M − z/2 −
y/2)/(2(m −M)) − β), is maximized at z∗ = 2m −M − 2β(m −M) or at y, whichever is

the largest. Thus, the maximum regret equals (2m−M − y − 2β(m−M))2/(4(m−M)) if

y ≥ 2m−M − 2β(m−M), zero otherwise.

(e) When y ≤ M ≤ z, the constraints are tight at m in an optimal dual solution, i.e.,

(α0 + α1)(m−M) = (z− y)(m− z) + (z−M)(z/2 + M/2− y), and the last line segment is

parallel to the constraint set, i.e., α0 = (z− y). The regret, equal to (z− y)(1/2−β)+ ((z−

11



y)(m−z)+(z−M)(z/2+M/2−y))/(2(m−M)), is maximized at z∗ = m+(1−2β)(m−M).

Thus, the maximum regret equals (1− β)(m− β(m−M)− y).

(f) When y ≤ z ≤ M , the optimal dual solution is α0 = z − y, and α1 = 0. The

regret, equal to (z − y)(1− β), is maximized at z∗ = M . Thus, the maximum regret equals

(M − y)(1− β), and it is dominated by (e).

When y ≤ M , the maximum regrets are given by (a) and (e). Thus, the minimax regret

order quantity solves the following problem:

min
y≥0

max{(2M(1− β)− y)2 1

4M
, (1− β)(m− β(m−M)− y)},

and is equal to y∗ = 2
√

(1− β)M(2βM − βm + m−M); the maximum regret equals (1 −
β)(m − β(m −M) − y∗). The condition y∗ ≥ 2M(1 − β) (a) is satisfied because β ≥ 1/2.

The order quantity y∗ is less than M if m ≤ M(8β2 − 12β + 5)/(4(β − 1)2).

When y ≥ M , the maximum regrets are given by (b) and (d). Thus, the minimax regret

order quantity solves the following problem:

min
y≥0

max{(2β − 1)(2y − 3M + 2βM)
1

4
, (2m−M − y − 2β(m−M))2 1

4(m−M)
},

and is equal to y∗ = m−
√

(m−M)(2β − 1)(4βM − 2βm− 4M + 3m); the maximum regret

equals (2β−1)(2y∗−3M +2βM)/4. The condition y∗ ≥ 2m−M−2β(m−M) (d) is satisfied

because β ≥ 1/2. The order quantity y∗ is greater than M if m ≥ M(8β2− 12β + 5)/(4(β−
1)2).

Proof of Theorem 7

Following Popescu (2005), the set of unimodal and symmetric distributions with mean µ can

be generated using a mixture of µ-centered rectangular distributions (i.e., uniform distribu-

tions centered around µ). Using this representation, the dual problem (5) can be formulated

as follows:

minα0,α1 α0 + α1µ,
s.t. 2t(α0 + µα1) ≥

∫ µ+t
µ−t min{ξ, z} −min{ξ, y}dξ, ∀0 ≤ t ≤ µ.

A dual feasible solution is any linear function, passing through the origin, and lying above

the piecewise quadratic function defined by the right-hand side. Because the mean equals

the median (by symmetry), z ≥ µ whenever β ≤ 1/2.

12



Case 1: β ≥ 1/2. When z ≥ y, the right-hand side of the dual constraint is increasing,

linearly with slope 2(z− y) for t ≤ µ− z, then concavely between µ− z and µ− y, and then

linearly with slope z− y. The dual optimal solution is a straight line with slope equal to the

first piece of the constraint, i.e., α0 + α1µ = z − y. The regret, (1− β)(z − y), is maximized

at z = µ.

If on the other hand z ≤ y, the right-hand side of the dual constraint is decreasing, first

linearly with slope 2(z − y) until t = µ − y, then convexly between µ − y and µ − z, and

finally linearly with slope z− y. The optimal dual solution is a straight line intersecting the

constraint at the origin and at t = µ. Accordingly, α0 +α1µ = (z− y)(2µ− z/2− y/2)/(2µ),

and the regret equals (z− y)((2µ− z/2− y/2)/(2µ)− β). The maximum regret, attained at

z = 2µ(1− β), is then equal to (y − 2µ(1− β))2/(4µ).

