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Of Mice and Academics:  
Examining the Effect of Openness on Innovation†

By Fiona Murray, Philippe Aghion, Mathias Dewatripont, 
Julian Kolev, and Scott Stern*

This paper argues that openness, by lowering costs to access existing 
research, can enhance both early and late stage innovation through 
greater exploration of novel research directions. We examine a natu-
ral experiment in openness: late-1990s NIH agreements that reduced 
academics’ access costs regarding certain genetically engineered 
mice. Implementing difference-in-differences estimators, we find 
that increased openness encourages entry by new researchers and 
exploration of more diverse research paths, and does not reduce the 
creation of new genetically engineered mice. Our findings highlight 
a neglected cost of strong intellectual property restrictions: lower 
levels of exploration leading to reduced diversity of research output. 
(JEL I23, O31, O33, O34)

Over the past three decades, there has been a significant increase in the scope of 
formal intellectual property (IP) rights, such as patents, over scientific knowl-

edge traditionally maintained in the public domain (Mowery et al. 2001; Murray 
2002; Heller 2008). This dramatic expansion of IP rights for early-stage research 
tools has spurred a wide-ranging policy debate, with particular attention paid to the 
impact that IP plays in shaping both fundamental scientific advances and the incen-
tives for follow-on research (Merges and Nelson 1990; Gallini and Scotchmer 2002).

The impact of IP rights on the rate and direction of scientific research is subtle. 
When strong and broad IP rights are available in a sequential-innovation setting, 
early-stage researchers can capture the value of their innovation by imposing access 
fees, thus enhancing the incentives for early-stage research but imposing a tax on 
follow-on research activities (Arrow 1962, Scotchmer 1991). In its simplest form, 
this perspective focuses attention on the trade-off between enhancing incentives for 
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development of existing innovations via follow-on research (achieved by relaxing 
IP protection), and providing incentives for the creation of new early-stage research 
(achieved through tighter IP protection).

While this trade-off is important, it neglects the distinctive nature of cumulative 
discovery within the academic research community. Building on an emerging body 
of research in the new economics of science (Dasgupta and David 1994; Stern 2004), 
Aghion, Dewatripont, and Stein (2008, henceforth ADS) emphasize the role of 
intellectual freedom: granting control rights to allow researchers to select their own 
research agenda. A control-rights approach focuses attention on the role of explo-
ration: scientific discoveries are not only sequential, but also multi-purpose,1 and 
new follow-on research directions can be discovered when scientists freely explore 
the potential applications of existing research. In an “open” research environment, 
researchers have low-cost and independent access to prior discoveries and research 
tools. Such an environment encourages not only direct (perhaps commercially ori-
ented) exploitation by follow-on researchers, but also the exploration of new research 
directions and entry by researchers who are new to an emerging research area.

The main prediction analyzed in this paper is that in a research setting charac-
terized by a high level of intellectual freedom, greater openness will not simply 
increase the level of research output, but will also shift the composition of follow-on 
research toward more diverse and exploratory projects. We evaluate this idea in a 
very distinctive research setting: the invention, development, and application of 
genetically engineered (transgenic) mice by academic scientists (mainly biologists) 
in the period from 1980 to 2010. While mice might seem to be a niche research tool, 
the invention of methods to precisely engineer mice to exhibit particular character-
istics (e.g., to be predisposed to a specific disease) enabled scientists to dramatically 
expand their ability to explore the biological basis of disease or evaluate the impact 
of different drugs. Scientists developed three complementary but distinct methods 
for mouse engineering, known as the Onco, Cre-lox, and Knock-out technologies. 
As emphasized by a leading researcher, “… at the end of 1980, in a period of a few 
months, an entirely new era in mouse genetics began, with the creation of the first 
transgenic mice… What ensued was an explosion of knowledge when a myriad of 
new biological and molecular insights appeared over the following years” (Paigen 
2003, as quoted in Murray 2010). The new tools were used to develop a wide range 
of specialized research mice, which in turn led to a large body of both basic and 
applied follow-on research. It was no surprise that the developers of one of the 
methods—the Knock-out technology—ultimately received the Nobel Prize in 2007.

Within this setting, we evaluate the impact of openness on innovation by exploit-
ing a natural experiment from the late 1990s that affected researchers seeking to 
access genetically engineered research mice created using two of the three tech-
nologies mentioned above (Cre-lox and Onco). Specifically, in 1998 and 1999, the 
National Institutes of Health negotiated two Memoranda of Understanding with 
DuPont that granted academic researchers low-cost, royalty-free, and independent 
access to both the use of DuPont’s methods and the transgenic mice created with 

1 These multipurpose discoveries often combine potential commercial application with a simultaneous contribu-
tion to fundamental scientific knowledge, placing them in “Pasteur’s Quadrant” of scientific research (Stokes 1997). 
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them. These agreements created a simple and standardized one-page contract for 
gaining access to the mice, and facilitated their availability through the Jackson 
Laboratory, the world’s largest nonprofit research mice repository. The unantici-
pated agreements between the NIH and DuPont constituted a clear openness shock 
for the mouse genetics research community: the research tools covered by the 
patents—hundreds of varieties of Cre-lox and Onco mice developed in the early 
1990s—shifted abruptly from a regime of high access costs to one where mice were 
readily available (at essentially marginal cost) to the academic research community.

Our empirical approach takes advantage of several key aspects of these NIH agree-
ments and the nature of mouse genetics research to develop a  difference-in-differences 
estimate of the impact of increased openness on both the level and nature of 
 follow-on research. First, each genetically engineered mouse is associated with a 
journal article that describes its initial development; we refer to these linked pub-
lications as “mouse-articles.” We are able to construct a treatment sample based on 
 mouse-articles affected by the NIH agreements and a control sample of  mouse-articles 
unaffected by the agreements (composed of mice that were created using two alter-
native methods—“Knock-out” or “Spontaneous”).2 Second, the precise timing and 
scope of the NIH agreements were unanticipated by the mouse genetics community. 
In effect, there was a sudden and permanent reduction in access costs associated 
with the mice in our treatment sample, with no change in access costs for our con-
trol sample.3 Finally, we take advantage of detailed bibliometric data for follow-on  
citations to the mouse-articles to characterize how the openness shock changed the 
nature of subsequent research along a number of important margins.

In implementing our empirical analysis, we study the citations to a sample of 
more than 2,000 mouse-articles; approximately 10 percent of these are associ-
ated with the Cre-lox and Onco technologies, and so were impacted by the shift 
in openness that resulted from the NIH agreements. By comparing citations to 
the mouse-articles before and after the agreement (and comparing them to the 
evolution of citations in the control sample), we are able to isolate the causal 
impact of a shift in access costs on the level and nature of research. In addition 
to examining whether there is a net increase or decrease in the level of citations, 
the bulk of our analysis examines how the composition of citations differs after 
the openness shock. Specifically, we construct measures capturing whether the 
research community using a particular mouse in any given year is composed of 
new authors joining the community (e.g., the number of new authors citing the 
mouse-article), whether a particular mouse is generating new and previously 

2 While the NIH agreements we study had no direct impact on our control group, certain aspects of our results, 
such as the movement of researchers into and out of research using specific mouse-articles, bring up the possibility 
of substitution from our control group to our treatment group, potentially leading to a double counting of impact in 
our difference-in-differences framework. We perform a number of robustness tests tracking the precise movements 
of researchers within our sample, and find that substitution patterns between different mouse technologies are small 
compared to our measured treatment effects. 

3 Our natural experiment involves the shift of some mouse-articles from a high-access-cost regime to a low 
access-cost regime, and the control group is in the low-access-cost regime throughout the sample. Though not an 
ideal counterfactual (we would have preferred to observe some mouse-article remain in the high-access-cost regime 
throughout the sample), we are able to directly test for the validity of our control group, and find no evidence of dif-
ferential trends between our treatment and control groups in the pre-shock period for any of our dependent variables 
(see Section II for a discussion, and Table 7). 
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unexplored directions of research (e.g., whether the citations include keywords 
that had never before been linked to a particular mouse-article), and whether that 
follow-on research is published in journals that are linked to more basic or more 
applied research. Finally, we directly examine the impact of the NIH agreements 
on the creation of new mouse-articles. While the reduction in access costs paid 
to early-stage researchers would normally decrease the incentives to create new 
mice and publish their associated mouse-articles, a setting where free exploration 
is central to the production of scientific knowledge would be consistent with a 
neutral or positive effect of increased openness on mouse creation.

Our results are striking. The NIH agreements are not simply associated with a 
uniform increase in the level of follow-on research, as expected under the classi-
cal tension between early- and late-stage IP rights.4 Analyzing the composition of 
follow-on research, we find that the bulk of these increased citations are associ-
ated with research produced by “new” researchers and institutions. Specifically, the 
boost in citations to a given mouse-article in the post-NIH-agreement period comes 
from researchers that had not cited that mouse-article prior to the NIH agreement. In 
addition, the NIH agreements resulted in a significant increase in the diversity of fol-
low-on research: there is a decisive increase in the diversity of the journals in which 
mouse-articles in the treatment group are cited, and in the number of previously 
unused “key words” describing the contributions of the citing research. Intriguingly, 
our data suggest that the NIH agreements are not associated with a reduction in the 
creation of new mouse-articles (i.e., the use of the Cre-lox and Onco technologies 
to develop new mice); instead, the development of new genetically engineered mice 
either remained the same or increased after the agreements. Taken together, these 
findings are consistent with the view that exploration is a central component of 
academic innovation. In light of these results, we suggest that the classical tension 
between early- and  late-stage research incentives does not capture the full range of 
factors that determine the outputs of academic innovation, and propose that open-
ness and exploration are also primary drivers of the research process.

The paper is organized as follows. Section I motivates the analysis by elaborating 
on the effects of openness on scientific knowledge production. Section II describes 
the experiment we use to explore the effects of increased openness on the level 
and composition of research flows. Section III outlines our identification strategy. 
Section IV presents the data and summary statistics. Section V presents the empiri-
cal results, and Section VI concludes.

4 As we discuss in Section IIA, our qualitative examination of this scientific community suggests that the chang-
ing IP rights had little effect on early-stage researchers seeking to develop novel methods to engineer mice them-
selves. From the start of this revolution in molecular biology, scientists involved in developing new techniques were 
driven more by their potential to develop powerful new tools and enable diverse follow-on research than by the 
direct rewards of intellectual property. Further, in this case, patentability itself was a surprise—at the time of the 
development of the three mouse engineering technologies, the researchers did not anticipate that mice were poten-
tially patentable. Indeed, the patent that was ultimately granted on the Onco-Mouse was the first patent granted on 
a genetically engineered mammal. 
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I. The Impact of Openness on Scientific Knowledge Production

The primary focus of this paper is on how the degree of openness associated with 
scientific research tools impacts the level and nature of research using those tools. 
Our theoretical analysis combines the basic tradeoffs of IP policy in Green and 
Scotchmer (1995) with the analysis of freedom and exploration in ADS (2008), and 
develops novel predictions for the role of openness in scientific research. Green and 
Scotchmer view early-stage research as providing a set of tools that serve as inputs 
to later-stage work. Under a regime of strict IP rights, upstream tool developers 
are tool-specific monopolists, and so are able to impose significant access charges 
when a specific research tool is required for a follow-on research project. The nat-
ural trade-off in this environment is between providing incentives for tool creation 
through strong and long-lasting IP rights, and facilitating later-stage development 
by relaxing IP rights and providing low-cost access to existing tools. As long as IP 
rights holders cannot engage in perfect price discrimination with potential follow-on 
researchers (e.g., because of asymmetric information), a regime of strict IP rights 
for upstream tools will be associated with higher prices and lower quantities relative 
to the social optimum. In this framework, increased openness will (in equilibrium) 
decrease the rate of tool creation, while increasing the amount of follow-on research 
generated by each tool.5

However, as emphasized in ADS (2008), this linear view of innovation neglects 
two fundamental aspects of the scientific research process: the potential for mul-
tipurpose discoveries, and the role of researcher freedom, or control rights, in the 
innovation process. When considering discoveries that may have multiple follow-on 
applications, a nonlinear approach allows for an analysis of the heterogeneity among 
these follow-on research paths. Further, when there are multiple paths of innovation 
available, the level of researcher freedom becomes a key determinant of innovative 
output, even as it is endogenously determined within the structure of research orga-
nizations (Stern 2004; ADS 2008).

Building on the above discussion, our basic idea is that openness, by making it 
easier for a researcher to access others’ ideas, gives researchers more incentive to 
start new and speculative research lines.6 It does so by allowing other researchers 
to continue working on these lines, thereby increasing the probability that a new 
line will realize its full potential. In the online Appendix, we extend ADS (2008) to 
develop a simple model of how openness and freedom in research interact with one 
another.7 We model research as a multistage process where each stage requires a 
researcher, and the ultimate stage leads to a commercializable output. The researcher 

5 For the full details of this theoretical framework, see Scotchmer (1996; 2004). This model of innovation has 
found support in empirical studies such as Furman and Stern (2011) and Williams (2013). 

6 For more background, Merton (1973), Dasgupta and David (1994), and David (2003) offer rich and compre-
hensive discussions of the role of openness and freedom in the context of Open Science. 

7 The formulation in the online Appendix is one of many that can yield broadly similar predictions. It is meant 
to offer a close connection to our empirical setting while also providing a useful perspective into the more general 
phenomenon of the impact of openness on innovation. The original ADS model focuses on the differences between 
academia and the private sector, with the former endogenously offering a higher level of freedom to its researchers. 
While this paper focuses on the impact of openness within the academic research community, we also explore the 
role of private sector innovation in mouse genomics when considering patent filings in our related work, Aghion 
et al. (2010). 
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is employed by a manager who decides how much effort to devote to monitoring the 
research agenda.8 The lower the probability of monitoring, the higher the research-
er’s freedom. In each stage on the line, the researcher can choose between a practical 
strategy that leads to the next stage on the research line with some positive proba-
bility, and an alternative strategy that does not induce progress on that research line 
but yet may be what makes the researcher happier (and which may also lead to the 
creation of a new research line). The key insight of the model is that monitoring will 
be weaker in earlier stages in a research line than in later stages: the intuition being 
that the benefit of focused research increases as one moves toward later stages on the 
line and closer to its terminal payoff.

