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Appendix A: Alternate Censoring Assumption

In the main body of the paper, we have assumed the observability of an indicator of the form δt =

I[Dt ≤ Yt] in each period t. However, in certain applications, it may not be possible to distinguish

the events [Dt = Yt] and [Dt > Yt]. In this appendix, we address the case where the indicator

available in each period t is given by δ̃t = I[Dt <Yt]. We will describe how to modify the algorithm

such that it converges to ψ∗+ 1, instead of the newsvendor quantile ψ∗.

The main idea behind this modification is to maintain the equivalence of information between

the original censoring indicator and the new indicator. We achieve this through an invariant that,

for each sample path, the inventory level under the new censoring indicator is exactly one more

than the inventory level under the original indicator.

We first describe the modification to the algorithm. Under the new censoring assumption, let

(Ỹ1, Ỹ2, . . .) denote the sequence of inventory levels and let (δ̃1, δ̃2, . . .) denote the sequence of cen-

soring outcomes, where δ̃t = I[Dt < Ỹt]. Since demand is discrete with an integer support, it follows

that δ̃t = I[Dt ≤ Ỹt − 1]. Then, since the censored data is now given in the form of the “less-

than” operator, it is possible to obtain the Kaplan-Meier estimator as before. In the initial period,

set Ỹ0 = Y0 + 1. In each period t ≥ 0, we let the inventory level of the next period, Ỹt+1, be the

newsvendor quantile of of the Kaplan-Meier empirical distribution in the current period plus one.

We now discuss how the modified algorithm is related to the algorithm under the original assump-

tion. For our discussion here, fix a sample path of demand realizations (D1,D2, . . .). Let (Y1, Y2, . . .)

be the sequence of inventory levels under the original censoring assumption, and let (δ1, δ2, . . .) be

the corresponding censoring outcome, where δt = I[Dt ≤ Yt] for each period t. Then, an inductive

argument shows that both Ỹt = Yt + 1 and δ̃t = I[Dt ≤ Ỹt− 1] = I[Dt ≤ Yt] = δt hold for each period

t. These results imply that, for each period, the empirical distributions constructed by the Kaplan-

Meier algorithm under the original censoring assumption and the new assumption are indeed the

same.

Now, since the results of this paper show that Yt converges to ψ∗, where ψ∗ is the newsvendor

quantile of the true demand distribution, it follows that Ỹt = Yt + 1 converges to ψ∗+ 1.
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Appendix B: Approximate Confidence Intervals

In this section, we develop approximate confidence intervals. The main result, stated in Lemma 1,

establishes upper and lower bounds for an approximate “confidence interval” around F (y) for any

y≤ψ∗.

Define σ2
y = V ar (I [D> y]). For any y ≥ 0, let Ny(T ) denote the number of times that the KM

estimator is greater than or equal to y; that is, Ny(T ) = #{t= 1, . . . , T | Y KM
t ≥ y}.

Lemma 1. Let y ≤ ψ∗. Let W be an independent random variable having a normal distribution

with mean zero and variance σ2
y. For each a∈<,

P

{
W ≤ a− σy

F (y)

}
≤ lim

T→∞
P

{√
Ny(T )

(
F T (y)− Ny(T )

T
F (y)

)
≤ a

}
≤ P {W ≤ a} .

The proof of Lemma 1 can be found in Appendix B.1. We note that the above result provides

an estimate of the confidence interval associated with any value y less than ψ∗. To see this, note

that for any a≤ b,

lim
T→∞

P

{√
Ny(T )

(
F T (y)− Ny(T )

T
F (y)

)
∈ (a, b)

}
= lim

T→∞
P

{√
Ny(T )

(
F T (y)− Ny(T )

T
F (y)

)
≤ b
}

− lim
T→∞

P

{√
Ny(T )

(
F T (y)− Ny(T )

T
F (y)

)
≤ a
}
.

