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APPENDIX

PROOPS OF THEOREMS AND OTHER RESULIS

Throughout this appendix, we use Greek letters to denote both aspects and

their measures whenever this can be done without ambiguity. We begin with five

lemmas that simplify our proofs.

Lemma 1: Let T be a factorial structure {FS) with matched aspects,

{all’ Aygs vee alkl} b4 {aZl, Cops oo a2k2} X soe X &xKl, Agys =oe aKkK?°

Then, for all =7, elimination by aspects yields:
K / k,
pxlm) = TT . o, 1T \Z - az) (al)
®i5f 2=1 \n=1 "

where the aspects are scaled to sum to 1.0.

3

Proof. We proceed by induc;icn'on K, the pumber of levels on the F5. Without

loss of generality (wlog) let z' a {a}jf Uy ...cxKﬂ-. Lemma 1 is clearly true
for X = 1 since B(x|T) =x111/ Zz'alu since all elements of T have disjoint
n=1

aspect sets for X = 1.
Assume equation Al holds for (K - 1) and note that ;1 is a (K - 1) level
1
FS. Then:

P(x|T) = [ ay, 2T )= i_[__ oy J;Ii- ay |

con s () (= ]/ ()
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k
which completes the induction since Z Z aij = 1 by the scaling convention.

Lemma 2. Suppose that P(x/A)P(AIT) = P(x|T) for all x and A such that

- = i
xe ACT where P{A|T) zygAp(yIT), then P(xlAl)P(Al]AZ) ces P(Aan) P(x|T) for
%AlamiAEA

where P(AiIA ) TIoa P{ylA ).

i+l i+l YEAS i+1

Proof. If P{x|A)P(A[T) = P(x|T) for all x and A such that xeA_T, then,

specifically, P(y[AZ)P(AZ}T) = P(y|T) for all y such that yeACA,. Then

vedy

P(x{Al)P(A1§A2)P(A21T) = P(x1A1)P(A1§?)‘= P(x|T) where the last step uses the

z P(yiA,)B(A,|T) = zyeAlg(y[T). Multiply both sides by P(x[A,) yields

hypothesis of the lemma. Finally, we proceed by induction to the result.

Lemma 3, Suppose that P(x{T) = P(X1AL)P(A1[A2) “oe P(An_lIAn) for some seque?ce

Al, cos Aﬁ, such that An =T, AiCjA and the cardinality of Ai equals 1 + 1.

i+l

Consider another sequence, Bl’ sen Bm, such that Bj = Ai and Bj+l = Ai+t for some

t. Then P(x|T) = P(x[Bl)Q(BIEBZ) vee P(Bm_iiT).

Proof. See Tversky and Sattath (1979), Appendix E, pp. 572-3. An alternative

proof can be constructed similar to that in Lemma 2.

Before proceeding to Lemma 4, we consider a partitiom of the choice set
such that T = AUBJx}. We define aspect sets from x and B's perspective. Here, x"
and B are the unique aspects of x and B, respectively; Bx" are the aspects that

are shared by x and B but not by any element of A; x% are the aspects X ghares
with at least one object in A but not with B'; 3° are aspects B' shares with A’

but mot with x'; Bx® are aspects B' and x' share with A'; 7° is the

set of all common aspects. In set notation:
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x" = {alacx', afB', afa’}

8% = rg|pgx’, teB', GA")
Bx" = {plpex'NB), u£AT)

X = {ylyex', y£B' yeA')
8% = {gleéx", seB’', scA')

BxS

= aex'NBNAT, AETC)
c
T ={n{nez' for all zeT}

These definitions can best be visualized by the following Venn diagram:

Lemma 4. Let z be a choice object and let A and B be sets of choice objects
4 x
such that T = AUBYx}. Let B = BU{x} and let A be a constrained agenda for
. 3
elimination~by-aspects with hierarchy {{x, B}, A}. Then P(x|A) {3} P(x|T) iff the

following condition, A2, holds:

' + +
L2+ Lr+ I s AP(x|B/\) + [, uP(xIBu)