By developing a framework of the research process that is both sequential and 
multipurpose, this model generates predictions on the impact of an increase in open-
ness on the flow and nature of innovation.9

First, openness directly lowers the cost of accessing the ideas of others, allowing 
free researchers to improve upon them when the original inventor lacks the expertise 
or desire to do so. Openness therefore increases the pool of contributing researchers 
for a given research line.

Second, through this larger pool of potential contributors, openness allows for 
better matching between researchers and projects. This increases the likelihood that 
any given stage of the project will succeed, particularly if it requires a different field 
of expertise from the previous stage. Because this effect is cumulative, its effect is 
strongest on projects that are multiple stages from producing their terminal output. 
Thus, increased openness will favor earlier-stage research and long-horizon projects.

Third, openness will be particularly important for more exploratory research lines 
that are characterized by a branching structure, where value is dispersed across a 
range of newly-generated research directions. In these contexts, access costs are 
likely to be incurred for every branch in addition to every stage, making exploratory 
research lines differentially more sensitive to the level of openness.10 Thus, when a 
single discovery induces multiple follow-on research paths, a lack of openness will 
be most detrimental to the most speculative paths, i.e., those that involve previously 
unexplored research directions.

In addition to offering these new predictions, the above approach also implies a 
mitigation of the usual tradeoff in IP rights between the developers and the users 
of scientific tools. Specifically, because increased openness facilitates exploration, 
it can lead to an expanded set of applications for IP rights holders of existing inno-
vations. While the lower access costs might decrease the IP holder’s revenue in 
the short run, the long-run expansion of possible (commercial) applications works 
to counteract this decline. This countervailing effect is stronger the more freedom 
researchers enjoy, i.e, at earlier stages of the research process where the potential 

8 For an alternative perspective based on the decision to publish or patent a discovery, and an empirical investi-
gation of the role of organizational forms in genetic research, see Moon (2011). 

9 See the online Appendix for formal derivations of these predictions, based on our extension of the con-
trol-rights approach developed in ADS (2008). 

10 Indeed, in the edge case where each new research direction can lead to yet more branching, total access costs 
rise exponentially, rather than linearly, with the distance to the terminal output. 
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for discovery of new applications is greatest.11 In contrast to the predictions from 
traditional models, our analysis suggests that a policy of increased openness need 
not reduce the rate of innovation by the researchers facing reduced IP rights.12

As we move toward testing the above predictions, it is useful to state the relevant 
null hypothesis. Under the linear model, openness is expected to result in a pro-
portionate increase in all types of follow-on research activities. Since all types of 
research are equally likely to depend on a given research tool, they would experience 
the same reduction in cost after an openness shock. Consequently, the linear model 
implies that there would be no systematic differences in the impact of openness 
across different types of follow-on applications. Specifically, the null hypothesis 
expects no difference between the output of new and old researchers, no difference 
between short-term and long-term research directions, and no difference between 
innovations in established fields and those exploring new research directions.

In contrast to the null hypotheses above, we predict that an increase in openness, 
by reducing the costs of accessing key research inputs, will: (i) widen the potential 
pool of researchers and institutions conducting follow-on work on any given research 
idea; (ii) favor long-horizon research lines, which require significant development 
before reaching the private sector; and (iii) increase the likelihood that researchers 
operating under high levels of freedom (e.g., academics) will engage in speculative 
exploration that broadens the diversity of research directions being pursued. Finally, 
because it expands the range of potential follow-on research applications, increased 
openness need not reduce the rate of innovation by early-stage researchers.

When considering the above predictions, it is worth noting that under a model 
where innovation is both sequential and multi-purpose, an increase in openness will 
have an impact that goes beyond a temporary one-off effect. Its initial effect is an 
increase in research that advances existing lines to the next stage of their progres-
sion, but its impact will likely persist because the development and exploration of 
existing lines can lead to further discoveries of new research directions. Thus, there 
is a positive probability of a long-term flow of new research lines that continue long 
after the lines covered by the original openness shock have ended.

The remainder of this paper examines the above predictions in the context of a 
specific natural experiment: the change in openness resulting from NIH agreements 
covering genetically engineered mice, which took effect in the late 1990s. In the 
following section, we elaborate on the details of this empirical setting.

11 While it would be relatively difficult to increase the payoffs to a given IP holder by uniformly lowering the 
cost of access for all parties interested in using the technology, the benefit of exploration is greatly amplified if an 
IP holder can lower access costs for academic follow-on researchers while maintaining high access costs for com-
mercial applications. If differential pricing is not possible, the discovery of early-stage research inputs could also 
be rewarded through direct public subsidies, or through public buy-outs of (private) patents as in Kremer (1998).

12 Bessen and Maskin (2009) highlight a closely related effect in the context of the software industry: “if a 
patent holder is not as well-informed about a rival’s potential future profits as the rival is himself, she may have 
difficulty setting a mutually profitable license fee, and so... licensing may fail, thereby jeopardizing subsequent 
innovation.” While a detailed analysis of the software industry is beyond the scope of this paper, we believe this is 
an important theoretical insight, and that there are important commonalities between these two different settings 
that are worthy of future exploration. 
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II. Empirical Setting: Shifts in the Openness of Genetically Engineered Mice

This section offers an overview of our empirical context and, in particular, the 
natural experiments that significantly shifted the level of openness for two broad 
categories of genetically engineered mice.13 Mice play a central role in the study 
of cancer and other human diseases due to their genetic likeness to humans, with 
whom they share 99 percent of their genes.14 Throughout the twentieth century, sci-
entists in mouse genetics relied on spontaneous mutations for their disease studies: 
researchers bred mice that naturally exhibited particular disease-linked symptoms 
or behaviors.15 In this line of research, scientists require significant numbers of live 
mice to ensure sufficient sample sizes for their experiments, e.g., when studying 
a given cancer’s sensitivity and resistance to chemotherapy, as a function of the 
particular oncogene(s) that brought about the disease.16 To facilitate their efforts, 
the research community developed open-access institutions, notably the Jackson 
Laboratory (a mouse repository in Bar Harbor, Maine) to classify, breed, and dis-
tribute specialized research mice to the academic community (Rader 2004).

In the early 1980s, advances in molecular biology and in the ability to manipulate 
embryonic stem cells allowed researchers to develop a set of systematic and pre-
cise methods for engineering specialized mice as research tools, greatly expanding 
the application of research mice in life sciences research.17 Three breakthroughs 
were particularly important. First, with partial funding from DuPont Corporation, 
Professor Phillip Leder at Harvard University developed the “OncoMouse” method 
in June of 1984 (Stewart, Pattengale, and Leder 1984), which provided a means 
for inserting genes into an embryo, thereby making mice susceptible to particular 
forms of cancer and other diseases. Second, in a discovery that was subsequently 
awarded the 2007 Nobel Prize in Medicine, Mario Capecchi of the University of 
Utah and his collaborators developed the Knock-out technology (Mansour, Thomas, 
and Capecchi 1988); instead of insertion, this method enabled researchers to delete 
specific genes, with the first viable mice appearing in January of 1989 (Thompson 
et al. 1989). Finally, researchers in the life sciences division of DuPont, including 
Brian Sauer, completed the development of the Cre-lox technology in July of 1992 
(Lakso et al. 1992); this method allowed for precise cutting and pasting that turns 
off genes in specific tissues or organs. In practical terms, these advances allowed 
researchers to develop three new types of research mice: Knock-out, Cre-lox, and 

13 Murray (2010) provides a detailed overview of the mouse genetics revolution and the role of intellectual 
property and openness within the mouse genetics research community. See also Rader (2004). 

14 See Rosenthal and Brown (2007) and Simmons (2008) for a full discussion of mouse models of human 
disease. 

15 Given the value of such mutations, researchers also developed techniques to significantly increase the rate 
of mutation of research mice, such as exposing pregnant mice to high levels of radiation (Murray 2007 and 2010). 

16 As discussed in Rader (2004), most experiments require several dozen to over 100 mice, and typical research 
labs have mouse populations in the thousands at any given time, covering multiple mouse strains. 

17 These methods of mouse engineering are complex and costly. To create a mouse with particular genes inserted 
within a mouse genome, scientists must first inject foreign DNA into mouse eggs, transplant the eggs into female 
mice, and, if successful, monitor and breed the incorporation of the genes into the offspring. During our sample 
period, the development of a mouse line from scratch likely involved at least 18 months of laboratory research and 
a significant investment of time and attention by a principal investigator (Rader 2004; Murray 2010). 
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Onco mice, which, along with the previously available spontaneous mice, could 
serve as critical scientific research inputs.

A. Intellectual Property in the mouse Genetics revolution

The revolution in mouse genetics coincided with two important shifts in the 
role of IP rights in life sciences research. In 1980, the Supreme Court decision in 
Diamond v. chakrabarty established the patentability of genetically engineered 
organisms, and the Bayh-Dole Act affirmatively allowed universities to seek patents 
over federally funded research starting in December of 1980.18 While many observ-
ers took universities’ growing patent portfolios as an indicator of their evolving role 
as engines of innovation (Henderson, Jaffe, and Trajtenberg 1998), some argued 
that strong IP rights could lead to rent-seeking and undermine research productiv-
ity (Heller and Eisenberg 1998). This debate was particularly salient for research-
ers within the mouse genetics revolution. Each of the three main new technologies 
(Knock-out, Onco, and Cre-lox) received a relatively broad patent.19 In the case of 
Knock-out mice, the University of Utah received a patent in 1987 but did not place 
strict IP restrictions on their use by follow-on researchers. Instead, Knock-out mice 
were made available at relatively low cost through the Jackson Laboratory.

Before proceeding we should note that for mouse genetics researchers, the poten-
tial to patent the novel mouse genetics methods (and thus control the mice produced 
with them) does not seem to be the key incentive in the development of any of the 
three technologies. First, most of the research was initiated prior to the Bayh-Dole 
Act and was therefore started in a period before academic researchers considered 
the patentability of their inventions. Second, while Diamond v. chakrabarty upheld 
patents on genetically engineered organisms, none of the research scientists con-
sidered mice (mammalian organisms rather than the e. Coli bacteria of the original 
case) to be patentable subject matter at the time they were conducting the original 
research. Indeed, the patent that was ultimately granted on the OncoMouse was 
the first patent granted on a genetically engineered mammal. Third, all the scien-
tists involved have described the powerful scientific incentives that motivated their 
research. They were in pursuit of new genetic engineering methods that could render 
the simple mouse a more powerful research tool, and make possible a wide range 
of important new experiments (Murray 2010). This was true for the development of 
the Knock-out technology by Capecchi, who had received partial funding from the 
Cystic Fibrosis Foundation as well as the NIH. It was also the case for Leder and his 
funders (DuPont), as evinced by the lack of specific direction imposed in DuPont’s 
funding arrangement and by Leder’s lack of involvement in patenting decisions 
related to the Onco technology.20 For the Cre-lox technology, Sauer initiated the 
work on its development while still at the National Cancer Institute. Thus, all of the 

18 These legal and policy shifts reflected, in part, increasing appreciation that certain types of academic research 
were increasingly dual in nature: fundamental scientific discoveries that could simultaneously have a high degree of 
commercial utility (Murray and Stern 2007). 

19 Knock-out mice were covered under US Patent 4,687,737, Onco mice under US Patent 4,736,866, and Cre-
lox mice under US Patent 4,959,317. 

20 See Murray (2010) for a more thorough analysis of these issues. 



VOL. 8 NO. 1 221Murray et al.: Of Mice and acadeMics

genetic engineering methods in our sample were developed in the absence of any 
incentives offered by the possibility of receiving IP rights.

While the development of all three of the new techniques was driven primarily by 
the potential to develop powerful new tools and enable diverse follow-on research, 
the patents that were eventually granted over the Onco and Cre-lox technologies 
proved to be much more controversial than the patent over Knock-out mice (Merges 
and Nelson 1990). As a result of their partial funding of Harvard’s OncoMouse 
discoveries and their internal development of Cre-lox technology, DuPont gained 
exclusive control over patents for these technologies. In contrast to the University of 
Utah, DuPont chose to exercise strict control over the distribution and use of mice 
that exploited the techniques covered by their patent portfolio.21 During the early 
1990s, researchers (and their institutions) were obliged to obtain a license from 
DuPont when they sought to use an Onco or Cre-lox mouse. The detailed licensing 
agreement required annual disclosures to DuPont regarding experimental progress, 
limits on informal mouse exchange among academic researchers, and reach-through 
rights allowing DuPont to automatically receive licensing revenue from any com-
mercial applications developed using either Cre-lox or Onco technology.

These requirements—amounting to very high access costs for follow-on research-
ers—caused widespread discontent within the academic community.22 There were 
a number of attempts to subvert or blunt the impact of the DuPont licensing regime: 
notably, in 1992, Dr. Ken Paigan, then-director of the Jackson Laboratory, announced 
he would make Onco mice openly available without a license, directly contravening 
DuPont’s IP rights. While some researchers took advantage of informal sharing or 
chose to access Onco mice from the Jackson Laboratory (opening themselves to 
a potential infringement suit by DuPont), most researchers (and their institutions) 
were wary of the legal repercussions that could arise from using these mice. In the 
case of Cre-lox mice, prior to 1998, researchers had no means of access through 
the Jackson Laboratory or any other open-access depository: DuPont maintained a 
near-monopoly on their distribution.

