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Abstract

The hypothesis that financial markets punish traders who make relatively

inaccurate forecasts and eventually eliminate the effect of their beliefs on prices

is of fundamental importance to the standard modeling paradigm in asset pric-

ing. We establish straightforward necessary and sufficient conditions for agents

to survive and to affect prices in the long run in a general setting with minimal

restrictions on endowments, beliefs, or utility functions. We describe a new

mechanism for the distinction between survival and price impact in a broad

class of economies. Our results cover economies with time-separable utility

functions, including possibly state-dependent preferences.
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1 Introduction

It has long been suggested that evolutionary forces work in financial markets: agents

who are inferior at forecasting the future will either improve through learning or per-

ish as their wealth diminishes relative to those superior in forecasting (e.g. Friedman

(1953)). If such an evolutionary mechanism works effectively, then in the long run

only those agents with the best forecasts will survive the market selection process

and determine asset prices. This “market selection hypothesis” (MSH) is one of the

major arguments behind the assumption of rational expectations in neoclassical asset

pricing theory. After all, if agents with more accurate knowledge of fundamentals

do not determine the behavior of market prices, there is little reason to assume that

prices are driven by fundamentals and not by behavioral biases. More generally, it

would be comforting that markets select for those agents with more accurate fore-

casts, even if agents with less accurate forecasts are replenished over time (e.g. in

overlapping generations economies). We show that in frictionless, complete-market

exchange economies, both parts of the MSH – that traders with inferior forecasts do

not survive and that extinction destroys their price impact – are false in general. With

minimal restrictions on endowments, preferences, and beliefs, we develop necessary

and sufficient conditions for market selection of beliefs.

Despite the appeal and importance of the market selection hypothesis, its va-

lidity has remained ambiguous. Existing studies use specialized models, mostly for

tractability and convenience, making it difficult to understand the economic mecha-

nism behind the MSH and the scope of its validity. For instance, relying on partial

equilibrium analysis, De Long et al. (1991) argue that agents making inferior forecasts

can survive in wealth terms despite market forces exerted by agents with objective

beliefs. Using a general equilibrium setting, Sandroni (2000) and Blume and Easley

(2006) show that only agents with beliefs closest to the objective probabilities (in a

sense they make precise) will survive and have price impact. Their results are obtained

in economies with bounded aggregate endowment. Kogan et al. (2006) demonstrate

in a general equilibrium setting without intermediate consumption that if aggregate

endowment is unbounded, agents with incorrect beliefs can survive.1 In this paper, we

perform a comprehensive analysis of the MSH and its pricing implications in a general

complete-market setting with time-separable preferences (including state-dependent

1A significant body of work exists examining pricing implications of heterogeneous beliefs in
specific parameterized models, including Dumas et al. (2009), Fedyk et al. (2013), Xiong and Yan
(2010), Yan (2008), and Borovička (2015).
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preferences, e.g., catching up with the Joneses), not limiting ourselves to commonly

used parametric specifications.2

Kogan et al. (2006) draw the distinction between the two parts of the MSH. They

show, in a stylized setting, that even when agents with inferior beliefs do not survive

in the long run, their impact on prices can persist. In other words, survival and

price impact are two distinct concepts. In particular, an agent with relatively low

consumption level can affect the prices of low-aggregate consumption states because

the change in prices relative to wealth spent on consumption in such states is of order
1
C
, where C denotes agent’s consumption. As a result, by distorting the prices of

primitive Arrow-Debeu claims over a set of states of diminishing probability, it is

possible for the agent to persistently distort valuations of non-primitive assets, like

stocks and bonds, while failing to survive in the long run. In addition to relying on

a particular set of non-primitive financial assets for their definition of price impact,

Kogan et al. (2006) assume the absence of intermediate consumption, CRRA prefer-

ences, and IID endowment growth, leaving it unclear how their results apply in more

general settings.

In this paper, we demonstrate that the distinction between survival and price im-

pact arises in standard infinite-horizon models with intermediate consumption and

flexible specification of time-separable preferences. Our analysis offers a more gen-

eral and robust intuition for the distinction between price impact and survival. In

particular, we show that long-run price impact can occur at the level of the primitive

Arrow-Debreu claims, and not only at the level of certain non-primitive long-lived

assets.3 Moreover, we show that price impact in general settings does not hinge on

the distortion in agents’ consumption over a set of states of diminishing probability

(specifically, the low-aggregate endowment states). Instead, price impact of distorted

beliefs has to do with the ability of an agent holding such beliefs to provide non-trivial

risk sharing to other agents in equilibrium despite of failing to survive in the long

run.

We examine the MSH in frictionless and complete-market economies because com-

mon arguments in favor of its validity rely on unrestricted competition, no limits to

2While the class of preferences we consider is broad, it excludes non-separable recursive preference
specifications. Thus, our analysis inevitably blurs the distinction between individual aversion to risk
and the desire to smooth consumption intertemporally. General theoretical analysis of economies
with non-separable preference is beyond the scope of this paper. Borovička (2015) obtains promising
results in this direction.

3We discuss these alternative notions of price impact in detail in Section 2.
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arbitrage, etc. To isolate the impact of disagreement, we populate our economies with

competitive agents who only differ in their beliefs. We then analyze how survival and

price impact properties of the economy depend on the primitives, such as errors in

forecasts, endowment growth, and preferences.

Much of the asset pricing literature assumes that agents have homothetic prefer-

ences (constant relative risk aversion). Yan (2008) obtains strong results in support

of the MSH under this assumption. We allow for a much broader family of preferences

and find that the case of homothetic preferences is somewhat special. Without this

assumption, validity of the MSH needs to be qualified, and depends on other economic

primitives, such as the dynamics of the endowment process. Specifically, we find that

if the curvature of the agents’ utilities declines sufficiently fast as a function of their

consumption level, or if the aggregate endowment is bounded, then agents with more

accurate forecasts eventually dominate the economy and determine price behavior.

Thus, the market selection hypothesis does hold in this particular class of economies,

and the rates of extinction in both consumption and price impact are proportional to

the growth rate of accumulated forecast errors. Without the above restrictions, the

survival of agents with less accurate forecasts and their impact on state prices are

determined by the tradeoff between agents’ preferences, the magnitude of their fore-

cast errors, and the aggregate endowment growth rate: if forecast errors accumulate

slowly enough over time, agents with less accurate forecasts can maintain a nontrivial

consumption share and affect prices.

Agents with heterogeneous beliefs trade with each other to share consumption

across states, but whether this disagreement leaves one of the agents with a vanish-

ing consumption share depends on the agents’ preferences. When two agents dis-

agree in their probability assessment of a particular state, the more optimistic agent

buys a disproportionate share of the state-contingent consumption. If two agents

have diverging beliefs, they end up with extreme disagreement asymptotically over

most states. Pareto optimality implies that the ratio of agents’ marginal utilities

in each state must be inversely proportional to the ratio of their belief densities,

and therefore, asymptotically, divergence in beliefs leads to divergence in marginal

utilities. Whether or not large differences in marginal utilities correspond to large dif-

ferences in consumption depends on the sensitivity of marginal utility to consumption,

d ln(U ′(C))/d ln(C) = CU ′′(C)/U ′(C) = −CA(C), where A(C) = −U ′′(C)/U ′(C) is

the absolute risk aversion coefficient, which characterizes the local curvature of the

utility function. If the utility curvature of the two agents declines slowly in their
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consumption level, their marginal utility differences may not translate into large con-

sumption differences. In fact, as we show below (in Proposition 5.6), the two agents

may consume equal consumption shares asymptotically despite their growing dis-

agreement.