The robust order quantity minimizes the maximum of the following regrets:

min
y≥0

max{(y − 2µ(1− β))2 1

4µ
, (1− β)(µ− y)}

and is then equal to y = 2µ
√

β(1− β).

Case 2: β ≤ 1/2. When z ≥ y, the right-hand side of the dual constraint is zero for x ≤ y

and increasing thereafter; it is convex between y and z, and linearly increasing beyond z.

The optimal dual solution is a straight line, intersecting the curve defined by the right-hand

side at zero and at t = µ. Therefore, α0 +α1µ = (z−y)(2µ−z/2−y/2)/(2µ), and the regret

equals (z− y)((2µ− z/2− y/2)/(2µ)− β). The maximum regret, attained at z = 2µ(1− β),

is then equal to (y − 2µ(1− β))2/(4µ).

On the other hand, when z ≤ y, the right-hand side is zero for x ≤ z and decreasing

thereafter. The optimal dual solution is a horizontal line. Therefore, α0 + α1µ = 0, and the

regret equals −β(z−y). The maximum regret, attained at z = µ, is then equal to −β(µ−y).

The robust order quantity minimizes the following maximum regrets:

min
y≥0

max{(y − 2µ(1− β))2 1

4µ
,−β(µ− y)}

and is then equal to y = 2µ(1−
√

β(1− β)).

Proof of Theorem 8

When only the mean µ and the variance σ2 are known, the dual problem (5) is the following:

min α0 + α1µ + α2(σ
2 + µ2),
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s.t. α0 + α1x + α2x
2 ≥ min{x, z} −min{x, y}, ∀x ≥ 0. (15)

Case 1: z ≥ y. The right-hand side of the constraints of the dual problem is piecewise

linear increasing. A dual feasible function is any quadratic function h(x) that, on the positive

orthant, is nonnegative, lies above the line x− y between y and z, and above the line z − y

after z. If the quadratic term of the function is zero, the problem reduces to finding a straight

line, as in Theorem 2. Otherwise, in an optimal solution, either the parabola is tangent to

x−y at some point between y and z or it passes through the kink point (z, y−z). Combining

these possibilities gives rise to three different cases that we analyze next.

Case 1.1: h(x) is a straight line. When z ≤ µ, the optimal solution is a horizontal line.

The associated dual objective value is equal to z − y. On the other hand, when z ≥ µ, the

optimal solution is a straight line passing through the origin. The optimal dual objective

equals in this case (z − y)µ/z. (See Theorem 2.)

Case 1.2: h(x) is tangent to x− y. If the quadratic function is tangent to x− y, it can

be expressed as h(x) = a(x − b)2 + x − y for some a ≥ 0. The minimum of the function,

denoted by x0, equals b− 1/(2a).

If b ≥ 1/(2a), x0 ≥ 0. Since h(x0) = 0, a = 1/(4b− 4y). After plugging this value for a

into the dual objective function, we minimize the function over all b ∈ [max{y, 1/(2a)}, z].

The minimum value equals 1/2(µ − y) + (1/2)
√

σ2 + (µ− y)2 and is attained at b = y +√
σ2 + (µ− y)2. Trivially, b ≥ y. On the other hand, b ≥ 1/(2a) if and only if y ≥

(µ2 + σ2)/(2µ), and b ≤ z if and only if y +
√

σ2 + (µ− y)2 ≤ z.

If b ≤ 1/(2a), x0 ≤ 0. Therefore, h(x) must pass through the origin. Thus, a = y/b2.

After plugging this value for a into the dual objective function, we minimize the function

over all b ∈ [y, min{1/(2a), z}]. The minimum value equals µ−yµ2/(µ2 +σ2) and is attained

at b = (σ2+µ2)/µ. The condition that b ≤ 1/(2a) simplifies to y ≤ (µ2+σ2)/(2µ); therefore,

the condition b ≥ y is automatically satisfied. Moreover, with this value, requiring that b ≤ z

is equivalent to requiring that (µ2 + σ2)/µ ≤ z.

Case 1.3: h(x) passes through (z, z− y). Since h(x) must lie above the piecewise linear

function defined by the constraint, the derivative of h(x) at the kink point must be less than

1, i.e., 2α2z + α1 ≤ 1. The minimum of the function, denoted by x0, equals −α1/(2α2).
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If −α1/(2α2) ≤ 0, the quadratic function passes through the origin, i.e. h(0) = 0.

