ONLY AVAILABLE IN ELECTRONIC FORM

Electronic Companion-"A Comparison of Bertrand and Cournot Profits in Oligopolies with Differentiated Products" by Amr Farahat and Georgia Perakis, Operations Research, Doi 10.1287/opre.1100.0900.

Comparison of Bertrand and Cournot Profits Electronic Companion

Amr Farahat
Johnson Graduate School of Management, Cornell University, Ithaca, NY 14853, USA, farahat@cornell.edu
Georgia Perakis
Sloan School of Management, Massachusettes Institute of Technology, Cambridge, MA 02139, USA, georgiap@mit.edu

Appendix A: M-Matrices

A square matrix whose diagonal elements are positive and off-diagonal elements are non-positive is called a Z-matrix. One definition of an M-matrix is that it is a Z-matrix with the additional property that all leading principal minors are positive. It suffices to note that column (or row) diagonally dominant Z-matrices are M-matrices. A symmetric Z-matrix is an M-matrix if and only if it is positive definite.

M-matrices enjoy a number of structural properties. We refer the reader to Horn and Johnson (1991) for a detailed treatment. The following two properties in particular are used extensively in our proofs. Let \mathbf{X} be an M-matrix and \mathbf{Y} be a Z-matrix such that $\mathbf{X} \leq \mathbf{Y}$. Then:

1. \mathbf{X}^{-1} exists and $\mathbf{X}^{-1} \geq \mathbf{0}$;
2. \mathbf{Y} is an M-matrix and $\mathbf{Y}^{-1} \leq \mathbf{X}^{-1}$.

Appendix B: Proofs of Statements

Proof of Theorem 1:

PART 1 (Proof of the inequality):
Define the following functions of a real variable γ :

$$
\overline{p_{i}}(\gamma)=\frac{1}{1+x+\gamma}\left[\widetilde{d}_{i}+\frac{x\left(\mathbf{e}^{\prime} \tilde{\mathbf{d}}\right)}{1-(n-1) x+\gamma}\right]+c_{i}
$$

$$
\begin{aligned}
& \overline{q_{i}}(\gamma)=\gamma\left[\overline{p_{i}}(\gamma)-c_{i}\right], \\
& \bar{\pi}(\gamma)=\left[\overline{p_{i}}(\gamma)-c_{i}\right] \overline{q_{i}}(\gamma) .
\end{aligned}
$$

Bertrand profit for firm i is given by $\overline{\pi_{i}}\left(\gamma^{b}\right)$, where $\gamma^{b}=1$, and Cournot profit for firm i is given by $\overline{\pi_{i}}\left(\gamma^{c}\right)$, where $\gamma^{c}=1-\frac{r^{2}}{(n-1)(1-r)+r}$. Substituting $\overline{p_{i}}(\gamma)$ and $\overline{q_{i}}(\gamma)$ into $\overline{\pi_{i}}(\gamma)$ yields:

$$
\overline{\pi_{i}}(\gamma)=\frac{\gamma\left(\mathbf{e}^{\prime} \widetilde{\mathbf{d}}\right)^{2}}{(1+x+\gamma)^{2}}\left[\widetilde{\lambda}_{i}+\frac{x}{1-(n-1) x+\gamma}\right]^{2}
$$

It is sufficient to consider the square root of $\overline{\pi_{i}}(\gamma)$:

$$
\begin{aligned}
\sqrt{\overline{\pi_{i}}(\gamma)} & =\frac{\sqrt{\gamma} \mathbf{e}^{\prime} \tilde{\mathbf{d}}}{1+x+\gamma}\left[\widetilde{\lambda}_{i}+\frac{x}{1-(n-1) x+\gamma}-\frac{1}{n}+\frac{1}{n}\right], \\
& =\frac{\mathbf{e}^{\prime} \widetilde{\mathbf{d}}}{n}\left[\frac{\left(\widetilde{\lambda}_{i} n-1\right) \sqrt{\gamma}}{1+x+\gamma}+\frac{\sqrt{\gamma}}{1-(n-1) x+\gamma}\right], \\
& =\frac{\mathbf{e}^{\prime} \widetilde{\mathbf{d}}}{n \sqrt{(} 1+x)}\left[\frac{\left(\widetilde{\lambda}_{i} n-1\right) \sqrt{v}}{1+v}+\frac{\sqrt{v}}{\tau+v}\right],
\end{aligned}
$$