Qex veEX AeBx ueBx {E?
) uﬂ * L8+ 1 s|A L P(y|B:)' + 7 uf P(y|B D)
RBeB SeB AeBx ye B ungu ve B u
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+
e+ J  welx|T)+ T . ARGx|T) + [ mp(x|3D)
aExu Yexs Y keBxS A EEBxu H

ME‘HB . 1 . [BygB P(ylféﬂ + s[x{ P(y|Tk)] N [u ) P(ylﬂjq

BeB 8eB heBx L yeB peBx yeB

(A2)

Proof. By definition, P(x/A) = p(x/BDP(YT) = 2(x[BY) . [p(x|D) + T 2(y[DI.

ye B
Thus, by rearranging terms and recognizing P(x|8+) + X P(y|B+) = 1, we get

* > ye B
P(x{A) {3 P(x|T) if and only if

__ex[3D) (B __padm
) P(yJB+) JoeCy[T)
v B . yeB

Finally, applying EBA to each term and using the aspect set definitions for

+
xu, Bu, Bxu, xs, BS, and Bx" we obtain condition A2. Note that ﬂg = BU by

definition and that peBxu can affect the ratios in condition A2 because the
selection of yy as the elimination aspect eliminates some alternatives in B but

not all alternatives in B. Similarly for Ae3x°.

If B ={y}, a singleton, then Bxu and Bx® will not affect the left side
of condition A2 and Bx" will not affect the right side of condition AZ. The

resulting condition simplifies to condition A3 for A* = {{x, y}, A} where we

have written yxs for Bxs, yu for Bu, and yS for B%:

o+ Ly L e+ I JEET) + ] g AP(x[T))
QEX vex {3} QEX YEX Y ) EYX (A3)
P B+ 7 5 I B+ [ dreyiTy + T _7e(y|n)

Beyu cSeYS %yu Seys | § keyxs IX

Lemma 5, Let T and A*¥ be defined such that A* = {Bf A}. FEaqualitv holds

- + '
in A2 for all xeB and zzA and for all possible values of non-zero aspect
neasures if and only if the aspect structure is (1) a preference tree or (2) a

factorial structure compatible with the hierarchy associated with A%,
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Proof. (If preference tree equality holds.) If T' is compatible with {{x, B}, A}

then x° = B% = px° = 3, Substituting these relationships reduces condition A2

to an identity.

(If FS equality holds.) By the definition of compatibility for F3's, there
+
must exist some aspect (or aspect set) which is contained in all objects in B but

not in any objects in A. Wlog, let this aspect (or aspect set) beall and let

i, B = §, P(XEB+) = 1 and equality holds.

[

t =
X {all, aZl’ LI aKl}o For K
u

Suppose K = 2, Then x = B Bx° = p, Bx = {all} x5 = {azl}, and

5 . . . _ + fes
B {azz, Cogs vee a2k2}. Since all is common to-all B , condition A2 reduces to
a a,P(xlT )
21 _ 21 %oy
k k
2 2
T7 a 1T a [ plylT )
n=2 2% =2 20 g %n

Finally, P(XREIZI) = P(y[?lzn) = all/(ﬂﬁgln) for'uzn ey' for R = 2. Thus, these

terms cancel and the equality holds since a, ey' for exactly one yeB.

2n
u u S u
Suppose K> 2. Thenx =8 =3x =0, Bx = ®q1s 3x° = {azl, Qays coes aKl}’

S =
and B {sz, QZB, w4y G,Zk?', {].32, 0.33, °®a O‘,3k3, "t ey aKk,K.}. Substituting

these terms in condition A2 yields:

{rit f
a,, P(x{B ) a,, P(x[T )

g= L %y =gz ML %1

-} K Kk g

[ L oa ¥ ) [ﬂ ) P(Y§3+ ﬂ ) ) {1 I eyt %-ﬁ ! a ] oelylT, )
p=2 =2 B g gy %1] 222 a=2 L*® ye3 %ol a1t s %1