Thus, by the mid-1990s, researchers seeking to use a particular genetically mod-
ified mouse faced one of several access-cost regimes. If the follow-on research 
required a Spontaneous and Knock-out mouse, it would generally be directly avail-
able from the Jackson Laboratory or another depository at relatively low cost.23 
If the research required an Onco mouse, the mouse might be available informally 

21 It is worth noting that DuPont targeted only follow-on researchers seeking to use mice created using the tech-
niques it had patented. It made no significant attempts to restrict the creation of new mouse strains using these tech-
niques by early stage researchers, seeking only to ensure that all new mice were subject to the same strict control 
in the context of follow-on work. Though DuPont’s enforcement strategy was geared toward IP rights over down-
stream applications, even early stage projects had the potential to eventually lead to commercial outputs; because of 
this, mouse researchers expressed significant concern about the uncertain scope of DuPont’s potential enforcement 
strategy and claimed that they had fewer incentives to use Onco and Cre-lox mice as a consequence (Murray 2010). 

22 DuPont’s practices were seen as “an enormous obstacle to free and open distribution of information and 
materials… it was a whole new way of doing science… it really affected the way the mouse research community 
works” (Murray 2010). 

23 In addition to the unenforced Utah patent on knock-out technology, a small number of additional patents were 
granted over specialized knock-out mice. However, the intellectual property restrictions associated with these mice 
seem to have been negligible; further, their openness was not directly influenced by the NIH agreements we exploit 
in our empirical work. 
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through the researcher’s peer-to-peer network or through the Jackson Laboratory. 
However, to use such a mouse was in direct contravention of DuPont’s licensing 
requirements, and the risk of litigation served to increase the effective cost of access 
for follow-on researchers. If a Cre-lox mouse was needed, it might be available 
through informal exchanges among colleagues, but these too were beset by high 
access costs: Cre-lox developers invested considerable time and resources in the 
creation of the mouse, and often required co-authorship (or other types of nonmon-
etary payment) in exchange for access. In addition, the exchange of such mice took 
place in the shadow of potential infringement suits by DuPont, as well as contra-
vening the official policy rules of most universities.24 It was of course possible to 
access Cre-lox and Onco mice by signing DuPont’s licensing agreement. However, 
relatively few institutions or researchers did so prior to the NIH agreements of the 
late 1990s. Finally, it was possible for research teams to develop a new mouse within 
their laboratory as part of the research process. This approach could delay a project 
by at least 18 to 24 months, require significant resources (e.g., a full-time post-doc), 
involve investment in specialized mouse engineering skills, and, in any case, did not 
eliminate the risk of litigation based on infringement of the DuPont patent portfolio.

B. The Openness Shocks on cre-lox and Onco mice

The degree of openness associated with Cre-lox and Onco mice shifted dra-
matically following their respective NIH agreements in 1998 and 1999.25 In the 
wake of a nearly decade-long campaign of pressure from the academic commu-
nity, NIH Director and Nobel Laureate Harold Varmus successfully negotiated 
two “Memoranda of Understanding” among DuPont, the Jackson Laboratory, and 
the NIH. These agreements greatly decreased the access costs of the genetically 
engineered mice they covered for academic researchers. The Cre-lox agreement, 
effective on July first of 1998,26 allowed the Jackson Laboratory and universities 
to distribute and share Cre-lox mice with a simple licensing process: a standardized 
one page material transfer agreement and an institution-wide license.27 In addition, 
the Jackson Laboratory announced its commitment to acquire, breed, and distrib-
ute Cre-lox mice on an open access basis. A similar agreement for Onco mice was 
reached one year later, taking effect on July first of 1999;28 notably, the impact of this 
agreement was somewhat less dramatic as the Jackson Laboratory had already been 

24 As described in Murray (2010), “The mice were fragile, and breeding lines had not been stabilized. This made 
it difficult to share in large numbers. One scientist who had managed to make Onco mice in the late 1980s recalled: 
‘I had a few requests for mice and offers of co-authorship. But I did not send them the mice…I was having to slow 
my own work down because they were breeding very poorly and so it was impossible to ship them around.’” 

25 We use the word “open” in the sense of these mice being widely accessible with clear and limited restrictions. 
The NIH agreements specified both a renouncing of the right to sue and reach-through rights to later work. It is 
useful to emphasize that, while initiated by the NIH, the terms of the agreement represented a voluntary choice on 
the part of DuPont. 

26 Full text of the Cre-lox agreement is available at: www.ott.nih.gov/sites/default/files/documents/pdfs/cre-lox.
pdf.

27 While the actual NIH agreements pertained only to those with NIH funding, in reality this meant that virtu-
ally all academic researchers had direct access to the mice. However, the agreements had no effect on collaborative 
projects between academic and industry researchers, or on purely industry-run projects. 

28 Full text of the Onco agreement is available at: www.ott.nih.gov/sites/default/files/documents/pdfs/
oncomouse.pdf.

http://www.ott.nih.gov/sites/default/files/documents/pdfs/cre-lox.pdf
http://www.ott.nih.gov/sites/default/files/documents/pdfs/cre-lox.pdf
http://www.ott.nih.gov/sites/default/files/documents/pdfs/oncomouse.pdf
http://www.ott.nih.gov/sites/default/files/documents/pdfs/oncomouse.pdf
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distributing Onco mice to researchers since 1992, albeit in violation of DuPont’s IP 
requirements.

Over a two-year period, life sciences researchers experienced a significant 
decrease in the total costs of access for Cre-lox and Onco mice, while experiencing 
no shift in these costs for Knock-out and Spontaneous mice. These increases in 
openness provide the key source of variation we exploit in our empirical analysis. 
Three features of this increase in openness are particularly salient, and deserve elab-
oration. First, though the academic community lobbied continuously for increased 
openness regarding the Onco and Cre-lox mice, there is significant evidence that the 
precise timing and scope of the two NIH agreements were largely unanticipated.29 
Given that academic lobbying efforts for easier access to these mice spanned nearly 
a decade, it is unlikely that researchers were simply shifting publication dates for 
already-performed research in anticipation of a comprehensive agreement eliminat-
ing reach-through rights. Instead, researchers deterred by the licensing restrictions 
imposed by DuPont undertook different research projects. 

The second important feature of the NIH agreements is their broad scope: they 
impacted more than 50 mice that had been developed and disclosed in the scientific 
literature using the Cre-lox technology, and more than 160 different Onco mice 
that were similarly disclosed. Importantly, these mice represented the entire popu-
lation of strains covered by DuPont’s IP rights, meaning that there was no potential 
for selection bias through the NIH targeting only the most valuable mouse strains. 
Moreover, given the general-purpose nature of DuPont’s genetic modification tech-
niques, the mice affected by the agreements were broadly applicable to a wide range 
of disease areas, covering both basic research characterizing fundamental biological 
processes and applied work assessing specific disease treatments.

The two features above allow us to effectively estimate pre- and post-NIH agree-
ment citation rates to the treated mouse-articles in our sample. The third feature of 
the openness shocks relates to the validity of our control group. Specifically, the 
mouse technologies owned by DuPont and covered by the NIH agreements were 
only part of the mouse genetics revolution described in the previous section. When 
these technologies were developed, there was no ex ante reason to expect any sin-
gle one to emerge as more or less valuable than the others. All four categories of 
mice were based on general-purpose techniques, and served as broadly applicable 
inputs for follow-on research; the most significant distinction among them was the 
different patterns of access costs before and after the NIH agreements, as described 
above. As such, we take advantage of a large sample of untreated mouse-articles 
(Knock-out and Spontaneous mice) to estimate the counterfactual citation rate that 
would have occurred if the NIH agreement has not been signed. This interpreta-
tion carries the implicit assumption that citations to both our treatment and control 
mouse-articles are subject to the same age and calendar-time dynamics. Notably, we 
make this assumption despite the fact that both Knock-out and Spontaneous mice 
were governed by low-access-cost regimes throughout our sample; therefore, we 
do not observe any low-openness mouse-articles after the calendar year of 1999 or 

29 We discuss this point in more detail in Section VB. 
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past the age of 12 years. A true counterfactual of mouse-articles that remain under 
a low-openness regime is therefore not possible. However, our analysis in Table 7 
finds strong support for the above assumption, namely, that the calendar-time and 
age dynamics of citations to mouse-articles differ only by a constant of proportional-
ity. Specifically, we test for and find no evidence of a difference in pre-shock trends 
between our treatment and control groups across any of our dependent variables.

As we outline in detail below, the mice in both our treatment and control sam-
ples were developed and disclosed during the pre-agreement period, and their use 
by follow-on researchers can be meaningfully captured by citations to the original 
mouse-articles.

III. Empirical Strategy

A. Identification Strategy

We examine the impact of a sudden reduction in access costs for genetically 
engineered mice (arising from the NIH agreements described above) on the level 
and composition of follow-on research. Building on Furman and Stern (2011), our 
approach addresses a fundamental inference problem associated with traditional 
cross-sectional approaches to the evaluation of shifts in openness and related insti-
tutional arrangements: if more open inputs are used more extensively by follow-on 
researchers, does this follow from the fact that they are open or from the fact that 
openness tends to be associated with higher quality inputs and materials? Any effec-
tive estimation strategy must disentangle the selection effect (i.e., the correlation 
between openness and overall research impact) from the direct impact of openness.

Ideally, causal identification of the impact of openness would rely on a controlled 
experiment in which different knowledge inputs (such as particular research mice) 
are randomly allocated to distinct institutional environments with varying degrees 
of openness.30 A practical route capturing the essence of such an approach takes 
advantage of institutional variations that shift key research inputs toward higher (or 
lower) levels of access costs in a way that is exogenous both to their initial produc-
tion and to their incorporation into follow-on research lines.

We implement this idea by taking advantage of the institutional changes to open-
ness negotiated by the NIH that affected some (but not all) research mice in our 
sample.31 As described in the previous section, new specialized research mice are 
disclosed through publication in scientific articles that describe their production 
and distinctive characteristics (we refer to these disclosures as mouse-articles). In 
constructing our sample, we identify mouse-articles for mice affected by the NIH 

30 See Williams (2013), which cleverly exploits a natural experiment similar to this ideal experiment that 
occurred in the context of sequencing the human genome.

31 Our approach builds on recent work applying a differences-in-differences econometric framework to analyze 
the institutional and microeconomic foundations of knowledge accumulation (Furman and Stern 2011; Murray and 
Stern 2007; Huang and Murray 2009; Rysman and Simcoe 2008). 
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 agreements (i.e., Cre-lox and Onco mouse-articles) and for mice that were unaf-
fected (i.e., Knock-Out and spontaneous mouse-articles).32

In our analysis, we trace out the scientific impact of each mouse-article over 
time through the citations to that mouse-article by follow-on research published in 
the scientific literature. While an imperfect and noisy indicator of overall impact, 
citations offer a systematic reflection of the process by which researchers acknowl-
edge how their efforts at any given research stage build on the tools and knowledge 
developed by researchers in prior stages. In the case of mouse-articles, our qualita-
tive research suggests that citations to a given mouse-article involve the use of that 
article’s specialized research mouse in a scientific experiment, and that follow-on 
researchers almost always include a citation to the original mouse-article whenever 
its associated mouse is used in their project. Our analysis benefits from the fact that 
the Cre-lox and Onco NIH agreements both occurred well after the initial develop-
ment of these technologies; thus, for each mouse-article in our sample, we are able 
to observe citations both before and after the NIH agreements. Finally, as noted 
above, the precise timing and scope of the openness shock were largely unantici-
pated. Specifically, the NIH agreement could have been reached, in principle, at any 
point in time from the early 1990s through the present. Moreover, our main control 
group—Knock-out mice—is likely to have been drawn from a population of similar 
scientific quality and importance, differing only insofar as the patent over Knock-
out technology was unenforced by the University of Utah.33

By measuring citations to Cre-lox and Onco mouse-articles before and after the 
sudden reduction in access costs, and by measuring the citations to mouse-articles 
that experienced no shift in access costs, we can identify the causal impact of the 
increase in openness stemming from the Cre-lox and Onco NIH agreements.34

B. regression Specifications

Our baseline regression takes the measure A  nnual citations  jt    as its dependent 
variable, representing the number of citations to a given mouse-article j in calendar 
year t. On the right-hand side of the regression equation, we use Post_NI  H jt    as our 
key treatment variable, equal to one for observation jt if the research stemming from 
mouse-article j was impacted by an NIH agreement in year t. We use the variable 
NIH_Windo  w jt    in the same manner to capture the period between the signing of 

32 While these different technologies differ in the precise details of the specialized genetic manipulation they 
allow, with the exception of Spontaneous mice, they are broadly similar with regard to the scope of application and 
relevance to human disease. Moreover, all three technologies were patented and could have been subject to strict 
enforcement. Spontaneous mice differ to the extent that they were not subject to patents. 

33 We find support for this view in our analysis of pre-NIH-agreement trends in Section VB and Table 7. After 
controlling for mouse-article, age, and calendar-time fixed effects, we show that prior to their respective NIH agree-
ment dates, the growth rates of citations to Cre-lox and Onco mice are statistically indistinguishable from those to 
Knock-out mice. 