where $v:=\gamma /(1+x)$. Therefore, setting $v_{b}:=\gamma_{b} /(1+x)$ and $v_{c}:=\gamma_{c} /(1+x)$, it suffices to establish sufficient conditions for:

$$
\begin{equation*}
\frac{\sqrt{v_{b}}}{\tau+v_{b}}-\frac{\sqrt{v_{c}}}{\tau+v_{c}} \leq\left(\widetilde{\lambda}_{i} n-1\right)\left[\frac{\sqrt{v_{c}}}{1+v_{c}}-\frac{\sqrt{v_{b}}}{1+v_{b}}\right] \tag{B.1}
\end{equation*}
$$

Some algebraic manipulation establishes the following:

$$
\begin{aligned}
v_{c} & \equiv \frac{1}{1+\frac{1-\tau}{n \tau}}, \\
v_{b} & \equiv \frac{n-1+\tau}{n}, \\
v_{b} v_{c} & \equiv \theta^{2}:=\frac{\tau^{2}+(n-1) \tau}{1+(n-1) \tau} .
\end{aligned}
$$

Note that $\theta>\tau$. Re-arranging inequality (B.1),

$$
\left(\widetilde{\lambda}_{i} n-1\right) \frac{1-\theta}{\left(1+v_{b}\right)\left(1+v_{c}\right)} \leq \frac{\theta-\tau}{\left(\tau+v_{b}\right)\left(\tau+v_{c}\right)} .
$$

Since $\left(1+v_{b}\right) /\left(\tau+v_{b}\right) \geq 2 /(1+\tau)$, a sufficient condition for the above inequality to hold is:

$$
\left(\widetilde{\lambda}_{i} n-1\right) \frac{1-\theta}{\theta-\tau} \leq\left(\frac{2}{1+\tau}\right)\left(\frac{1+v_{c}}{\tau+v_{c}}\right)
$$

$$
\left(\widetilde{\lambda}_{i} n-1\right) \frac{1-\theta^{2}}{\theta^{2}-\tau^{2}} \frac{\theta+\tau}{\theta+1} \leq\left(\frac{2}{1+\tau}\right) \frac{1}{\tau}\left(1-\frac{\left(\frac{1}{\tau}-1\right) v_{c}}{1+\frac{v_{c}}{\tau}}\right)
$$

The last inequality can be re-arranged to yield:

$$
\left(\frac{\widetilde{\lambda}_{i} n-1}{n-1}\right)\left(\frac{\theta+\tau}{\theta+1}\right) \leq\left(\frac{2}{1+\tau}\right)\left(1-\frac{(1-\tau)}{(1+\tau)+\frac{(1-\tau)}{n}}\right)
$$

PART 2 (Proof of the threshold level $n<8$):
It suffices to consider a firm with $\widetilde{\lambda}_{i}=1$. The firm's Cournot profit is at least as high as its Bertrand profit if the following inequality holds:

$$
\frac{\theta+\tau}{\theta+1} \leq\left(\frac{2}{1+\tau}\right)\left(1-\frac{(1-\tau)}{(1+\tau)+\frac{(1-\tau)}{n}}\right)
$$