Accordingly, the dual objective function simplifies to α2(σ
2+µ2−µz)+µ(z−y)/z. Minimizing

the objective with respect to α2 gives rise to three possible cases. When z ≤ (σ2 + µ2)/µ,

the minimum is attained at α2 = 0 (straight line) and equals µ(z − y)/z (see Case 1.1). If

z ≥ (σ2 + µ2)/µ and z ≤ 2y, the minimum equals (σ2 + µ2)(z − y)/z2, and x0 = 0. It is

easy to see that this solution is always greater than or equal to that found in Case 1.2. If

z ≥ (σ2 +µ2)/µ and z ≥ 2y, the minimum equals (σ2 +µ2)y/z2 +µ(z−2y)/z with h′(z) = 1,

which is also greater than the solution found in Case 1.2.

On the other hand, if −α1/(2α2) ≥ 0, the quadratic function is minimized at some

x0 ≥ 0. Thus, h(x) is assumed to pass through (z, z − y) with a derivative less than 1,

and to have a minimum value of zero, attained on the interval [0, y]. Under these condi-

tions, the dual feasible function can be expressed as a the following function of α2 only:

α2(σ
2 + µ2− 2µz + z2) + 2

√
α2

√
z − y(µ− z) + z− y. Minimizing the dual objective over all

nonnegative values of α2, such that the above conditions are met, gives rise to the following

cases. If z ≤ (σ2 + µ2)/µ, the minimum dual objective value equals (σ2 + µ2)(z − y)/z2,

which is greater than (z − y)µ/z (Case 1.1) and can be disregarded from consideration. If

z ≥ y +
√

σ2 + (y − µ)2, the dual objective value equals µ− y + (σ2 + (µ− z)2)/(4(z − y)),

with h′(z) = 1, which cannot be smaller than the solution of Case 1.2 since the solution is

constrained to pass through (z, z− y). Therefore, this solution can be ignored in the sequel.

Finally, if z ≥ (σ2 +µ2)/µ and if z ≤ y +
√

σ2 + (y − µ)2, the minimum dual objective value

equals σ2(z−y)/(σ2 +(µ−z)2), attained when
√

α2 = (z−µ)
√

z − y/(σ2 +(µ−z)2). Notice

that α2 is well defined only if z ≥ µ.

Summarizing, the optimal value of (15) is equal to the minimum among z− y (Case 1.1),

(z−y)µ/z (Case 1.1), (z−y)σ2/(σ2+(z−µ)2) if z ≤ y+
√

σ2 + (y − µ)2 and z ≤ (σ2+µ2)/µ

(Case 1.3), µ − yµ2/(σ2 + µ2) if y ≤ (σ2 + µ2)/(2µ) and z ≥ (σ2 + µ2)/µ (Case 1.2), and

(µ− y)/2 +
√

σ2 + (µ− y)2/2 if y ≥ (σ2 + µ2)/(2µ) and z ≥ y +
√

σ2 + (µ− y)2 (Case 1.2).

The regret is obtained by subtracting β(z − y) from these functions.

The maximum regret will never be attained by the last two expressions (derived in Case

1.2). Indeed, in these cases, the expected difference in sales is independent of z, and the

regret is therefore decreasing with z. For instance, if the expected difference in sales equals

(µ − y)/2 +
√

σ2 + (µ− y)2/2, the regret is maximized when z is the smallest, i.e., when

z = y +
√

σ2 + (µ− y)2. But when z ≤ y +
√

σ2 + (µ− y)2, the expression for the difference
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in sales is given by (z− y)σ2/(σ2 +(z−µ)2). Similar, the maximum regret is never achieved

by a sales difference equal to z − y (Case 1.1, horizontal line). Indeed, in this case, the

regret is increasing with z, and is therefore maximized when z = µ. But when z ≥ µ, the

expression for the difference in sales is given by (z − y)µ/z.

Therefore, the regret is equal to the minimum between (µ/z − β)(z − y) when µ ≤ z ≤
(σ2 +µ2)/µ, and (σ2/(σ2 +(µ−z)2)−β)(z−y), when (σ2 +µ2)/µ ≤ z ≤ y+

√
σ2 + (y − µ)2.

Both expressions are concave functions of z in the intervals of definition.

