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Peer effects, in which the behavior of an individual is affected by
the behavior of their peers, are central to social science. Because
peer effects are often confounded with homophily and common
external causes, recent work has used randomized experiments to
estimate effects of specific peer behaviors. These experiments
have often relied on the experimenter being able to randomly
modulate mechanisms by which peer behavior is transmitted to a
focal individual. We describe experimental designs that instead
randomly assign individuals’ peers to encouragements to behav-
iors that directly affect those individuals. We illustrate this method
with a large peer encouragement design on Facebook for estimat-
ing the effects of receiving feedback from peers on posts shared
by focal individuals. We find evidence for substantial effects of
receiving marginal feedback on multiple behaviors, including giv-
ing feedback to others and continued posting. These findings pro-
vide experimental evidence for the role of behaviors directed at
specific individuals in the adoption and continued use of communi-
cation technologies. In comparison, observational estimates differ
substantially, both underestimating and overestimating effects,
suggesting that researchers and policy makers should be cautious
in relying on them.
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Social interactions among people enable the spread of in-
formation, preferences, and behavior, including technology

adoption. Despite the unprecedented availability of detailed in-
formation on human interactions, credible identification of how
individuals affect each other has been difficult. Many of the
empirical studies that estimate these peer effects rely on ana-
lyzing observational (i.e., nonexperimental) data (e.g., refs. 1 and
2). These methods can incorrectly “detect” peer effects in their
absence (3–5) and can substantially overestimate them (6).
There are many causes of correlated behaviors in networks that
make it difficult to identify peer effects, including selective tie
formation [i.e., homophily (7)], unobserved correlated external
causes, and prior peer effects (4, 8, 9). Faced with these chal-
lenges, observational studies of peer effects are sometimes de-
scribed as tentatively providing evidence of peer effects (cf. refs.
10 and 11) or as providing upper bounds, rather than point es-
timates, for peer effects (6).
This paper presents designs for randomized experiments for

estimating peer effects in social networks that overcome com-
mon challenges to credible identification. We conducted a large
field experiment on Facebook that implements a peer encour-
agement design to estimate peer effects in the use of com-
munication technologies. In particular, many people share
information, personal media, or other content via online social
networks. Most of these services allow them to receive feedback
from their peers in the form of comments on their post and
expressions of approval (or disapproval). How does receiving
more or less of this feedback from peers affect use of these
technologies? Decision makers benefit from knowing the value
of receiving social feedback, relative to other potential actions,
as this informs the design of interfaces for giving feedback. For
social scientists, precisely estimating the effects of feedback is

important for, e.g., understanding network effects in the adop-
tion and continued use of communication technologies.
There is some theoretical and empirical support for expecting

substantial peer effects in initial adoption and use of communication
technologies. Individuals’ utilities from using such technologies
usually depend on peer adoption decisions, as this determines
who can be communicated with and the consequences of com-
munication. Prior work on Facebook specifically (12, 13), and
other related technologies (14, 15) has provided observational and
quasi-experimental evidence for peer effects in initial adoption,
content production, and sustained use. Other prior observational
research has found that receiving feedback (e.g., comments, “likes”)
is associated with higher rates of sharing; in particular, new users
who receive comments on their photos tend to share more photos in
the future (10). However, in the presence of confounding due to
homophily and common external causes, these prior observational
results are expected to overstate (or otherwise misstate) the re-
lationship between receiving feedback and subsequent behavior if
interpreted causally.

Peer Encouragement Designs
Randomized experiments are one appealing way to identify peer ef-
fects in the presence of unknown confounding (16–18). Although di-
rectly randomizing the behavior of existing peers in realistic settings is
generally not possible or desirable, multiple experimental designs
for learning about peer effects appear in the literature. Social
psychologists have used inauthentic, confederate peers since the
1950s (19, 20), often in artificial (e.g., laboratory) settings. Other
studies have induced random variation in the process of tie or
group formation (21–25). Although these approaches have been
successful at answering some important questions in the social
sciences, it is often not possible for such designs to credibly an-
swer questions about either existing peers or effects of specific
peer behaviors.
The widespread adoption of online social networks has facilitated in

situ studies of the effects of peers’ behaviors on individual behavior.
Much of the experimental work in this area has used mechanism
designs, which directly modulate mechanisms (or channels) by which
information about peer behavior is optionally or nondeterministically
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transmitted to a focal individual (ego) through the network (18, 26–
28). For example, Aral and Walker (26) randomize which peers are
sent viral messages to adopt a product, and Bakshy et al. (18) ran-
domize the number of personalized social cues in advertisements. The
causal directed acyclic graph (DAG) (29) shown in Fig. 1A illustrates a
mechanism design with binary peer behaviors and ego behavior.When
these designs involve enabling/disabling a mechanism of peer effects,
they allow estimating an average treatment effect on the treated
(ATT)—the effect of exposure to a peer behavior for those who
would normally be exposed; if the mechanism is normally de-
terministic, this is also an ATT for the peer behavior, not just for
exposure. Despite their advantages, mechanism designs are often
not possible or practical in many empirical settings, such as when
the mechanism is deterministic (i.e., information about a peer’s
behavior is always transmitted to the ego, such as feedback in an
online social network).

Encouragement Designs. We develop and illustrate a variation on
randomized encouragement designs for identifying effects in
networks. Encouragement designs (30) are widely used by social
and biomedical scientists when interested in the effects of be-
haviors not directly controlled by the experimenter. Units are
randomly assigned to an encouragement Zi, and the endogenous
behavior of interest Di and the outcome Yi are measured. For
example, in educational contexts, one may encourage children to
watch a particular educational program (31) or prepare for tests
(32). Not all parents or children may follow through with such
interventions, but it is still possible to analyze the causal effect of

the intervention for those who are induced to use the educational
materials by the randomized encouragement (i.e., for compliers).
For this purpose, the encouragement is treated as an instru-
mental variable (IV); that is, it is assumed that the encouragement
only affects outcomes by affecting the intermediate, endogenous
behavior of interest. This complete mediation or exclusion re-
striction can be stated as follows. Define the potential outcomes
for Yi and Di as functions of the encouragement and the behavior,
Yi :D×Z→Y and Di :Z→D.
Assumption 1. (Exclusion restriction). Suppose Yiðdi, ziÞ=Yiðdi, zi′Þ
for all di ∈D and zi, zi′∈Z, so we can uniquely define YiðdiÞ.
[Combining this assumption with the random assignment of Zi,

some authors (e.g., ref. 33), write YiðdiÞ,DiðziÞ╨Zi for all di ∈D

and zi,Zi ∈Z. The exclusion restriction is then combined
with either parametric assumptions about Yið·Þ or nonparametric
assumptions about Dið·Þ to identify effects of Di on Yi (34, 35);
both are discussed in Model. Here and elsewhere, we use capital
letters for random variables and lowercase letters for fixed values.
We retain subscripts for units even in the latter case, as those
without subscripts denote n vectors.

Encouragement Designs in Groups and Networks. Peer encourage-
ment designs randomize an individual’s peers to conditions that
increase or decrease the probability of those peers performing a
specific behavior. One may then examine how this shock to peer
behaviors “spills over” to the behaviors of focal individuals.
Furthermore, these designs can provide point estimates of the
effect of peer behavior on ego behavior (i.e., peer effects) by
using encouragements to a specific behavior and assuming that
the only effect of peer assignment to these encouragements on
ego behavior is via that specific peer behavior. The causal DAG
in Fig. 1B illustrates a peer encouragement design with binary
encouragements, peer behaviors, and ego behavior. In this ex-
ample, the encouragement causes one peer to adopt the specific
behavior, which in turn causes the ego to adopt. Given the as-
sumptions encoded in this DAG, peer encouragement is an IV,
and we can estimate the effect of the behavior of peers, as caused
by the encouragement to adopt, on ego behavior.