In addition, the conditions for survival and price impact are different. In equilib-

rium, the level of belief differences determines the relative consumption levels of the

agents (survival), while the stochastic discount factor is determined by time-variation

in the marginal utility of consumption. An agent with a diminishing consumption

share may maintain a persistent impact on state prices as long as his presence affects

the fluctuations in the marginal utility of the dominant agent. In other words, a

disappearing agent may affect the stochastic discount factor as long as he provides

nontrivial risk-sharing opportunities for the dominant agent.

To flesh out this intuition further, consider an exchange economy with two agents.

Let Dt be the aggregate endowment, and let the agents have preferences given by

U(Ct). Assume that the first agent has objective beliefs, while beliefs of the second

agent are such that he consumes C2,t, which is an asymptotically diminishing share of

the aggregate endowment. Thus, the second agent does not survive in the long run.

The first agent consumes C1,t = Dt − C2,t. Next, compare the stochastic discount

factor in this economy to the one in an identical economy without the second agent,

i.e., with C1,t = Dt.

The volatility of the stochastic discount factor equals the volatility of growth of the

marginal utility of the first agent. Assume that all quantities are driven by Ito pro-

cesses. In the second economy, the instantaneous stochastic component of the stochas-

tic discount factor is, by Ito’s lemma, (dU ′(Dt)−Et[dU
′(Dt)]/U

′(Dt) = −A(Dt)(dDt−
Et[dDt]), whereA(D) = −U ′′(D)/U ′(D). This compares to−A(C1,t)(dC1,t−Et[dC1,t])

in the first economy. Suppose that A(C1,t) ≈ A(Dt). Then, the instantaneous differ-

ence between the stochastic discount factors in the two economies is approximately

A(Dt)(dC2,t − Et[dC2,t]). If the consumption level of the second agent is sufficiently

volatile so that he is engaged in nontrivial risk sharing with the first agent, the dis-

count factors in the two economies can be quite different. Whether such dynamics

is observed in equilibrium depends on the agents’ preferences as well as their beliefs

and the aggregate endowment process.

Our results cover general state-dependent preferences, such as external habit for-

mation or catching-up-with-the-Joneses. Such models of preferences are emerging as

increasingly important in recent asset pricing research. State-dependent preferences
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change the risk attitudes of the agents in the economy, but they do not change how

those risk attitudes affect survival or price impact. We are therefore able to apply

the necessary and sufficient conditions for the validity of the MSH to models with

state-dependent preferences that are commonly used in the literature. We conduct

this analysis in the on-line Appendix.

2 The Model

We consider an infinite-horizon exchange (endowment) economy. Time is indexed by

t, which takes values in t ∈ [0,∞). Time can either be continuous or discrete. While

all of our general results can be stated either in discrete or continuous time, some of the

examples are simpler in continuous time. We will use integrals to denote aggregation

over time. When time is taken as discrete, time-integration will be interpreted as

summation. We further assume that there is a single, perishable consumption good,

which is also used as the numeraire.

Uncertainty and the Securities Market

The environment of the economy is described by a complete probability space (Ω,F ,P).
Each element ω ∈ Ω denotes a state of the economy. The information structure of the

economy is given by a filtration on F , {Ft}, with Fs ⊂ Ft for s ≤ t. The probability

measure P is referred to as the objective probability measure. The endowment flow is

given by an adapted process Dt. We assume that the aggregate endowment is strictly

positive: Dt > 0, a.s. Here and in the rest of the paper we apply the concept of

almost-sure convergence under measure P.
In addition to the objective probability measure P, we also consider other proba-

bility measures, referred to as subjective probability measures. Let A and B denote

such measures. We assume that A and B share zero-probability events with P when

restricted to any finite-time information set Ft. Denote the Radon-Nikodym deriva-

tive of the probability measure A with respect to P by ξAt . Then

EA
t [Zs] = EP

t

[
ξAs
ξAt

Zs

]
(1)

for any Fs-measurable random variable Zs and s ≥ t, where Et [Z] denotes E [Z|Ft].

In addition, ξA0 ≡ 1. The probability measure B has a corresponding Radon-Nikodym

derivative ξBt . The random variable ξAt can be interpreted as the density of the proba-
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bility measure A with respect to the probability measure P conditional on the time-t

information set.

We use A and B to model heterogeneous beliefs. We define the ratio of subjective

belief densities

ξt =
ξBt
ξAt

. (2)

Since both ξA and ξB are nonnegative martingales, they converge almost surely as

time tends to infinity (e.g., Shiryaev (1996, §7.4, Th. 1)). Our results are most

relevant for models in which the limit of ξt is either zero or infinity. We examine the

asymptotic condition on subjective beliefs in more detail in Section 3.

We assume that there exists a complete set of Arrow-Debreu securities in the

economy, so that the securities market is complete.

Agents

There are two competitive agents in the economy. They have the same utility function,

but differ in their beliefs. The first agent has A as his probability measure while the

second agent has B as his probability measure. We refer to the agent who uses A as

agent A and the agent who uses B as agent B. It is clear from the context when we

refer to an agent as opposed to a probability measure.

Until stated otherwise, we assume that the agents’ preferences are time-additive

and state-independent with the canonical form∫ ∞

0

e−ρtu(Ct)dt, (3)

u(·) is the utility function, Ct is an agent’s consumption at time t and ρ is the time-

preference parameter. The common utility function u(·) is assumed to be increasing,

weakly-concave, and twice continuously differentiable. We assume that u(·) satisfies
the standard Inada condition at zero:

lim
x→0

u′(x) = ∞. (4)

We make use of two standard measures of local utility curvature, A(x) ≡ −u′′(x)/u′(x)

and γ(x) ≡ −xu′′(x)/u′(x) = xA(x) which are, respectively, an agent’s absolute and

relative risk aversion at the consumption level x.

Let CA,t and CB,t denote consumption of the two agents. Each agent maximizes
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his expected utility using his subjective beliefs. Agent i’s objective is

Ei
0

[∫ ∞

0

e−ρtu(Ci,t) dt

]
= EP

0

[∫ ∞

0

e−ρtξitu(Ci,t) dt

]
, i ∈ {A,B}, (5)

where the equality follows from (1). This implies that the two agents are observation-

ally equivalent to the two agents with objective beliefs P but state-dependent utility

functions ξAt u(·) and ξBt u(·) respectively.
The two agents are collectively endowed with a flow of the consumption good,

with possibly different shares of the total endowment.

Equilibrium

Because the market is complete, if an equilibrium exists, it must be Pareto-optimal. In

such situations, consumption allocations can be determined by maximizing a weighted

sum of the utility functions of the two agents. The equilibrium is given at each time

t by

max (1−α) ξAt u(CA,t) + α ξBt u(CB,t) (6)
CA,t, CB,t

s.t. CA,t + CB,t = Dt

where α ∈ [0, 1].

Concavity of the utility function, together with the Inada condition, imply that

the equilibrium consumption allocations satisfy the first-order condition

u′(CA,t)

u′(CB,t)
= λ ξt, (7)

where we denote α/(1−α) by λ.

We define wt =
CB,t
Dt

as the share of the aggregate endowment consumed by agent

B. The first-order condition for Pareto optimality (7) implies that wt satisfies
4

− ln(λξt) = − ln(u′((1− wt)Dt)) + ln(u′(wtDt)) =

∫ (1−wt)Dt

wtDt

A(x) dx, (8)

since A(x) = − d
dx

ln(u′(x)). This equation relates belief differences (ξt) to individual

utility curvature (A(x)) and the equilibrium consumption allocation (wt and Dt), and

4Throughout the paper we use the convention
∫ a

b
= −

∫ b

a
.
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will be our primary analytical tool.