Since σ2
y ≤ 1/4 and F (y)≥ F (ψ∗)≥ 1− r, we obtain σy/F̄ (y)≤ 1/(2(1− r)), which implies from

Lemma 1 that

lim
T→∞

P

{√
Ny(T )

(
F T (y)− Ny(T )

T
F (y)

)
∈ (a, b)

}
is bounded below by

P

{
a≤W ≤ b− σy

F (y)

}
≥ P

{
a≤W ≤ b− 1

2(1− r)

}
,

and bounded above by

P

{
a− σy

F (y)
≤W ≤ b

}
≤ P

{
a− 1

2(1− r)
≤W ≤ b

}
.
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Let us briefly highlight the main challenges in improving the lower bound in Lemma 1. Although

we know that Ny(T )/T converges to one almost surely as T increases to infinity, to obtain a tighter

lower bound, we need to determine the grow rate of Ny(T ). It follows from the proof of Lemma 1

that if T −Ny(T ) = o(
√
T ) with probability one (equivalently, limT→∞

T−Ny(T )√
T

= 0), then we can

show that

lim
T→∞

P

{√
Ny(T )

(
F T (y)− Ny(T )

T
F (y)

)
≤ a

}
= P {W ≤ a} ,

which would give us the exact confidence interval around F (y). However, determining the growth

rate of the random variable Ny(T ) remains an open research question.

B.1. Proof of Lemma 1

We first establish Lemma 2, which is useful in proving Lemma 1.

For any y≥ 0, recall that Ny(T ) = #{t= 1, . . . , T | Y KM
t ≥ y} denotes the number of times that

the KM estimator is greater than y. Let t(l) be the lth time period this happens.

Lemma 2. For any T ≥ 1 and y≥ 0,

1
T

T∑
t=1

I[Dt > y] · I[Y KM
t ≥ y] ≤ F T (y) ≤

∑Ny(T )

`=1 I[Dt(`) > y]
T

+
T −Ny(T )

T
.

Proof: The lower bound is obtained by applying the same argument as (??) in the proof of

Lemma ??. More specifically, it follows from

F T (y) =
∏

t:Z(t)≤y

(
T − t

T − t+ 1

)δ(t)
≥

∏
t:Z(t)≤y

(
T − t

T − t+ 1

)
=

T −#{t :Zt ≤ y}
T

.

For the upper bound, observe that {t ∈ {1, . . . , T} : Z(t) ≤ y} is the disjoint union of {t ∈

{1, . . . , T} : Y(t) ≤ y} and {t∈ {1, . . . , T} :D(t) ≤ y < Y(t)}. Thus,

F T (y) =
∏

t:Z(t)≤y

(
T − t

T − t+ 1

)δ(t)
=

∏
t:Y(t)≤y

(
T − t

T − t+ 1

)δ(t) ∏
t:D(t)≤y<Y(t)

(
T − t

T − t+ 1

)

≤
∏

t:D(t)≤y<Y(t)

(
T − t

T − t+ 1

)
.
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Note that in the above product, the set of factors are distinct and form a subset of {(T − k)/(T −

k+ 1), k = 1, . . . , T}. Furthermore, the number of factors is given by Ny(T )−
∑Ny(T )

l=1 I[Dt(l) > y].

Thus, an upper bound on the above product is

T − 1
T
· T − 2
T − 1

· · ·
T − (Ny(T )−

∑Ny(T )

l=1 I[Dt(l) > y])

T − (Ny(T )−
∑Ny(T )

l=1 I[Dt(l) > y])− 1
=
T −Ny(T ) +

∑Ny(T )

l=1 I[Dt(l) > y]
T

completing the proof.

Below is the proof of Lemma 1.