34 Due to the targeted nature of our dataset, we are able to estimate the impact of changes in openness on a 
specific field of scientific research. By necessity, our results therefore reflect a partial-equilibrium effect: we cannot 
capture the impact of openness on fields outside of mouse genetics. Based on the significant start-up costs and spe-
cialized knowledge requirements of life science research, we expect general equilibrium effects to be quite small in 
the short run. However, we expect scientists to have greater research flexibility in the long run, and would need to 
account for the alternative research directions that would have been pursued under a counter-factual low-openness 
policy. 
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the NIH agreement and the point when it would have a chance to impact publica-
tion behavior.35 Using a dataset of citations to mouse-articles impacted by the NIH 
agreement and mouse-articles that were unaffected, consider the following condi-
tional fixed effects36 negative binomial37 estimator:

(1)  Annual citation s jt   

   = f  ( ε jt  ;  γ j   +  β t   +  δ t−pubyear   +   ψ 0   NIH_Windo w jt   +  ψ 1   Post_ NI H jt  )  ,

where   γ  j    is a mouse-article fixed effect (conditioned out in estimation),   β  t    is a cal-
endar-year fixed effect, and   δ  t−Pubyear    is an age fixed effect calculated from the year 
in which mouse-article j was published. In our sample, these controls represent 
2,171 mouse-article fixed effects, 22 age fixed effects, and 14 calendar-year fixed 
effects (1993–2006). Respectively, they account for the heterogeneity among the 
mouse- articles, the nonlinear evolution of citations over time elapsed from the ini-
tial publication of the mouse-article, and the potential for differences over time in 
citation rates. This specification also accounts for the incidental parameters problem 
(Hausman, Hall, and Griliches 1984), testing for the impact of the NIH agreements 
by estimating the proportional change in citation rate for mouse-articles in the treat-
ment group in response to the NIH agreement, after accounting for the impact of 
our control variables, and relative to the untreated control groups. This specification 
is therefore based on a difference-in-differences estimator, with the key identifying 
assumption being that other than the NIH agreements we focus on, there are no 
time-varying factors other than age effects, which would have a differential effect 
on our treatment group relative to our control group.38

We then turn to evaluating the impact of the increase in openness on the compo-
sition of follow-on citations. Within each calendar year, for each mouse-article, we 
tabulate citations by key characteristics into two mutually exclusive types, and esti-
mate the impact of the NIH agreement on each citation-year margin. For example, 
we predict that openness should increase the number of distinct researchers utilizing 
a given research mouse. To test this hypothesis, we estimate the differential impact of 
a shift in openness on the number of authors publishing follow-on research who have 
previously cited a particular mouse-article (  Old Authors  jt   ) relative to the number of 
researchers who have not previously cited that mouse-article (  New Authors  jt   ).

35 Consistent with our description of life science research in Section II, the window period for Cre-lox mice 
covers 1998 and 1999, and the window period for Onco mice covers 1999 and 2000. 

36 In robustness tests, we have also estimated our main specifications using both random-effects and popu-
lation-average negative binomial models. Our results across these alternative specifications remain consistent 
with the central findings we report in Section V and Tables 4, 5, and 6. In addition, we replicate Table 7 using a 
 random-effects estimator, and report findings consistent with our fixed-effects estimates in Table A1 of the online 
Appendix. 

37 In addition to the more general negative binomial specification described here, we perform robustness tests by 
replicating our core analysis using a fixed-effects maximum-likelihood Poisson estimator. The results are consistent 
with our main findings in terms of both statistical and economic magnitude, and are reported in Table A2 of the 
online Appendix. 

38 We offer support for the validity of this assumption through robustness tests in Tables 7 and 8. 
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Specifically, we jointly estimate the following two equations:39

(2)  New Author s jt    

= f  ( ε  jt,NEW   ;   γ j    +   β t    +   δ  t−pubyear  NEW    +   α   NEW  t  +    ψ  0  NEW  NIH_Windo w  jt    + ψ  1  NEW  Post_NI  H  jt  ) 

 Old Author s  jt    

 = f  ( ε  jt,OLD  ;   γ  j    +   β  t    +   δ  t−pubyear  OLD    +   ψ  0  OLD  NIH_Windo w  jt    + ψ  1  OLD  Post_ NI H  jt  )  ,

where   γ  j    is a mouse-article fixed effect,   α   NEW   parameterizes a linear calendar-time- 
trend difference between the two types of citations,   β  t    is a  calendar-year fixed 
effect, and   δ   NEW   and   δ   OLD   are mouse-article age fixed effects as in the previous 
specification.40 To evaluate whether the impact of the openness shock on follow-on  
citations is concentrated in citations by authors who had not previously cited a par-
ticular mouse-article, we test whether   Ψ  1  NEW   >   Ψ  1  OLD  . This specification includes 
several parametric restrictions, including setting the mouse-article fixed effects   γ  j    
and calendar-time fixed effects   β  t    to be equal across the two equations, and impos-
ing a linear functional form   (parameterized by  α   NEW )   on the difference in the effect 
of calendar time across the two equations. We do allow for the mouse-article age 
fixed effects to vary freely across the two equations, as the evolution of citations in 
the time elapsed since publication may differ significantly for the two citation mar-
gins (almost by construction, most citations in the first few years after publication 
will be associated with new authors).

We use a similar approach to evaluate whether a boost in citations is associated 
with (a) new versus old institutions, (b) new versus old key words, and (c) new ver-
sus old journals. Finally, we explore the research response to the openness shocks by 
comparing citations to a given mouse-article in applied versus basic journals.

Our empirical framework allows us to examine whether citations to  mouse-articles 
in the treatment and control groups have comparable ex ante growth rates prior to 
the shifts in openness. Specifically, we test this hypothesis in Table 7 by allowing for 
a linear calendar-time trend specific to the treatment group for each citation margin, 
and find no differences between our control and treatment groups in any specifica-
tion. By taking advantage of variation in publication year across the mouse-articles 
in our sample, we are able to disentangle the treatment effect of the NIH agreements 
from age- or calendar-time-based differences in the citation trends of articles in the 
treatment group. At the same time, we conjecture that the treatment effect should 
actually increase with the time elapsed from the openness shock, due to the higher 
likelihood of new research lines being created from the original mouse-articles. 

39 We implement this joint estimation of two related equations because of the added flexibility in allowing some 
aspects of the control structure to vary across the two margins (e.g., age fixed effects) while imposing a common 
control structure for broad-based effects, such as a given mouse-article’s underlying quality, as measured by its spe-
cific fixed effect. The two-equation approach allows our regressions to usefully reflect the details of the empirical 
setting in a fully transparent manner. 

40 Note that while the number of fixed effects for mouse-articles and calendar years remain unchanged at 2,171 
and 14, respectively, these specifications double the number of age fixed effects to 44, covering ages from 1 to 
22 years for both the “new” and “old” margins. 
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We therefore include a specification that separately estimates the short-term and 
long-term impacts of the NIH agreements. Lastly, we can also test for any potential 
increase in citations to the treatment group in the periods immediately preceding the 
NIH agreements, as a way to verify whether the timing of the openness shock was 
indeed unanticipated by follow-on researchers. Specifically, we explore this possi-
bility by testing for a pre-NIH treatment period in the years immediately prior to the 
signing of the NIH agreements.

IV. Data and Variables

A. Data and Sampling

The data for this study are drawn from the entire population of research mice 
catalogued by the Mouse Genome Informatics (MGI) database. MGI consists of 
over 13,000 unique mice, each of which can be linked to a publication in the sci-
entific literature describing its initial disclosure, thereby establishing a population 
of mouse-articles. Within this large population, we focus only on mouse-articles 
published between 1987 and 1998 (the date of the first NIH agreement). As outlined 
in Section II, we sample all mouse-articles for the four major genetic engineering 
technologies defined by MGI: Cre-lox (28), Onco (102), Knock-out (1895), and 
Spontaneous (146). Our sample thus includes 2,171 novel mice, each linked to a 
unique mouse-article.

We use PubMed and Thomson ISI Web of Science to collect detailed bibliometric 
information on all subsequent forward citations in academic journals through 2006. 
Each of these 432,083 citations includes information on last author, reprint author, 
institutional addresses, key words, and journal characteristics (including journal 
name, journal impact factor, and a score for basic-ness). Citations are then aggre-
gated into 22,265 citation-year observations by combining all the citations received 
by a given mouse-article in any particular year; this citation-year structure serves 
as the basis for our analysis, producing an unbalanced panel where the average 
mouse-article is tracked for just over 10 citation-years.41

To capture the composition of follow-on research, we code citation characteris-
tics into a set of mutually exclusive categorical variables. To illustrate the construc-
tion of these variables, take the case of new key words. For each citation, ISI Web of 
Science provides a series of key words (referred to as Key Words Plus). We first take 
the list of all key words in the set of citations a particular mouse-article receives in 
a given year, and remove duplicates to obtain a list of unique key words associated 
with that citation-year observation. We then categorize a given key word to be new 
if it has never been used in citations to that particular mouse-article in any prior year, 
and code as old all key words that have appeared in citations in prior years. This 

41 Note that our “youngest” mouse-articles are published in 1998; for these mouse-articles, we track cita-
tion-years from 1999 through 2006 for a total of eight years of observation. At the other extreme, approximately 
10 percent of our mouse-articles were published in 1992 or earlier; we track these for the entire length of our 
1993–2006 citation sample period, resulting in 14 years of observation. 
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construction allows us to capture changes in the research landscape over time. We 
generate four new/old categorical variables:

•	 New/Old Last Author: defined as new if the last author has never appeared 
as a last author before in a citation to the mouse-article in prior years; old 
otherwise.42

•	 New/Old Institution: defined as new if an address in the institution list has 
never appeared in an address list of citations to the mouse-article in prior years; 
old otherwise.

•	 New/Old Key Words: defined as new if a key word has never before appeared 
in the key word list of citations to the mouse-article; old otherwise.

•	 New/Old Journal: defined as new if the journal of the citation has never 
appeared before in the citations to the mouse-article; old otherwise.

We also categorize citations according to whether they are published in basic or 
applied journals.43 This allows us to evaluate whether the two openness shifts in our 
study lead to follow-on research focused primarily on applied experiments moving 
toward commercialization, or on basic experiments aimed at expanding the base of 
scientific knowledge.

The categorical measures described above reflect various ways in which open-
ness can have an impact on subsequent innovations. Using the two-equation frame-
work described in Section III, they allow us to test the hypothesis that lower access 
costs lead to more diverse lines of research, pursued by a more diverse range of 
scientists. We also investigate whether openness is associated with more basic or 
applied follow-on research.44

B. Variables and Summary Statistics

Table 1 provides variable names and definitions and Table 2 reports summary sta-
tistics. The dependent variable in our initial set of regressions is   Annual citations  jt    ,  
which measures the total number of citations received by mouse-article j in year t. 
The average of   Annual citations  jt    is 19.41 (with a minimum of 0 and maximum 
of 336), highlighting the overall importance of mouse genetics research in this 
period. We observe citation-years from 1993 through 2006; because our sample 

42 In our analysis, we focus exclusively on last authors. The conventions of research in the life sciences are such 
that the last author is both the “lab owner” and also the principal investigator, or PI (van Dijk, Manor, and Carey 
2014). This is the person who typically applies for major grants, and is the driver of the lab’s research agenda, 
while also serving as the primary academic advisor to graduate students and post-doctoral researchers in the lab. In 
addition, PIs tend to be more strongly associated with a specific field of research, and have longer research careers 
than other authors. 

43 Our Basic/Applied Journal definition is based on work by Lim (2004), who created the measure by building 
on a classification scheme developed by CHI Research, Inc. According to Lim, CHI awards each journal a score 
from zero to four. For the biomedical sciences, levels one through four correspond to clinical observation, clinical 
mix, clinical investigation, and basic science.  It is worth noting that according to this measure, multidisciplinary 
journals are classified as basic. 

44 It is worth noting that we do not examine the impact of openness on the academic/industry citation margin. 
The NIH agreements were directed specifically to public sector researchers and 97.5 percent of all citations have at 
least one of their authors affiliated with a public institution. 
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Table 1—Variables and Definitions

Variable Definition Source

mouse-article characteristics
Publication year Year in which mouse-article j is published PubMed 

Number of authors Count of the number of authors of mouse-article j PubMed 

Total citations Number of citations to mouse-article j from its publication 
date through 2006 

SCI 

citation-year characteristics
Annual citations Count of all citations to mouse-article j in year t SCI

High quality annual citations Count of citations to mouse-article j in year t where the  
journal of the citation is a top-50 journal based on impact- 
factor rankings.

ISI

Citation year Year in which citations are received SCI 

citation-year margin characteristics 
Basic citations Count of citations to mouse-article j in year t where the jour-

nal of the citation is a basic-research journal
CHIBasic

Applied citations Count of citations to mouse-article j in year t where the jour-
nal of the citation is an applied-research journal

CHIBasic

New X Count of unique values of characteristic X of citations to 
mouse-article j in year t which are “new” and have not ap-
peared in the citations to mouse-article j in prior years.

Old X Count of unique values of characteristic X of citations to 
mouse-article j in year t which are NOT “new” and have 
appeared in the citations to mouse-article j in prior years.

X = Last author Last author listed on the citation PubMed 

X = Institution Institutional addresses listed on the citation PubMed 

X = Key word Key words listed on the citation ISI

X = Journal Journal listed on the citation PubMed 

Openness shock characteristics 
Post-NIH Dummy variable equal to 1 if article j is associated with an 

openness agreement (Cre-lox, Onco) which is in effect in 
year t.

MGI

NIH-window Dummy variable equal to 1 if article j is associated with an 
openness agreement (Cre-lox, Onco) which is in its initial 
period in year t.

MGI 

mouse technology characteristics
Earliest year The publication year of the earliest mouse-article in the MGI 

database associated GM technology k.
MGI

Total mice created (1983 onward) The total number of mice listed in the MGI database, with 
mouse-articles published from 1983 onward, associated with 
GM technology k.

MGI 

mouse creation characteristics
Annual mouse creation The number of mouse-articles published in year t which 

introduce mice created using GM technology k.
MGI

New creation journals Count of unique journals publishing mouse-articles of GM 
technology k in year t, which are “new” and have not pub-
lished mouse-articles for GM technology k in prior years.

PubMed 

Old creation journals Count of unique journals publishing mouse-articles of GM 
technology k in year t, which are NOT “new” and have pub-
lished mouse-articles for GM technology k in prior years.