Plausibility of the Exclusion Restriction. This DAG encodes an ex-
clusion restriction (Assumption 1): All effects of the peer
encouragement on ego behavior occur via changes to peer
behavior. In standard encouragement designs, the randomized
encouragement Zi, endogenous behavior Di, and outcome Yi are
all defined as direct interventions on or measurements of the
same individual, often making this assumption implausible be-
cause the encouragement may affect that individual in many ways
(30, 36, 37). For example, parents encouraged to watch Sesame
Street with their children (31) may modify their child-rearing in
many ways. In peer encouragement designs, however, the exclu-
sion restriction assumption is often particularly plausible for a
structural reason: For a given ego whose outcome is observed, the
encouragement is applied to other units—their peers. The ego
usually does not directly observe or experience the encourage-
ment; instead, it only affects the ego through peer behavior and,
the researcher hopes to ensure, primarily through a small number
of measured peer behaviors. We make the following two design
recommendations—implemented in our empirical example—that
can increase the plausibility of the exclusion restriction and in-
crease statistical power.
First, provided the sample is sufficiently large, selecting a peer

encouragement that is minimal may reduce the potential for
reactance; we illustrate this point by comparison. Many designs
that randomly assign treatment and estimate “spillovers” (i.e.,
interference or exogenous peer effects) (38, 39) can be un-
derstood and analyzed as peer encouragement designs. Recent
work by economists and political scientists has examined such spill-
over effects within groups (40–44) or in a social network (45–47). In

W-i

Yi

M-i,iE-i,i

W-i

Yi

M-i,iE-i,i

All mechanisms enabled

All mechanisms disabled

Z-i W-i
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Encourage all peers

Encourage no peers

A B

Fig. 1. Mechanism designs and peer encouragement designs for estimating
peer effects, illustrated with binary variables. W−i indicate peers’ behaviors,
and Yi represent the behavior of a focal individual (ego). Variables are col-
ored to represent example values under different random assignments (red = 1,
gray = 0). (A) Mechanism designs modulate a channel by which peer effects
occur, for example, by randomly enabling or disabling (E−i,i) a particular
mechanism (M−i,i) by which a focal individual (i) is exposed to peer behavior
(−i). (B) Peer encouragement designs use randomized encouragements to peers
(Z−i). All variables represented by circles may have other common causes not
shown. Variables represented by squares are root nodes and are determined by
random assignment.
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some cases, researchers have attributed the estimated spillovers from
treatment assignment to a specific peer behavior: In one study (41),
employees were randomly assigned to encouragements to attend a
retirement benefits fair. Among other analyses, Duflo and Saez (41)
attribute spillover effects on retirement plan enrollment to effects of
peer attendance at the fair. However, as the authors note, this en-
couragement may have directly affected always-attenders [e.g., via
self-perception or crowd-out effects (48)], never-attenders (e.g., via
salience of benefits), and their peers (e.g., via increased discussion
of benefits). If, instead, the encouragement was unlikely to be re-
membered or even consciously perceived as an inducement, perhaps
such violations of the exclusion restriction would be less likely to
occur. Thus, peer encouragement designs could provide more
credible peer effect estimates if the encouragement is a minimal
“nudge” that may not warrant much conscious consideration.
A second design recommendation is, when appropriate for the

research question, to use encouragements that are specific to
particular directed edges, rather than encouraging a general, un-
directed behavior in peers. The experiments mentioned above
generally use the number or fraction of assigned peers as the in-
strument. This instrument is then necessarily correlated for all
egos in the same group or, more generally, who share peers. On
the other hand, it is sometimes possible to encourage directed
behaviors on particular edges; that is, an encouragement that in-
duces a behavior from an alter j to an ego i. Such an encourage-
ment could be randomly assigned at the level of the directed edge,
or at the level of the target (i.e., the ego). In the latter ego-specific
design, an ego i is randomly assigned to a peer encouragement
condition Zi, according to which all edges from any alter j to ego i
are treated. That is, egos are randomly assigned to conditions that
encourage their peers to engage in directed behaviors toward
them; those same peers might be assigned to a different condition
with respect to their other peers. In this ego-specific design, the
instrument is no longer correlated within groups or in the net-
work. This design choice can substantially change power; simula-
tions on small-world networks demonstrate the ego-specific design
reducing true SEs by 20% to over 90% (SI Appendix, Simulations
with Ego-Specific and General Designs). Here we report on a large
experiment in which the peer encouragement is a minimal change
that causes a specific behavior directed at a particular ego.

Empirical Context and Data
Our empirical study examines the effects of receiving feedback
from peers on Facebook. In particular, we examine feedback on
socially shared content (posts) such as text, photos, videos, and
links shared by egos. This content appears in the News Feeds of
peers (friends), who may, in turn, provide feedback on these
posts by providing comments on the post or clicking on the
“Like” button. Individuals who receive feedback on a post may
receive notifications immediately on Facebook, or via mobile
notifications or email.
The design of a feedback interface poses a complex tradeoff:

An interface that causes an ego’s post to occupy more space in
their peers’ News Feeds may increase the likelihood that peers
will provide feedback on the post; at the same time, such an
interface may cut into peers’ limited time and attention to view
and interact with others’ posts. To choose among interfaces,
Facebook product teams frequently randomly assign some users
to receive an alternative (often new) version of an interface to
evaluate these alternatives; the data presented here arise from
one such trial. In particular, we implemented a peer encour-
agement design that enables estimating the effects of receiving
feedback when sharing content in social media.
Peers’ responses to an ego’s content (i.e., liking and com-

menting) are expected to vary with the user interface associated
with that content when seen by peers. Egos were randomly
assigned to conditions that encouraged their peers to provide feed-
back under different circumstances. There were two experimental

factors that independently governed the display of egos’ posts in
peers’ News Feeds (Fig. 2). First, the “encourage initiation”
factor was relevant for posts without any feedback, and it de-
termined whether the viewer would need to click “Comment” to
display the textbox in which to write a comment or whether this
textbox would be already visible. Second, the “conversation sa-
lience” factor was relevant for posts that had already received
feedback, and it determined whether this existing feedback
would be summarized numerically and displayed after a click
or would already be visible (up to three comments shown by
default). Thus, the encourage initiation factor should primarily
cause the first feedback to occur at all or earlier, whereas the
conversation salience factor should cause additional feedback.
There were six possible conditions egos could be assigned to,
resulting in a three (encourage initiation: always, sometimes,
never) by two (conversation salience: high, low) design. (For the
encourage initiation factor, the level sometimes was the default
interface at the time: Posts displayed in the first position in News
Feed would have the textbox shown, but posts appearing in other
positions would not.)
This experiment thus is a peer encouragement design in which

directed edges are treated according to an ego-specific random as-
signment: A particular person viewing their News Feed could see
posts from multiple egos, which would be displayed according to the
conditions to which each of those egos were assigned. We use this
experiment to examine the effects of receiving feedback on how many
posts egos make and how much feedback they give on others’ posts.
To establish a baseline for comparing effect sizes, we also estimate
effects on how much they respond to feedback on their own posts.
Feedback received is measured as the mean daily number of com-
ments and likes received during the experimental period. All analysis
is of deidentified data primarily consisting of counts of behaviors.

Model
For the main analysis, we work with log-transformations of
the count variables (see SI Appendix, Transformed and Un-
transformed Count Variables). Let Di be the logarithm of feed-
back received (likes and comments) by i during the experimental
period and Yi be the logarithm of one of the ego behaviors of in-
terest. We aim to estimate effects of Di on Yi by using the random
variation in Di caused by assignment to the peer encouragement,
Zi. That is, we aim to summarize contrasts between potential

Ego Name

Text (or other content) of post
...
...

Like    Comment                           59 minutes ago

Ego
Photo

Write a comment...
Viewer 
Photo

Comment
textbox

Prev. 
Commenter 
Photo

Prev. Commenter Name Comment text

57 minutes ago      Like

5 people like this.
Existing

feedback

5 1

Feedback summary

Fig. 2. Illustration of the feedback interfaces that would be used to display
an ego’s post to their peers according to which condition the ego was ran-
domly assigned. For posts with feedback, the conversation salience factor
determines whether the feedback is summarized numerically (red) or, in-
stead, the existing feedback is shown (orange) with a textbox for writing a
new comment (blue). In the low-salience case, a click on “Comment” or the
feedback summary would display the existing feedback and comment
textbox. For posts without feedback, the encourage initiation factor deter-
mines whether the comment textbox is shown by default (blue) or whether a
click on “Comment” is needed to display it.
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outcomes for different levels of feedback received, for example,
some summary of YiðdiÞ−Yiðdi′Þ. Writing i’s potential outcomes
as functions only of the ith elements of an n-vector of feedback
received requires two assumptions that specify the potential
outcomes are constant in some inputs (i.e., specify level sets).
First, this requires the exclusion restriction for IVs (Assumption
1). The minimal nature of the encouragement makes it plausible
that it only affects egos by causing them to receive additional
feedback; however, there may be effects of the feedback not
captured by its quantity (e.g., content of comments, timing).
Additionally, already in writing Yiðdi, ziÞ, we assume that the be-

haviors and assignments of all other units can be safely ignored—a
“no interference” (49) or “individualistic treatment response”
(50) assumption.
Assumption 2. (No interference). Suppose that Yiðdi, d−i, zi, z−iÞ=
Yiðdi, d−i′ , zi, z−i′ Þ for all d, d′∈Dn, z, z′∈Zn so that we can uniquely
define Yiðdi, ziÞ.
This assumption is expected to be violated in this setting, even in