Proof:

F T (y) ≥ 1
T

T∑
t=1

I[Dt > y] · I[Y KM
t ≥ y] =

Ny(T )
T

·
∑Ny(T )

`=1 I
[
Dt(`) > y

]
Ny(T )

F T (y) ≤
∑Ny(T )

`=1 I[Dt(`) > y]
T

+
T −Ny(T )

T
=

Ny(T )
T

·
∑Ny(T )

`=1 I
[
Dt(`) > y

]
Ny(T )

+
T −Ny(T )

T
,

which implies that with probability one

√
Ny(T )

(
F T (y)− Ny(T )

T
F (y)

)
≥ Ny(T )

T

(√
Ny(T )

{∑Ny(T )

`=1 I
[
Dt(`) > y

]
Ny(T )

−F (y)

})
,

√
Ny(T )

(
F T (y)− Ny(T )

T
F (y)

)
≤ Ny(T )

T

(√
Ny(T )

{∑Ny(T )

`=1 I
[
Dt(`) > y

]
Ny(T )

−F (y)

})

+

√
Ny(T ) (T −Ny(T ))

T
.

Therefore, we obtain

P

{
Ny(T )
T

(√
Ny(T )

{∑Ny(T )

`=1 I
[
Dt(`) > y

]
Ny(T )

−F (y)

})
+

√
Ny(T ) (T −Ny(T ))

T
≤ a

}

≤ P

{√
Ny(T )

(
F T (y)− Ny(T )

T
F (y)

)
≤ a

}
≤ P

{
Ny(T )
T

(√
Ny(T )

{∑Ny(T )

`=1 I
[
Dt(`) > y

]
Ny(T )

−F (y)

})
≤ a

}
.

Note that by Lemma ??, Ny(T )/T → 1 almost surely as T →∞. Moreover, since Dt(`)’s are IID,

it follows from the classical Central Limit Theorem that the random variable

√
Ny(T )

{∑Ny(T )

`=1 I
[
Dt(`) > y

]
Ny(T )

−F (y)

}
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converges weakly to a normal random variable with mean zero and variance σ2
y. Thus, by Slutsky’s

Theorem, the random variable

Ny(T )
T

(√
Ny(T )

{∑Ny(T )

`=1 I
[
Dt(`) > y

]
Ny(T )

−F (y)

})
converges weakly to a normal random variable with mean zero and variance σ2

y. To obtain the

desired result, it follows from the proof of Lemma ?? that with probability one

lim
T→∞

√
Ny(T )(T −Ny(T ))

T
≤ σy

F (y)
.

Therefore,

P

{
W ≤ a− σy

F (y)

}
≤ lim

T→∞
P

{√
Ny(T )

(
F T (y)− Ny(T )

T
F (y)

)
≤ a
}
≤ P {W ≤ a} ,

which is the desired result.

Appendix C: Description of Sales-Driven Policies

• KM-myopic: The version of the KM-myopic policy that we test is a slight modification of

the policies described in Section ??. (Nevertheless, the analysis presented in Section ?? is still

applicable for this variant.) Our implementation of the KM-myopic policy maintains the largest

uncensored sales data point, and we keep track of the number of times that Y KM
t – the estimated

b/(b+h)-quantile under the Kaplan-Meier empirical distribution – equals to the largest data point,

and among those time periods, how often we get censored observations. When the proportion of

times that we get censored observations from using the largest data point exceeds h/(2 · (b+ h)),

this suggests that our order-up-to levels are too low. When this happens, we double the magnitude

of the largest data point and use it as our new order-up-to level.

During our experiments, we also observe that when the lost sales penalty b is large, the long-run

average cost under the KM-myopic policy is sensitive to the order-up-to level that we use initially.

Since we do not have a lot of data during the initial periods, our implementation of the KM-

myopic policy maintains a single fictitious data point during the first 20 periods. This fictitious

data point corresponds to the initial order-up-to level used in the first period. We note that this

single data point is only used during the first 20 periods of the algorithm.