Definitions of Survival and Price Impact

Without loss of generality, we focus on the survival of agent B and that agent’s impact

on security prices in the long run. If one replaces λξt with
1
λξt

in our analysis, our

results instead describe the survival and price impact of agent A.
We first define formally the concepts of survival and price impact to be used in

this paper and examine their properties.

Definition 1 [Extinction and Survival] Agent B becomes extinct if

lim
t→∞

CB,t

Dt

= 0, a.s. (9)

Agent B survives if he does not become extinct.

The above definition provides a weak condition for survival: an agent has to

consume a positive fraction of the endowment with a positive probability in order to

survive.

We opt for a relatively conservative definition of price impact, and define it in

terms of distortions in the prices of primitive state-contingent claims (or the stochastic

discount factor). This choice is natural for a frictionless complete-market economy.

An alternative would be to define price impact over a set of non-primitive long-lived

assets, in analogy with Kogan et al. (2006). The set of economies in which agent

B’s beliefs affect prices of some long-lived assets is larger than the set of economies

with persistent distortions in the state-price density. In fact, it is typically easy

to construct a particular long-lived asset that is persistently affected by the belief

distortions, posing a question of which long-lived assets are more or less economically

relevant, and therefore should or should not be considered when checking for price

impact.5 Our definition avoids such questions, which are ill-posed in the context of

complete frictionless markets.

5See the on-line Appendix, Section B.5, for an example of a standard economy in which distorted
beliefs have no long-run impact on the Arrow-Debreu prices, and yet prices of some of the long-
lived non-primitive assets are affected by belief distortions. The reason for price impact on the
non-primitive state-contingent claim we consider in our example is that its payoff is concentrated
on a set of states in which agent B has a nontrivial consumption share. This set of states has
an asymptotically vanishing probability but is relevant for the pricing of long-lived non-primitive
state-contingent claims.
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Let mt denote the equilibrium state-price density. Pareto optimality and the

individual optimality conditions imply that

mt = e−ρt ξ
A
t u

′((1− wt)Dt)

u′((1− w0)D0)
= e−ρt ξ

B
t u

′(wtDt)

u′(w0D0)
. (10)

In general, mt depends on λ, the relative weight of the two agents in the economy.

Thus, we write mt = mt(λ). We denote by m⋆
t (λ) the state-price density in the

economy in which both agents have beliefs described by the measure A and hence

ξt = 1. We define m⋆
t (0) to be the state-price density in an economy in which all

wealth is initially allocated to agent A. We identify the price impact exerted by

agent B by comparing mt to m⋆.

Definition 2 [Price Impact] Agent B has no price impact if there exists λ⋆ ≥ 0,

such that for any s > 0,

lim
t→∞

mt+s(λ)/mt(λ)

m⋆
t+s(λ

⋆)/m⋆
t (λ

⋆)
= 1, a.s. (11)

Otherwise, he has price impact.

Our definition formalizes the notion that agent B has no price impact if the equi-

librium stochastic discount factor is asymptotically indistinguishable from the one in

a reference economy with the same preferences but with both agents using the beliefs

of agent A. We allow for the initial wealth distribution in the reference economy to

differ from that in the original economy. Our motivation for this is straightforward,

as we illustrate with the following argument.

Consider an economy with an equal initial wealth distribution between A and

B. Suppose that A maintains objective beliefs, while the beliefs of B are inaccurate.

Suppose further that the primitives of the model are such that agent B becomes

extinct asymptotically and therefore agent A dominates the economy in the long run.

Assume that the stochastic discount factor in this economy converges asymptotically

to the one in an economy in which only agent A is present. Intuitively, one would

like to conclude that, because the stochastic discount factor converges to that of an

economy without B, the latter has no long-run impact on prices. If we insisted that

the reference economy must be obtained from the original model by simply setting

beliefs of both agents to those of agent A, we would generally be forced to conclude

that agent B maintains long-run impact on prices. The reason is that, in general,
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the stochastic discount factor in the model with homogeneous beliefs depends on

the initial wealth distribution between the two agents.6 Thus, to reflect our basic

intuition, the definition for price impact must allow the reference economy to start

with a wealth distribution different from that in the original model.

In contrast to the notion of long-run survival, equations (10) and (11) show that

price impact is determined by changes in consumption over finite time intervals rel-

ative to a benchmark economy. In particular, we compare the stochastic discount

factor in the original economy, mt+s(λ)/mt(λ), to the one in a reference economy

where both agents maintain the same beliefs, but, possibly, have a different initial

wealth distribution, m⋆
t+s(λ

⋆)/m⋆
t (λ

⋆).

The above definition may seem difficult to apply because condition (11) must be

verified for all values of λ⋆. However, to demonstrate the absence of long-run price

impact for economies in which agent B does not survive it is often sufficient to verify

the definition for λ⋆ = 0. As a measure of the magnitude of price impact, we use in

that case

PI(t, s; 0) ≡ ln

(
mt+s(λ)/mt(λ)

m⋆
t+s(0)/m

⋆
t (0)

)
=

∫ Dt+s

Dt+s(1−wt+s)

A(x) dx−
∫ Dt

Dt(1−wt)

A(x) dx, (12)

where the final equality follows from

u′(D(1− w))

u′(D)
= exp

(∫ D

D(1−w)

A(x) dx

)
. (13)

Price impact can be similarly defined for any λ∗.

Discussion of the Assumptions

Our analysis focuses on a specific question: “Do markets select for relatively accu-

rate forecasts?” Thus, we abstract away from differences in utility functions across

agents. Understanding the behavior of economies with heterogeneous preferences is

an important topic, but it is distinct from the market selection hypothesis, which

postulates an evolutionary rationale for long-run market rationality. Thus, we isolate

the effect of belief heterogeneity on long-run survival and price impact.

We consider the setting without constraints on trading to evaluate the economic

6As shown in Rubinstein (1974), the stochastic discount factor does not depend on the initial
wealth distribution in the special case when the agents’ utility function exhibits hyperbolic absolute
risk aversion.
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mechanism behind market selection. It is clear that market incompleteness and con-

straints may have a direct impact on the long-run dynamics of prices. As a stark

illustration, consider an economy in which none of the agents are allowed to transact

in financial markets. In this case, survival does not depend on beliefs, and prices

are arbitrary. Similarly, in an economy with nontrivial labor income, liquidity con-

straints may guarantee that agents cannot lose their future labor income by making

poor trading decisions, and thus survive. More generally, specific forms of market

incompleteness may impede transactions among agents, thus reducing the long-run

advantage of agents with more accurate forecasts (see, e.g., Blume and Easley (2006)

and Beker and Chattopadhyay (2010)). Our frictionless framework helps evaluate

the logic of the original argument for the validity of the MSH, which is based on

unrestricted competition among agents, and we show under what assumptions the

argument is or is not valid.

Our description of the long-run market dynamics is qualitative. We study the

general conditions under which prices eventually reflect superior forecasts, and we

characterize how the rate of convergence of consumption and prices depends on the

economic primitives. Yan (2008) calibrates the empirically plausible speed of selec-

tion in a particular parameterized economy in which agents with CRRA preferences

disagree about the growth rate of the aggregate endowment, and argues that market

selection in such an economy is likely to be slow. In contrast, Fedyk et al. (2013)

show that market selection speed is drastically higher when agents disagree about

multiple sources of randomness than in analogous economies with a single source of

disagreement. Thus, the market selection mechanism may work very slowly or very

quickly, depending on the assumed economic primitives.7 Our analysis makes it clear

how these primitives drive the selection mechanism, and under what circumstances

market selection is eventually successful.