our finite population. First, the units are interacting and make up a
substantial portion of a single network. Second, the peer encour-
agement conditions would have different effects under a different
global policy such that, e.g., peers were seeing all posts displayed
according to the same interface rule. However, methods for sta-
tistical and causal inference in the presence of interference remain
somewhat underdeveloped, especially for interference in a single
network rather than within many isolated groups. We therefore
work with the assumption that relevant nuisance interference is
small compared with the effects of interest. For example, consider
the assumption that this nuisance interference is no larger than
than the effect of an increase c to feedback received.
Assumption 3. (Direct-effect-bounded interference). Suppose that

jYiðdi, d−i, zi, z−iÞ−Yiðdi, d−i′ , zi, z−i′ Þj≤ jYiðdi″+ c, d−i″ , zi″, z−i″ Þ
−Yiðdi″, d−i″ , zi″, z−i″ Þj

for all d, d′, d″∈Dn, z, z′, z″∈Zn.
If, as in our main analysis, feedback received is modeled on a

log scale, then, for c= 1, this assumes that any interference is
smaller than the effect of multiplying feedback received by e (i.e.,
increasing feedback received by 172%); thus, sensitivity analysis
based on such an assumption allows for very substantial in-
terference. In SI Appendix, we combine this assumption with a
specific model of local interference (50, 51) to conduct analyses
quantifying the sensitivity of our results to nuisance interference.
For simplicity, we now proceed with a model without nuisance
interference.
In addition to Assumptions 1 and 2, there are multiple sets of

assumptions that allow identification and estimation using peer en-
couragement conditions as IVs. One such assumption is that the
effects of feedback received are (log–log) linear and constant; that is,

YiðdiÞ−Yið0Þ= γdi.

In this case, two-stage least squares (TSLS) with multiple
instruments simply increases precision in estimating γ; because
both Yi and Di are on a logarithmic scale, γ is approximately the
effect of a 1% increase in Di in terms of percent change in Yi. To
estimate γ, we estimate the following two regression equations
using TSLS:

Y =Xμ+ γD+ «i

D=Xα+Zβ+ ηi

where X= ½S  C� is a sparse n× 80,065 matrix of (i) binary indi-
cators for 64 strata formed by the quartiles of preexperiment

feedback received, number of peers active on the web interface
to Facebook, and preexperiment posting and (ii) binary indica-
tors for 80,001 network clusters formed by graph partitioning,
and Z is an n× k matrix of instruments, which are each binary
indicators derived from the peer encouragement factors.
We expect the effects of feedback to be somewhat hetero-

geneous. “Marginal feedback,” feedback that occurs (or does
not occur) because of small changes, may be different from
other feedback. Additionally, there may be heterogeneous ef-
fects of marginal feedback. For these reasons, we could adopt a
nonparametric assumption on Dið·Þ rather than a parametric
assumption on Yið·Þ: Each encouragement does not reduce
feedback received for any egos.
Assumption 4. (Monotonicity). Define hð·Þ :Z→ f1, . . . , kg to or-
der the k values in Z such that j< l implies E½DijhðZiÞ= j�<
E½DijhðZiÞ= l�. With probability 1,DiðziÞ−Diðzi′Þ≥ 0 for all i∈Pegos,
where hðziÞ> hðzi′Þ.
Then TSLS using binary indicators formed from the levels of

hðZiÞ estimates a weighted average of estimators using a single
binary indicator (ref. 33, theorem 2), each of which estimates an
average causal response (ACR), which is a weighted average
of effects of changes in increments of Di. Because Di = gðDi

pÞ is
transformed from its original, skewed count distribution, this
means that the weights for a change to gðdipÞ from gðdip − 1Þ in
this average are the normalized product of a difference in cu-
mulative distribution functions for Di at gðdip − 1Þ for that in-
strument and gðdipÞ− gðdip − 1Þ; see SI Appendix, Transformed
and Untransformed Count Variables. Our main results use a first
stage without interactions between the two factors, so this
simple theorem does not directly apply to that model. However,
Lochner and Moretti (ref. 52, proposition 2) show that TSLS
nonetheless estimates a weighted average of the single in-
strument estimands. This weighting function is shown in SI
Appendix, Fig. S7. We test the choice of this first-stage model
and show in Fig. 4 that the results are not affected by instead
using data-driven shrinkage and selection with the lasso.

Results
We first examine the effects of the peer encouragements on
feedback received (i.e., first-stage effects). Both encouragement
factors cause peers to comment on and like posts by egos, such
that these factors increase (geometric) mean feedback received by
0.2–1.3% (Fig. 3A), Fð3, 4.9e7Þ= 519,   p< 1e-12. Adding the two
interaction terms for these factors did not significantly improve fit,
Fð2, 4.9e7Þ= 0.23,   p= 0.80. As expected, the encourage initiation
factor shifts the lower end of the distribution of feedback received
more, compared with the conversation salience factor (Fig. 3B).
This randomly induced variation in feedback received allows

us to estimate effects of receiving feedback on multiple ego be-
haviors. We focus on results from a first-stage specification as in
Fig. 3A, with all three main effects (black points in Fig. 4).
Receiving additional feedback is expected to have the largest

effects on “reply” behaviors by the ego, such as commenting on
their own posts and liking comments on their posts. We estimate
large effects of receiving feedback on both of these ego behav-
iors, such that a 10% increase in feedback received causes a
9.6% increase in comments (self) and a 10.5% increase in likes
(self). Although unsurprising, these estimates can help put the
magnitude of effects on other ego behaviors in perspective.
Effects on other ego behaviors are more important for un-

derstanding the spread of feedback and sharing behaviors. Re-
ceiving additional feedback also causes egos to give others more
feedback, in terms of both likes and comments separately: Re-
ceiving 10% more feedback causes egos to give others 1.1%
more likes and 1.1% more comments. Thus, causing one indi-
vidual to receive more feedback will cause them to give more
feedback to their peers, potentially creating desirable feedback
loops. As expected, these effects are substantially smaller than
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on the reply behaviors, but are less than an order of magnitude
smaller. Furthermore, when egos receive more feedback, they
also share more new posts during the experiment: A 10% in-
crease in feedback causes a 0.7% increase in creating new posts.
We also computed estimates with other first-stage specifi-

cations: only the conversation salience factor, only the two en-
courage initiation factors, and a high-dimensional specification.
Specifically, to potentially use heterogeneity in the true first-stage
model, we fit a lasso (i.e., L1 penalized) first-stage model (53, 54)
with both factors, interactions, and interactions with the stratum-
defining variables, with the selected model having 23 nonzero
coefficients. The results (Fig. 4) for feedback to peers and posting
are statistically indistinguishable for all four models, whereas the
two single-factor models differ for effects on the reply behaviors.

Comparison with Observational Estimates. In the absence of this
peer encouragement design, scientists and decision makers could
instead rely on observational data to study the effects of receiving
feedback (10, 55). We thus evaluate how observational estimates
compare with our experimental results. We regress each of the
ego outcomes on observed feedback received, adjusting for strata

and network clusters, as in the IV analysis, but ignoring assign-
ment to peer encouragement conditions. (This analysis includes
some variation in feedback received caused by the experiment, but
this is a very small fraction of the variance, and it does not ma-
terially affect the results.) For all outcomes, these observational
estimates of the effect of receiving feedback are substantially
different from IV estimates from the peer encouragement design
(Fig. 5). For the main outcomes of interest (posting and feedback
to others), the observational coefficient estimates are 317–498%
larger. On the other hand, they appear to underestimate reply
behaviors by 36% and 68% for comments and likes, respectively.
That is, in contrast to claims that observational estimates can
upper bound true peer effects (6), the sign of the implied large-
sample bias of the observational estimators varies across out-
comes. These differences could be attributed to confounding,
simultaneity, or the fact that IV and observational analyses often
estimate different causal quantities (52).