Author: Article Short Title
6 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

• AIM Policy: The AIM algorithm is a stochastic gradient-based algorithm that adjusts the

inventory level in each period based on the sales data observed in the previous period. We provide

a brief description of the algorithm below. For more details, the reader is referred to Huh and

Rusmevichientong ?. Under the AIM policy, the order-up-to level in period t+ 1 for the problem

instance j is given by

yj,t+1 =
{

[yj,t− εth]+ , if we have any inventory left at the end of period t,
yj,t + εtb, otherwise,

where εt = 10/
(
max{b,h} ·

√
t
)
. This policy can also be implemented without any prior knowledge

of the underlying demand distribution. The order-up-to level in each period depends only on the

sales data in the previous period, independent of any other information about the underlying

demand distribution.

• Burnetas-Smith Policy: Under the Burnetas-Smith Policy, the order-up-to level in

period t+ 1 for the jth problem instance is given by

yj,t+1 =


(

1− h
(b+h)·t

)
· yj,t, if we have any inventory left at the end of period t,(

1 + b
(b+h)·t

)
· yj,t, otherwise.

As in the AIM Policy, the order-up-to levels under the Burnetas-Smith Policy only depend

on the sales data in the previous period. The two policies, however, differ in the computation of

the order-up-to levels. See ? for more details.

• CAVE Policy: The CAVE Policy attempts to approximate the objective function through

a series of piecewise linear approximations. See ? for more details.

• Uncensored Demand Benchmark: Under the Uncensored Demand Benchmark, we

observe the realization of uncensored demand in each period. We then set the inventory level to the

newsvendor qunatile of the empirical distribution based on demand realizations from all previous

periods. Thus, for any jth problem instance, the order-up-to level in period t+ 1 is given by

inf

{
x :

1
t

t∑
s=1

1 [dj,s ≤ x]≥ b/(b+h)

}
,
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where dj,1, . . . , dj,t denote the uncensored demand realizations during the first t periods in the jth

problem instance. We note that the Uncensored Demand Benchmark is not implementable

unless historical uncensored demand data is available.

• Newsvendor Benchmark: Under the Newsvendor Benchmark, we set the inventory

level after ordering in each period to the newsvendor qunatile ψ∗ of demand distribution, where

ψ∗ = inf {x : F (x)≥ b/(b+h)}.

We note that the Newsvendor Benchmark requires knowledge of the underlying demand dis-

tribution.

To the best of our knowledge, the AIM, Burnetas-Smith and CAVE policies are the only

algorithms in the literature that admit provable convergence with censored demand data
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Appendix D: Tables and Graphs

Demand Back- Newsvendor Newsvendor Initial % Difference from Newsvendor Benchmark After 500 Periods
Distribution Ordered qunatile Benchmark Inventory Uncensored CAVE Burnetas- AIM KM-Myopic

Cost (b) (ψ∗) Cost Level Demand Smith
10 4.34% 58.16% 16.83% 18.45% 11.17%
20 4.39% 40.68% 7.86% 13.61% 12.62%

Negative 50 2.88% 7.67% 3.24% 4.66% 8.05%
Binomial 3 88 16.38 100 1.28% 81.18% 1.78% 1.68% 4.04%
(80,0.5) 150 2.61% 81.66% 2.99% 21.84% 6.58%

200 4.13% 83.44% 5.81% 121.50% 10.35%
250 3.70% 83.18% 9.91% 360.55% 12.57%
300 3.67% 83.01% 17.98% 666.37% 13.93%
10 4.34% 46.88% 14.33% 15.84% 11.24%
20 3.84% 32.82% 6.60% 11.71% 10.43%

Negative 50 2.67% 6.74% 3.07% 4.32% 6.63%
Binomial 3 90 20.13 100 1.69% 64.65% 2.49% 1.89% 3.77%
(40,0.333) 150 2.01% 64.92% 2.20% 15.41% 5.19%

200 2.24% 65.72% 3.34% 89.49% 7.10%
250 3.10% 65.27% 7.54% 275.67% 11.05%
300 5.32% 67.92% 15.59% 522.85% 14.88%
10 7.60% 134.02% 26.29% 41.60% 24.10%
20 7.58% 96.71% 12.34% 31.16% 18.91%