In our analysis we allow for general utility functions and do not restrict ourselves

to CRRA preferences. In addition to helping us understand the role of preferences in

the MSH, such a general setting also addresses the issue of market selection in many

models used in the asset pricing literature. For example, models investigating the link

between market dynamics and heterogenous beliefs/asymmetric information, wealth

7As we show, the rate at which ξt converges to zero is critical in determining the survival and
price impact of agents with relatively inaccurate forecasts. So, for example, if there is a constant
disagreement of δ over the drift of N different independent Brownian Motions Zi

t – there are N

sources of disagreement – then ln(ξt) = −1
2Nδ2t + δ

∑N
i=1 Z

i
t . Thus, the selection speed in this

example is proportional to the number of sources of disagreement.
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accumulation under uncertainty, savings in the presence of taxes, trading costs, and

market liquidity often use preferences with constant absolute risk aversion.8 As we

show below, such preferences have very different implications for market selection

compared to the utilities with constant, or, more generally, bounded relative risk

aversion. Without taking a stand on which utility specification is most convenient

or realistic in any particular setting, we instead cover a broad spectrum of possible

individual preferences. Importantly, our results apply to state-dependent preferences.

These increasingly common specifications allow risk aversion to be a stochastic func-

tion of consumption, departing from pure power utility.

We define survival and extinction in terms of consumption share, as opposed

to consumption level. In economies in which the aggregate dividend is bounded,

extinction in level and extinction in share are equivalent, but this is generally not

true in economies with a growing aggregate endowment. If we define extinction in

level instead of share (wtDt → 0 rather than wt → 0), then the result that extinction

implies no price impact is immediate for utility functions with decreasing absolute

risk aversion. Since wtDtA(Dt − wtDt) ≥
∫ Dt

Dt−wtDt
A(x)dx ≥ wtDtA(Dt), and both

bounds go to zero as wtDt → 0, equation (12) shows that there is no price impact. The

reverse – that survival implies price impact – is not always true, as we show later.

However, extinction in level is a very strong condition, which is not met in many

economies of interest. For example, in an economy in which aggregate endowment

follows a geometric Brownian motion with a 5% expected growth and unit volatility,

investors have log utility, and one investor knows the true growth rate while the

second agent persistently believes the true growth rate is 25%, there is no extinction

in consumption level. The second agent does, however, face extinction in terms of his

consumption share and has no long-run price impact.

Finally, we have assumed that both agents have the same time discount factor.

This allows us to isolate the effect of heterogeneous beliefs, but this assumption

can be relaxed without loss in tractability. With different time discount factors, we

would have that the Pareto optimal allocation is
u′(CA,t)

u′(CB,t)
= λe(ρA−ρB)tξt instead of (7).

This is equivalent to replacing the belief process ξt in our setting with the process

ξ̂t = e(ρA−ρB)tξt.

8See for example Shefrin (2005) on heterogeneous beliefs; Caballero (1991) on aggregate wealth
accumulation; Kimball and Mankiw (1989) on savings; Vayanos (1999) and Lo et al. (2004) on
volume and microstructure; Gromb and Vayanos (2002), Huang and Wang (2009), Yuan (2005) on
liquidity and crashes; Garleanu (2009) on search.
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3 Examples

In this section we use a series of examples to illustrate how survival and price impact

properties depend on the interplay of the model primitives and to provide basic in-

tuition for the more general results in the next section. Our examples are organized

in three sets. Each set compares economies differing from each other with respect to

only one of the primitives: endowments, beliefs, or preferences. Formal derivations

are presented in the on-line Appendix.

3.1 Endowments

The following two examples illustrate the dependence of survival and price impact

results on the endowment process. We show that a change in the properties of the

economic environment (the endowment), holding the agents’ characteristics (beliefs

and preferences) fixed, may affect the validity of the MSH, altering both the survival

and price impact results. In addition, we demonstrate an example in which survival

and price impact are not equivalent.

Our first example has no aggregate uncertainty: investors differ in their beliefs

only over an extraneous source of randomness:

Example 3.1 Consider a continuous-time endowment economy. The aggregate en-

dowment process is given by

Dt = (1 + µt), (14)

where µ > 0. There is an additional state variable Xt, which evolves according to

dXt = −θXt dt+ σ dZt, (15)

where θ > 0 and Z is a Brownian motion under the objective probability measure.

Both agents have the same utility function with A(x) = 1 for x ≥ 1. We also

assume A(x) = 1
x
for x < 1 to preserve the Inada condition at zero. The utility

function thus exhibits decreasing absolute risk aversion for low levels of consumption

and constant absolute risk aversion for high levels of consumption.

Assume that agent A knows the true distribution, while agent B disagrees with A
and believes that Z has a drift. Assume that the disagreement is constant, δ ̸= 0, and

13



therefore the difference in agents’ beliefs is described by the density process

ξt = exp

(
−1

2
δ2t+ δZt

)
. (16)

Agents’ beliefs thus diverge asymptotically, with limt→∞ ξt = 0 a.s. Then,

i. If µ > δ2/2, agent B survives in the long run and exerts long-run impact on

prices;

ii. If µ < δ2/2, agent B fails to survive in the long run and does not exert long-run

impact on prices;

iii. If µ = δ2/2, agent B fails to survive in the long run but exerts long-run impact

on prices.

Since there is no aggregate uncertainty and investors have the same preferences

and equal initial endowments, differences in consumption between the two agents are

driven by their beliefs. Investors act to smooth their marginal utilities, as modified

by their beliefs, granting more consumption to an agent in states that agent believes

are relatively more likely. This happens even in the case in which disagreement is

over events that are irrelevant to the aggregate endowment.

Our example cover cases in which the aggregate endowment grows faster, slower,

or at the same rate as the agent’s belief differences accumulate. The key comparison

is between the rate of accumulation of belief differences – and hence the rate of growth

of consumption differences – with the level of aggregate consumption.

In addition, this example illustrates the importance of endowment growth overall.

The two cases in which agent B survives or has price impact, (i) and (iii) are impossible

without a growing endowment. We show in Sections 4 and 5 that this result can be

made general: a necessary condition for either price impact or survival is that the

endowment is not bounded from above and below by positive constants.

In the first case, (i), aggregate consumption grows fast enough so that the growth

in local utility curvature, evaluated at the aggregate consumption level, outpaces the

rate of accumulation of differences in beliefs (growth rate of ξ) and agent B both

survives and has price impact. Here, belief differences drive a wedge between agents’

consumptions, but that wedge is small relative to the size of the economy, and so agent

B can survive and exert price impact. In the second case, (ii), aggregate consumption

grows slowly so that growth in the local utility curvature is slower than the rate
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of accumulation of belief differences, and so the wedge that belief difference creates

between the two consumption levels is large relative to aggregate consumption. Thus,

agent B does not survive and cannot exert price impact.

In the third case, (iii), aggregate consumption, and hence local utility curvature,

grow at an intermediate rate. Here, belief differences create consumption differ-

ences that are large enough relative to the aggregate endowment that agent B cannot

survive. However, over time, belief differences can still drive changes in the con-

sumption allocation: consumption levels are volatile enough that marginal utilities

are affected. In particular, as we show in the appendix, limt→∞
CB,t
Dt

= 0, while

lim supt→∞ CB,t = ∞. This means that for large enough t, A(CA,t) = 1, while, when-

ever CB,t > 1, Pareto optimality implies CA,t =
1
2
Dt − 1

2
ln(λξt) =

1
2
(1 − lnλ − δZt).