Robustness to Dependence and Nuisance Interference. The preced-
ing inferential results use a network adjacency- and cluster-robust
estimator of the variance–covariance matrix (56, 57) to compute
SEs; see SI Appendix, Randomization Inference with Sensitivity
Analysis. To further examine the robustness of the results to nui-
sance interference, we used Fisherian randomization inference for
the effect of feedback received on posting (which was the least
statistically significant with p= 0.0013), while allowing for in-
ference according to Assumption 3 with c= 1 under a model
whereby an ego’s outcome depends the assignments of their
peers. This estimate remained statistically significant in the
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Fig. 3. Effects of the encouragements on feedback received (first stage).
(A) First-stage average effects. Points are coefficient estimates for the effects
of the conversation salience (circle) and encourage initiation (triangles)
factors on (log) feedback received, where the base condition is low con-
versation salience and never encourage initiation. Error bars are 95% net-
work adjacency- and cluster-robust confidence intervals. (B) Effects on the
distribution of feedback received, computed as a difference in the empirical
cumulative distribution functions (ECDFs) of feedback received. Again, with
the lowest-feedback condition (never/low) as the baseline, each line repre-
sents the difference in probability that daily feedback received is at least the
value on the x axis. The encourage initiation factor, which has its immediate
effects only when a post has no feedback, has larger effects at the low end
of the feedback distribution, whereas the conversation salience factor pro-
duces shifts at the high end. These differences use poststratification on
quartiles of prior feedback received.
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comes were expected to be most directly affected by receiving more
feedback. The other ego behaviors involve giving more feedback to others
and making new posts. Number of instruments is shown in parentheses; for
the lasso, this counts only nonzero coefficients. Error bars are 95% network
adjacency- and cluster-robust confidence intervals. SI Appendix, Table S2
displays these results in tabular form.
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presence of additive interference (maximum p= 0.012) or in-
teractive interference (maximum p= 0.017) from peers; most of
this difference in inference arises from the use of randomization
inference with the rank sum test statistic, rather than allowing for
interference per se (without interference, p= 0.009).

Discussion
Peer encouragement designs can be an effective strategy for esti-
mating peer effects in networks: By randomly encouraging peers
to specific behaviors, researchers can learn about the effects of
those behaviors on egos. In this paper, we reviewed this class of
experimental designs and demonstrated the potential to use a
minimal encouragement (here, a small change to the user in-
terface for giving feedback) to an ego-specific behavior. We
found that receiving additional feedback causes individuals to
give feedback to others and to share new posts. Compared with
direct reply behaviors, these effects are smaller but still very
substantial. This provides new evidence for the influence of peer
effects in the use of communication technologies. It also informs
our understanding of the value of social feedback to its recipi-
ents, as reflected in recipients’ decisions to continue using a
medium. In particular, receiving more feedback causes individ-
uals to more frequently repeat the same behavior (posting con-
tent) that made them able to receive feedback in the first place.
These results are informative about the role of directed behav-
iors in the adoption of technologies that enable both undirected
(broadcast) and directed communications.
One limitation of this experiment is that it does not elucidate

the mechanisms by which receiving feedback affects egos or
distinguish different types of feedback. The observed effects are
expected to occur for many reasons. For example, effects on giving
feedback to others could be due to a psychological response (e.g.,
generalized reciprocity), or occur simply because receiving feed-
back causes users to return to Facebook more often, and therefore
creates more opportunities to comment on peers’ posts. Dis-
tinguishing these and other mechanisms would be difficult, but
additional studies could test alternative explanations. For sim-
plicity, we have focused on an experiment that identifies un-
differentiated effects of feedback. Additional peer encouragement
designs could also distinguish among different types of feedback.
A peer encouragement design identifies an encouragement-

specific quantity: the effect of receiving additional feedback for
egos’ whose peers are induced by the encouragement to provide

more feedback. This quantity is an ACR, the generalization of a
local average treatment effect (LATE) for a multivalued treat-
ment, or a weighted combination of ACRs. In this study, these
are weighted average effects of feedback that would occur (or
not) depending on small changes to the user interface. The
conventional wisdom (cf. refs. 58–60) is that a LATE or ACR is
less relevant than quantities that average over other, larger sets
of potential outcomes, such as an average treatment effect or
ATT. We argue that an ACR, in fact, averages over differences
in peer behavior that are realistic under many relevant alterna-
tive policies. Researchers, marketers, or policy makers may be
particularly interested in the average effects of incremental peer
behaviors—behaviors that will occur or not depending on re-
alistic changes to the environment, policy, or marketing cam-
paign. In some standard economic models, the LATE is a
piecewise constant approximation to this marginal treatment
effect (61). Thus, if design, policy, or marketing decisions are
expected to produce shifts in peer behaviors similar to the en-
couragement design, then the LATE or ACR may be of greater
substantive relevance (cf. ref. 62). Of course, even different en-
couragements might define quite different ACRs. This experi-
ment included two different peer encouragements that are
expected to cause feedback at different times in the lifecycle of
an ego’s post: The encourage initiation factor should primarily
cause the first feedback to occur at all or earlier, and the con-
versation salience factor should generate additional feedback on
posts with existing feedback. We find that, despite this differ-
ence, these two factors identify quite similar ACRs, especially for
the primary outcomes (SI Appendix, Fig. S8). This could increase
our confidence that the present results may be informative about
other attempts to cause people to receive more feedback on their
posts. In this particular case, it is unclear what other averages
would be preferable, because the natural generalization of the
ATT to a multivalued variable like feedback received would
average over contrasts comparing outcomes when egos receive
their status quo levels of feedback and if they were to receive
no feedback [i.e., YiðDiÞ−Yið0Þ]. This thus includes contrasts in
which very active, high-degree egos who currently receive large
amounts of feedback receive none, which is perhaps unlikely to
occur under policies being considered.
The current work highlights the advantages of large data sets

and novel experimental designs for causal inference about how
people affect each other. Our peer encouragement design pro-
vides credible causal estimates for the effects of receiving social
feedback on Facebook; this is, to our knowledge, the first ex-
perimental evidence for these effects. The plausibility of a key
assumption in our model, the exclusion restriction, partly de-
pends on encouragements being minimal. However, encourage-
ments that produce minimal variation can result in imprecise IV
estimates; even studies with hundreds of thousands of observa-
tions will often suffer from the instruments being too weak (63).
Peer encouragement designs with such minimal encouragements
thus require a very large sample size and careful design (e.g., the
ego-specific design used here) to estimate peer effects pre-
cisely. When feasible, however, peer encouragement designs
can provide valuable insights into real-world social dynamics
that can inform social science and policy decisions.

Materials and Methods
The peer encouragement design ran for 3 wk between September and
October 2012. The egos in the data analyzed are 48.9 million Facebook users
globally who had created at least one status update in the 4 d before the start
of the experiment or during the experiment, who had at least one friend
frequently using Facebook via the web interface, and who reported their age
as at least 18. Note that 52% of these egos are randomly assigned to the peer
encouragement condition reflecting the status quo at the time. Approxi-
mately 905 million Facebook users were peers of the egos and used the web
interface. Further details about the sample and covariate balance are
reported in SI Appendix, Table S1. The primary results we report are adjusted
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with a set of sparse binary covariates (i.e., dummies) for quartiles of three
pretreatment variables (forming 43 = 64 strata) and 80,001 clusters formed
by graph partitioning (see SI Appendix).

This study uses data from an experiment conducted for routine product
improvement purposes and that posed nomore thanminimal risk. D.E. and E.B.
designed and conducted the experiment as part of product development
while employees of Facebook in 2012. Research using this data is consistent
with the Data Policy that people accept when they choose to use the
Facebook service. Accordingly, we did not separately notify users of this
specific product test, nor did we obtain written informed consent. R.F.K. later
contributed to this research using this existing data while an employee of
Facebook in 2014 and 2015. Because he intended to use his university

affiliation in reports on this study, R.F.K. asked the Stanford University in-
stitutional review board (IRB) to review a protocol for use of this previously
collected anonymized data; the Stanford IRB approved this protocol. Similarly,
whenD.E. became amember of theMassachusetts Institute of Technology (MIT)
faculty in 2015, theMIT IRB determined that a protocol for use of this previously
collected anonymized data was exempt, and approved the protocol.
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Dean Eckles, René F. Kizilcec, Eytan Bakshy

Contents

1 Description of experimental conditions 2

2 Summaries by condition 2

3 Covariates 4

4 Model 4
4.1 Homogeneous effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Heterogeneous effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 With interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3.1 Additive interference . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Statistical inference 8
5.1 Asymptotic inference with adjacency- and cluster-robust SEs . . . . . . . . 9
5.2 Randomization inference with sensitivity analysis . . . . . . . . . . . . . . . 11

6 Intent-to-treat effects 15

7 First-stage distributional effects 15

8 Alternative selection of instruments 17

9 Transformed and untransformed count variables 19

10 Simulations with ego-specific and general designs 21

11 Simulations with interference: Type I error rates of tests 22

1



1 Description of experimental conditions

The experiment consisted of two design factors: encourage initiation and conversation
salience (see details in the main text). Both factors only affected the user interface when
users were viewing News Feed in the Web interface for Facebook (i.e., not interfaces for
mobile phones). The encourage initiation factor has three levels that determine how often
the existing feedback and textbox for making a comment are shown in News Feed by
default, rather than requiring a click to see. The always and never levels correspond to
either always or never automatically showing existing feedback when displaying the shared
content. The sometimes condition shows existing feedback only when the shared content
appears in the first position in News Feed.

2 Summaries by condition

We provide summary statistics for the peer encouragement conditions in Table S1, including
the number of assigned egos, demographics, and a set of pre-experimental covariates. Anal-
ysis of variance for these pre-experiment covariates by condition were all non-significant,
consistent with successful randomization.