PubMed 
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is an unbalanced panel and includes mouse-articles published as late as 1998, the 
average of   citation year  jt    is 2001. We also create an alternative dependent variable,   
High Quality citations  jt   , with mean equal to 4.3, which captures citations published 
in a top-50 scientific journal. We then construct a series of dependent variables based 
on the key categorical margins of interest:45

•	 New Last   Authors  jt    and Old Last   Authors  jt   , with mean values equal to 11.7 and 
3.9, respectively.

45 Note that the sum of the two means for a given annual citation margin need not add up to the mean annual 
citation count. First, due to data-matching issues we cannot always identify 100 percent of citations as belonging to 
one or the other margin; this leads to a sum lower than the mean annual citation count. Second, new/old margins 
focus on the count of unique instances of the characteristic in question; for example, if there are multiple citations 
from a particular journal to a mouse-article in a given year, we only count the first such citation. This also leads to 
a sum lower than the mean annual citation count. Finally, for the counts of institutions and key words, each citation 
contains multiple entries for these fields, leading to counts higher than the mean annual citation count. For example, 
in the case of key words, the sum of the margin means is just over 120, indicating that the average citation is asso-
ciated with between six and seven key words. 

Table 2—Summary Statistics

Variable Observations Mean SD Min. Max.

mouse-article characteristics (N = 2,171 mouse-articles)
Publication year 2,171 1995.58 2.34 1987 1998
Number of authors 2,171 7.11 3.48 1 34
Total forward citations 2,171 210.8 230.4 1 2543

citation-year characteristics (N = 22,265 citation-year observations)
Citation year 22,265 2001.19 3.26 1993 2006
Annual citations 22,265 19.41 21.67 0 336
High quality annual citations 22,265 4.31 5.87 0 71

citation-year margin characteristics (N = 22,265 citation-year observations)
Basic citations 22,265 9.18 11.24 0 151
Applied citations 22,265 7.45 10.78 0 157
New last-authors 22,265 11.71 13.48 0 243
Old last-authors 22,265 3.94 5.35 0 58
New institutions 22,265 17.54 17.83 0 287
Old institutions 22,265 10.21 13.66 0 135
New key words 22,265 74.88 67.28 0 794
Old key words 22,265 55.37 61.12 0 620
New journals 22,265 7.91 7.84 0 94
Old journals 22,265 6.17 7.61 0 81

Openness agreement characteristics (N = 22,265 citation-year observations)
Post-NIH 22,265 0.036 0.187 0 1
NIH-window 22,265 0.011 0.105 0 1
Post-Cre-lox 22,265 0.009 0.093 0 1
Cre-lox-window 22,265 0.002 0.045 0 1
Post-Onco 22,265 0.027 0.164 0 1
Onco-window 22,265 0.009 0.095 0 1

mouse creation characteristics (N = 78 technology-year observations)
Annual mouse creation 78 108.19 171.59 0 875
New creation journals 78 6.99 5.81 0 24
Old creation journals 78 16.13 18.13 0 75
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•	 		New  Institutions  jt    and   Old  Institutions  jt   , with mean values equal to 17.5 and 
10.2, respectively.

•	 		New Keywords  jt    and   Old Keywords  jt   , with mean values equal to 74.9 and 55.4, 
respectively.

•	 		New  Journals  jt    and   Old  Journals  jt   , with mean values equal to 7.9 and 6.2, 
respectively.

•	 		Basic citations  jt    and   Applied citations  jt   , with mean values equal to 9.2 and 7.4, 
respectively.

Next, we define two measures that will be used to estimate the impact of the NIH 
agreements. We divide the period after the NIH agreement signing into two sub- 
periods because the sudden increase in openness would likely take time to influence 
follow-on research. Specifically, we define a window period and a treatment period 
to allow a reasonable lag (two years) for the NIH agreement to impact observed cita-
tion patterns.46 NIH_  Window  jt    (mean equal to 0.011) is a dummy variable equal to 
one for articles impacted by an NIH agreement during the year when that agreement 
was signed and during the following year (1998/1999 for Cre-lox mouse- articles, 
1999/2000 for Onco mouse-articles). Our key treatment variable,  Post_ NIH  jt    
(mean equal to 0.036), is a dummy variable equal to one for all articles impacted 
by the NIH agreements in years after the window period ended. Using the same 
approach, we also define separate treatment variables for the two NIH agreements: 
cre-lox_  Window  jt   , Post_  cre-lox  jt   , Onco_  Window  jt   , and Post_  Onco  jt   . Finally, to 
examine the short-term versus long-term impact of the NIH agreements, we also 
define a treatment variable, Post_NIH,   Short-Term  jt   , equal to one for the first three 
years after the window period for affected mouse-articles, and a separate measure, 
Post_NIH,   Long-Term  jt   , equal to one for the fourth year and onward after the end of 
the window period.

We highlight our disaggregated summary statistics by the type of mouse tech-
nology in Table 3. The most salient point to note is that compared to the overall 
sample mean of 18, the   Annual citations  jt    for Cre-lox and Onco mice are 15 and 12, 
respectively. By contrast, the Spontaneous mice in our control group have a lower 
mean of 4, and the Knock-out mice have mean   Annual citations  jt    of over 21. This is 
consistent with the assumption of comparability between the treatment and control 
groups. Moreover, the mean publication year and mean number of authors across the 
four mouse technologies are similar.

V. Results

We now turn to our estimates of the causal impact of the NIH agreements on 
 follow-on scientific research. We begin with the dimension on which much of the lit-
erature has focused: the impact of the openness shock on the overall flow of  citations 

46 Both of our NIH agreements specify a start date of July 1, in 1998 for Cre-lox and in 1999 for Onco. In prac-
tice, implementation occurred closer to the August–September timeframe for both agreements; thus, our window 
periods reflect an approximately 18-month transition period. This choice is based on a combination of anecdotal 
evidence of the usual length of time to publication for life science research and the desire to avoid the challenges of 
using a mid-year break point, in light of the different publication schedules of the various journals in our sample. 



VOL. 8 NO. 1 233Murray et al.: Of Mice and acadeMics

(Table 4). We then move to the core of our analysis, focusing on the impact of the 
NIH agreements on the composition of citations (Tables 5 to 9) and on the subse-
quent production of new research mice (Table 10). In addition to the regression 
tables, we offer a visual representation of our findings in Figures 1–4. By adopting 
a difference-in-differences approach, we are able to infer the relationship between 
openness and academic freedom. In all regression tables, we report coefficient esti-
mates and their corresponding incidence-rate ratios (IRRs). We discuss our results 
in terms of IRRs because they are easily interpreted as percentage changes rela-
tive to a baseline (i.e., the null hypothesis of no effect yields a coefficient of 1.0). 
Also, all of our specifications report block-bootstrapped standard errors clustered by 
mouse-article (MacKinnon 2002).

A. Impact of Openness on the Level of follow-On research

We begin the presentation of our results with Figure 1, which tracks the citation 
rates to the mouse-articles in our sample, aggregated by technology. Specifically, 
Figure 1 looks at citation rates averaged over all mouse-articles in each technology 
published no later than 1996. It then tracks annual citation rates for this fixed set of 
mouse-articles in an event-study format, with each technology’s citation rate tracked 
relative to the year of its openness shock, and normalized to 100 percent at year 
zero. Note that we set the shock for our control groups to 1999, to correspond to 
the larger of our two treatment groups, namely, our set of Onco mice. All four tech-
nologies experience a decline in citation rates during this period, primarily due to 
the rising age of the fixed sample of mice in each technology. However, the  Cre-lox 
and Onco openness shocks seem to mitigate this decline, particularly in the case 
of Cre-lox mice. The patterns in Figure 1 suggest that greater openness is associ-
ated with greater quantities of innovation when taking averages over our technology 

TAble 3—Summary Statistics by Mouse Technology

Mouse technology

Variable Cre-lox Onco Knock-out Spontaneous

mouse-article characteristics (N = 2,171 mouse-articles)
Number of mouse articles 28 102 1,895 146
Publication year 1996.7 1993.4 1995.8 1993.5
Number of authors 5.3 6.0 7.4 5.1
Total citations 144.4 167.8 226.3 52.7

citation-year characteristics (N = 22,265 citation-year observations)
Annual citations 14.72 12.30 21.29 3.96

mouse technology characteristics (N = 4 technologies)
Earliest year 1992 1983 1989 1915
Total mice created
 (1983 onward)

1,159 401 5,980 911

mouse creation characteristics (N = 78 technology-year observations)
Annual mouse creation 28.43 50.22 351.47 37.96
New creation journals 5.00 5.61 13.41 4.92
Old creation journals 7.29 14.78 37.77 7.25
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Table 4—Impact of Openness on Follow-On Research Flows

Dep. var. = Annual citations 
[Incidence rate ratios reported in square brackets] 

Estimated coefficients in second line
(Block bootstrapped SEs reported in parentheses)

OLS Negative binomial

(4-1) 
Baseline
model,

DV = log
Annual citations

(4-2) 
Baseline
model

(4-3) 
Baseline model 

with
treatment effect 

dynamics 

(4-4) 
Treatment

effects
by Cre-lox
and Onco

(4-5) 
Baseline model, 

citations from high 
quality journals 

onlyd

Post-NIH [1.229]***
0.206

(0.052)

[1.302]***
0.264 

(0.062)

[1.409]***
0.343 

(0.080)
Post-NIH, 
 Short-term b

[1.220]***
0.199

(0.064)
Post-NIH, 
 Long-term c

[1.429]***
0.357

(0.074)
Post-Cre-lox [1.467]***

0.383
(0.115)

Post-Onco [1.267]***
0.236

(0.060)

control variables
NIH-window a [1.132]**

0.124
(0.049)

[1.146]**
0.136

(0.065)

[1.149]**
0.139

(0.058)

— [0.954]
−0.047
(0.092)

Cre-lox-window a — — — [1.069]
0.067

(0.089)

—

Onco-window a — — — [1.188]***
0.172

(0.043)

—

Age FEs
Year FEs
Article FEs

Yes
Yes
Yes

Yes
Yes
Yes

Yes
Yes
Yes

Yes
Yes
Yes

Yes
Yes
Yes

log-likelihood — −55,919.8 −55,906.1 −55,912.4 −34,112.8

Observations 22,265 22,265 22,265 22,265 21,574

Notes: Tests of differences between coefficients:
(4-2): β(post-NIH ) – β(NIH-window):
  Estimate = 0.129;  SE = 0.033;  Pr > |z| < 0.001

(4-3): β(post-NIH, long-term) − β(post-NIH, short-term):
  Estimate = 0.158;  SE = 0.040;  Pr > |z| < 0.001
a  Window is defined as the year of the NIH agreement and the following year (Cre-lox: 1998/1999; Onco: 
1999/2000)

b  Short-term is defined as the three years following the window after the NIH agreement (Cre-lox: 2000–2002; 
Onco: 2001–2003).

c  Long-term is defined as the years following the window and the short-term period after the NIH agreement 
(Cre-lox: 2003 onward; Onco: 2004 onward).

d  For this regression we use a modified dependent variable that captures only those annual citations that appear 
in a subset of high quality journals, as ranked by ISI impact factor.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.
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categories. To evaluate the magnitude and statistical significance of this effect, we 
take advantage of the regression framework described in Section III to analyze the 
impact of openness on individual mouse-articles.

Our regression results begin in Table 4 with a set of conditional fixed effect 
specifications focusing on the impact of our openness shocks on the quantity of 
citations to the mouse-articles in our sample. The first column, (4-1), reports a con-
ditional fixed effect OLS specification using the natural log of   Annual citations  jt    
as the dependent variable. The remaining columns, (4-2) to (4-5), report results 
from conditional fixed effect negative binomial specifications, using the raw count 
of   Annual citations  jt    as the dependent variable.47 All specifications also include the 
full set of article, age, and calendar-year fixed effects. In (4-1) and (4-2), we include 
both the  NIH_ Window  jt    and the  Post_ NIH  jt    regressors. The OLS specification in the 
first column serves as a point of comparison, and shows that the OLS and negative 
binomial results are similar in terms of both economic and statistical significance. 
Focusing on regression (4-2), the results are striking: after accounting for the win-
dow period, mouse articles impacted by an NIH agreement experience a 30 percent 
increase in their annual citation rate. As illustrated in (4-3), the impact of the NIH 
agreements is increasing over time: while the increase in citations in the 3 years after 
the window period is equal to 22 percent, the coefficient on Post_NIH,   Long-Term  jt    
is estimated at 43 percent, suggesting that the permanent effect is nearly twice as 
large. Not simply a reflection of publication lags, the results in (4-3) suggest the 
presence of a positive and permanent increase in the use of genetically engineered 

47 While a log-linear OLS model like the one used in specification (4-1) can be a useful guide in preliminary 
analyses of count data, it suffers from problems with zero-count outcomes, over-dispersion, and retransformation 
bias; consequently, we turn to the negative binomial specification (NB2 MLE), which adequately addresses these 
issues and offers consistent coefficient estimates in our empirical setting (Cameron and Trivedi 2013). 

Figure 1. Average Citation Rates by Mouse Technology, 
Normalized Relative to Year of Openness Shock
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mice, which have been shifted to a higher level of openness. In (4-4), we estimate 
separate coefficients for the Cre-lox and Onco NIH agreements: both are statisti-
cally significant although the magnitude of the boost to citations associated with 
the Cre-lox agreement is larger (47 percent for citations to Cre-lox mouse-articles 
compared to 27 percent for citations to Onco mouse-articles). Finally, in (4-5), we 
undertake a robustness check by focusing on citations in high impact journals. We 
find a 41 percent boost in such citations, suggesting that the impact of the open-
ness shift is concentrated in research that is published in the most prestigious and 
demanding journals.