As we discuss in the introduction, agent B can exert nontrivial impact on prices if

he is able to provide agent A with nontrivial risk sharing in the long run. This is

the case in our example. The conditional volatility of the marginal utility of agent

A is equal to vol(dmt) = A(CA,t)vol(dCA,t) = δ/2. In contrast, if agent B had the

same beliefs as A, the volatility of the stochastic discount factor would be zero (since

the aggregate endowment is deterministic). Because agent B maintains non-vanishing

volatility of his consumption changes in equilibrium, his beliefs distort equilibrium

prices asymptotically.

Figure 1 illustrates the tradeoff between endowment growth and accumulation

of belief differences in the economy described in Example 3.1. Specifically, Figure

1 shows the median path of the economy in each of the three cases considered in

Example 3.1, plotted against level curves for the consumption share of agent B (solid

lines). The median path of the economy is obtained by setting the driving Brownian

motion Zt to zero. Each level curve represents pairs (D, ln(ξ)) that give rise to a

particular consumption share w. These lines depend only on preferences, and they

can be found by fixing w and plotting the value of ln(ξ) as a function of D, with the

function given by the Pareto optimality condition (8). Note that, because of constant

absolute risk aversion at high consumption levels, a given difference in consumption

shares requires a larger difference in beliefs at higher endowment levels. This explains

why the level curves tend to be spaced wider at higher endowment levels.

The economy illustrated in Figure 1 is growing, since µ > 0, and so the median

path is traced from left to right as time passes. In case (i), the median path (marked

with circles) does not cross the level curves for large t, which shows that as the

economy grows over time, the consumption share of agent B along the median path
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Figure 1: Survival.This figure illustrates survival results in Examples 3.1 and 3.2.
We set λ = 1. We plot the aggregate endowment D on the horizontal axis, and the
log relative belief density, ln(ξ), on the vertical axis. Solid lines are the level curves
for the consumption share of agent B, so that each solid line plots pairs (D, ln(ξ))
that give rise to a given consumption share w. These pairs can be found by fixing
w and plotting the value of ln(ξ) as a function of D, with the function given by
the Pareto optimality condition (8). Labels for agent B’s consumption share are
shown alone the right margin. The marked lines show the median path (Zt = 0) of
(Dt, ln(ξt)) for each case in Example 3.1. We choose δ = 0.5 and set µ in cases (i),
(ii), and (iii) to δ2, δ2/4, and δ2/2 respectively. We mark the corresponding median
paths with circles, squares, and triangles.

converges to a constant, and hence agent B survives. In case (ii), the median path

(marked with squares) crosses consumption-share level curves from above, showing

that as the economy grows, agent B’s consumption share vanishes. Since the rate

of accumulation of belief differences is identical in all three cases, the only reason

why the three median paths have different slopes is because of the different growth

rates of the endowment process. Slow endowment growth (and hence slow growth of

local utility curvature) generates a steep median path, leading to agent B’s extinction.
The median path for case (iii) (marked with triangles) also crosses consumption-share

level curves from above, showing that agent B’s consumption share vanishes as the

economy grows. The difference between cases (ii) and (iii) is in the rate at which

agent B’s consumption share vanishes. The rate of extinction is lower in case (iii),
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allowing agent B to retain impact on prices in the long run.

In Example 3.1, the aggregate endowment process is deterministic. The same

conclusions carry over to a setting in which the two agents disagree about the distri-

bution of the aggregate endowment process, as we show in the Example 3.2 below.

In this example, the stochastic component of the endowment is stationary and thus

does not affect the relation between the asymptotic growth rate of endowment and

the rate of accumulation of belief differences. Different conclusions could result under

alternative assumptions of endowment growth.

Example 3.2 We modify Example 3.1 so that there is aggregate risk and agents

disagree over the evolution of the aggregate endowment process. The aggregate en-

dowment process is now given by

Dt = (1 + µt)eXt , (17)

dXt = −θXt dt+ σ dZt. (18)

Then,

i. If µ > δ2/2, agent B survives in the long run and exerts long-run impact on

prices;

ii. If µ < δ2/2, agent B fails to survive in the long run and does not exert long-run

impact on prices;

iii. If µ = δ2/2, agent B fails to survive in the long run but exerts long-run impact

on prices.

3.2 Beliefs

Our second set of examples illustrates how extinction depends on the assumptions on

agents’ beliefs.

Example 3.3 Consider a continuous-time economy with the aggregate endowment

given by a geometric Brownian motion:

dDt

Dt

= µ dt+ dZt, D0 > 0. (19)

Assume that the two agents have logarithmic preferences: U(c) = ln(c) and that they

do not know the growth rate of the endowment process. The agents start with Gaussian
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prior beliefs about µ, N (µ̂i, (νi)2), i ∈ {A, B}, and update their beliefs based on the

observed history of the endowment process according to the Bayes rule. Then, if both

agents have non-degenerate priors (min(νA, νB) > 0), then both agents survive in the

long run. If agent A knows the exact value of the endowment growth rate but agent

B does not, i.e., νB > νA = 0, then agent B fails to survive.

In the above example, both agents’ beliefs tend to the true value of the unknown

parameter µ asymptotically and survival depends on the relative rate of learning. If

both agents start not knowing the true value of µ, then, regardless of the bias or

precision of their prior, they both learn at comparable rates. Formally, the ratio of

the agents’ belief densities converges to a positive finite constant. However, if one

agent starts with perfect knowledge of the true parameter value, eventual convergence

of the learning process by the other agent is not sufficient to guarantee that agent’s

survival.9

Our second example is motivated by Dumas et al. (2009), who study an economy

with an irrational (“overconfident”) agent who fails to account for noise in his signal

during the learning process. We do not model the learning process of the overconfident

agent explicitly, as Dumas et al. (2009) do, but instead postulate a qualitatively

similar belief process exogenously. In our example, agent B is the analog of the

overconfident agent in Dumas et al. (2009).

Example 3.4 Consider a discrete-time economy with uncertainty described by the

i.i.d sequence of independent normal variables (εt, ut) ∼ N(0, I). Aggregate endow-

ment is given by

Dt = Dt−1 exp (µt−1 + ϵt) , D0 > 0, (20)

where the conditional growth rate of the endowment, µt−1 is a stationary moving

average of the shocks ϵt−1, ϵt−2, .... Assume that agent A knows the true value of

µt, but agent B. Specifically, agent B’s estimate of the current growth rate of the

endowment is given by µt−1 + δt−1, where δt follows a finite-order moving average

process driven by ut. Assume that both agents have logarithmic preferences. Then,

agent B fails to survive in the long run.

In the above example, agent B’s errors follow a stationary process and thus

do not diminish over time. Agent B’s mistakes accumulate asymptotically so that

9Our example builds on the models of Basak (2005) and Detemple and Murthy (1994). See also
Blume and Easley (2006) for further discussion of Bayesian learning and its implications for survival.
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limt→∞ ξt = 0, and therefore he fails to survive.

The above examples emphasize the importance of the requirement that ξt → 0,

which is our usual condition on belief dispersion. In Example 3.3, both agents are

learning about the true data-generating process at the same rate, and thus their

relative errors do not accumulate fast enough over time. In contrast, in Example 3.4,

one agent knows the true probability law while errors of the other agent accumulate

fast enough so he fails to survive.