A simplified version of the IV analysis of the effect of feedback received on ego behavior
can be presented visually. Fig. S1 shows condition-level summaries of feedback received
and content production.
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3 Covariates

As described in Materials and Methods, we used relevant covariates to increase the precision
of the estimates reported in the main text. In particular, we used dummies for strata defined
by three discrete covariates:

1. Prior feedback received: Quartile buckets of the number of likes and comments on
the ego’s posts in the 18 days prior to the experiment.

2. Active peers: Quartile buckets of the number of peers (Facebook friends) who had
used the Web interface to Facebook at least 7 of the 28 days prior to the experiment.

3. Prior sharing: Quartile buckets of the number of posts made by the ego in the 18
days prior to the experiment.

Note that since the peer encouragement only affected peers viewing a post in Facebook
News Feed via the Web interface, the second variable only counts peers who are active via
the Web interface.

Additionally, as discussed in Section 5.1 below, the main analysis allows for dependence
within each of the 80,001 clusters defined by graph partitioning. Therefore, we also included
dummies for each of these clusters to eliminate any mean dependence within clusters and
potentially increase precision.

4 Model

This section provides additional information about the models and estimands that can
motivate the design and analysis of the peer encouragement design. Let Pegos be the set
of n egos and Ppeers be the set of mp peers. These sets are not disjoint: nearly all units
in Pegos are in Ppeers. Let Pe∪p = Pegos ∪ Ppeers be the union of me∪p units. We use bold
letters for matrices and capital letters for random variables.

For the question of how receiving additional feedback affects ego behaviors, key quan-
tities of interest are contrasts between ego behaviors with different amounts of received
feedback. For all egos i ∈ E, we parameterize received feedback as as a function of the sum
of the feedback (likes L and comments C) on an ego’s posts:

Di ≡ g
( ∑
j∈Ppeers

Lji + Cji

)
.

For substantive and data analytic reasons discussed in Section 9, we take g(·) to be a
logarithmic function in our preferred analysis.
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Figure S1: Summary of feedback received and posts by peer encouragement condition. Each
point represents a single combination of the the two factors. We compute the mean (log)
feedback received and (log) posts and subtract the same variable from the pre-experiment
period. Each point is then the mean of this pre–post difference for that condition. A linear
best fit line (weighted by n) is shown.
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Let Yi(di, d−i, zi, z−i) denote the potential outcome (e.g., posts shared during the ex-
periment) for ego i if they received di feedback and were assigned to zi and all other units
receive feedback and have assignments according the rest of the me∪p-vectors d and z.1

Without making further assumptions about other peer effects, these quantities of in-
terest are contrasts between potential outcomes that may depend on vectors of all units’
assignments and behaviors. For example,

Yi(di, d−i, zi, z−i)− Yi(d′i, d−i, zi, z−i)

contrasts ego i’s outcomes under two different levels of how much feedback i receives
(di and d′i) while holding constant the other determinates of i’s outcome, including their
assignment, the assignment of all other units, and feedback received by other units. These
two quantities are not simultaneously observable. Multiple sets of assumptions can be used
to justify estimating summaries (e.g., averages) of these contrasts from data. We describe
three sets of these assumptions.

4.1 Homogeneous effects

Standard treatments of instrumental variable methods and widespread practice in econo-
metrics has, until recently, worked primarily with models in which the estimand is a coef-
ficient in a linear model. In the present case, this model would have the form

Yi(di)− Yi(0) = γdi, (1)

where we then observe the function Yi(·) for the value of the observed level of the endoge-
nous directed peer behavior Y obs

i = Yi(D
obs
i ) (in this case, feedback received). The “dose”

itself (feedback received) is function of the randomly assigned instrument, for which we
observe Dobs

i = Di(Z
obs
i ).2

In this setting, for the finite population Pegos, exact inference for γ is possible (17) by
inverting a hypothesis test for γ = γ0. We conduct this analysis in Section 5.2.

One important shortcoming of this model is that it implicitly makes assumptions about
any interference. By writing the outcomes as a function only of a level of directed peer
behaviors, this would typically require that outcomes are constant in many of the arguments
previously posited (i.e. other behaviors and random assignment); that is, we have for all i
that

Yi(di) = Yi(di, d−i, zi, z−i) = Yi(di, d
′
−i, z

′
i, z
′
−i)

1This specification of potential outcomes rules out certain kinds of simultaneity or feedback loops, such
as the ego’s outcome (e.g., posting) in an initial period causing them to receive more feedback subsequently,
and then this causing the outcome in a later period.

2Writing Di(·) as a function only of Zi assumes that Di has no other parents among our variables; this,
along with the exclusion restriction, rules out some cases of simultaneity or aggregation of multiple time
periods. For example, say an encouragement causes feedback to occur, which in turn causes an outcome,
this in turn causes more feedback to occur, etc. Ogburn et al. (20) addresses the negative consequences for
identification of endogeneous timing of the mediating behaviors.
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for all d ∈ Dn, z, z′ ∈ Zn. This makes a hypothesis that γ = γ0 a sharp hypothesis, in that
all of the potential outcomes can be inferred from a single observation.

4.2 Heterogeneous effects

Without the assumption of Equation 1, effects may be heterogenous across units and
across increments to the endogenous treatment. That is, the model might be linear but
heterogeneous,

Yi(d)− Yi(0) = γidi, (2)

or both heterogeneous and potentially non-linear.
In the absence of interference, the identification results from Angrist and Imbens (1)

apply. That is, for each instrument there is a parameter γ that is a weighted average per-
unit treatment effect, where the weights are determined by the shift in the distribution of
Di caused by the instrument. Angrist and Imbens (1) call this the average causal response
(ACR). The weighting functions for all pairs of conditions are given by Fig. 3B in the main
text. The weighting function for the main results are shown in Fig. S7.

4.3 With interference

The models above make a unit’s potential outcomes invariant in changes to other units’
assignments, but we expect units to be interacting.

In some other work, an explicit goal is to contrast very different treatment vectors. Hud-
gens and Halloran (16) consider a population average overall causal effect that compares
two arbitrary distributions of treatment assignments φ and φ′. When φ is deterministic
assignment to treatment and φ′ is deterministic treatment assignment to control; Eckles
et al. (15) call this the global ATE. This is not our goal here; rather, the present work
aims to estimate effects on an individual under more-or-less the current regime, as this cor-
responds to questions about how egos are affected by marginal feedback and what effects
small, targeted changes might have.

Following Hudgens and Halloran (16), one can define individual-level average potential
outcomes in terms of a unit’s assignment for some distribution φ of global assignment
vectors. For the total effects of assignment, we have

Ȳi(zi;φ) ≡ Eφ[Yi(Di(z), d−i, zi, z−i)].

Then define individual-level average effects by

τ̄i(zi, z
′
i;φ) ≡ Ȳi(zi;φ)− Ȳi(z′i;φ).

These can be summarized as the finite population average of individual-level effect for, e.g.,
assignment to treatment versus control:

τ̄(1, 0;φ) ≡
∑

i∈Pegos

τ̄i(1, 0;φ).
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If units’ probability of assignment under φ is constant in the population (as it is in our
design), then the sample difference in means is an unbiased estimator. Thus, standard
intent-to-treat estimators remain unbiased, but simply for a quantity that may depend
on the distribution the assignment vector is drawn from. Similarly, by considering the
analogous averages of the Di, also for the first-stage effects. This is sufficient for both the
numerator and denominator of the Wald estimator for instrumental variables to remain
unbiased. Of course, as in the absence of interference, the estimator itself remains biased
in finite samples (9).

However, interference can still affect the sampling distribution of these estimators and so
affect the operating characteristics of standard methods for statistical inference; see Section
5 below. More specifically, Section 5.2 conducts a sensitivity analysis in the presence of
interference; we find that this does not substantially affect our inferences.

4.3.1 Additive interference

More technically, Equation 1 does not exclude all forms of interference; in particular, if
interference is additive, then this constant effects model could hold. More generally (i.e.,
allowing for heterogeneous effects), if there is additive interference then differences between
outcomes for different peer behaviors are invariant in the other inputs; that is, that for all
i there is some

τi(di, d
′
i) = Yi(di, d−i, zi, z−i)− Yi(d′i, d′−i, zi, z−i)

for all d, d′ ∈ Dn, z, z′ ∈ Zn. In this case, the individual-level average effects τ̄i(di, d
′
i;φ)

do not depend on the choice of φ (as long as φ puts positive probability on the relevant
values of D). As discussed in Section 5.2, this interference can affect inference, but in our
sensitivity analysis, it does so only slightly.