Holding τ fixed, note that the right-hand side of this inequality is non-increasing in n. Also, note that θ is increasing in n and, therefore, the left-hand side of the inequality is increasing in n. Therefore, it suffices to show that the inequality holds for any value of $\tau \in(0,1]$ and $n=7$. Substituting $n=7$,

$$
\theta=\sqrt{\frac{\tau^{2}+6 \tau}{1+6 \tau}}
$$

and the inequality reduces to:

$$
\begin{aligned}
& \frac{\theta+\tau}{\theta+1} \leq\left(\frac{2}{1+\tau}\right)\left(\frac{13 \tau+1}{6 \tau+8}\right) \\
& \left(\sqrt{\tau^{2}+6 \tau}+\tau \sqrt{1+6 \tau}\right)(1+\tau)(6 \tau+8) \leq 2(13 \tau+1)\left(\sqrt{\tau^{2}+6 \tau}+\sqrt{1+6 \tau}\right) \\
& \sqrt{\tau^{2}+6 \tau}[(1+\tau)(6 \tau+8)-2(13 \tau+1)] \leq \sqrt{1+6 \tau}[2(13 \tau+1)-\tau(1+\tau)(6 \tau+8)] \\
& 6 \sqrt{\tau^{2}+6 \tau}(1-\tau)^{2} \leq \sqrt{1+6 \tau}\left(2+18 \tau-14 \tau^{2}-6 \tau^{3}\right)
\end{aligned}
$$

The above inequality clearly holds for $\tau=1$. For $0<\tau<1$,

$$
6 \sqrt{\tau^{2}+6 \tau}(1-\tau) \leq \sqrt{1+6 \tau}\left(6 \tau^{2}+20 \tau+2\right)
$$

Squaring both sides and simplifying, the inequality finally reduces to:

$$
\begin{equation*}
0 \leq 54 \tau^{5}+360 \tau^{4}+660 \tau^{3}+325 \tau^{2}-28 \tau+1 \tag{B.2}
\end{equation*}
$$

It suffices to show that $0 \leq 325 \tau^{2}-28 \tau+1$ because the remaining polynomial, $54 \tau^{5}+360 \tau^{4}+$ $660 \tau^{3}$, has positive coefficients and is therefore non-negative for $\tau \in[0,1]$. Note, however, that the discriminant of $325 \tau^{2}-28 \tau+1$ is negative. Therefore, the inequality (B.2) is satisfied for $\tau \in[0,1]$.

PART 3 (Proof of the threshold level $r<0.739$):
It suffices to consider a firm with $\widetilde{\lambda}_{i}=1$. The firm's Cournot profit is at least as high as its Bertrand profit if the following inequality holds:

$$
\frac{\theta+\tau}{\theta+1} \leq\left(\frac{2}{1+\tau}\right)\left(1-\frac{(1-\tau)}{(1+\tau)+\frac{(1-\tau)}{n}}\right)
$$

Note that the right-hand side of this inequality is non-increasing in n. Taking the limits as $n \rightarrow \infty$,

$$
\frac{\theta+\tau}{\theta+1} \leq\left(\frac{2}{1+\tau}\right)\left(1-\frac{(1-\tau)}{(1+\tau)}\right)
$$

Note that $(\theta+\tau) /(\theta+1) \leq(1+\tau) / 2$. Re-arranging, we get:

$$
\tau-2 \sqrt[3]{\tau}+1 \leq 0
$$

The roots of the left-hand side of the above inequality are $(-1-\sqrt{5})^{3} / 8,(-1+\sqrt{5})^{3} / 8$, and 1 . Therefore, the firm's Cournot profit is at least as high as Bertrand profit if $\tau \geq(-1+\sqrt{5})^{3} / 8$. Recall that $\tau:=\frac{(n-1)(1-r)}{n-(1-r)}$ which can be re-arranged to get $r:=\frac{(n-1)(1-\tau)}{n-(1-\tau)}$. For a fixed value of τ, r is non-decreasing in n. Given the result of PART 2, we can replace $n=8$ and $\tau=(-1+\sqrt{5})^{3} / 8$ in the expression for r to get $r \leq 0.739$ as a sufficient condition for a firm's Cournot profit to be at least as high as its Bertrand profit.