The above equation will be satisfied if P(x|T ) = RPCXJB+ } and
%1 %21

7 P(yiTa ) =R} P(}TIB; ) for & =1 to K for all wB, and if
¥e B 21 ve B 21

E P(ylgx > =R ford =2 toKand n =2 to k2 for all w B, where R is
ye 3 Lo

some non-zero constant.
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Recognizing that B  and B  are (K-2)-level FS's whereas T and

%21 %00 %31
21 are (K-1)-level FS's we can apply lemma 1 yielding:
in
+
P(XIBQ ) =-|_T [a 4 l P(XITC! ) = l I a_]l
21 jfLp 9 ; 21 i
K, k.,
T P % 5 m 7! %50
j+l,i n=1 j%ﬂ n=1

k
+
Hence, for £ # 1, P(x|ql Y} = (o Zl aln}. P(ij ) which satisfies the

21 lél n=1 %1
+
above condition with R = (o Z a, Je Forg=i, 3 =7T and is common
11 a=1 _ln agq 11

across x and B. Thus,<xll can be shown to cancel from the EBA formulae. See
discussion in Tversky (1972). We show the other terms similarly. (Recognize
that the selection of g ps B £ 1 conditions out xXx. Because all remaining aspects
are shared with T - B, the set B will be chosen with probability R.) Thus,
condition A2 holds for a compatible FS.

(Equality requires Pretree or FS). We rule out the trivial case where A
is empty or 2(A[T) = 0. Wlog, assume the aspect measures on T' sum to 1.0,

Then the condition for equality in A2 can be written in the form:

ga+tctg =a+ce+t o
b+d+1 b+ df + 1
where a = ¥ g &s b= 7 . 8,8=1I pP(x§B+), h=7¢ [pEBP(y§B+),
ag X Re B M H H U

= + = = [ =
c = EYY + Iy KP(X‘BR>, ce QYyP{x\TY) + QAKP(X!TA), e = cefc,

and d, f are defined accordingly. No?e that a, b, ¢, d, g, he{0, 1! by

the scaling assumption. e, £ei0, 1] since P(y]Bz) > P(yETZ for allr

because BYZT and EBA satisfies regularity. The above relationship is equivalent to
(at+g)d(£~1) + (b+h)ec(l-e) + cd(f-e) = 0.

Since the aspect measures can be chosen arbitrarily om the interval, [0, 11,

subject to scaling restrictions and since the above equation must hold for any
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choice of aspect measures, equality cannot depend on a specific relationship
between non-zero a, b, ¢, and d. Thus, the above relationship will ounly be
satisfied by an aspect structure which implies either (1) ¢ =d =0, (2) £ =e = 1,
(3) ¢e=0, £=1, (4)d =0, e=1,0r (5) a=12=0, f=e#*1, and (i) g/h = c/d
or {ii) g = h = 0. (Note that the cases (5)-(iii) g = h =0, a/b = ¢/d and
(5)=(iv) (a+g)/{b+h) = ¢/d for non-zero a, b, g, and h would require special

relationships among arbitrarily chosen aspects and could not be satisfied by
structure alone.)

Case (1) implies x> = B® = Bx® = § for all %T and associated B. This
implies a compatible preference tree.

Case (2) implies that P(xETY) = 1 for yex", EBP(yiTG) =1 for § ¢ B>, and

P(YlTk)

P(AETS)

+
P(y|B) for allheBx® and %3'. But this fmplies P(aT) = 0,

0, and P(A[IX) = () and at least one of xs, BS, or Bx® is non-empty

(else £ = e = 0). Thus, all elements in A that share any common objects with.
B+ are dominated by some y;B+. Finally, we rule out the case where objects in
all A are identical to at least one ohject in gt by the P(AFTE) = () conditions.

Thus P(z[T) = 0 for objects, z A, that share some common aspects with objects in
3*. All other objects in A have aspects sets which are disjoiant from x' and B'.
Thus case (2) is a preference tree.