In our general analysis we do not take a stand on whether one set of incorrect

beliefs is more or less “wrong” than another. We simply observe that the condition

ξ → 0 defines a particular criterion by which errors of agent B accumulate faster than

errors of agent A. In particular, market selection is not selection for “better” learning.

For instance, in Example 3.3 ln ξBt grows at rate 1
2
ln(t). Thus, if agent A has any set

of beliefs, not necessarily “rational”, for which the differences from the true measure

accumulate slower than ln(t), then agent A will survive and agent B will not. For

example, agent A may be correct most of the time but make infrequent large errors

so that ln ξAt asymptotically grows at rate 1
3
ln(t).10 In this case B’s mistakes vanish

in magnitude over time, A’s do not, and yet A survives and B does not because B’s
accumulated errors grow faster than A’s accumulated errors.

3.3 Preferences

We now illustrate how survival depends on preferences. We consider a family of

economies that differ only with respect to the agents’ utility function. Suppose that

agent B accumulates forecast errors at a higher rate than agent A. For agent B to

become extinct, agent A must bet sufficiently aggressively on his beliefs. If these

agents have sufficiently high utility curvature at high consumption levels, A does

not bet on his beliefs aggressively enough, which allows B to survive and have price

impact. This result bears similarity to the finding that inferior forecasters can survive

in incomplete market economies, since the agents are limited in their ability to bet

on their beliefs by the available menu of financial assets. Whether the agents lack

willingness to bet on their beliefs because to their preferences or face constraints, the

end result is that agents with inferior forecasts are able to survive.

Example 3.5 Consider a continuous-time economy with the aggregate endowment

10Beker and Espino (2011), example 4, contains a similar construction.
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given by a geometric Brownian motion:

Dt = exp (µ t+ σ Zt) , D0 > 0, µ, σ > 0. (21)

Assume that agent A uses the correct probability measure, A = P, but agent B has a

constant bias, δσ ̸= 0, in his forecasts of the growth rate of the endowment. Therefore,

ξt = exp

(
−1

2
δ2t+ δZt

)
. (22)

Let the absolute risk aversion function be A(x) = 1
x
for x < 1 to preserve the Inada

condition at zero, and

A(x) = xα, α ≤ 0. (23)

for x ≥ 1. Then, if local utility curvature is declining rapidly enough, α ≤ −1, agent

B does not survive and does not affect prices asymptotically. If local utility curvature

declines only slowly, α ∈ (−1, 0], then agent B survives and has price impact in the

long run.

Decreasing absolute risk aversion (DARA) is a weak a priori restriction on utility

functions, and within this family of preferences we can see how the properties of local

utility curvature affect survival. When high levels of consumption generate a high

propensity to accept gambles – local utility curvature declines rapidly in consumption

– agent B does not survive and has no price impact.

4 Survival

In this section we present general necessary and sufficient conditions for survival.

The following theorem shows formally how survival depends on the tradeoff between

endowments, beliefs, and preferences.

Theorem 4.1 A necessary condition for agent B to become extinct is that for all

ϵ ∈ (0, 1
2
),

lim sup
t→∞

∫ (1−ϵ)Dt

ϵDt
A(x) dx

− ln(λξt)
≤ 1, a.s. (24)
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A sufficient condition for his extinction is that the inequality is strict, i.e., for all

ϵ ∈ (0, 1
2
),

lim sup
t→∞

∫ (1−ϵ)Dt

ϵDt
A(x) dx

− ln(λξt)
< 1, a.s. (25)

From the conditions in Theorem 4.1, it is clear that survival depends on the joint

properties of aggregate endowments (Dt), preferences (in particular, risk aversion

A(x)), and beliefs (ξt). Survival is determined by the relation between the rate of

accumulation of belief differences and the rate of decline of local utility curvature,

evaluated at the aggregate endowment. Theorem 4.1 formalizes the informal discus-

sion in the introduction. If utility curvature declines sufficiently slowly, the numerator

in (24) dominates and agent B survives. Intuitively, the numerator captures the rela-

tion between differences in consumption and differences in marginal utilities between

the two agents. The Pareto optimality condition (7) implies that if belief differences

of the two agents accumulate sufficiently rapidly, their marginal utilities evaluated

at their equilibrium consumption must diverge. But if utility curvature declines too

slowly, increasing differences in marginal utilities fail to generate large differences in

consumption. Equation (24) provides the precise restriction on the rate of decline in

utility curvature necessary for agent B’s extinction.
Next, we place strict assumptions on some of the primitives, thus simplifying the

interplay between the endowment, beliefs, and preferences. The following straightfor-

ward applications of Theorem 4.1 identify a broad class of models in which agent B
does not survive, under easily verifiable conditions on the utility function (in Corollary

4.2) or on the endowment process (in Corollary 4.3).

Corollary 4.2 If local utility curvature is bounded so that A(x) ≤ Cx−1, and limt→∞ ξt =

0, a.s., then agent B never survives.

If local utility curvature is bounded as in Corollary 4.2, then large differences

in marginal utilities imply large differences in consumption. Therefore, as belief

differences accumulate, agent B fails to survive. The class of models with bounded

utility curvature in the manner of Corollary 4.2 (i.e., utilities with a bounded relative

risk aversion coefficient) is quite large.

If the endowment process is bounded, then large differences in marginal utilities

require one agent’s consumption to approach zero. Sandroni (2000) and Blume and

Easley (2006) study models with bounded endowment and heterogeneous beliefs and
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find that agent B fails to survive regardless of the exact form of preferences. We

replicate this result as a consequence of Theorem 4.1.

Corollary 4.3 If the aggregate endowment process is bounded away from zero and

infinity, 0 < D ≤ Dt ≤ D < ∞, and limt→∞ ξt = 0, a.s., then agent B never survives.

In models covered by Corollaries 4.2 and 4.3, we sharpen the survival results

further by establishing the rate of extinction of agents with inferior beliefs. In par-

ticular, in models satisfying restrictions on the local utility curvature as in Corollary

4.2, the rate of extinction is directly related to the rate of accumulation of differences

in beliefs.

Proposition 4.4 Assume that utility curvature is bounded so that Cx−1 ≤ A(x) ≤
Cx−1, and limt→∞ ξt = 0, a.s. For each element of the probability space where

limt→∞ ξt = 0, let t be large enough that λξt < 1. Then agent B’s consumption

share satisfies

(λξt)
1/C

1 + (λξt)
1/C

≤ wt ≤
(λξt)

1/C

1 + (λξt)
1/C

. (26)

The rate of extinction is proportional to the rate of accumulation of belief differ-

ences. For instance, consider the specification of endowment and beliefs as in Exam-

ple 3.1. Under the preference restrictions in Proposition 4.4, agent B’s consumption

share approaches zero exponentially at the rate bounded between 1
2
Cδ2 and 1

2
Cδ2. As

Fedyk et al. (2013) make clear, belief differences in realistic settings can accumulate

arbitrarily quickly if agents disagree on the distribution of multiple sources of ran-

domness. Thus, our convergence rate result shows that extinction happens at high

rates in economies with quantitatively large disagreement between agents, or at low

rates in economies with mild degrees of disagreement.

We obtain a similar characterization of extinction rates in economies with bounded

aggregate endowment.