Proof of Theorem 2:

PART 1 (Proof of the inequality):
Define the following functions of a real variable γ :

$$
\begin{aligned}
& \overline{\mathbf{p}}(\gamma)=\frac{1}{1+x+\gamma}\left[\tilde{\mathbf{d}}+\frac{x\left(\mathbf{e}^{\prime} \tilde{\mathbf{d}}\right)}{1-(n-1) x+\gamma} \mathbf{e}\right]+\mathbf{c} \\
& \overline{\mathbf{q}}(\gamma)=\gamma[\overline{\mathbf{p}}(\gamma)-\mathbf{c}] \\
& \bar{\pi}(\gamma)=[\overline{\mathbf{p}}(\gamma)-\mathbf{c}]^{\prime} \overline{\mathbf{q}}(\gamma)
\end{aligned}
$$

Bertrand total profit is given by $\bar{\pi}\left(\gamma^{b}\right)$, where $\gamma^{b}=1$, and Cournot total profit is given by $\bar{\pi}\left(\gamma^{c}\right)$, where $\gamma^{c}=1-\frac{r^{2}}{(n-1)(1-r)+r}$. Substituting $\overline{\mathbf{p}}(\gamma)$ and $\overline{\mathbf{q}}(\gamma)$ into $\bar{\pi}(\gamma)$ yields:

$$
\bar{\pi}(\gamma)=\frac{\gamma}{(1+x+\gamma)^{2}}\left[\widetilde{\mathbf{d}^{\prime}} \widetilde{\mathbf{d}}+\frac{2 x(1+x+\gamma)-n x^{2}}{(1-(n-1) x+\gamma)^{2}}\left(\mathbf{e}^{\prime} \widetilde{\mathbf{d}}\right)^{2}\right] .
$$

Letting $\alpha=\widetilde{\mathbf{d}^{\prime}} \widetilde{\mathbf{d}}$ and $\beta=\left(\mathbf{e}^{\prime} \widetilde{\mathbf{d}}\right)^{2}$,

$$
\begin{aligned}
\bar{\pi}(\gamma) & =\frac{\gamma}{(1+\gamma+x)^{2}}\left[\alpha+\frac{2 x(1+x+\gamma)-n x^{2}}{[1-(n-1) x+\gamma]^{2}} \beta-\frac{\beta}{n}+\frac{\beta}{n}\right], \\
& =\frac{\beta}{n}\left[\left(\frac{n \alpha}{\beta}-1\right) \frac{\gamma}{(1+x+\gamma)^{2}}+\frac{\gamma}{(1-(n-1) x+\gamma)^{2}}\right], \\
& =\frac{\beta}{n(1+x)} f\left(\frac{\gamma}{1+x}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
f(v) & =\left(\frac{n \alpha}{\beta}-1\right) \frac{v}{(1+v)^{2}}+\frac{v}{(\tau+v)^{2}} \\
& =(n-1) s^{2} \frac{v}{(1+v)^{2}}+\frac{v}{(\tau+v)^{2}}
\end{aligned}
$$

The last equality follows from the fact that $\frac{n \alpha}{\beta}-1=(c . v .)^{2}=(n-1) s^{2}$.
We need to derive a sufficient condition for $\bar{\pi}\left(\gamma^{b}\right) \leq \bar{\pi}\left(\gamma^{c}\right)$. This is equivalent to showing that $f\left(v_{b}\right) \leq f\left(v_{c}\right)$ where $v_{b}=\frac{\gamma_{b}}{1+x}$ and $v_{c}=\frac{\gamma_{c}}{1+x}$. That is, we need to establish when the following inequality holds:

$$
(n-1) s^{2} \frac{v_{b}}{\left(1+v_{b}\right)^{2}}+\frac{v_{b}}{\left(\tau+v_{b}\right)^{2}} \leq(n-1) s^{2} \frac{v_{c}}{\left(1+v_{c}\right)^{2}}+\frac{v_{c}}{\left(\tau+v_{c}\right)^{2}} .
$$