Negative 50 4.23% 20.32% 4.59% 9.22% 11.68%
Binomial 9 96 23.16 100 3.28% 187.83% 5.96% 2.26% 7.87%
(80,0.5) 150 2.59% 188.55% 3.78% 70.29% 9.18%

200 3.31% 190.07% 46.01% 282.44% 15.47%
250 3.68% 192.59% 157.46% 497.89% 20.19%
300 5.33% 191.89% 278.31% 714.20% 26.18%
10 6.90% 110.40% 23.01% 36.70% 20.09%
20 7.04% 78.24% 11.20% 27.41% 17.06%

Negative 50 5.73% 18.64% 6.01% 10.96% 13.57%
Binomial 9 100 28.61 100 3.31% 0.62% 4.07% 1.62% 10.56%
(40,0.333) 150 4.59% 155.44% 5.44% 45.04% 8.21%

200 2.82% 152.31% 27.49% 209.56% 11.37%
250 5.09% 154.25% 108.47% 383.78% 17.76%
300 4.71% 153.37% 204.88% 557.80% 21.02%
10 28.53% 554.34% 96.99% 188.85% 88.90%
20 29.38% 404.31% 46.62% 140.21% 68.50%

Negative 50 17.21% 92.45% 19.05% 45.41% 46.80%
Binomial 49 108 32.61 100 9.04% 0.62% 16.85% 4.54% 23.14%
(80,0.5) 150 10.55% 769.28% 64.43% 97.04% 18.18%

200 10.61% 767.22% 200.66% 250.08% 26.47%
250 13.83% 781.80% 337.05% 403.26% 36.14%
300 10.39% 769.74% 474.05% 557.05% 40.12%
10 25.18% 456.21% 83.83% 168.07% 74.62%
20 23.63% 327.18% 40.24% 128.50% 57.84%

Negative 50 17.56% 81.11% 18.33% 55.49% 45.20%
Binomial 49 114 40.86 100 12.61% 4.44% 35.09% 11.34% 30.12%
(40,0.333) 150 11.19% 622.20% 32.55% 57.48% 16.11%

200 12.00% 618.54% 140.36% 179.80% 23.80%
250 11.59% 622.73% 249.39% 302.23% 29.41%
300 11.90% 625.57% 357.86% 424.10% 32.62%
10 55.19% 1041.31% 188.16% 369.55% 156.98%
20 52.03% 750.28% 84.13% 270.61% 124.57%

Negative 50 35.27% 171.33% 34.08% 101.85% 92.62%
Binomial 99 112 36.19 100 17.66% 0.59% 28.45% 9.79% 50.38%
(80,0.5) 150 16.81% 1420.43% 70.17% 85.60% 30.16%

200 19.87% 1413.55% 200.58% 223.79% 33.64%
250 19.00% 1420.46% 330.61% 361.60% 48.63%
300 21.62% 1424.85% 460.89% 499.66% 54.57%
10 47.98% 823.92% 161.32% 319.08% 150.73%
20 45.92% 592.49% 73.23% 253.03% 101.55%

Negative 50 32.98% 148.07% 30.02% 112.05% 85.15%
Binomial 99 120 45.67 100 20.06% 2.32% 23.17% 20.48% 52.68%
(40,0.33) 150 21.06% 1135.01% 35.40% 47.27% 34.05%

200 16.52% 1146.30% 138.35% 156.74% 30.27%
250 18.54% 1144.54% 241.26% 265.82% 33.30%
300 18.41% 1145.66% 344.33% 375.06% 35.20%
10 104.75% 1914.41% 350.00% 694.41% 316.55%
20 94.98% 1347.48% 160.46% 509.62% 250.36%

Negative 50 68.18% 330.61% 60.04% 209.43% 161.37%
Binomial 199 115 39.29 100 35.33% 2.64% 31.18% 33.54% 101.64%
(80,0.5) 150 30.20% 2604.05% 67.49% 74.77% 71.87%