Proposition 4.5 Assume that the aggregate endowment process is bounded away

from zero and infinity and limt→∞ ξt = 0, a.s. For each element of the probability

space where limt→∞ ξt = 0, let t be large enough that λξt < 1. Then, agent B’s
consumption share satisfies

1

D
(u′)−1

(
u′(D/2)

λξt

)
≤ wt ≤

1

D
(u′)−1

(
u′(D)

λξt

)
. (27)
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As in Proposition 4.4, we find that the rate of extinction of agent B is directly related

to the rate of accumulation of belief differences. However, the relationship between the

two is modulated by the assumed utility function. Qualitatively, the sharper the rise in

marginal utility as consumption level approaches zero, the lower the rate of extinction.

For instance, with CRRA preferences, the rate of extinction is proportional to the

rate of accumulation of belief differences. It is clear, however, that without restricting

preferences it is impossible to place tighter bounds on the rate of extinction.

If the endowment process and the utility curvature are not bounded, as in Propo-

sitions 4.4 and 4.5, then the precise relation between the primitives is important in

determining agent B’s survival. We simplify the conditions of Theorem 4.1 for the

class of utilities with (weakly) decreasing absolute risk aversion (DARA), which is

generally considered to be the weakest a priori restriction on utility functions.

Proposition 4.6 Suppose that the utility function exhibits DARA and limt→∞ ξt = 0,

a.s. Then, for agent B to become extinct asymptotically, it is sufficient that there exists

a sequence of numbers ϵn ∈ (0, 1
2
) converging to zero such that for any n

lim
t→∞

A(ϵnDt)Dt

− ln(λξt)
= 0, a.s. (28)

For agent B to survive, it is sufficient that for some ϵ ∈ (0, 1
2
)

Prob

[
lim sup
t→∞

A(ϵDt)Dt

− ln(λξt)
= ∞

]
> 0. (29)

If, in addition,

lim
t→∞

A(Dt)Dt

− ln(λξt)
= ∞, a.s. (30)

then limt→∞ wt =
1
2
, a.s.

The above proposition clarifies the trade-off between beliefs, endowments, and

preferences that determines survival. Intuitively, given the endowment growth rate

in the economy, agent B fails to survive if local utility curvature declines sufficiently

fast with the consumption level, or if differences in beliefs accumulate at a sufficiently

high rate.

We finally consider a generalization of the setting analyzed in Kogan et al. (2006)

and Yan (2008), where endowment follows a Geometric Brownian motion and agent
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B is persistently optimistic about the growth rate of the endowment. We make a

weaker assumption that the endowment and belief differences grow at proportional

asymptotic rates, i.e. limt→∞
ln(Dt)
− ln(ξt)

= b < ∞. Such models, with geometric Brownian

motion specifications for D and ξ in particular, are common in the literature.

Corollary 4.7 Consider an economy with 0 < limt→∞
ln(Dt)
− ln(ξt)

= b < ∞ and limt→∞ ξt =

0, a.s. Assume that the utility function is of DARA type. Then, if

lim
x→∞

A(x)
1
x
ln(x)

= 0, (31)

agent B becomes extinct. If

lim
x→∞

A(x)
1
x
ln(x)

= ∞, (32)

agent B survives.

We thus identify two broad classes of preferences for which survival does and does

not take place under the above assumption on the endowment and beliefs. Agent B
becomes extinct if local utility curvature at high consumption levels declines rapidly

enough, and he survives if local utility curvature declines sufficiently slowly. Models

with CRRA preferences and geometric Brownian motions forD and ξ satisfy condition

(31): with relative risk aversion equal to γ, A(x)
1
x
ln(x)

= γ
ln(x)

→ 0, and therefore agent B
becomes extinct in such economies.

5 Price Impact

We now consider the influence agent B has on the long-run behavior of prices and how

this influence is related to his survival. Below we identify broad classes of economies

in which the agent making relatively inaccurate forecast does or does not have impact

on prices in the long run.

As we have shown in Corollaries 4.2 and 4.3, if local utility curvature declines

sufficiently rapidly with consumption level, or if the aggregate endowment is bounded,

agent B does not survive. In these cases, agent B also has no price impact in the long

run:

Proposition 5.1 If local utility curvature is bounded such that A(x) ≤ Cx−1, and

limt→∞ ξt = 0, a.s., then agent B has no asymptotic price impact.
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Proposition 5.2 If the aggregate endowment process is bounded away from zero and

infinity, 0 < D ≤ Dt ≤ D < ∞, and limt→∞ ξt = 0, a.s., then agent B has no price

impact asymptotically.

The relation between Arrow-Debreu prices and marginal utilities means that agent

B can affect prices if he has nontrivial impact on the marginal utility of agent A.
When local utility curvature declines at a high enough rate, this requires him to have

significant impact on consumption growth of agent A. This in turn is impossible since

agent B does not survive. Similarly, in economies with bounded aggregate endowment,

agent B cannot have significant impact on consumption growth for agent A, and so

agent B cannot have price impact.

In addition to showing that agent B has no long-run impact on prices in economies

covered by Propositions 5.1 and 5.2, we characterize how rapidly price impact of agent

B disappears. We measure the magnitude of price impact according to (12) relative

to the reference economy with utility weight λ⋆ = 0 because price impact of agent B
vanishes asymptotically with respect to this reference economy under either bounded

coefficient of relative risk aversion or with a bounded aggregate endowment.

Proposition 5.3 Assume that local utility curvature is bounded so that A(x) ≤
Cx−1, and limt→∞ ξt = 0, a.s.. For each element of the probability space where

limt→∞ ξt = 0, let t be large enough that λξt < 1. Then, the measure of price impact

PI(t, s; 0) satisfies

|PI(t, s; 0)| ≤ C
(
(λξt)

1/C + (λξt+s)
1/C
)
. (33)

In economies covered by Proposition 5.3, the distortion of the stochastic discount

factor created by B’s beliefs disappears at a rate at least proportional to the rate

of accumulation of belief differences. As shown in Proposition 4.5, B’s consumption

share in such economies also vanishes at the rate of accumulation of belief differences.

The price impact of agent B’s beliefs in economies with bounded aggregate en-

dowment vanishes at least as quickly as B’s consumption share:

Proposition 5.4 Assume that the aggregate endowment process is bounded away

from zero and infinity, and limt→∞ ξt = 0, a.s. For each element of the probabil-

ity space where limt→∞ ξt = 0, let t be large enough that λξt < 1. Then, the measure

of price impact PI(t, s; 0) satisfies

|PI(t, s; 0)| ≤
(

max
x∈[D/2,D]

A(x)

)
(wt + wt+s)D, (34)
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where wt is the equilibrium consumption share of agent B.

As we show in Proposition 4.5, in economies with bounded aggregate endowment,

B’s consumption share vanishes at the rate directly related to the rate of accumulation

of belief differences. Since the exact extinction rate generally depends on preferences

in a nonlinear manner, we do not derive an explicit bound on price impact in Propo-

sition 5.4 in terms of the primitives, and instead express an upper bound on price

impact in terms of B’s consumption share.

When conditions on the primitives are relaxed, consumption and price dynamics

may have more complex properties. It is possible for agent B to affect the marginal

utility of agent A without having non-vanishing asymptotic effect on agent A’s con-
sumption growth, which means that agent B’s price impact may be consistent with

his extinction. We have described such an economy in Example 3.1. In the context

of Example 3.1, price impact without survival occurs in a “knife-edge” case. We next

explore more generally the conditions under which such a phenomenon occurs.