Rearranging yields:

$$
\begin{aligned}
\frac{v_{b}}{\left(\tau+v_{b}\right)^{2}}-\frac{v_{c}}{\left(\tau+v_{c}\right)^{2}} & \leq(n-1) s^{2}\left[\frac{v_{c}}{\left(1+v_{c}\right)^{2}}-\frac{v_{b}}{\left(1+v_{b}\right)^{2}}\right], \\
\frac{v_{b}\left(\tau+v_{c}\right)^{2}-v_{c}\left(\tau+v_{b}\right)^{2}}{\left(\tau+v_{b}\right)^{2}\left(\tau+v_{c}\right)^{2}} & \leq(n-1) s^{2}\left[\frac{v_{c}\left(1+v_{b}\right)^{2}-v_{b}\left(1+v_{c}\right)^{2}}{\left(1+v_{c}\right)^{2}\left(1+v_{b}\right)^{2}}\right], \\
\frac{\left(v_{c}-v_{b}\right)\left(v_{b} v_{c}-\tau^{2}\right)}{\left(\tau+v_{b}\right)^{2}\left(\tau+v_{c}\right)^{2}} & \leq(n-1) s^{2}\left[\frac{\left(v_{c}-v_{b}\right)\left(1-v_{b} v_{c}\right)}{\left(1+v_{c}\right)^{2}\left(1+v_{b}\right)^{2}}\right] .
\end{aligned}
$$

Note that $v_{c}<v_{b}$ because, from (3), $\gamma_{c}<\gamma_{b}$. Therefore, the above inequality reduces to:

$$
(n-1) s^{2}\left(\tau+v_{b}\right)^{2}\left(\tau+v_{c}\right)^{2}\left(1-v_{b} v_{c}\right) \leq\left(1+v_{b}\right)^{2}\left(1+v_{c}\right)^{2}\left(v_{b} v_{c}-\tau^{2}\right) .
$$

Dividing both sides by $\left(v_{c}\right)^{3}$,

$$
\begin{equation*}
(n-1) s^{2}\left(\tau+v_{b}\right)^{2}\left(\frac{\tau}{v_{c}}+1\right)^{2}\left(\frac{1}{v_{c}}-v_{b}\right) \leq\left(1+v_{b}\right)^{2}\left(\frac{1}{v_{c}}+1\right)^{2}\left(v_{b}-\frac{\tau^{2}}{v_{c}}\right) . \tag{B.3}
\end{equation*}
$$

Some algebraic manipulation establishes the following:

$$
\begin{aligned}
v_{c} & \equiv \frac{1}{1+\frac{1-\tau}{n \tau}} \\
v_{b} & \equiv \frac{n-1+\tau}{n} \\
\frac{\tau}{v_{c}}+1 & \equiv \frac{1}{n}[(n+1)+(n-1) \tau] \\
\frac{1}{v_{c}}-v_{b} & \equiv \frac{1-\tau^{2}}{n \tau} \\
\frac{1}{v_{c}}+1 & \equiv \frac{1}{n \tau}[1+(2 n-1) \tau] \\
v_{b}-\frac{\tau^{2}}{v_{c}} & \equiv \frac{(n-1)\left(1-\tau^{2}\right)}{n}
\end{aligned}
$$

Substituting into inequality (B.3), we get:

$$
\begin{equation*}
s \sqrt{\tau}\left(\frac{\tau+v_{b}}{1+v_{b}}\right)[(n+1)+(n-1) \tau] \leq 1+(2 n-1) \tau . \tag{B.4}
\end{equation*}
$$

Since $0 \leq v_{b}$ and $0 \leq \tau \leq 1$, therefore:

$$
\frac{\tau+v_{b}}{1+v_{b}} \leq \frac{\tau+1}{2}
$$

The above relaxation when substituted into inequality (B.4) yields:

$$
s \sqrt{\tau}(1+\tau)[(n+1)+(n-1) \tau] \leq 2[1+(2 n-1) \tau] .
$$

PART 2 (Proof of the threshold level $n<28$):
It suffices to consider the case where $s=1$. Total profit under Cournot competition is at least as high as total profit under Bertrand competition if the following inequality holds:

$$
\sqrt{\tau}(1+\tau)[(n+1)+(n-1) \tau] \leq 2[1+(2 n-1) \tau] .
$$

It is clear that this inequality holds for $\tau=1$. Therefore, we restrict attention to $0<\tau<1$. The inequality can be expressed as:

$$
\frac{1}{n} \geq h(\tau)
$$

where $h(\tau):=\frac{2}{2-\sqrt{\tau}(1+\tau)}-\frac{1+\tau}{1-\tau}$. It is easy to establish that $h(\tau) \geq 0$ if and only if:

$$
1+\tau-2 \tau^{1 / 4} \geq 0
$$

The above fourth order polynomial can be expressed as:

$$
1+\tau-2 \tau^{1 / 4}=\left(\tau^{1 / 4}-1\right)\left(\tau^{3 / 4}+\tau^{1 / 2}+\tau^{1 / 4}-1\right)
$$

Since $\tau<1$, it is necessary and sufficient to examine the sign of polynomial $\left(\tau^{3 / 4}+\tau^{1 / 2}+\tau^{1 / 4}-1\right)$. This polynomial is strictly increasing in τ. Therefore, $\tau^{3 / 4}+\tau^{1 / 2}+\tau^{1 / 4}-1=0$ has a unique root. It can be verified that $h(\tau)$ is positive for $\tau \in(0,0.087]$ and negative for $\tau \in(0.088,1)$. Therefore, in the latter range of τ values, $\tau \in(0.088,1)$, Cournot total profit is at least as large as Bertrand total profit, regardless of n. In the former range of τ values, $\tau \in(0,0.087]$, we need to establish an upper bound on $h(\tau)$ over the interval $(0,0.087]$. h is concave over that interval as can be verified from its second derivative. It can also be verified that $h^{\prime}(0.022)>0$ and $h^{\prime}(0.023)<0$. This implies that the maximizer $\tau_{\text {max }}$ of function $h(\tau)$ lies in the interval $(0.022,0.023)$. Therefore,

$$
\begin{aligned}
h(\tau) & \leq h\left(\tau_{\max }\right) \\
& \leq h(0.022)+\left[\tau_{\max }-0.022\right] h^{\prime}(0.022) \\
& \leq h(0.022)+0.001 h^{\prime}(0.022) \\
& <1 / 27
\end{aligned}
$$

PART 3 (Proof of the threshold level $r<0.90$):
The proof of PART 2 established that Cournot total profit is at least as high as Bertrand total profit for $\tau \in(0.088,1)$ regardless of n. Recall that $\tau:=\frac{(n-1)(1-r)}{n-(1-r)}$ which can be re-arranged to get $r:=\frac{(n-1)(1-\tau)}{n-(1-\tau)}$. Note that r is decreasing in τ and non-decreasing in n. We have established in PART 2 that Cournot total profit is at least as high as Bertrand total profit for $n<28$. Therefore, substituting $n=28$ and $\tau=0.088$, Cournot total profit is at least as high as Bertrand total profit for

$$
r \leq \frac{(28-1)(1-0.088)}{28-(1-0.088)}=0.909
$$

Proof of Theorem 3:

Using the notation introduced in section 3.2.1, recall that $\mathbf{Q}^{b}:=\left(\boldsymbol{\Gamma}^{b}\right)^{1 / 2}\left(\mathbf{B}+\boldsymbol{\Gamma}^{b}\right)^{-1}$ and $\mathbf{Q}^{c}:=$ $\left(\boldsymbol{\Gamma}^{c}\right)^{1 / 2}\left(\mathbf{B}+\boldsymbol{\Gamma}^{c}\right)^{-1}$. Define $\mathbf{G}:=\boldsymbol{\Gamma}^{c}\left(\boldsymbol{\Gamma}^{b}\right)^{-1}$ and let g_{i} denote the i th diagonal element of \mathbf{G}. Let $\mathbf{K}:=\mathbf{G}^{-1 / 2}(\mathbf{I}+\mathbf{G}) / 2$. First, we show that $\mathbf{K Q}^{c} \geq \mathbf{Q}^{b}$. It suffices to show that $\left(\mathbf{Q}^{b}\right)^{-1} \mathbf{K}=(\mathbf{B}+$ $\left.\boldsymbol{\Gamma}^{b}\right)\left(\boldsymbol{\Gamma}^{b}\right)^{-1 / 2} \mathbf{K} \geq\left(\mathbf{B}+\boldsymbol{\Gamma}^{c}\right)\left(\boldsymbol{\Gamma}^{c}\right)^{-1 / 2}=\left(\mathbf{Q}^{c}\right)^{-1}$ because \mathbf{Q}^{b} and \mathbf{Q}^{c} are nonnegative by the property of M-matrices. This inequality can be verified by checking the (positive) diagonal and the (nonnegative) off-diagonal elements separately and by noting that $\mathbf{0} \leq \mathbf{G} \leq \mathbf{I}$. Let $\left[\mathbf{Q}^{b}\right]_{i}$ and $\left[\mathbf{Q}^{c}\right]_{i}$ denote, respectively, the i th rows of \mathbf{Q}_{i}^{b} and \mathbf{Q}_{i}^{c}. As argued in section 3.2.1, $\bar{\pi}_{i}^{b}=\left(\left[\mathbf{Q}^{b}\right]_{i} \widetilde{\mathbf{d}}\right)^{2}$ and $\bar{\pi}_{i}^{c}=\left(\left[\mathbf{Q}^{c}\right]_{i} \widetilde{\mathbf{d}}\right)^{2}$. Therefore,

$$
\frac{\bar{\pi}_{i}^{c}}{\bar{\pi}_{i}^{b}}=\frac{\left(\left[\mathbf{Q}^{c}\right]_{i} \widetilde{\mathbf{d}}\right)^{2}}{\left(\left[\mathbf{Q}^{b}\right]_{i} \widetilde{\mathbf{d}}\right)^{2}} \geq \frac{\left(\mathbf{K}^{-1}\left[\mathbf{Q}^{b}\right]_{i} \widetilde{\mathbf{d}}\right)^{2}}{\left(\left[\mathbf{Q}^{b}\right]_{i} \widetilde{\mathbf{d}}\right)^{2}}=\left(\frac{2 \sqrt{g_{i}}}{1+g_{i}}\right)^{2}=\frac{4 g_{i}}{\left(1+g_{i}\right)^{2}}
$$

The above lower bound is increasing in g_{i}. Note from (3), that $g_{i} \geq 1-r_{i}^{2}$. This concludes the proof.

Proof of Theorem 4:

Let $\pi(\mathbf{p})=(\mathbf{d}-\mathbf{B p})^{\prime}(\mathbf{p}-\mathbf{c})$ denote the total profit for a given price vector \mathbf{p}. Assumptions A3 and A4 coupled with the symmetry of \mathbf{B} imply that \mathbf{B} is positive definite. Therefore, π is a concave function of \mathbf{p} and

$$
\pi\left(\overline{\mathbf{p}}^{c}\right)-\pi\left(\overline{\mathbf{p}}^{b}\right) \geq\left[\nabla \pi\left(\overline{\mathbf{p}}^{c}\right)\right]^{\prime}\left(\overline{\mathbf{p}}^{c}-\overline{\mathbf{p}}^{b}\right)
$$

Since $\overline{\mathbf{p}}^{b} \leq \overline{\mathbf{p}}^{c}$, therefore it suffices to show that $\nabla \pi\left(\overline{\mathbf{p}}^{c}\right) \geq \mathbf{0}$.

$$
\begin{aligned}
\nabla \pi\left(\overline{\mathbf{p}}^{c}\right) & =\widetilde{\mathbf{d}}-2 \mathbf{B} \overline{\mathbf{p}}^{c} \\
& =\widetilde{\mathbf{d}}-2 \mathbf{B}\left(\mathbf{B}+\boldsymbol{\Gamma}^{c}\right)^{-1} \widetilde{\mathbf{d}} \\
& =\widetilde{\mathbf{d}}-2\left(\mathbf{B}+\boldsymbol{\Gamma}^{\mathbf{c}}-\boldsymbol{\Gamma}^{\mathbf{c}}\right)\left(\mathbf{B}+\boldsymbol{\Gamma}^{c}\right)^{-1} \widetilde{\mathbf{d}} \\
& =2\left(\mathbf{I}+\mathbf{B}\left(\boldsymbol{\Gamma}^{c}\right)^{-1}\right)^{-1} \widetilde{\mathbf{d}}-\widetilde{\mathbf{d}}
\end{aligned}
$$