The results in Table 4 provide strong support for the hypothesis that positive 
shocks to openness foster follow-on research. These findings reinforce previous 
studies of the impact of openness and accessibility, such as Furman and Stern 
(2011) and Murray and Stern (2007). Furthermore, our results are consistent with 
a multistaged view of innovation whereby an increase in openness does not simply 
lead to a temporary increase in follow-on research, but also has an increasing impact 
over time. Finally, though we hold off on this discussion until Table 7, we can show 
that the estimated impact of the NIH agreements is not simply due to a different time 
trend for the treatment and control groups. Taken together, these results highlight 
the sensitivity of follow-on researchers to the degree of openness of critical research 
inputs.  

B. Impact of Openness on follow-On Exploration

Tables 5 and 6, along with Figures 2 and 3, present our main evidence that greater 
openness results in greater academic exploration, spawning a more diverse array of 
research lines and encouraging the participation of new researchers. In Table 5, our 
key comparison is between researchers listed as the last author (senior scientist) 
who have (or have not) been previously listed on a citation to the mouse-article of 
interest, as captured in our measures   New Authors  jt    and   Old Authors  jt   . In specifica-
tions (5-1a) and (5-1b) we estimate whether the marginal impact of Post_NI  H jt    is 
different for new versus old last authors. While there is only an insignificant 13 per-
cent increase in citations by old authors, the increase by new authors is estimated to 
be more than 38 percent (and highly significant). Moreover, these two coefficients 
are significantly different from each other.48 We then estimate a separate coefficient 
for the short-term versus long-term impact of the NIH agreements on new versus 
old authors (5-2a and 5-2b). The increase in citations by new authors is greater than 
the increase in citations for old authors in both the short- and long-term (with the 
difference between the two coefficients being significant at the 1  percent level). 
Strikingly, the estimate of the long-term increase in new author citations is above 
50 percent. Next, when we separately estimate the impact of the Cre-lox and Onco 
agreements on new versus old authors, (5-3a and 5-3b) we find that the estimated 
boost for new authors is statistically significant for each agreement compared to 

48 Importantly, this difference in coefficients between new and old authors remains significant across our robust-
ness tests, including our random-effects and ML Poisson specifications. Further details are available in the online 
Appendix. 



VOL. 8 NO. 1 237Murray et al.: Of Mice and acadeMics

a much smaller and statistically insignificant increase in citations by old authors. 
Moreover, we find that the difference between the new versus old coefficients is 
significant for each agreement at the 5 percent level.

Table 5—Impact of Openness on Citations by New versus Old “Last Authors” 
and New versus Old Institutions

Stacked negative binomial 
[Incidence rate ratios reported in square brackets] 

Estimated coefficients in second line
(Block bootstrapped SEs reported in parentheses)

(5-1a) 
DV=
New

authors

(5-1b) 
DV=
Old

authors

(5-2a) 
DV= 
New

authors

(5-2b) 
DV= 
Old

authors 

(5-3a) 
DV=
New

authors

(5-3b) 
DV=
Old

authors

(5-4a) 
DV=
New 

institutions

(5-4b) 
DV=
Old 

institutions

Post-NIH [1.379]***
0.321

(0.065)

[1.135]
0.127

(0.088)

[1.269]***
0.238

(0.052)

[1.127]*
0.120

(0.066)
Post-NIH, 
 Short-term

[1.276]***
0.244

(0.062)

[1.064]
0.062

(0.078)
Post-NIH, 
 Long-term

[1.537]***
0.430

(0.071)

[1.224]***
0.202

(0.073)
Post-Cre-lox [1.649]**

0.500
(0.203)

[1.189]
0.173

(0.211)
Post-Onco [1.305]***

0.266
(0.076)

[1.160]
0.148

(0.108)

control variables
Window FEs Yes Yes Yes Yes Yes Yes Yes Yes
Age FEs Yes Yes Yes Yes Yes Yes Yes Yes

Year FEs Yes a Yes a Yes a Yes a

Article FEs Yes Yes Yes Yes
log-likelihood −86,889.3 −86,874.1 −86,877.2 −114,094.0

Observations 42,802 42,802 42,802 42,830

Notes: Tests of differences between coefficients:
(5-1): β(post-NIH effect on new authors) – β(post-NIH effect on old authors):
  Estimate = 0.194;  SE = 0.042;  Pr > |z| < 0.001

(5-2): β(post-NIH, short-term effect on new authors) – β(post-NIH, short-term effect on old authors):
  Estimate = 0.181;  SE = 0.047;  Pr > |z| < 0.001
 β(post-NIH, long-term effect on new authors) – β(post-NIH, long-term effect on old authors):
  Estimate = 0.227;  SE = 0.042;  Pr > |z| < 0.001

(5-3): β(post-Cre-lox effect on new authors) – β(post-Cre-lox effect on old authors):
  Estimate = 0.327;  SE = 0.064;  Pr > |z| < 0.001
 β(post-Onco effect on new authors) – β(post-Onco effect on old authors):
  Estimate = 0.118;  SE = 0.054;  Pr > |z| = 0.029

(5-4): β(post-NIH effect on new institutions) – β(post-NIH effect on old institutions):
  Estimate = 0.118;  SE = 0.035;  Pr > |z| = 0.001

 a  Calendar-year fixed effects include a set of indicator variables common to both margins in a given regression, 
and a linear difference variable that allows for a constant difference in growth rates between the two margins.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level. 
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Finally, in (5-4a) and (5-4b), we turn to an alternative measure of the diversity 
of researchers as captured by their institutional affiliation. Similar to the results for 
new versus old authors, the boost in citations associated with the NIH agreements is 
concentrated in citations from institutions that had not previously cited that mouse 
article (27 percent, versus 13 percent for old institutions). Overall, the results in 
Table 5 provide direct evidence that the shift in openness associated with the NIH 
agreements expanded the diversity of researchers drawing on a particular line of 
research.

Figure 2 presents the above effects graphically. Specifically, we plot the evolu-
tion of citations by new and old “last authors” for Cre-lox and Onco mouse-articles, 
relative to their pre-shock baselines. As in the regressions, we find that citations by 
new authors increase much more strongly than those by old authors, and that this 
gap is greater in the long run than in the short run. The result holds for both openness 
shocks, though the impact for Cre-lox mouse-articles is stronger, as they were more 
difficult to obtain prior to their respective NIH agreement.

In Table 6, we turn to the related prediction that openness enhances the diver-
sity of research lines (particularly in an academic research environment where 
scientists are free to choose their own research direction). We capture the degree 
of diversity by using the key words that categorize each citation (recall that key 
words are chosen by the archiving service rather than the researchers). In (6-1a) and 
(6-1b), we compare the impact of the NIH agreements on   New  Key  Words  jt    and   
Old Key Words  jt,    respectively. While there is a small and statistically insignificant 
decline in the  number of old key words, there is a significant 26 percent increase in 
the number of citations with new key words. Moreover, these coefficients are sta-
tistically significantly different from each other.  This is not just a short-term effect: 
the analysis of impact dynamics in (6-2a) and (6-2b) indicates that there is an even 
larger 41 percent increase in the number of new key works in the long term, relative 

Figure 2. Impact of Openness on Rates of Citations by New versus Old “Last Authors”
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Table 6—Impact of Openness on Citations with New versus Old Key Words

Stacked negative binomial 
[Incidence rate ratios reported in square brackets] 

Estimated coefficients in second line
(Block bootstrapped SEs reported in parentheses)

(6-1a) 
DV=New 
key words

(6-1b) 
DV=Old 
key words

(6-2a) 
DV= New 
key words

(6-2b) 
DV= Old 
key words

(6-3a) 
DV=New 
key words

(6-3b) 
DV=Old 
key words

(6-4a) 
DV=New 
journals

(6-4b) 
DV=Old 
journals

Post-NIH [1.260]***
0.231

(0.070)

[0.925]
−0.078
(0.075)

[1.381]***
0.323

(0.076)

[1.201]**
0.183

(0.084)
Post-NIH, 
Short-term

[1.178]***
0.164

(0.061)

[0.882]*
−0.126
(0.066)

Post-NIH, 
Long-term

[1.405]***
0.340

(0.070)

[0.989]
−0.011
(0.071)

Post-Cre-lox [1.399]*
0.336

(0.202)

[0.879]
−0.129 
(0.194)

Post-Onco [1.208]***
0.189

(0.062)

[0.955]
−0.046
(0.076)

control variables
Window FEs Yes Yes Yes Yes Yes Yes Yes Yes
Age FEs Yes Yes Yes Yes Yes Yes Yes Yes

Year FEs Yesa Yesa Yesa Yesa

Article FEs Yes Yes Yes Yes
log-likelihood −179,179.1 −179,162.5 −179,146.0 −88,007.3

Observations 44,488 44,488 44,488 42,830

Notes: Tests of differences between coefficients:
(6-1): β(post-NIH effect on new key words) – β(post-NIH effect on old key words):
  Estimate = 0.310;  SE = 0.038;  Pr > |z| < 0.001

(6-2): β(post-NIH, short-term effect on new key words) – β(post-NIH, short-term effect on old key words):
  Estimate = 0.290;  SE = 0.038;  Pr > |z| < 0.001
 β(post-NIH, long-term effect on new key words) – β(post-NIH, long-term effect on old key words):
  Estimate = 0.351;  SE = 0.035;  Pr > |z| < 0.001

(6-3): β(post-Cre-lox effect on new key words) – β(post-Cre-lox effect on old key words):
  Estimate = 0.466;  SE = 0.059;  Pr > |z| < 0.001
 β(post-Onco effect on new key words) – β(post-Onco effect on old key words):
  Estimate = 0.235;  SE = 0.039;  Pr > |z| < 0.001

(6-4): β(post-NIH effect on new journals) – β(post-NIH effect on old journals):
  Estimate = 0.140;  SE = 0.043;  Pr > |z| = 0.001
a  Calendar-year fixed effects include a set of indicator variables common to both margins in a given regression, 
and a linear difference variable that allows for a constant difference in growth rates between the two margins.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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to an insignificant decrease to old key words in the long term; moreover, the differ-
ence between this 41 percent increase and the 18 percent increase to new key words 
in the short term is statistically significant at the 1 percent level.49 When we decom-
pose the openness changes into the Cre-lox and Onco agreements (in specifications 
6-3a and 6-3b), we continue to find a quantitatively and statistically significant dif-
ference between the new and old key words coefficients. Both the Cre-lox and Onco 
agreements are associated with a significant boost in new key words (40 percent 
and 21 percent, respectively) and a small and insignificant decline in old key words.

Finally, as in our analysis of the diversity of citing researchers in Table 5, we use 
an alternative measure to test the robustness of our findings on research diversity. 
In (6-4a) and (6-4b), we compare the citation margins between   New Journals  jt    and   
Old  Journals  jt   , where a “new” journal is one that has never before published an 
article citing the original mouse-paper article in question. We find that being in the 
post-NIH period leads to a 38 percent increase (significant at the 1 percent level) 
in citations from new journals and only a 20 percent increase in citations from old 
journals (significant at the 5 percent level). As with earlier specifications in Table 6, 
the impact of openness on the “New” margin is significantly larger than the impact 
on the “Old” margin, with all differences between coefficients reflecting p-values 
smaller than 0.01.

In Figure 3, we present the key word results in a graphical format. As in Figure 2, 
we plot citations containing new and old key words for both Cre-lox and Onco mice, 
relative to their pre-shock baselines. For Cre-lox mice, we see a small short-term 
drop in all key words, followed by a return to pre-shock levels for old key words and 
a strong increase in new key words. For Onco mice, we also see a drop in old key 
words followed by a slow return to pre-shock levels, while new key words experi-
ence an immediate and permanent increase. For both technologies, there is a strong 
shift away from old and toward new key words following the openness shocks.

C. robustness Tests for results on citations, Authors, and Key Words

In our analysis so far, our difference-in-differences estimators have been based on 
the implicit assumption that the citation-age profile is similar for the treatment and 
control groups. In Table 7, we test this assumption directly by re-estimating each of 
the key equations for overall citations, new versus old authors, and new versus old 
key words, allowing for a linear time trend specific to the treatment group for each 
citation margin.50 Since the treatment effect itself is predicted to increase in the 
time elapsed since the agreement, we separately allow for a  post-NIH-agreement 
calendar-time trend. The results reinforce our overall findings. We find that the point 
estimates for the NIH agreements remain positive, although smaller and below 

49 This difference remains significant under robustness test specifications, including random-effects and ML 
Poisson estimators. Further details are available in the online Appendix. 

50 Our difference-in-differences analysis may be susceptible to first-order linear differences in growth trends 
between the treatment and control groups (i.e., a growing “gap” between the treatment and control group that begins 
to arise prior to the treatment). We test for this possibility directly through the inclusion of a separate linear trend 
that allows for a differential pattern for the treatment and control group. As shown in Table 7, our results are robust. 
As well, in alternative specifications, we test for nonlinear differences in growth patterns between the treatment and 
control groups, and continue to find no meaningful difference between them in the pretreatment period. 
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 traditional significance levels, presumably because they now capture the impact of 
the openness shock only for the first year after the window period. More impor-
tantly, there is a significant impact of the treatment over time for overall citations, 
new authors, and new key words. While we also find increases over time for old 
authors and old key words, these coefficients are smaller, and when combined with 
the baseline post-NIH effect, lead to a significant difference between the new and old 
margins. Finally, and most crucially, across all specifications, the treatment group 
age trend is both statistically and economically indistinguishable from zero. This 
indicates that after controlling for article-level fixed effects, there is no difference in 
preshock citation patterns between our treatment and control groups. In other words, 
there is no evidence of a significant increase in citations prior to the NIH agreements 
that might raise concerns about the endogeneity of the timing of the agreement.