Case (3) implies x° = Bx® = P and EBP(y]TG) = 1 for 8¢8%. Case {4) implies

3%= Bx° = 3 and P{XEIY) = 1 foryex . These are special cases of case (2).

Case (5), f= e = 1. Let f = e = R. This condition must hold for arbitrary
selection of aspect measures. By successively varying vex® we can show that it
must be true that P(X[TY) = RP(x[B:) = R and ?(xETK} = RP(xiB;) for all vex® and
AsBxs_ (Note Bx®> = @ for a 2x2 factorial and x° = ¢ for a 2" factorial where

. r +
n > 2.) By similar arguments, yEB P(y{T,) = R and yEB P(y!TA) = R P(yiBR) for

yEB
s
5¢B° and AeBx®. By hypothesis, equality holds in (A2), hence we can write
+
R=P(B:fT} for izxs LJBS U Bx". Finally, since a=b=0, xu=Bu=Q and
=

§
x> Us% U xS Uskt = (B+) .



Consider subcase (i), g/h = ¢/d. By definition, (a+c+g)/(b+d+h) =

P(x

B+)/}€EB P(yi87). By g/h = c/d and a=b=0, (a+c+g)/(b+d+h) = g/h, hence

o+
b HP(x,B )
L i

-
g _ ueBx _ _P(x|B)
o - +
2 R 1 t p(y|sT)
£ Bx v B + vel

By hypothesis this condition must hold for arbitrary choice of the measures of

u, hence it must be true that P(x|B+)/ z P(yiB+) = P(xiB+)/ z P(y§B+) for
b veB " w B

all usBx". Since yu does not affect these probability ratios, by the properties
of EBA, it must be the case that pcy' for all yEB+. Since peA' by aefinition,
B+ must differ from A by EEBxu. Since these conditions must hold for all yEB+
and for all = A, there must exist 2 complementary QEA'.

Putting together the condition that R=P(B§|T) for all & x° U Bx® and that
nex, we can write x' as {y, 1> By» ...}. We then limit successively on

-

s S . . .
L ex ( Bx~ until only u is left to consider. It must then be the case that

there exists Aé C A" such that A; ; fu, il, EZ, +..}. Similarly for all
¥ B there must exist a matching A; in A'. Since the conditions must hold for
all x, vy, 2T we can find a factorial match for every choice cbjeet. Thus,
the factorial is complete and compatible zad not fracticnal.

Finally, subcase (ii), g=h=0, is a degenerate case where Bxu=ﬁ and the

L} =g

factorial structure” splits on identical aspects.

Thus, the only cases where condition A2 can hold for all T ig if (1) T
N .
is a preference tree and A is compatible or (2) T' is factorial structure and

*
A 1s compatible. This completes the proof of lemma 5.

Theorem 1 (Invariance): The constant ratio model is the only decision rule
invariant with respect to top down agendas. On the other hand, each of our

decision rules, CRM, EBA, and HEM(B), can be affected by bottom up agendas.
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Proof. Both parts have been proven in the text. The first .part is true by
the definition of CRM, P(x|A)P(AIT) = P(x|T) for all A. Counteresamples have

been supplied for the second part.

Theorem 2 (Compatibility): For an arbitrarily chosen set of aspect measures, a
constrained top down agenda, A%, has no effect on a family of EBA choice
probabilities, P(x|T) for all % T, if and only if either (1) the aspect structure
forms a preference tree and A" is compatible with the tree or (2) the aspect structure

*
forms a factorial structure and A is compatible with the factorilal structure.

Proof. By lemmas 4 and 3, P(x[ir) = P(x|T) iff the aspect structure is a pre-
tree or FS and compatible with A = {{x, B}, A}*. Lenmas 2 and 3 extend this
result to arbitrary compatible agendas. If a single-level agenda affects a
family of choice probabilities, then a multi-level agenda must also since we
cannot quarantee any cancellation of effects except by fortuitous choice of the

aspect measures.