200 40.54% 2635.11% 191.05% 201.96% 64.90%
250 39.37% 2636.37% 315.00% 329.55% 64.62%
300 39.89% 2648.63% 437.89% 456.07% 76.73%
10 91.53% 1503.22% 316.35% 612.09% 292.24%
20 78.31% 1075.06% 144.14% 488.01% 214.25%

Negative 50 56.02% 278.92% 50.06% 216.01% 162.39%
Binomial 199 125 50.87 100 35.16% 3.36% 43.26% 53.55% 120.03%
(40,0.33) 150 34.01% 2070.59% 30.02% 35.28% 60.24%

200 33.68% 2044.34% 125.10% 133.52% 57.08%
250 31.62% 2050.85% 220.05% 231.29% 65.72%
300 33.91% 2076.87% 315.81% 329.85% 64.75%

Table 1 Impact of different initial starting inventory level on the performance of each policy (no warm-up

period and censoring corresponds to demand strictly bigger than the inventory).
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Coefficient Back- Newsvendor Newsvendor Initial % Difference from Newsvendor Benchmark After 500 Periods
of Ordered qunatile Benchmark Inventory Uncensored CAVE Burnetas- AIM KM-Myopic

Variation Cost (b) (ψ∗) Cost Level Demand Smith
100 4.76% 31.69% 87.28% 137.09% 9.20%
200 4.72% 16.27% 51.99% 91.36% 8.46%
500 4.64% 0.90% 9.33% 13.17% 7.73%

49 755 978.23 1000 4.44% 58.49% 5.02% 7.59% 7.74%
2000 4.72% 57.55% 71.53% 94.21% 8.46%
3000 4.57% 58.16% 160.96% 197.55% 10.33%
4000 4.91% 58.91% 247.88% 296.63% 12.90%
100 8.71% 73.47% 181.61% 273.57% 16.83%
200 8.85% 43.29% 113.88% 192.59% 15.42%
500 8.35% 6.53% 32.36% 49.48% 13.38%

2 99 973 1207.89 1000 8.25% 124.13% 1.36% 0.11% 12.54%
2000 8.65% 124.85% 49.24% 58.14% 13.12%
3000 8.51% 125.23% 125.24% 140.44% 14.89%
4000 8.69% 124.19% 200.27% 220.58% 17.08%
100 16.68% 157.76% 349.88% 522.48% 27.43%
200 16.17% 95.92% 230.82% 377.82% 24.63%
500 15.57% 22.60% 76.23% 117.32% 21.36%

199 1200 1445.16 1000 15.71% 0.29% 5.32% 5.03% 21.49%
2000 15.36% 251.24% 31.30% 34.94% 20.72%
3000 15.81% 246.33% 92.93% 99.27% 22.63%
4000 15.40% 248.46% 160.40% 169.06% 23.60%
100 4.47% 23.15% 62.70% 70.01% 8.47%
200 4.59% 16.29% 44.86% 53.80% 8.57%
500 4.67% 5.52% 18.38% 23.50% 7.73%

49 1299 2266.41 1000 4.82% 0.24% 2.82% 2.56% 8.38%
2000 4.61% 32.63% 6.66% 9.11% 8.22%
3000 4.92% 32.49% 30.33% 38.77% 9.38%
4000 4.58% 32.93% 58.82% 75.97% 9.88%
100 8.09% 69.11% 140.27% 153.87% 16.41%
200 8.34% 53.44% 103.56% 123.42% 16.77%
500 8.32% 28.35% 57.56% 71.42% 14.84%

4 99 1982 3039.46 1000 8.04% 6.56% 18.82% 23.20% 14.39%
2000 8.10% 83.88% 0.71% 0.01% 14.02%
3000 8.27% 84.17% 9.67% 11.68% 15.26%
4000 8.33% 84.68% 30.43% 36.12% 14.53%
100 14.91% 149.28% 266.41% 292.86% 30.39%
200 14.74% 126.93% 211.74% 247.96% 28.33%
500 14.44% 75.01% 124.43% 153.58% 25.43%