5 Statistical inference

General statistical inference in networks remains a relatively open area of research, such
that available methods involve strong substantive assumptions, un-scalable computation,
low statistical power, and/or unclear asymptotics. Two distinct but related potential
violations of standard independence assumptions apply to the present case: interference
(i.e., spillovers, effects of other units’ assignments) and network-correlated errors. We
employ and combine multiple established methods with the aim of evaluating the robustness
of the results to the specific assumptions of each. We expected that inference would not
be substantially affected by accounting for potential interference and network-correlated
errors since the peer encouragement is ego-specific and not correlated in the network.
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5.1 Asymptotic inference with adjacency- and cluster-robust SEs

Following Conley (12), spatial econometrics has made use of estimators for variance–
covariance matrices that are consistent in the presence of spatially correlated errors. These
are Huber–White “sandwich” estimators of the form

V̂ar[β̂] = (X′X)−1X′(ûû′ �B)X(X′X)−1, (3)

where û is the vector of residuals, � is element-wise multiplication, and S is a n×n matrix
that selects and/or weights pairs of observations. In versions of this estimator robust to
one-way clustering, B is a block diagonal matrix with bij = 1 if and only if i and j are in
the same cluster. In the spatial case, bij = K(sij) where sij is the distance between units
i and j and K(·) is a kernel.

We use this estimator with network distance, such that Badj = I + A, where A is the
adjacency matrix. That is, for each i, Badj

ii = 1 and for each i 6= j, Badj
ij = Aij .

We note that while this method has been widely applied to networks and non-spatial
measures of distance, including by Conley (12), the relevant asymptotics for networks are
underdeveloped. The Conley (12) results use a metric space embedding, though other
results use other sets of assumptions (18). This method also coincides with the use of
multi-way clustering for dyadic data (3). To illustrate the performance of these methods
in networks with local interference, we present some simple simulation results in Section
11 below.

The adjacency matrix for this analysis is prohibitively large. We use a sample of 1.7
million of its rows, including all columns, thus maintaining the full dependence structure
for the egos included in the sample. In a smaller sample size, this would simply change the
degrees of freedom for relevant t- and F -statistics, but this is without consequence at this
sample size.

There may be some dependence between egos that are not each others’ peers, but
have mutual neighbors. The number of paths of length two is prohibitively large (i.e.,
over 5 billion such paths originating from the subsample of 1.7 million egos) to readily
incorporate into the above estimator. However, we additionally computed estimators of
the variance–covariance matrix using cluster-robust sandwich estimators. Here clusters
are defined according to a conveniently available partitioning of the friendship graph for
other purposes (e.g., for graph cluster randomized experiments, as in Ugander et al. (23)
and Eckles et al. (15)) into 80,000 clusters using balanced label propagation (22); egos
not in any of these clusters were assigned to another cluster. This analysis is partially
motivated by recent results in spatial econometrics on the application of cluster-robust
variance–covariance estimators to spatially dependent data (8). On its own, this cluster-
robust variance–covariance estimator has the disadvantage that only approximately 30%
of the edges between egos are within the same cluster, so clearly there is potential for
between-cluster dependence.
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Figure S2: Comparison of adjacency- and spatial-robust SEs and standard heteroskedastic-
robust SEs for the main estimates from Fig. 4 in the main text. The increases are less
than 1%.

For these reasons, we use a variance–covariance estimator that combines both the
adjacency- and cluster-robust estimators. The cluster-robust estimator consists of Equa-
tion 3 with a different “selector” matrix Bclu with Bclu

ij = 1 if and only if egos i and j are
in the same cluster. This can be interpreted as arising from an alternative measurement
of distance between i and j. Following, in the spatial literature, Conley and Molinari
(13), Kelejian and Prucha (18), or, in work on multi-way clustering, Cameron et al. (11),
one could use a weighting matrix Bboth that is the element-wise maximum of the two, such

that Bboth
ij = max(Badj

ij , B
clu
ij ). This estimator, call it V̂ar

both
[β̂], can be computed as a

linear combination of estimators,

V̂ar
m

[β̂] = V̂ar
adj

[β̂] + V̂ar
clu

[β̂]− V̂ar
adj×clu

[β̂],

where the last term is based on a selector matrix that is the element-wise product of the

first two. Since V̂ar
adj

[β̂] is computed on a sample of rows and to avoid construction of

the rest of these matrices, we replace V̂ar
adj×clu

[β̂] with an estimator that is smaller in
expectation, the standard heteroskedasticity-robust sandwich estimator for independent
data, which is equivalent to using a selector matrix with ones on the diagonal.

The primary results in the main text make use of this combined adjacency- and cluster-
robust sandwich estimator. Compared with not accounting for these potential sources of
the dependence, this results in a quite small increase in SEs for the coefficients of interest.
For the main IV estimates, the increase is less than 1% (Fig. S2). This was expected given
that the instruments are not correlated in the network and interference was expected to
be small.
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5.2 Randomization inference with sensitivity analysis

We use Fisherian randomization inference to further examine the robustness of our results.
First, we repeat the main analysis using the randomization inference method of Imbens
and Rosenbaum (17). Second, we extend this method to conduct a sensitivity analysis to
certain types of interference. We conduct this analysis for the effect of feedback received
on content production (i.e., sharing posts), which is perhaps the most substantial outcome
and the outcome with the largest p-value (and therefore expected to be most sensitive to
alternative inferential methods).

Imbens and Rosenbaum (17) apply Fisherian randomization inference to an instrumen-
tal variables design, yielding exact tests of a constant effects model. Their simulations
illustrate this method’s robustness to weak instruments and higher power with long-tailed
distributions. For the model in Equation 1, one can use an instrument to test hypotheses
of the form γ = γ0 as follows. Compute the residuals r0 = Y obs−γ0Dobs and some statistic
that is a function of the r0 and instruments Z. Then compare this observed statistic T obs

to the known null distribution of T under repeated sampling of Z from the distribution of
treatment assignments φ. We construct a confidence set for γ by inverting this test. If this
set is nonempty, then there are some values of γ for which this model is consistent with
the data, at least with respect to the alternatives against which the choice of T has power.
However, as is common to methods that invert Fisher’s exact hypothesis tests of this kind,
this confidence set could exclude some values of γ that are consistent with the data under
a less restrictive model (i.e., one with interference).

We thus extend this method to allow us to examine the sensitivity of these results
to a limited form of interference. Following Assumption 3 in the main text (i.e., direct-
effect-bounded interference), we assume that the interference is smaller than the effect of
some increment to Di. In particular, we consider a model in which egos’ outcomes depend
linearly on the fraction of treated peers,

Y (d,Z) = Y (0, 0) + γd+ ÃZζ, (4)

where d is an n-vector, Z is a n × 2 matrix of indicators for whether each unit has con-
versation salience high and always encourage initiation, and Ã is the row-normalized ad-
jacency matrix. It is possible to test joint hypotheses of the form γ = γ0 and ζ = ζ0
against some alternatives. As with the no-interference case, we compute the residuals
r0 = Y obs − γ0Dobs − ζ0ÃZobs and some statistic that is a function of residuals r0 and
instruments Z. This statistic is then compared with the known null distribution.

This general procedure is the same as in Bowers et al. (10), except that we apply it to
inference with instruments and we treat the interference parameter as a nuisance, rather
than trying to do inference for it. As we are primarily interested in γ, we can conduct
sensitivity analysis by testing sets of hypotheses of the form γ = γ0 and ζk ∈ (ζ−, ζ+) for
k ∈ {1, 2} for the two instruments we use.

We expect that any spillovers should be small compared with the direct effects (i.e.,

11



Assumption 3). To be conservative we allow the spillovers from each of the two columns of
Z to be as large as γ. Since Di is on a log scale, this corresponds to the assumption that the
interference from each factor is less than the effect of a 172% increase in feedback received.
Of course, we do not know γ so we examine sensitivity to spillovers as large as γ in two
ways. In both cases, we set ζ− = −ζ+ for symmetry. First, we set ζ+ = γ0, a hypothetical
value of γ, such that as we test different values of γ we also test different values of ζ. This
has the consequence that when testing γ = 0, we also have ζ = 0, meaning that inference is
not affected by interference at this point. So we also do a sensitivity analysis with ζ+ = γ̂,
such that there are the same levels of interference for all tested values of γ.

As our test statistic, we use the sum of ranks of r0 within the four groups formed by
the binary factors high conversation salience and always encourage initiation. We selected
this test statistic because (a) the null distribution can be approximated without actually
computing permutations (as this corresponds to the Kruskal–Wallis rank-sum test) and (b)
it is expected to be sensitive to changes in γ.

We find that inference for γ is largely unaffected by these levels of linear interference;
that is, the resulting confidence set is of a similar size and location as the confidence
intervals from our asymptotic inference. Fig. S3 shows p-values as a function of γ. Across
all settings of ζ for γ = 0, the largest p-value is 0.012, so we still reject γ = 0.