Theorem 3 (Equivalence). For an arbitrarily chosen set of aspect measures,

the hierarchiczl elimination model (HEM) and elimination by aspects (EBA)

yield equivalent choice probabilities if and only if (1) the aspect structure
is a preference tree or (2) the aspect structure is a factorial structure,
8 =0, and the hierarchy associated with HEM is compatible with the preference

tree or factorial structure.

Proof. (Compatible pretree implies equivalence.) <Consider a hierarchy com-
patible with a pretree. Then by lemma 5, equality holds in condition A2. Hence,
by lemma 4, we can write EBA as a hierarchical rule, i.e., P(xiB+) P(B+§T) = p(xiT).
HEM(0) is defined such that P{xlB+) P(B+]T) = P(x|T). Lemmas 2 and 3 assure
that this can be extended to multiple levels. Thus we need only show that
+ + + + +
P (x[B) =P (x[B") and P, (B'|T) = P_(8'|T) where P, (x|B") is computed by HEM(0) and

+ +
Pe(xiB ) is computed by EBA. Define Ph(B Ty, ?B(B+\T) accordingly.
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Applying EBA yields:

+, L +
Pe(x[B )] -[ Z £ + z NG + E H P(XiBu) + Z QP(X'B;):} Z +1C

agx YEX neBx AeBx geB

Now on a compatible pretree, Bx® = x° = 3% = §§ and for all ueBxu, uey' for all

+
veB . Thus ueBx' does not affect Pe(x§B+), hence Pe(x|T+) reduces to
P (x[8") = [T
=4 I Lla Z lla * Z U.B
agX deX BeB

Finally, according to the definition of HEM(0), see equatioms 5, 6, 9, 10, and 11,

we have m(x) = E , m(B8) = Z 3, and
o xdl BEBu

(L) (&)

Thus, Pe(x|B+) = Ph<x{3+). Finally,

[z+ I o + 1 ] I o

yeB Xey ueBXu‘ oeT'

? (x|8")

]

+ =
p BTy = ] B (yIT)
ve3

m(B+)/{m(B+) + m(T-B+)] Ph(B+1T) paralleling the arguments used to show
.Pe(xlB+) = Ph(x§B+). For an alternative proof see Tversky and Sattath, 1979,
Appendix B, pp. 568-570).
(Compatible FS implies equivalence.) At any level § a compatible FS splits such

L
contained in both (B7)' and (T-8")'. Thus, for HEEM(0):

+' . + +y
that o jg(B )' and {aln{n # j} ¢ (T~-B)' and {amnjm £, amd;(B 'Y is

k
Py =
P8I =y, [ Fay
a=
Applying the above equation iteratively yields

A
P(x{T) = c:gt;x' aii/ﬂ (nz=l aﬁ'u)

which is equivalent to QECX}T) as shown by equation (Al) in lemma 1.
(Equivalence implies compatible pretree or FS.) By lemma 5,
+ + *

P(x/B) P(B IT) = P(x|T) only if A ={{x, B}, Al is a compatible pretree

or FS. Thus, EBA will not become a hierarchical rule unless the aspect
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structure is a pretree or FS. Thus, except for fortuitous choices of aspect
measures, HEM and EBA will not be equivalant unless the aspect structure is

a compatible pretree or FS.

Result 1.1 (Dissimilar grouping om a 2k factorial structure): Let T = BY x, w
be a factorial structure. Suppose for every ailgx' - x"Mw', %y > &y whereoiz is the
aspect matched to ay and x' - x'NW' contains at least two elementse Then, the

%

constrained agenda, A = {{z, w, B}, is an effective EBRA agenda for w and a

counterproductive EBA agenda for x. I.e., P(WIA*) > P(w|T) and P(x|T) > P(XJA*).

Proof. According to EBA P(x%ﬁ*) = P(x/{x, W )[P(x[T) + P(w/T)]. Thus,
P(xl?&*) < P(x|T) iff P(x{x, w})/P(wE{x, W) < P(xl T)/P(w/T). [Use P(wi{x, w) =
1 -p(xl{x, )] Let I = {i]ail_gx' - x'MNw' and let J = {j[ajzgw' - w’ﬂx"} .