Case 2: z ≤ y. The right hand sides of the constraints of the dual problem is piecewise

linear decreasing. A dual feasible function is any quadratic function h(x) that, on the positive

orthant, is nonnegative, lies above the line x− z between z and y, and above the line z − y

after y. If the quadratic term of the function is zero, the problem reduces to finding a straight

line, as in Theorem 2. Otherwise, in an optimal solution, either the parabola is tangent to

x − z at some point between z and y or it passes through the kink point (z, 0). In the last

two cases, its minimum value is z − y on the half line x ≥ y. Combining these possibilities

gives rise to three different cases that we analyze next.

Case 2.1: h(x) is a straight line. Since the constraint right-hand side are decreasing, a

horizontal line at zero is a candidate solution, and the optimal dual objective equals zero.

Case 2.2: h(x) is tangent to x − z. In this case, the function can be expressed as

h(x) = a(x − b)2 + z − x, for some a ≥ 0. The minimum of the function, denoted by x0,

is then equal to b + 1/(2a). Since h(x0) = z − y, b = y − 1/(4a). The dual objective

function can then be expressed as a function of a only, namely a(σ2 + µ2) − 2ayµ + z −
µ/2 + a(1/(4a) − y)2. When minimized over all nonnegative a, the function attains its

minimum at a = 1/(4
√

σ2 + (µ− y)2) and is equal to
√

σ2 + (µ− y)2/2 + z − µ/2 − y/2.

The point of tangency between the quadratic function and the constraint is equal to b =

y −
√

σ2 + (µ− y)2, and is less than y. It is greater than z if z ≤ y −
√

σ2 + (µ− y)2.

Case 2.3: h(x) passes through (z, 0). Since h(x) must lie above the piecewise linear

function defined by the constraint, the derivative of h(x) at the kink point must be greater

than -1, i.e., 2α2z+α1 ≥ −1. The minimum of the function, denoted by x0, equals−α1/(2α2).

Thus, h(x) is assumed to pass through (z, 0) with a derivative greater than -1, and to have
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a minimum value of z − y, attained on the interval [y,∞). From these conditions, the

dual feasible function can be expressed as the following function of α2 only: α2(σ
2 + µ2 −

2µz + z2) + 2
√

α2

√
z − y(µ− z). Minimizing the dual objective over all nonnegative values

of α2, such that the above conditions are met, gives rise to the following cases. If z ≥ µ,

the derivative of the objective function with respect to α2 is always positive. The optimal

solution is to take α2 as small as possible, i.e., α2 = 0. In this case, the dual optimal solution

is a horizontal line at zero, similarly to Case 2.1. If z ≤ µ and z ≥ y −
√

σ2 + (y − µ)2,

the minimum objective is attained when
√

α2 = (µ− z)
√

y − z/(σ2 + (µ− z)2), and equals

(z − y)(µ − z)2/(σ2 + (µ − z)2). The other cases lead to an objective value that is greater

than the solutions obtained in Case 2.2, and can be discarded from future consideration.

Summarizing, the optimal value of the dual problem (15) is equal to the minimum

among 0 if z ≥ µ, (z − y)(µ − z)2/(σ2 + (z − µ)2) if µ ≥ z ≥ y −
√

σ2 + (y − µ)2, and√
σ2 + (µ− y)2/2 + z − µ/2 − y/2 if z ≤ y −

√
σ2 + (y − µ)2. The regret is obtained by

subtracting β(z − y) from these functions. The maximum regret will not be attained when

the expected sale difference are equal to zero (Case 2.1). Indeed, in this case, the regret is

decreasing with z and is therefore maximized when z = µ. But when z ≤ µ, the sale differ-

ence is given by (z− y)(µ− z)2/(σ2 +(z−µ)2). Similar, the maximum regret is not attained

by the last expression (Case 2.2). Indeed, in this case, the regret is increasing with z, and

is therefore maximized when z = y −
√

σ2 + (y − µ)2. But when z ≥ y −
√

σ2 + (y − µ)2,

the difference in sales is given by (z− y)(µ− z)2/(σ2 + (z− µ)2). Thus the maximum regret

equals (z − y)((z − µ)2/(σ2 + (z − µ)2)− β) for min{µ, y} ≥ z ≥ y −
√

σ2 + (µ− y)2. This

function is concave on its domain of definition.

Equating both regrets gives rise to the theorem statement.
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