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Appendix A: M-Matrices

A square matrix whose diagonal elements are positive and off-diagonal elements are non-positive
is called a Z-matrix. One definition of an M-matrix is that it is a Z-matrix with the additional
property that all leading principal minors are positive. It suffices to note that column (or row)
diagonally dominant Z-matrices are M-matrices. A symmetric Z-matrix is an M-matrix if and only
if it is positive definite.

M-matrices enjoy a number of structural properties. We refer the reader to Horn and Johnson
(1991) for a detailed treatment. The following two properties in particular are used extensively in
our proofs. Let X be an M-matrix and Y be a Z-matrix such that X <Y. Then:

1. X! exists and X! > 0;

2. Y is an M-matrix and Y- ! < X1,

Appendix B: Proofs of Statements

Proof of Theorem 1:
PART 1 (Proof of the inequality):

Define the following functions of a real variable ~:

Pi(7) = I+z+y | " 1-(n—Dz+~y
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a(y) = pi(7) —eil,
T(7) = [pi(v) — el @)
Bertrand profit for firm i is given by 7;(7%), where 4* = 1, and Cournot profit for firm i is given by

i (7¢), where v°=1— m Substituting p;(y) and g;(7y) into 7;(7y) yields:

oy~ (ed? T z 2
WZ(V) - (1—|—$+’Y)2 |: Z+1—(n_1)x+7:| '

It is sufficient to consider the square root of 7;(7):

=) = Jied [Xz‘—i-l_( x 1 1}’

1+z+7~ n—z+y n n
ed [(hin—1)7 NGl
= — + s
n 1+z+7 I1—(n—1z+~y
e'd

Am—1)yv, Vo
1+v T+v

ny/(1+ )

where v :=+/(1+z). Therefore, setting v, :=~,/(1+ ) and v. :=~./(1+ ), it suffices to establish

sufficient conditions for:

VSRRSO SO {f_f] (B.1)

TH+v, T+,

Some algebraic manipulation establishes the following:

. 1

n—1+7

v = —,
n

vy Ve = 02 1= M—_l)T
1+(n—-1)T
Note that 6 > 7. Re-arranging inequality (B.1),
1-6 0—T1

(Ain—1) (tu)0to) = rrm)rto)

Since (1+v,)/(T+wvp) >2/(1 4 7), a sufficient condition for the above inequality to hold is:

A0 < (2 (),
0—1 1+7 T4+,
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~ 1-602 0+71 2 1 (2 -1,
An—1 < “(1-=—2).
(Aum )02—729+1—<1+r>7< [ >

The last inequality can be re-arranged to yield:

(X;n__f) (1) = () (“ﬁ)

PART 2 (Proof of the threshold level n < 8):

It suffices to consider a firm with \; = 1. The firm’s Cournot profit is at least as high as its

Bertrand profit if the following inequality holds:

0+ 1 2 (1—71)
o+1 = <1+T> (1_ (1+T)+<1;T>>'

Holding 7 fixed, note that the right-hand side of this inequality is non-increasing in n. Also,

note that 6 is increasing in n and, therefore, the left-hand side of the inequality is increasing in

n. Therefore, it suffices to show that the inequality holds for any value of 7 € (0,1] and n="7.

o [T
V1467

Substituting n =7,

and the inequality reduces to:

0+T< 2 137 +1
O+1 - \1+7 674+8 )’

(VT2 + 67 +7V1+67)(1+7)(67+8) <2(137 +1)(V72 + 67 + 1+ 67),

VT2+67[(14+7)(6748)—2(137+1)] <V1+67[2(137+1) —7(14+7)(67 +8)],
6vVT2+67(1—7)2 <V1+67(2+ 187 — 147% — 67°).

The above inequality clearly holds for 7=1. For 0 <7 < 1,
6V T2+ 67(1—7) < V1+67(672 + 207 +2).
Squaring both sides and simplifying, the inequality finally reduces to:

0 < 547° 43607 + 6607° + 3257% — 287 + 1. (B.2)
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It suffices to show that 0 < 32572 — 287 + 1 because the remaining polynomial, 5475 + 3607* +
66073, has positive coefficients and is therefore non-negative for 7 € [0, 1]. Note, however, that the
discriminant of 32572 — 287 + 1 is negative. Therefore, the inequality (B.2) is satisfied for 7 € [0, 1].
PART 3 (Proof of the threshold level r < 0.739):
It suffices to consider a firm with Xz = 1. The firm’s Cournot profit is at least as high as its

Bertrand profit if the following inequality holds:

0+ 2 (1—7)
o+1 = (HT) (1_ (1+T)+<1;T>>'

Note that the right-hand side of this inequality is non-increasing in n. Taking the limits as n — oo,

1< () (050

Note that (04 7)/(0+ 1) < (1+7)/2. Re-arranging, we get:

T—2Y7+1<0.