Note that because the confidence set for γ is non-empty when ζ = 0, the data are
consistent with there being no interference from the fraction of treated neighbors — at
least to the extent deviations from this no interference model are detectable with these
test statistics. That is, compared with the conditional randomization methods in Aronow
(2) and Athey et al. (4), which condition on elements of the observed assignment vector,
the procedure here tests a more specific model for effects of a unit’s own treatment (and
fails to reject it).

We also conducted the same sensitivity analysis, but with interactions between ego
treatment and peer treatment. This allows for the effect of peers’ assignment to have their
peers encouraged to affect egos differently depending on each ego’s assignment. This model
is

Yi(di,Z) = Yi(0, 0) + γdi +
(
ÃiZzi −

1

n

∑
j∈Pegos

ÃjZ
)
ζ, (5)

where Ãi is the ith row of the row-normalized adjacency matrix Ã, and ζ takes on the same
values as before. Note that γ has the interpretation of being both the effect of feedback at
the mean level of the fraction of ego-peers assigned and also, due to linearity, the average
effect under a distribution of ego-peers assigned that is centered at this value. In this sense,
in the framework of Hudgens and Halloran (16), inference for γ is inference for the average
of average individual-level direct effects.

This interactive interference appears to affect inference somewhat more than the addi-
tive interference, but still does not substantially change the results (Fig. S4). Across all
settings of ζ, the largest p-value for the hypothesis that γ = 0 is 0.017.
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Figure S3: Sensitivity analysis for additive spillovers using Fisherian randomization infer-
ence for the effect of feedback received on posting using the Kruskal–Wallis rank-sum test
statistic. Values of γ with a p-value greater than 0.05 (dashed horizontal line) for all values
of ζ are included in the 95% confidence set. Here, the confidence set is simply an interval
defined by a start and end point. In (a), ζ takes on values that depend on the posited
value of γ shown on the x-axis: ζ ∈ {−γ, 0, γ}. In (b), ζ is constant for all tested values of
γ based on our estimated value for γ: ζ ∈ {−γ̂, 0, γ̂}. In neither case does this appreciably
affect inference for the effect of feedback received on posting, γ. There is nonetheless some
difference between the randomization inference confidence set and the 95% confidence in-
terval from asymptotic adjacency- and cluster-robust inference (limits are shown as dotted
vertical lines).
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Figure S4: Sensitivity analysis for interactive spillovers using Fisherian randomization
inference for the effect of feedback received on posting, γ, using the Kruskal–Wallis rank-
sum test statistic. Values of γ with a p-value greater than 0.05 (dashed horizontal line) for
all values of ζ are included in the 95% confidence set. Here, the confidence set is simply
an interval defined by a start and end point. In (a), ζ takes on values that depend on
the posited value of γ shown on the x-axis: ζ ∈ {−γ, 0, γ}. In (b), ζ is constant for all
tested values of γ based on our estimated value for γ: ζ ∈ {−γ̂, 0, γ̂}. In neither case does
changing ζ substantially affect inference for the effect of feedback received on posting, γ.
The limits of the 95% confidence interval from asymptotic adjacency- and cluster-robust
inference are shown as dotted vertical lines.
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Figure S5: Effects of peer encouragements on (log) ego behaviors. These estimates are
based on post-stratification on quartiles of prior feedback, friend activity, and prior sharing.
Error bars are 95% heteroscedasticity-robust confidence intervals.

6 Intent-to-treat effects

When analyzing encouragement designs, it is common to report the total effects of random
assignment to the encouragement on the outcomes. Figure S5 shows these “intent-to-treat”
effects.

7 First-stage distributional effects

In addition to the effects on mean feedback received reported in the main text, we can
compare the distributions of feedback received in different encouragement conditions. This
shows what changes in feedback received are caused by the peer encouragement and thus
what changes the TSLS analysis is averaging over. Figure 3 in the main text illustrates
the difference in these distributions for all egos, and Figure S6 shows these distributional
effects separately for egos who previously received differing levels of feedback; these are
combined to produce the results in the main text.

In particular, in the case of exclusive, binary instruments, the differences in CDFs
are the weights that define the ACR for that instrument or the weighted combination
of ACRs. Using results extending Angrist and Imbens (1, Th. 2) to TSLS estimation
with other TSLS specifications Lochner and Moretti (19, Prop. 2) and accounting for the
log transformation, we compute the combined weights for the primary set of three binary
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Figure S6: Effect of the encouragements on feedback received, by quartiles of prior feedback
received. Using the lowest-feedback condition (never encourage initiation, low conversation
salience) as the baseline, the lines represent the difference in probability that feedback
received is at least the value on the x-axis. As expected, for egos who received less feedback
prior to the experiment (top-left panel), the encourage initiation factor has larger effects
relative to the conversation salience factor.
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Figure S7: (a) Weighting function for TSLS with primary set of three instruments. Each
point is the weight on changes from the (k − 1)th value to the kth value. (b) Ratio of
weighting function to probability mass function (PMF) for feedback received (excluding
non-zero and maximum, winsorized value).

instruments (the main effects). These are displayed in Fig. S7. The weights are largest
for small values of Di, but this only partially reflects the greater probability mass on these
smaller values; in fact, compared with the probability mass function, larger values of Di

are given more weight.

8 Alternative selection of instruments

We also produced estimates from multiple first-stage specifications: models with both fac-
tors and models with only the conversation salience factor and only the encourage initiation
factor. We also include, following Belloni et al. (7), a lasso (i.e., L1 penalized, (21)) model.
The matrix of potential instruments for this model has 325 columns with both factors (3
columns), interactions (2), and interactions with the strata-defining variables (64 × 5 =
320). Note that this is intentionally overparameterized in that terms for all 64 strata (not
63) are included. The selected penalty λs = 2.14× 10−5, which minimizes MSE in 10-fold
cross-validation, results in a model with 23 of a possible 325 non-zero coefficients (Fig. S8),
including the 3 main effects and 20 strata-specific terms.

Figure 4 in the main text and Table 8 present results from these four models. The
estimates for most outcomes are statistically indistinguishable. For the “reply” behaviors,
the estimates from the two factors are statistically significantly different. This could reflect
that these encouragements may produce different types of feedback (e.g., comments vs.
likes, or comments with different content), thus affecting the number of targets for these
reply behaviors (note, e.g., that only comments, not likes, on the ego’s post can themselves
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Figure S8: Regularization path for the lasso (L1 penalized) first-stage model. The selected
value of the penalty λ is indicated with a dashed vertical line. The coefficient paths are
numbered and colored according to: (1–3) main effects (red), (4–5) interactions of the
factors (black), (6–325) stratum-specific effects, with main effects (pink) and interactions
(grey). As λ is decreased, the first non-zero coefficient is for high conversation salience and
the second is for always encourage initiation.
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be liked by the ego). The lasso estimates do not significantly differ from the simpler model,
suggesting that, at least on the log-transformed scale, there is little heterogeneity in the first
stage between the 64 strata, at least to the extent that it is associated with heterogeneous
effects of feedback.

Table S2: Effects of receiving feedback on five ego behaviors, as estimated using IV analysis
of the peer encouragement design with four different first-stage specifications. These are
coefficient estimates from a TSLS log–log model with network adjacency- and cluster-robust
standard errors (in parentheses).

Outcome Main effects Salience only Initiation only Lasso

Likes (self) 1.046 1.184 0.800 1.058
(0.026) (0.032) (0.048) (0.025)

z = 40.17 z = 36.47 z = 16.51 z = 41.50
p < 1e-12 p < 1e-12 p < 1e-12 p < 1e-12

Comments (self) 0.964 0.968 1.060 0.961
(0.019) (0.022) (0.045) (0.018)

z = 50.72 z = 44.72 z = 23.78 z = 52.22
p < 1e-12 p < 1e-12 p < 1e-12 p < 1e-12

Likes (to others) 0.112 0.125 0.078 0.113
(0.030) (0.034) (0.066) (0.029)

z = 3.78 z = 3.71 z = 1.18 z = 3.87
p = 1.6e-04 p = 2.1e-04 p = 2.4e-01 p = 1.1e-04

Comments (to others) 0.105 0.099 0.125 0.106
(0.024) (0.028) (0.053) (0.024)

z = 4.33 z = 3.59 z = 2.37 z = 4.46
p = 1.5e-05 p = 3.3e-04 p = 1.8e-02 p = 8.1e-06

Posts 0.070 0.058 0.064 0.072
(0.021) (0.025) (0.047) (0.021)

z = 3.26 z = 2.35 z = 1.36 z = 3.42
p = 1.1e-03 p = 1.9e-02 p = 1.7e-01 p = 6.2e-04

9 Transformed and untransformed count variables

As with many behaviors in social media, counts of behaviors on Facebook are highly skewed.
To guard against extreme values, all quantitative variables counting behaviors were win-
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sorized: we computed the 99th percentile of the non-zero values of the variable, and all
values above that were replaced with that value.