In Table 8, we examine the direct impact of the openness shocks on the con-
trol groups in our study. Specifically, we independently estimate the deviation from 
pre-shock trends for both the treatment groups (Onco and Cre-lox) and the control 
groups (Knock-Out and Spontaneous). This approach allows us to decompose the 
difference-in-differences effects of the results in Tables 4 to 7, and determine the 
extent to which our results reflect changes in the use of mice in the treatment groups. 
Because we are estimating the impact of openness shocks for all mice in our data-
set, we cannot include calendar-year fixed effects; instead, we use  unconstrained 
fourth-order polynomials to estimate citation trends over the sample, with indepen-
dent trends for the “new” and “old” margins in our two-equation specifications. 
As in previous regressions, we also include full sets of age and mouse-article fixed 
effects, as well as the traditional openness shock variables: the NIH_  Window  jt    and   
Post_  NIH  jt    regressors. The new regressors in this table are similar in construction 
to those linked with the NIH openness shocks, but are instead applied to the control 
mice in our dataset. Specifically, we introduce a “Placebo Shock” coinciding with 
the Onco openness shock of 1999, and affecting only our control groups: Knock-out 
and Spontaneous mice. For these mice, the regressor Placebo_  Window  jt    is equal to 

Figure 3. Impact of Openness on Rates of New versus Old Key Words in Citations
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one in 1999 and 2000, and Post_  Placebo  jt    is equal to one from 2001 onward. For the 
mice in our treatment groups, these regressors are set to zero throughout the sample 
period.

We begin the analysis with specification (8-1), which adds the above regressors 
to the analysis of citation rates in Table 4. In the original analysis, we found that 
the openness shocks led to a 30 percent increase in citations to treated mouse-ar-
ticles relative to controls. When we estimate the impact on treatment and control 
groups separately, we find that the NIH shocks were responsible for approximately 
three-quarters of the total effect, or an increase of just over 22 percent. By contrast, 
the impact of the shock on control mice, relative to baseline trends, was a modest 
reduction of 6 percent. Both effects are statistically significant, and  indicate that the 

Table 7—Robustness Tests for a Pre-Shock Treatment Trend for Results on Overall Citations,  
New versus Old Authors, and New versus Old Key Words

[Incidence rate ratios reported in square brackets]
Estimated coefficients in second line

(Block bootstrapped SEs reported in parentheses)

Negative binomial Stacked negative binomial

(7-1) 
DV=

Annual citations 
with treatment 

trends

(7-2a) 
DV= 

New authors 
with treatment 

trends

(7-2b) 
DV= 

Old authors 
with treatment 

trends

(7-3a) 
DV= 

New key words 
with treatment 

trends

(7-3b) 
DV= 

Old key words 
with treatment 

trends

Post-NIH [1.145]*
0.135

(0.078)

[1.117]
0.111

(0.091)

[1.034]
0.033

(0.078)

[1.127]
0.120

(0.096)

[0.854]
−0.157
(0.108)

Treatment group
 age trend per
 year

[1.003]
0.003 

(0.015)

[1.014]
0.014

(0.018)

[1.000]
−0.000
(0.020)

[1.001]
0.001

(0.020)

[0.997]
−0.003
(0.024)

Post-NIH change
 in trend per year

[1.050]***
0.049

(0.017)

[1.052]**
0.051 

(0.025)

[1.046]*
0.045

(0.025)

[1.053]**
0.052

(0.024)

[1.045]*
0.044

(0.026)

control variables
NIH-Window [1.114]**

0.108
(0.047)

[1.079]
0.076

(0.062)

[1.091]
0.087

(0.071)

[1.120]*
0.182

(0.068)

[0.939]
−0.063
(0.102)

Age FEs Yes Yes Yes Yes Yes

Year FEs Yes Yes a Yes a

Article FEs Yes Yes Yes
log-likelihood −55,899.5 −86,859.4 −179,152.1

Observations 22,265 42,802 44,488

Notes: Tests of differences between coefficients:
(7-2): β(post-NIH effect on new authors) – β(post-NIH effect on old authors):
  Estimate = 0.078;  SE = 0.077;  Pr > |z| = 0.312

(7-3): β(post-NIH effect on new key words) – β(post-NIH effect on old key words):
  Estimate = 0.277;  SE = 0.053;  Pr > |z| < 0.001
a  Calendar-year fixed effects include a set of indicator variables common to both margins in a given regression, 
and a linear difference variable that allows for a constant difference in growth rates between the two margins.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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bulk of the difference-in-differences findings in Table 4 are driven by changes in 
citations to the mice directly experiencing changes in openness.

Moving to our core results, we examine the differential impact of the NIH open-
ness shocks on new and old authors in specifications (8-2a) and (8-2b). Comparing 
the impact of openness on the “Old Authors” margin, we find no significant 

Table 8 —Tests for Impact of Openness on Control Mice, for Results on Overall Citations, 
New versus Old Authors, and New versus Old Key Words

[Incidence rate ratios reported in square brackets]
Estimated coefficients in second line

(Block bootstrapped SEs reported in parentheses)

Negative binomial Stacked negative binomial

(8-1) 
DV=

Annual citations 
with placebo 

effects

(8-2a) 
DV= 

New authors 
with placebo 

effects

(8-2b) 
DV= 

Old authors 
with placebo 

effects

(8-3a) 
DV= 

New key words
with placebo 

effects

(8-3b) 
DV= 

Old key words
with placebo 

effects

Post-NIH 
 (impact on
 treatment groups)

[1.223]***
0.202

(0.065)

[1.328]***
0.284

(0.064)

[0.694]***
−0.364
(0.081)

[1.146]**
0.137

(0.067)

[0.882]*
−0.125
(0.074)

Post-placebo
 (impact on
 control groups)

[0.936]***
−0.066
(0.020)

[0.956]**
−0.044
(0.021)

[0.620]***
−0.478
(0.036)

[0.903]***
−0.102
(0.027)

[0.951]**
−0.050
(0.023)

control variables
NIH-window [1.134]**

0.126
(0.055)

[1.180]***
0.166

(0.054)

[0.808]***
−0.212
(0.064)

[1.086]
0.083

(0.071)

[0.836]***
−0.178
(0.069)

Placebo-window [0.987]
−0.013
(0.014)

[1.002]
0.002

(0.013)

[0.814]***
−0.205
(0.025)

[0.975]
−0.025
(0.017)

[0.978]
−0.022
(0.015)

Age FEs Yes Yes Yes Yes Yes

Year controls Yes a Yes a Yes a

Article FEs Yes Yes Yes
log-likelihood −55,926.8 −86,541.0 −179,174.6

Observations 22,265 42,802 44,488

Notes: Tests of differences between coefficients:
(8-1): β(post-NIH) − β(post-placebo):
  Estimate = 0.269;  SE = 0.065;  Pr > |z| < 0.001

(8-2): β(post-NIH effect on new authors) − β(post-placebo effect on new authors):
  Estimate = 0.328;  SE = 0.063;  Pr > |z| < 0.001

(8-2): β(post-NIH effect on old authors) − β(post-placebo effect on old authors):
  Estimate = 0.113;  SE = 0.079;  Pr > |z| = 0.155

(8-3): β(post-NIH effect on new key words) − β(post-placebo effect on new key words):
  Estimate = 0.239;  SE = 0.068;  Pr > |z| < 0.001

(8-3): β(post-NIH effect on old key words) − β(post-placebo effect on old key words):
  Estimate = −0.076;  SE = 0.076;  Pr > |z| = 0.322
a  Calendar-year controls are based on a polynomial time trend up to the fourth power, with separate trend esti-
mates for each of the two margins in the stacked regressions.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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 difference between the treatment and control groups, represented by Post_  NIH  jt    and 
Post_P  lacebo  jt    regressors, respectively. This implies that researchers with estab-
lished access to GM mice experienced similar outcomes, regardless of pre-shock 
openness regime. By contrast, citations along the “New Authors” margin show a 
much greater sensitivity to the NIH openness shock, particularly when compared 
to the shift experienced by the control groups. Specifically, the post-NIH period 
is associated with a 33  percent increase in citations by new last-authors for our 
treatment groups, compared to a modest 4 percent decrease for the control groups. 
Unlike the “Old Authors” margin, this difference is highly significant, and the over-
all pattern of results indicates that the flow of authors toward newly available GM 
mice is a secular increase, with no major reduction in new researchers using mice 
in our control groups

Finally, we repeat the above analysis along the margins of new and old “Key 
Words,” in specifications (8-3a) and (8-3b). Again, we find no significant difference 
between the treatment and control groups in terms of the old key words margin, with 
both experiencing a moderate decrease in citation rates. By contrast, for new key 
words, we find a significant difference between the impact of the post-NIH shock 
on treatment mice, and the effect on control mice. Specifically, the post-NIH period 
is associated with a 15 percent increase in the rate of new key words appearing in 
citations to our treatment groups, while the control groups experienced a 10 percent 
decrease in new key words. As in the previous specifications, we therefore find that 
the bulk of the difference-in-differences result is driven by the impact of the open-
ness shocks on our treatment groups along the new-key-words margin.

When interpreting the stacked regressions in Table 8, it is important to remem-
ber that the “old” margins will have a mechanical negative tendency as a result of 
fluctuations reflecting the rapidly changing nature of the field of mouse genomics 
during our sample period. Such effects would normally be fully absorbed by our 
calendar-year fixed effects in our standard regressions, but are evident in Table 8 
because of the need to use a polynomial time trend when estimating the impact of 
the NIH agreements on both the treatment and control groups. Further, our results 
on the “new” margins indicate that any substitution of researchers or research top-
ics from the control to the treatment group is only a minor contributor to our main 
findings.51 For example, in specification 8-2a, we find only a 4 percent decline in the 
flow of new researchers into our control groups, relative to a 32.8 percent increase in 
their flow to the treatment group. Thus, Table 8 offers insight into a rapidly changing 
scientific field, and is consistent with the view that the NIH agreements had a strong 
influence on our treatment group without significantly affecting our control mice.52

51 In additional robustness tests, reported in Table A4 of the online Appendix, we specifically identify “new” last 
authors substituting into our treatment group mice after having been active in our control group. We separate these 
“new to technology, old to sample” authors from those “new” authors who are coming from other mice within the 
treatment group, and those that are entirely new to the sample. Along with our usual measure of “old” last authors, 
these four margins are analyzed jointly in Table A4, where we find that the NIH agreements had the strongest impact 
on the “new to sample” subgroup. Combining this with the fact that authors switching from one technology to 
another represent less than 3 percent of new-last-author observations, we conclude that substitution is at most only 
a minor contributor to the pattern of our results. 

52 In addition to the robustness tests and placebo regressions reported in Tables 7 and 8, we have run a number 
of additional specifications to examine our results in greater detail. Notably, we have tested for differences prior 
to the NIH openness shocks using “pre-window” effects, and have analyzed the impact of the openness shocks 
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D. Impact of Openness on Basic and Applied follow-On research

In Table 9, we turn to the effects of openness shocks on the distribution of 
research along the development spectrum, ranging from early-stage basic science 
to later-stage applications of the preceding innovations. We do so by examining the 
marginal impact of the openness shocks on the production of research in basic ver-
sus applied research journals. In (9-1a) and (9-1b), we find that the   Basic citations  jt    
dependent variable increases by 26 percent during the post-NIH-agreement period; 
at the same time,   Applied citations  jt    experience a 30 percent increase during that 
period (both significant at the 1 percent level). This suggests that the overall impact 
of the NIH agreements involves both basic and applied citations. We then disen-
tangle the separate impacts of the Cre-lox and Onco agreements.53 In (9-2a) and 
(9-2b), we evaluate the differential impact of these two NIH agreements on basic 
versus applied citations. We find that the impact of the Cre-lox agreement is con-
centrated in basic citations, whereas the Onco shock has a significant effect only on 
applied citations. Specifically, the Cre-lox agreement leads to a 120 percent increase 
in basic citations (significant at the 1 percent level) but no change in applied cita-
tions, whereas the Onco agreement leads to a 57 percent increase in applied citations 
but has no significant impact on basic citations. This difference in citation composi-
tion stands in contrast to our previous results, where the Cre-lox and Onco openness 
shocks were consistent in their direction of impact, if not in their magnitude. As a 
potential topic for future research, one might explain these divergent impacts based 
on the difference between the two technologies in the pre-openness period. For Cre-
lox mice, not only were there stringent reach-through rights, but there was also 
very limited access to the mice due to ex ante enforcement by DuPont. In contrast, 
Onco mice were made available in the pre-openness period through the Jackson 
Laboratory. Thus, the Onco agreement’s primary effect was to reduce reach-through 
rights to follow-on research, while the Cre-lox agreement had a significant impact 
on access costs in addition to reducing reach-through rights. Our findings therefore 
suggest that when direct access to research inputs is already secured (as was the case 
for Onco mice), an agreement that shifts the balance of IP rights toward follow-on 
innovators induces more applied research.

E. Impact of Openness on the creation of New Genetically modified mice

Finally, we analyze the impact of the Cre-lox and Onco openness shocks on the 
rate of creation of genetically modified mice. Our empirical approach begins with 
the full set of mice in the MGI database (approximately 13,000). For each mouse 

on researchers outside the United States. In both cases, our findings are consistent with the pattern of our core 
results: there is no evidence of “pre-window” differences between treatment and control groups; similarly, foreign 
researchers exhibit no significant difference between the window and short-term post-NIH periods, but do exhibit 
an increase in the long-term period. 