The roots of the left-hand side of the above inequality are (—1 —+/5)%/8, (=14 +/5)3/8, and 1.
Therefore, the firm’s Cournot profit is at least as high as Bertrand profit if 7 > (—1 + /5)3/8.
Recall that 7:= % which can be re-arranged to get r:= % For a fixed value of 7, r
is non-decreasing in n. Given the result of PART 2, we can replace n =8 and 7= (—1++/5)%/8 in
the expression for r to get r < 0.739 as a sufficient condition for a firm’s Cournot profit to be at
least as high as its Bertrand profit.

Proof of Theorem 2:

PART 1 (Proof of the inequality):

Define the following functions of a real variable ~:

- ~

B 1~|—313+7 d+ 1—(2(—83)x+7

p(7) e| +c,

q(y) = v[p(y) —cl,
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Bertrand total profit is given by 7(7%), where v* =1, and Cournot total profit is given by 7(v¢),

T2

Gty Substituting p(y) and q(v) into 7(y) yields:

where v =1 —

y . [&’5+ 2x(1+ 2 +7) —na’ (6/3)2]_

=Tz e (1—(n—1)z+n)?

Letting o = d'd and 8 = (e/d)?,

v v [ mtaty) e BB
() = (1—}—7—}—3:)2[ R TPy n+n]’

- g {<7?_1> (1+;Z+7)2 * (1—(”—71)9”7>2l ’

B Y
= n(1+x)f(1+x)’

where

Jw) = (Tlga_l> (e e

AT+0?  (rro)e

The last equality follows from the fact that = —1=(c.v.)? = (n—1)s”.

We need to derive a sufficient condition for 7(y%) < 7(7¢). This is equivalent to showing that

f(u) < f(ve) where v, = 7% and v, = $5.. That is, we need to establish when the following

inequality holds:

Ve N Ve
(1+v.)2  (T+w0.)?

Y % < (n—1)s?

(n— 1)52(1 + vp)? + (T4+v)% —

Rearranging yields:

Ub vc 2 [ UC Ub
— < (n—-1)s — ,
(T+w)? (T4+wv.)? — ( ) (14 v,.)? (1+vb)2]
p(T+ve)? — v (T + vp)?

e [v(1+vy)? — v (1 +v,)?

e e ) L+ 0. 2(1+ o) ]
(Ve — vp) (Vpve — T2) g [(ve —vp) (1 —vyv,)
oo =Y _(1+vc)2(1+ub)2]‘

Note that v, < v, because, from (3), 7. < 7,. Therefore, the above inequality reduces to:

(n—1)s*(T+vp)* (7 +v.)*(1 —vv,) < (14+v)%(1 +v.)*(vpve — T°).
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Dividing both sides by (v.)?,

(n— 1) (r 0, ( A+ 12— 1) < (L4 02+ 1) (o~ )

c

[ vc

Some algebraic manipulation establishes the following:

Ve

1
1+ Lz’
n—14+71

)

= ~[(n+ 1)+ (= 1)1,

1—72
T oonr
= Liten-1),
nTtT

_(n-1)(1-7)

n

Substituting into inequality (B.3), we get:

T+
1+Ub

sﬁ(

Since 0 <wv, and 0 <7 <1, therefore:

b) [(n+1)+(n—1)71] <1+ 2n—1)T.

T+ v <T+1

1+Ub_ 2

The above relaxation when substituted into inequality (B.4) yields:

sVT(1+7)[(n+1)+(n—1)7] <2[1+ (2n—1)7].

PART 2 (Proof of the threshold level

n < 28):

(B.3)

(B.4)

It suffices to consider the case where s = 1. Total profit under Cournot competition is at least as

high as total profit under Bertrand competition if the following inequality holds:

VTA+7)[(n+1)+(n—-1)71] <2[1+ (2n—1)7].