Note that I = J since ailex' is matched to ajzgw'. Thus,

IRt 5

Pxl{x, w#) = il

Blw 1%, W) )
| 121‘112

Now, by lemma 1,

. o, .
2(xlT) =E e Q; k]
P(wl T)
| Uaiz . —,T ki
icl w', k¢l

The second terms in the numerator and denominator cancel since {akj[akfx', I =

{akj[ak}gw' , k¢I} by the hypotheses of the theorem. Thus we must show that

2 'ﬂ;%;
PR A ¥

where o ;> a 5> 0. (All sums and products are over the set, I.) Because all

terms are positive, this condition reduces to ZiCa il %1 uifi“lZ) > 0.
- . hi dition holds
Rearranging terms yields Io o izmi#flli HQ#]‘FL&Z) > 0. This condition ho
whenever {E,ER,EI, 2#i} #  which is true whenever I contains
*
at least two elements. Since the condition holds, we have shown P(x{A ) < P(x|T).

| x
The proof for P(w A ) > P(w T) is syametric.

-Aa1l~-



Result 1 (Dissimilar Grouping}: For the factorial structure in figure 6, the
3
* *
top down agenda, A, = {{x, w, {y, v} , enhances the EBA probability that the
least preferred object, w, is chosen and hurts the EBA probability that the most

_ %
preferred object, z, is chosen. That is, P(w|A ) > P(w|T) and P(x|T) > P(xgﬁ*).

Proof: Result 1 is a special case of Result 1.1 with k = 2,

Result 2 (Bottom-Up Agendas): For compatible bottom-up agendas, A, and B, on a

2 x 2 factorial structure whers P(xT) > P(y]T) > P(vIT) > P(w|T),

doing the easy comparison first (al_vs. az} enhances objects with already higher
probability and doing the difficult compérisoa first (Blvs. 82) enhances objects
with lower probabilities., That is,

(1) P(z|A) > P(xIT) > p(xlﬁ*)

(2) P(yia,) > P(yIT) > B(y|By)

(3) 2(viB,) > P(v|T) > P(v[4)

(4) 2(w[B,) > P(w|T) > P(w|A,)

Proof. For x' = {al, Bl}, y' ={al, Bz}, A “{az, rsl}, W' ={a2, 82}, the
conditions of the result translate toa; > a,, 8; > 8,, and al/011+a2) > Bz/{31+32)'
According to the definition of bottom—up agendas,

P(XLG*} = P(xlxy) (P{x!xv)P(v]vw) + P(x|xw)P(wivw)]

P(xfﬂ*) = P(x|xv)[P(x|xy)P(y yw) + P(x|xw)P(w|yw)]
where we have used the shorthand notation P(x|xy) for P(x/{x, y}), etc.
Introduce the notatiom, p = P{x|xy) = P(v|vw) = 1 - P(wlvw) = Bl/(Bl + 8,035
q = P(xlxv) = P(y|yw) = 1 - P(wlyw) = a}/(aljxé); and r = P(xlxw) =
011+Bl)/611+61ﬂ32+ﬁ2). By the conditions of the theorem, q > p. Furthermore, it

is easy to show q> r> p.
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Using our notation, P(xi'}.*) = q{pq * r(1-q)], P(xiB,) = plpg + r{l~p)1,
and, by Lemma 1, P(x|/T) = pq. Rearranging terms yields P(x]/A,) = pq + q(1-q)(r-p)
and P(x|B,) = pq + p(l-p)(r-q). Thus, since {r-p) > 0, P(x{A,) > pqg = P{x{T) and since
(r-q) < 0, P(xEB*} < pq = P(x|T). This completes the proof of part (1). We show
the other conditions similarly. For example, P(yﬁﬁ\*) = q(1-p) + q(l-¢X{t = (1-p)] >

q(1-p) = P(y|T) where t = (al+52)/(alﬁ12+81+62).

Regsult 2.1 (Entropy): According to the conditions of Result 2, performing the
the easy comparisons first decreases entropy and performing the difficult comparisons

first increases entropy. That is: H(A) < H(T) < H(RH).