53 Both Onco mice and Cre-lox mice could be used in basic research—studying mechanisms of action in dis-
eases, and disease progression. Similarly, they could both be used in applied work, such as the testing of new drug 
compounds. While the Cre-lox technology was more versatile, and could be used to create GM mice pertaining to 
a broader range of diseases, these could be used in basic or applied research in the same way that Onco mice could 
be. This would lead to a difference in overall levels, but have no impact on the distribution of types of uses. 
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and its associated mouse-article, we obtain information regarding the technology 
used in its creation, and the journal in which the article was published. We focus on 
mice created since 1983, using one of the four technologies present in our citation 
analysis. Figure 4 describes the creation of mice by technology category, from 1990 
through 2006, in order to provide a visual representation of any potential impact of 
the NIH agreements on mouse creation. A standard incentive story might predict a 
reduction in the creation of Cre-lox and Onco mice, relative to the control technol-
ogies, following the corresponding NIH agreements. However, the graph does not 
exhibit any marked change in creation rates around the time of the two agreements 
(1998 and 1999, respectively).

Next, we perform a difference-in-differences regression similar to those in 
our citation analysis. Specifically, our baseline regression takes the measure   
Annual mouse creation  kt    as its dependent variable, representing the number 

Table 9—Impact of Openness on Citations in Basic versus Applied Journals

Stacked negative binomial 
[Incidence rate ratios reported in square brackets] 

Estimated coefficients in second line
(Block bootstrapped SEs reported in parentheses)

(9-1a) 
DV= 

Basic journal 
citations

(9-1b) 
DV= 

Applied journal 
citations

(9-2a) 
DV=

Basic journal 
citations

(9-2b) 
DV= 

Applied journal 
citations 

Post-NIH [1.262]***
0.233

(0.066)

[1.301]***
0.263

(0.061)
Post-Cre-lox [2.212]***

0.794
(0.126)

[1.073]
0.070

(0.105)
Post-Onco [1.076]

0.073
(0.062)

[1.565]***
0.448

(0.075)

control variables
Window FEs Yes Yes Yes Yes
Age FEs Yes Yes Yes Yes

Year FEs Yes a Yes a

Article FEs Yes Yes
log-likelihood −105,989.0 −105,894.7
Observations 44,530 44,530

Notes: Tests of differences between coefficients:
(9-1): β(post-NIH effect on basic journal citations) − β(post-NIH effect on applied journal citations):
  Estimate = −0.030;  SE = 0.072;  Pr > |z| = 0.676

(9-2): β(post-Cre-lox effect on basic journal citations) − β(post-Cre-lox effect on applied journal citations):
  Estimate = 0.724;  SE = 0.122;  Pr > |z| < 0.001
 β(post-Onco effect on basic journal citations) – β(post-Onco effect on applied journal citations):
  Estimate = −0.375;  SE = 0.086;  Pr > |z| < 0.001
a  Calendar-year fixed effects include a set of indicator variables common to both margins in a given regression, 
and a linear difference variable that allows for a constant difference in growth rates between the two margins.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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of mouse-articles published to a given technology k in a given calendar year t. 
Our key regressors are now technology-specific indicator variables for the years 
impacted by our treatment groups’ respective NIH agreements cre-lox_  Window  kt   , 
Post_  cre-lox  kt   , Onco_  Window  kt   , and Post_  Onco  kt   . We also include controls for cal-
endar-year, age, and technology-specific effects. Similar to our earlier specifica-
tions, we include a technology fixed effect (conditioned out in the context of our 
conditional fixed effect negative binomial estimator), calendar-year fixed effects, 
and a cubic polynomial in the age of the technology. Finally, because of the much 
older age of the Spontaneous technology, we estimate age effects separately for the 
Spontaneous group. This results in the following specification:

  Annual mouse creatio n kt   = f  ( ε kt  ;  γ k   +  β t   + g(t − Earliest yea r k  )

 + 1(k = Spontaneous) · h(t − Earliest yea r k  )

 +  φ 1   cre-lox_Windo w kt   +  φ 2   Post_cre-lo x kt  

 +  φ 3   Onco_Windo w kt   +  φ 4   Post_Onc o kt  )  .

Using the above framework, we first estimate how the overall mouse-creation rates 
for our treatment technologies change in response to their corresponding NIH agree-
ments, accounting for fixed differences across technologies and relative to the trend 
in creation rates for the non-treated control groups. Our results are shown in the first 
two columns of Table 10. In specification (10-1), we use the four technologies stud-
ied in our citation analysis. Rather than finding a decrease, the estimates indicate a 
45 percent increase in mouse creation after the NIH agreements for Cre-lox mice, 
and an even larger 62 percent increase for Onco mice. However, only the Onco tech-
nology estimate is statistically significant; further, these findings are quite sensitive 

Figure 4. Mouse Creation by Technology
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Table 10—Impact of Openness on Overall Mouse Creation and Mouse Creation 
in New versus Old Journals

[Incidence rate ratios reported in square brackets]
Estimated coefficients in second line

(Block bootstrapped SEs reported in parentheses)

Negative binomial Stacked negative binomial

(10-1) 
DV=

Annual
mouse

creation

(10-2) 
DV=

Annual
mouse

creation

(10-3a) 
DV=
New

creation 
journals

(10-3b) 
DV=
Old

creation 
journals

(10-4a) 
DV=
New

creation 
journals

(10-4b) 
DV=
Old

creation 
journals

Post-Cre-lox [1.452] [2.915] [1.952] [1.458] [1.774] [1.326]
0.373 1.070 0.669 0.377 0.573* 0.282

(0.312) (0.728) (0.899) (0.658) (0.333) (0.241)
Post-Onco [1.624]*** [1.202] [2.826]*** [1.182]* [1.745] [0.876]

0.485 0.184 1.039 0.167 0.557 −0.132
(0.011) (0.436) (0.105) (0.086) (0.374) (0.312)

control variables
Cre-lox-window [1.525] [4.208]** [3.939]** [0.860] [3.582]*** [0.824]

0.422 1.437 1.371 −0.151 1.276 −0.193
(0.268) (0.693) (0.611) (0.377) (0.217) (0.137)

Onco-window [1.502]*** [1.196] [1.562]*** [0.992] [1.160] [0.824]
0.407 0.179 0.446 −0.008 0.148 −0.193

(0.152) (0.358) (0.080) (0.038) (0.251) (0.206)

Age controls Yesa Yesa Yesa Yesa Yesa Yesa

Year FEs Yes Yes Yesb Yesb

Technology FEs Yes Yes Yes Yes
log-likelihood −287.58 −554.96 −263.46 −527.42
Number of technologies 4 8 4 8

Observations 78 136 156 272

Notes: Tests of differences between coefficients:
(10-3): β(Cre-lox-window effect on new creation journals) − β(Cre-lox-window effect on old creation journals):
  Estimate = 1.522;  SE = 0.234;  Pr > |z| < 0.001
 β(post-Cre-lox effect on new creation journals) − β(post-Cre-lox effect on old creation journals):
  Estimate = 0.292;  SE = 0.241;  Pr > |z| = 0.225
 β(Onco-window effect on new creation journals) − β(Onco-window effect on old creation journals):
  Estimate = 0.454;  SE = 0.117;  Pr > |z| < 0.001
 β(post-Onco effect on new creation journals) − β(post-Onco effect on old creation journals):
  Estimate = 0.872;  SE = 0.191;  Pr > |z| < 0.001

(10-4): β(Cre-lox-window effect on new creation journals) − β(Cre-lox-window effect on old creation journals):
  Estimate = 1.469;  SE = 0.215;  Pr > |z| < 0.001
 β(post-Cre-lox effect on new creation journals) − β(post-Cre-lox effect on old creation journals):
  Estimate = 0.291;  SE = 0.164;  Pr > |z| = 0.076
 β(Onco-window effect on new creation journals) − β(Onco-window effect on old creation journals):
  Estimate = 0.341;  SE = 0.164;  Pr > |z| = 0.038
 β(post-Onco effect on new creation journals) − β(post-Onco effect on old creation journals):
  Estimate = 0.689;  SE = 0.279;  Pr > |z| = 0.013
a  Age controls include a cubic polynomial in the age of the technology, with a separate age trend for the much 

older spontaneous technology. Note that there are separate effects for the two margins in stacked regressions.
b   Calendar-year fixed effects include a set of indicator variables common to both margins in a given regression, 

and a linear difference variable that allows for a constant difference in growth rates between the two margins.
*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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to the choice of control group. In (10-2), we expand the control group to include all 
major genetic modification categories in the MGI database, adding the following 
four technologies: Targeted (reporter), Targeted (knock-in), Targeted (Floxed/Frt), 
and Genetrapped mice.54 In this specification, while the point estimates continue to 
indicate increasing rates of mouse creation following the openness shocks, neither of 
our treatment effect estimates are statistically significant. Further, while the  Cre-lox 
effect increases in strength in (10-2), the Onco estimate is smaller than in (10-1). 
However, both (10-1) and (10-2) offer an important take-away: increased openness 
did not lead to a reduction in the overall creation of new research mice. This stands 
in contrast to the traditional hypothesis that increased openness on existing research 
mice should discourage the development of new mice. Instead, consistent with our 
emphasis on exploration in the process of innovation, a more open environment had 
either a neutral or a slight positive impact on the creation of new mouse varieties.

Finally, we consider the impact of the openness shocks on the diversity of mice 
creation. To this effect, we divide the set of mice created through a particular tech-
nology in a given year from each citation year into two mutually exclusive types: 
those published in journals that had previously published mice associated with that 
same technology (“Old Creation Journals”), and those which have not previously 
published any such mice (“New Creation Journals”). Our specifications here are 
simply a  two-equation version of the specifications employed in (10-1); we estimate 
the impact of each of the NIH agreements on new mice published in old versus new 
journals, accounting for fixed differences across each technology type, calendar year 
effects, and including time trends as above. The results are reported in (10-3) and 
(10-4), with the former specification focusing on the mouse technologies from our 
citation analysis, and the latter including the wider set of control groups. In ( 10-3),  
we find economically and statistically significant (positive) differences between the 
number of “new journals” and “old journals” in which new mouse-articles are pub-
lished for the window periods of both Cre-lox and Onco mice, and for the post-NIH 
period for Onco mice. Moving to the expanded control group in (10-4) we find 
significant differences for both window and post-NIH periods for both of our treat-
ment technologies. Importantly, for both specifications, we find only positive point 
estimates for all New-Creation-Journal margins, and for all differences between new 
and old creation journals.

Overall, the results in Table 10 show no evidence of a reduction in the creation 
of genetically modified mice following the NIH agreements, but do indicate an 
increase in the diversity of mouse creation, as reflected by the new journals in which 
mouse-articles are published. Under the traditional linear view of sequential inno-
vation, new research lines can only result from the introduction of new tools (in this 
case, new mice), and greater openness reduces the incentives for their creation. By 
contrast, our findings are more consistent with a setting where new lines can also 

54 These additional technologies are reasonably comparable from the perspective of mouse creation, and are 
useful in expanding the number of available observations. By contrast, they are not as significant in the context of 
follow-on research in the field of mouse genomics, and would not have offered an effective control group for our 
results in earlier tables. 
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result from cross-fertilization with existing lines by scientists engaging in explor-
atory research, and where this cross-fertilization is itself facilitated by openness.

VI. Conclusion

In this paper, we argued that greater openness of early-stage research leads to 
an increase in the diversity and the exploratory nature of follow-on innovation. 
Decreasing costs of access to preexisting innovations has a differentially stronger 
impact on speculative research, increasing the likelihood of establishing entirely 
new research directions. This increase in the scope of follow-on research can pro-
vide additional incentives for new early-stage projects, offsetting the potential draw-
backs of reduced reach-through rights. Further, academic research can be motivated 
by the desire for recognition and citation within the academic community, in addi-
tion to the incentives provided by intellectual property. We tested our hypotheses 
by examining a natural experiment in openness within the academic community: 
NIH agreements during the late 1990s that reduced IP restrictions for academics 
and increased the openness of key types of genetically engineered mice and the 
research tools associated with their production. Our empirical results suggest that 
the NIH agreements had a profound and long-lasting impact on follow-on research. 
Moreover, we found that these openness shocks not only increased the overall flow 
of research using specific engineered research mice, but also expanded both the 
diversity of researchers working on particular research lines, and the diversity of 
the research lines being pursued. Finally, we found that increased openness did not 
result in a reduction in the flow of new mouse creation. Our results therefore high-
light a key limitation in the current literature on intellectual property and innovation: 
the impediments intellectual property restrictions may place on the diversity of fol-
low-on research, particularly in the case of academic researchers seeking to explore 
the potential uses of multi-purpose research tools.

The analysis developed in this paper could be extended in several interesting 
directions. One avenue would be to reassess the Bayh-Dole Act based on our 
findings. Indeed, our results highlight one of the possible dangers of excessive 
IP enforcement: namely, if IP is used to restrict openness at very early stages 
of a research line, then it may stifle exploratory projects that are necessary for 
diverse follow-on innovation. Importantly, an attempt to use IP protections to 
ensure strong incentives for early-stage research may prove counterproductive, 
as the lack of exploration may severely limit both the scope and total value of 
follow-on research stemming from the initial innovation. We expect these results 
will hold and the lessons have salience for the range of fields where an underly-
ing set of tools are critical in the development of both marketable products and 
new fundamental innovations, i.e., Pasteur’s Quadrant (Stokes 1997). In addition 
to its implications for academic researchers working in these fields, our analysis 
suggests that more attention should be paid by economists to recent corporate 
attempts to generate new sources of profit through building on the openness of 
knowledge production by others. Tapscott and Williams (2008) explain how IBM 
has recovered from competition with Microsoft by engaging in the openness pro-
moted by the Linux community. By contrast, the experience of DuPont and other 
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companies that continued to enforce patents while also attempting to engage with 
the open scientific community was less successful (Huang and Murray 2008). This 
pattern suggests the need for a systematic analysis of the forces and trade-offs at 
work in an  economic environment where both proprietary-technology and open 
technology-firms compete with each other and cooperate with open communities, 
setting the stage for future research.
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