It is clear that this inequality holds for 7 = 1. Therefore, we restrict attention to 0 < 7 < 1. The

inequality can be expressed as:

AR
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where h(7):= % — 2. Tt is easy to establish that h(7) >0 if and only if:

14+7—27Y4 > 0.
The above fourth order polynomial can be expressed as:
14+7—277% = (7'1/4— 1)(7’3/4+7'1/2+7'1/4— 1);

Since T < 1, it is necessary and sufficient to examine the sign of polynomial (7%/4 4 71/2 4 71/4 —1).
This polynomial is strictly increasing in 7. Therefore, 7%/ +71/2 4 71/4 — 1 =0 has a unique root.
It can be verified that h(7) is positive for 7 € (0,0.087] and negative for 7 € (0.088,1). Therefore,
in the latter range of 7 values, 7 € (0.088,1), Cournot total profit is at least as large as Bertrand
total profit, regardless of n. In the former range of 7 values, 7 € (0,0.087], we need to establish an
upper bound on h(7) over the interval (0,0.087]. h is concave over that interval as can be verified
from its second derivative. It can also be verified that h’'(0.022) > 0 and A/(0.023) < 0. This implies

that the maximizer 7,,,, of function h(7) lies in the interval (0.022,0.023). Therefore,

h(T) S h(Tmaw)7
< 1(0.022) + [Tras — 0.022] B'(0.022),
< h(0.022) 4 0.001 h/(0.022),

< 1/27.

PART 3 (Proof of the threshold level r < 0.90):
The proof of PART 2 established that Cournot total profit is at least as high as Bertrand total

profit for 7 € (0.088,1) regardless of n. Recall that 7:= (=DU=1) which can be re-arranged to get

n—(1—r)

_ (n-D(-7)

e R Note that r is decreasing in 7 and non-decreasing in n. We have established in

PART 2 that Cournot total profit is at least as high as Bertrand total profit for n < 28. Therefore,
substituting n = 28 and 7 = 0.088, Cournot total profit is at least as high as Bertrand total profit
for

(28 —1)(1 —0.088)

<
"= T8 (1-0.088)

=0.909.
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Proof of Theorem 3:
Using the notation introduced in section 3.2.1, recall that QP := (I'*)Y/?(B + I'*)~! and Q¢ :=
(T)Y/2(B +I'°)~L. Define G :=T¢(T?)~! and let g; denote the ith diagonal element of G. Let
K := G~Y2(I1+ G)/2. First, we show that KQ° > Q. It suffices to show that (Q°)"'K = (B +
*)(T*) 12K > (B +TI°)(T¢) /2 = (Q°)~! because Q° and Q¢ are nonnegative by the property
of M-matrices. This inequality can be verified by checking the (positive) diagonal and the (non-
negative) off-diagonal elements separately and by noting that 0 < G < I. Let [Q°]; and [Q°];
denote, respectively, the ith rows of Q’ and Q¢. As argued in section 3.2.1, 70 = ([Qﬂﬁ)? and

¢ = ([Q°);d)?. Therefore,

K2

&l

T _ (Q.d)? _ (K'[Q.d)? _ <2@>2 _ g
b dez d 1+g (14 )

The above lower bound is increasing in g;. Note from (3), that g; > 1 —r7. This concludes the proof.
Proof of Theorem 4:

Let m(p) = (d—Bp)’(p — c¢) denote the total profit for a given price vector p. Assumptions A3 and

A4 coupled with the symmetry of B imply that B is positive definite. Therefore, w is a concave

function of p and
©(p°) —7(P") > [Va(p°)] (P° — P")-
Since p° < p°, therefore it suffices to show that V7 (p©) > 0.
Vr(p°) = d - 2Bp",
=d-2B(B+TI%)"'d,

=d-2(B+T°-TI°)(B+TI°)'d,

=2(I+B(T) ) 'd—d.

I+B(I¢)~! is an M-matrix. Therefore, its inverse is non-negative. Therefore, the condition 2(I+
B(I'*)~1)~'d >d is implied by the inequality 2d > (I+ B(I'*)~')d. Therefore, it suffices to show

that d > B(I'*)~'d. Note that the ith diagonal element of I'° is equal to det(B)/det(B;;) where B;;
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is the submatrix obtained by deleting the ith row and the ¢th column of B. Therefore, we need to

show that:

az’ det(B) 2 |b“| det(B“)(Nil — Z ‘bij| det(Bjj)aj,
J#i

for all 7. In the above inequality we have used the fact that the determinant of a diagonally dominant

M-matrix is positive. Using the Laplace expansion:

det(B) = Z(—l)i“bij det(By;),
j
> [bii] det(Bi) = Y [bigl| det(By;)]
it

Therefore, it suffices to show that
" [bis] [det(Bj;)d; — | det(By,)|d;| >0,
J#i

for all 7. It follows from a result by Ostrowski (1952) that |det(B;;)| <r;det(B;;). Therefore,

det(Bjj)aj — ]det(Blj)\al Z det(Bjj) [a] — mal] 2 det(Bjj) [amm — T1d1:| Z 0.