Besides the standard motivations for log-transforming thick-tailed count variables, the
log-transformed variables lead to intuitively appealing models. We expected the data-
generating process in the first stage to be better approximated by a multiplicative model,
instead of an additive model. First, people who receive larger amounts of feedback will
often have more peers who would be affected by encouragements and more posts to which
it would apply. Other aspects of the News Feed system also suggest a multiplicative
model. For example, the amount of feedback a story receives is among one of the top
signals used to rank items in the News Feed (5), and it is well understood that content in
high positions are more likely to be attended to (6, 14). Combined, it is easy to see how
additional feedback could increases the likelihood that a post receives more feedback, thus
introducing a multiplicative data generating process.

In the second stage model, similar general data analytic considerations apply. Further-
more, even if one expected that one additional like or comment would have the same effect
for egos who receive different amounts of feedback, this is also consistent with the log-log
model when the baseline levels of outcomes and feedback received are highly correlated.
We therefore used a model with a log-log parameterization in our primary analyses.

We therefore used log-transformations of the quantitative variables counting behaviors
in our primary analyses (we also provide estimates from linear models below). In particular,
we transform these variables by adding one prior to dividing by the number of days3 in the
corresponding period and then take the natural log:

y = log((y∗ + 1)/ndays).

How the transformation of the outcome changes the estimand is straightforward. We
can also state how the estimand of TSLS is changed by the transformation of the en-
dogenous variable (feedback received). Let D∗ be the untransformed endogenous variable.
Following Angrist and Imbens (1, Th. 1), the TSLS estimand for a single binary instrument
is

E[Y |Z = 1]− E[Y |Z = 0]

E[D∗|Z = 1]− E[D∗|Z = 0]
=

J∑
j=1

wjE[Y (j)− Y (j − 1)|D∗(1) ≥ j > D∗(0)]

where

wj =
Pr(D∗(1) ≥ j > D∗(0))∑J
i=1 Pr(D∗(0) ≥ i > D∗(0))

are weights that correspond to normalized differences in CDFs between D∗(1) and D∗(0).
We define D = g(D∗). D, like D∗, still takes on J values. The numerator is unchanged
by working with D instead of D∗. However, the denominator changes so that the weights

3This rescaling is only of consequence for the non-log-transformed results in this section.
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Figure S9: Effects of receiving feedback on five ego behaviors, as estimated using TSLS.
Unlike in the main text, these results derive from variables that are not log-transformed.
Error bars are 95% adjacency- and cluster-robust confidence intervals.

change:

E[Y |Z = 1]− E[Y |Z = 0]

E[D|Z = 1]− E[D|Z = 0]
=

J∑
j=1

wjE[Y (j)− Y (j − 1)|D(1) ≥ g(j) > D(0)]

where

wj =
[(g(j)− g(j − 1)]Pr(D ≥ g(j) > D(0))∑J
i=1[g(i)− g(i− 1)]Pr(D ≥ g(i) > D(0))

.

As would be expected, with g(x) = log(x+ c), then g(j)− g(j − 1) decreases with j.
Similar modification apply to the other results in Angrist and Imbens (1), as this simi-

larly affects how TSLS with multiple instruments combines the individual Wald estimates.
For comparison, Fig. S9 presents TSLS results with untransformed versions of these

variables (i.e., with y = y∗/ndays and d = d∗/ndays).

10 Simulations with ego-specific and general designs

We compare the statistical properties of the current ego-specific encouragement design with
the properties of the more common general encouragement design. Based on simulated
random graphs, we compute the true SE of the TSLS estimator under various conditions.
To compare the two designs, we vary the random assignment and the specification of the
first-stage model while keeping the second stage constant. In the ego-specific design, we
randomly assign half of the nodes to be treated — implicitly assigning all of an assigned
ego’s peers. The ego-specific design is specified as

Di = βZi + ηi
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Yi = γDi + 0.5ηi + εi

with the first-stage effect size β, target parameter γ, ego-specific assignment indicator zi
(i.e., the instrument), and noise from a standard normal distribution in the first stage, ηi,
and second stage, εi; the common error term ηi in the first and second stage results in
confounding bias in the absence of the instrument.

Since the ego-specific design results in all peers being encouraged to a behavior directed
at the ego, the equivalent in the general (non-ego-specific) design is when all peers happen
to be assigned to be encouraged to that behavior (towards all of their neighbors). To achieve
the same sized shock in the first stage in the general design with everyone assigned as in the
specific design with Zi = 1, we used the fraction of peers assigned to the encouragement
as the instrument in the general design. The general design is specified as

Di = βWi + ηi

Yi = γDi + 0.5ηi + εi

with the proportion of an ego’s assigned peers W = ÃZ as the instrument, but otherwise
unchanged from the ego-specific specification.

We simulated 5,000 TSLS estimates based on the Watts–Strogatz small-world network
model (24) for different numbers of units (log2 n ∈ {7, ..., 12}), rewiring probabilities prw ∈
{0.00, 0.01, 0.10}, neighborhood sizes (nei ∈ {1, 2, 5}, corresponding to average degree of
1, 4, and 10), and effect sizes (β = 1 and γ ∈ {0.0, 0.5, 1.0}). We use common random
numbers for η and ε so that the randomness within the 5,000 replicates of each configuration
arises from the random assignment of Z; that is, the potential outcomes are fixed.

Across all settings and as expected, the ego-specific design resulted in increased preci-
sion of γ̂ and power to detect non-zero γ, compared with the general encouragement, as
shown in Figs. S11 and S11.

11 Simulations with interference: Type I error rates of tests

Using simulations very similar to those in the previous section for ego-specific designs, we
illustrate the performance of four methods for constructing tests for γ = 0. We use the
same generative model as in the previous section, but add local interference, as in the model
(Equation 4) posited by our sensitivity analysis in Section 5.2. The generative model is:

Di = βZi + ηi

Yi = γDi + (ÃiZ)ζ + 0.5ηi + εi.

The methods used are two tests that were expected to not be robust to interference
and the two related methods we used in the main text and in the sensitivity analysis:

1. Heteroskedasticity-robust sandwich estimator for independent data,
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2. Adjacency-robust sandwich estimator,

3. Wilcoxon rank-sum test,

4. Wilcoxon rank-sum test with the interference model of Equation 4.

We simulated 5,000 TSLS estimates and associated tests for each combination of log2 n ∈
{7, ..., 12}, prw = 0.01, neighborhood sizes (nei = 2), effect sizes (β ∈ {0.1, 0.5, 1.0} and
γ = 0), and interference (ζ ∈ {0, 1, 2}). That is, when ζ > 0, these simulations use very
large interference, larger than even the first-stage effects.

For the Wilcoxon rank-sum test with the interference model, we use ζ0 ∈ {−ζ, 0, ζ};
that is, zero, the true ζ, and its negation. We select the maximum p-value for γ = 0, as
in Section 5.2. In contrast to our sensitivity analysis, where we set ζ ∈ {−γ, 0, γ}, we here
set γ = 0.

The results are shown in Fig. S12. In the absence of interference (ζ = 0), all tests have
size (Type I error rates) close to the nominal size of α = 0.05 for these settings. However,
in the presence of interference, the two tests for independent data have larger-than-nominal
size. On the other hand, the test using the adjacency-robust sandwich estimator and the
Wilcoxon rank-sum test with the interference model both exhibit size ≤ α.
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Figure S10: True SE for estimates of γ in ego-specific and general peer encouragement
designs from simulations with small-world networks of different size (n), varying number of
neighbors (nei), and different rewiring probabilities. The true standard error is estimated
with the standard deviation of γ̂ over 5,000 draws of Z. These results do not change with
γ; results for γ = 1 are shown.
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Figure S11: Rate of rejecting the null of γ = 0 in ego-specific and general peer encour-
agement designs from simulations with small-world networks of different size (n), varying
number of neighbors (nei), and with different true effect sizes (γ). When γ = 0, this is the
empirical size (Type I error rate) of the test, which appears to have size less than α = 0.05,
except for small n with the general design. When γ 6= 0, this is the power of the test.
The p-values were computed using asymptotic adjacency-robust sandwich standard errors.
Error bars are 95% confidence intervals for a proportion.
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Figure S12: Size (Type I error rate) of tests for empirical size (Type I error rate) for tests
of γ = 0 in the presence of varying levels of interference, ζ. In the case of ζ = 0, the two
Wilcoxon tests are identical by construction.
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