Proof. It is sufficient to show that (3H/3A) < 0 where A is some function with
the properties apx/SA > 0,3 py/aA > 0,3 pvfaz’x < 0, apw/az\ < 0, and

m= . : B =
Py 2.> B> P where p_ P(x|A,), ete. Using this notation, H@)

-pxlnpx -pylnpy _Pvlnpv -pwlnpw. Using the chain rule for differentiation yields

g _ -lap dp  ~lmp 3p  ~imp  23p -lup 3p,

3A 3 A 3A 5A 3A
Where we have used 3 (px + py + Py 4 pw)/BA = 0,

Recognizing - p /AA =3 (px + P, + p,)/3A and substituting ylelds:

e () s a7 Ty - af) P
3A Py A P, A P, 33

Finally, by inspection we see that all terms are negative.

Result 2.2 (Bottom—up Dissimilar Agendas): For the dissimilar grouping agenda,
Cx» on a 2 x 2 factorial structure with P(x|T) > P(yiT) > p(v|T) > P(w|T),
and al/hl'btz) > Bl/(81+82)’
| .
(a) 2(x|g) > P(x|T) lffaf12> BlBZ

(b) P(x]a,) > P(x|g,) > P(xiB,).
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Proof. We continue with the notation of result 2., Let s = P(y|vy) =
(o +8,)/ (o (#8140, +8,) = 8, where wloga +8;+u,+8, = 1. Then according

to the definitiom of bottom~up agendas,

Pxle,) = 2(x{xw){ (P(x|xy)Ply|yv) + P(x|xv)P(viyv)]

or P(x|C) = rips + q(1-s)]

Thus, P(x|@,) > P(x|T) if

3 o a 3
Rl e AR
172 G (%12 1772

which after much algebra reduces to,

appla By —ay8) > 8,8,@,8, ~a,8,)

Finally, since al/leﬁzz) > Bl/(ﬁl+62), we have o ;B8, ~a,8; > 0, hence under
the conditions of the theorem, P(x|C,) > P(x|T) iff @@, > 8,8,. Note that if
Bl/(81+82) > al/Qxlﬁxz), the appropriate condition is 8.8, > @

1727 @2
(Part b.) To show P(x|a,) > P(x|g,) we must show qlpg + r(l-q)] > rips + q(1-s)]
where p, q, r, and s are defined above. After much algebra, this condition

i i + « W
reduces to a 8, which 1s true since C‘]_/(“fu 2) > 81/(61 82) e show

182> %5
P(x|€,) > P(x[B,) by symmetry.

Result 3 (Shared objects): For a 2 x 2 factorial structure with the first
comparison made with respect to al_and LPY and for @y > %y shared aspects in
hierarchical processing, i.e., HEM(®), enhance those objects which containg,

and hurt those objects which contain.al; The effect increases as the importance of

the shared objects increases, i.e., as @ increases.

Proof. 3By definitiom

p(xlT) = @1 ‘31)+ 51.( %y )= xRy
B,*8, aytey ) oy, )(8,+8,)

P(xla) -( 8y ) (“1 +0 (8,+3,)
Bl+l32 a oLt 20 (531+r32)




First we recognize that P(x{T) = P(x|A,) for © = 0. Next, taking derivatives

of P(x|A,) yields:
3 (alﬂfzefs) B - 2B(al+e¢3)

3P = *1
| T 2
(o L 2+28f3 )

where B = (Bl+82). After some algebra, this condition reduces to

%% = {(constant) . 612"01) (A4)
where the constant is positive. Thus fortxz < al} %§'< 0, hence
P(x|A*,8>0) < P(x[A*,8=0) = P(x|T).
If we reverse Bl and Bz we see the same result holds for y' = ﬁxlfﬁz}' If we
reverse o, and a, we have the results fof v' = {az,Bl} and w' = {éz,ﬁz} hecause

the derivative is now positive. Because A4 is negative for ©® > 0, we have ghown

also the last statement that the effect increases as 6 increases.
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