199 2740 3865.14 1000 14.20% 31.34% 56.27% 68.74% 22.79%
2000 14.88% 1.73% 7.68% 8.09% 23.96%
3000 15.16% 180.88% 1.19% 0.52% 23.40%
4000 14.12% 181.33% 10.92% 12.11% 23.01%
100 4.08% 0.97% 4.76% 4.85% 4.90%
200 4.45% 0.65% 3.26% 3.36% 5.08%
500 4.48% 0.07% 0.72% 0.67% 5.73%

49 812 4508.75 1000 4.17% 1.51% 0.34% 0.27% 6.21%
2000 4.10% 1.59% 5.28% 6.08% 6.70%
3000 4.83% 1.70% 14.61% 16.61% 8.29%
4000 4.18% 1.60% 24.79% 28.74% 8.17%
100 7.04% 13.77% 24.60% 24.90% 12.20%
200 7.20% 11.63% 20.85% 21.44% 12.34%
500 7.30% 7.77% 13.73% 14.54% 12.55%

10 99 2651 7563.44 1000 7.40% 3.34% 6.77% 7.06% 12.60%
2000 7.09% 0.18% 1.00% 0.91% 12.36%
3000 7.29% 14.52% 0.42% 0.39% 12.35%
4000 7.41% 15.82% 2.01% 2.24% 12.87%
100 13.16% 47.84% 66.32% 66.91% 25.53%
200 12.95% 43.98% 59.65% 60.92% 25.32%
500 13.11% 34.36% 45.59% 47.23% 23.63%

199 5561 11565.13 1000 12.01% 24.01% 31.83% 33.34% 21.55%
2000 13.07% 12.21% 16.60% 17.47% 21.82%
3000 12.57% 5.16% 7.84% 8.26% 22.18%
4000 12.59% 1.16% 2.36% 2.38% 23.15%

Table 2 Performance of various policies under different coefficient of variations and starting initial inventory

level. The demand distribution is a negative binomial with mean 100.
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% Difference from Newsvendor Benchmark
% Diff from Newsvendor Benchmark Under Different Inventory Policies

50 instances, b=3, Initial = 300, Demand ~ Unif{0,1, .., 100}
(dash lines correspond to the 95% confidence interval)
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% Diff from Newsvendor Benchmark Under Different Inventory Policies
50 instances, b=9, Initial = 300, Demand ~ Unif{0,1, .., 100}

(dash lines correspond to the 95% confidence interval)
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(b) b= 9

% Diff from Newsvendor Benchmark Under Different Inventory Policies
50 instances, b=49, Initial = 300, Demand ~ Unif{0,1, .., 100}

(dash lines correspond to the 95% confidence interval)
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(c) b= 49

Figure 1 The relative difference of the running average cost over time compared to the newsvendor benchmark

for 50 randomly generated problem instances for lost sales penalty costs b ranging from 3 to 49. The

demand distribution is assumed to be a discrete uniform distribution over the set of integers from 0 to

100. Dash lines correspond to 95% confidence intervals.
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log-log Plot of Diff in Avg Cost Between KM-Myopic and Newsvendor Benchmark 
(50 Instances, b=3, Initial = 300, Demand ~ Unif{0,1,…,100})
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(a) b= 3
log-log Plot of Diff in Avg Cost Between KM-Myopic and Newsvendor Benchmark 

(50 Instances, b=9, Initial = 300, Demand ~ Unif{0,1,…,100})
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(b) b= 9
log-log Plot of Diff in Avg Cost Between KM-Myopic and Newsvendor Benchmark 

(50 Instances, b=49, Initial = 300, Demand ~ Unif{0,1,…,100})
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(c) b= 49
Figure 2 The log-log plot of the difference between the Newsvendor Benchmark and the average cost over

time under the KM-myopic policy, with the lost sales penalty cost ranging from 3 to 49. The cost is

averaged over 200 problem instances. The demand in each period is uniformly distributed over the set

of integers from 0 to 100.