$\mathbf{I}+\mathbf{B}\left(\boldsymbol{\Gamma}^{c}\right)^{-1}$ is an M-matrix. Therefore, its inverse is non-negative. Therefore, the condition $2(\mathbf{I}+$ $\left.\mathbf{B}\left(\boldsymbol{\Gamma}^{c}\right)^{-1}\right)^{-1} \widetilde{\mathbf{d}} \geq \widetilde{\mathbf{d}}$ is implied by the inequality $2 \widetilde{\mathbf{d}} \geq\left(\mathbf{I}+\mathbf{B}\left(\boldsymbol{\Gamma}^{c}\right)^{-1}\right) \widetilde{\mathbf{d}}$. Therefore, it suffices to show that $\widetilde{\mathbf{d}} \geq \mathbf{B}\left(\boldsymbol{\Gamma}^{c}\right)^{-1} \widetilde{\mathbf{d}}$. Note that the i th diagonal element of $\boldsymbol{\Gamma}^{c}$ is equal to $\operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{B}_{i i}\right)$ where $\mathbf{B}_{i i}$
is the submatrix obtained by deleting the i th row and the i th column of \mathbf{B}. Therefore, we need to show that:

$$
\tilde{\mathbf{d}}_{i} \operatorname{det}(\mathbf{B}) \geq\left|b_{i i}\right| \operatorname{det}\left(\mathbf{B}_{i i}\right) \tilde{\mathbf{d}}_{i}-\sum_{j \neq i}\left|b_{i j}\right| \operatorname{det}\left(\mathbf{B}_{j j}\right) \tilde{\mathbf{d}}_{j}
$$

for all i. In the above inequality we have used the fact that the determinant of a diagonally dominant M-matrix is positive. Using the Laplace expansion:

$$
\begin{aligned}
\operatorname{det}(\mathbf{B}) & =\sum_{j}(-1)^{i+j} b_{i j} \operatorname{det}\left(\mathbf{B}_{i j}\right), \\
& \geq\left|b_{i i}\right| \operatorname{det}\left(\mathbf{B}_{i i}\right)-\sum_{j \neq i}\left|b_{i j}\right|\left|\operatorname{det}\left(\mathbf{B}_{i j}\right)\right|
\end{aligned}
$$

Therefore, it suffices to show that

$$
\sum_{j \neq i}\left|b_{i j}\right|\left[\operatorname{det}\left(\mathbf{B}_{j j}\right) \tilde{\mathbf{d}}_{j}-\left|\operatorname{det}\left(\mathbf{B}_{i j}\right)\right| \tilde{\mathbf{d}}_{i}\right] \geq 0
$$

for all i. It follows from a result by Ostrowski (1952) that $\left|\operatorname{det}\left(\mathbf{B}_{i j}\right)\right| \leq r_{i} \operatorname{det}\left(\mathbf{B}_{j j}\right)$. Therefore,

$$
\operatorname{det}\left(\mathbf{B}_{j j}\right) \widetilde{\mathbf{d}}_{j}-\left|\operatorname{det}\left(\mathbf{B}_{i j}\right)\right| \widetilde{\mathbf{d}}_{i} \geq \operatorname{det}\left(\mathbf{B}_{j j}\right)\left[\widetilde{\mathbf{d}}_{j}-r_{i} \widetilde{\mathbf{d}}_{i}\right] \geq \operatorname{det}\left(\mathbf{B}_{j j}\right)\left[\widetilde{\mathbf{d}}_{\min }-r_{i} \widetilde{\mathbf{d}}_{i}\right] \geq 0
$$