Author: Article Short Title
12 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Avg Cost Over Time Under Different Inventory Policies
50 instances, b=3, Initial = 300, Demand ~ Poisson(80)
(dash lines correspond to the 95% confidence interval)
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(a) r∗ = 0.75 (b= 3)
Avg Cost Over Time Under Different Inventory Policies
50 instances, b=9, Initial = 300, Demand ~ Poisson(80)
(dash lines correspond to the 95% confidence interval)
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(b) r∗ = 0.9 (b= 9)
Avg Cost Over Time Under Different Inventory Policies
50 instances, b=49, Initial = 300, Demand ~ Poisson(80)
(dash lines correspond to the 95% confidence interval)
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(c) r∗ = 0.98 (b= 49)
Figure 3 The percentage difference (compared to the newsvendor benchmark) of the running average cost

over time under different inventory policies for 50 randomly generated problem instances for a Pois-

son demand distribution with mean 80 when the newsvendor qunatile equals to 0.75, 0.9, and 0.98,

respectively.
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Negative Binomial(80,0.5) with variance = 160 Negative Binomial(40,0.333) with variance = 240
Avg Cost Over Time Under Different Inventory Policies

50 instances, b=3, Initial = 300, Demand ~ NegBin(80,0.5)
(dash lines correspond to the 95% confidence interval)
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(a) r∗ = 0.75 (b= 3)
Avg Cost Over Time Under Different Inventory Policies

50 instances, b=9, Initial = 300, Demand ~ NegBin(80,0.5)
(dash lines correspond to the 95% confidence interval)
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(b) r∗ = 0.9 (b= 9)
Avg Cost Over Time Under Different Inventory Policies

50 instances, b=49, Initial = 300, Demand ~ NegBin(80,0.5)
(dash lines correspond to the 95% confidence interval)
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Avg Cost Over Time Under Different Inventory Policies
50 instances, b=49, Initial = 300, Demand ~ NegBin(40,0.33)

(dash lines correspond to the 95% confidence interval)
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(c) r∗ = 0.98 (b= 49)
Figure 4 The running average cost under Negative Binomial demand distributions with increasing standard

deviations.
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Pareto Distribution Lognormal Distribution
Avg Cost Over Time Under Different Inventory Policies

1000 instances, b=3, Initial = 600, Demand ~ Pareto(2,40)
(dash lines correspond to the 95% confidence interval)
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Avg Cost Over Time Under Different Inventory Policies

1000 instances, b=9, Initial = 600, Demand ~ Pareto(2,40)
(dash lines correspond to the 95% confidence interval)
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Figure 5 The running average cost under Pareto and Lognormal demand distributions.
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Variability of the Run. Avg Cost Over Time Under Diff Inventory Policies
1000 instances, b=19, Initial = 600, Demand ~ Pareto(2,40)
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Variability of the Run. Avg Cost Over Time Under Diff Inventory Policies
1000 instances, b=19, Initial = 600, Demand ~ LogN(3.88,1.0)
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Figure 6 The sampled standard deviation of the running average costs over time under different policies for

Pareto and lognormal demand distributions with b = 19.



Author: Article Short Title
16 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

σ= 20 σ= 40
Avg Cost Over Time Under Different Inventory Policies

50 instances, b=3, Initial = 300, Demand ~ Normal(80,202)
(dash lines correspond to the 95% confidence interval)
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Avg Cost Over Time Under Different Inventory Policies

50 instances, b=9, Initial = 300, Demand ~ Normal(80,202)
(dash lines correspond to the 95% confidence interval)
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(b) r∗ = 0.9 (b= 9)
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(c) r∗ = 0.98 (b= 49)
Figure 7 The running average cost under Gaussian demand distributions with increasing standard deviations.
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Figure 8 Impact of an alternative censoring assumption on the performance of the KM-Myopic policy.