Proposition 5.5 Consider an economy with a DARA utility function, assume that

limt→∞Dt = ∞, a.s., and limt→∞ ξt = 0, a.s. Then, a necessary condition for price

impact is

lim sup
t→∞

∫ Dt

1
A(x) dx

− ln(λξt)
≥ 1, a.s. (35)

A necessary condition for price impact without survival is

lim sup
t→∞

maxz∈[1,Dt] γ(z) ln(Dt)

− ln(λξt)
≥ 1 ≥ lim sup

t→∞

γ(Dt)

− ln(λξt)
, a.s. (36)

The above result hinges on the difference between extinction in consumption share

(wt → 0) and in consumption level (wtDt → 0). As we have shown in Section 2 (and

show again formally in the Appendix), there is no price impact when B experiences

extinction in consumption level. Thus, a necessary condition for price impact is

lim supt→∞ wtDt > 0, a.s., which we use to derive (35). We combine equation (35)

with Theorem 4.1 to find DARA-utility economies that may exhibit price impact with

extinction (or, without survival). The result is (36).

The necessary conditions for asymptotic price impact without survival give us an

idea of how special this phenomenon is. Consider, for instance, Examples 3.1 and 3.2.

In these examples, A(x) = 1 for x ≥ 1, and A(x) = 1
x
for x < 1, and hence for D > 1,
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maxz∈[1,D] γ(z) = γ(D) = D. Then, Proposition 5.5 implies that in the context of

these examples, necessary conditions for price impact without survival are satisfied

only in case (iii), for which

lim
t→∞

Dt

− ln(λξt)
= 1, a.s. (37)

While one can design more general specifications of A(x) that allow for price impact

without survival, informally, Proposition 5.5 shows that the set of such economies is

rather restricted.

Survival does not always imply asymptotic price impact. Below, we establish

necessary and sufficient conditions for price impact in a broad class of economies in

which agent B survives. We present the proof of Propositions 5.6, 5.7, and 5.8 in the

on-line Appendix.

Proposition 5.6 Consider a growing economy with limt→∞ Dt = ∞, a.s. Assume

that the utility function is such that A(x) is weakly decreasing and xA(x) is weakly

increasing in consumption level. Further, assume that the endowment and the beliefs

satisfy

lim
t→∞

A(1
2
Dt)Dt

(ln(λξt))2
= ∞, a.s. (38)

Then agent B survives and asymptotically consumes half of the aggregate endowment.

Proposition 5.7 In the economy defined in Proposition 5.6, if the belief process ξt

has non-vanishing growth rate asymptotically, i.e., there exist s > 0 and ϵ > 0 such

that

Prob

[
lim sup
t→∞

|ln(ξt+s)− ln(ξt)| > ϵ

]
> 0, (39)

and, in addition, there exist s′ > 0 and ϵ′ > 0 such that

Prob

[
lim sup
t→∞

∣∣∣∣∣
∫ Dt+s′

Dt+s′/2

A(x) dx−
∫ Dt

Dt/2

A(x) dx− 1

2
ln(ξt+s′) +

1

2
ln(ξt)

∣∣∣∣∣ > ϵ′

]
> 0,

(40)

then agent B exerts long-run price impact. Moreover, asymptotically the state price

density does not depend on the initial wealth distribution, i.e., does not depend on λ.
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Condition (39) is necessary for asymptotic price impact to exist in this economy.

Proposition 5.7 shows that survival does not necessarily lead to price impact: there

can be an additional condition on the variation in the belief process. Note that if

condition (39) holds, (40) would be violated only in economies with a very particular

combination of primitives. Such cases are covered by the additional condition (40).

The next proposition helps clarify why the survival and price impact properties

of various economies are connected to the rate of decrease in local utility curvature.

It states a general result for consumption sharing rules in growing economies with

unbounded relative risk aversion.

Proposition 5.8 Consider the economy defined in Proposition 5.6, and assume that

both agents hold the same beliefs. Then, for any initial allocation of wealth between

the agents, their consumption shares become asymptotically equal. Moreover, the state

price density in this economy is asymptotically the same as in an economy in which

the two agents start with equal endowments.

As we know from Corollary 4.2 and Proposition 5.1, economies with agents having

local utility curvature A(x) rapidly declining in consumption exhibit simple behavior:

agent B does not survive and has no asymptotic impact on the state-price density.

When local utility curvature is only slowly declining, survival is also determined

by belief differences. Proposition 5.8 shows that in a homogeneous-belief economy

consumption shares of the agents tend to become equalized over time no matter how

uneven the initial wealth distribution is. Similarly, the state-price density does not

depend (asymptotically) on the initial wealth distribution.

The above convergence mechanism remains at work in economies with hetero-

geneous beliefs. However, there is another force present under belief heterogeneity:

agent B tends to mis-allocate his consumption across states due to his distorted be-

liefs, which reduces his asymptotic consumption share. The tradeoff between the

two competing forces is intuitive: distortions in agents’ consumption shares caused

by belief differences tend to disappear over time, unless the belief differences grow

sufficiently rapidly. Condition (38) guarantees that differences in beliefs do not ac-

cumulate too quickly, and so under this condition agent B survives and consumes

half of the aggregate endowment asymptotically. Agent B can exert asymptotic price

impact as long as the differences between his beliefs and those of agent A do not

vanish asymptotically in a sense made precise by the conditions in Proposition 5.7.
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6 Conclusion

In this paper we examine the economic mechanism behind the Market Selection Hy-

pothesis and establish necessary and sufficient conditions for its validity in a general

setting with minimal restrictions on endowments, beliefs, or utility functions. We

show that the MSH holds in economies with bounded endowments or bounded rela-

tive risk aversion. The commonly studied special case of constant relative risk aversion

preferences belongs to this class of models. However, we show that the MSH cannot

be generalized without additional qualifications to a broader class of models. Instead,

survival is determined by a comparison of the forecast errors to risk attitudes. The

price impact of inaccurate forecasts is distinct from survival because price impact is

determined by the volatility of traders’ consumption shares rather than by their level.

We show a new mechanism by which an agent who fails to survive in the long run can

exert persistent impact on prices. This phenomenon exists because the disappearing

agent can provide a non-trivial degree of risk sharing in equilibrium.

Our results apply to economies with state-dependent time-separable preferences,

such as external habit formation. In the on-line Appendix, we show how our approach

extends to this broader class of preferences. One limitation of our approach is that

we consider only time-additive preferences, and thus cannot separate risk aversion

effects from inter-temporal substitution effects. Extending theoretical analysis of the

Market Selection Hypothesis to a broader class of preferences remains an important

open problem.
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A Appendix

A.1 Proof of Theorem 4.1

Suppose that agent B becomes extinct, i.e., wt =
CB,t
Dt

converges to zero almost surely.

For each element of the probability space ω for which wt vanishes asymptotically, one

can find T (ω; ϵ), such that wt(ω) < ϵ for any t > T (ω; ϵ). Since
∫ (1−w)D

wD
A(x) dx is a

decreasing function of w, the first-order condition (8) implies that for all t > T (ω; ϵ)

1 =

∫ (1−wt)Dt

wtDt
A(x) dx

− ln(λξt)
≥
∫ (1−ϵ)Dt

ϵDt
A(x) dx

− ln(λξt)
. (A.1)

Thus, the desired result follows by applying lim supt→∞ to both sides of the inequality.

We now prove the sufficient condition. Consider the subset of the probability

space over which lim supt→∞

∫ (1−ϵ)Dt
ϵDt

A(x) dx

− ln(λξt)
< 1 for any ϵ > 0. For each element of the

probability space w in such set, we can define T (ω; ϵ) and δ(ω) > 0, such that∫ (1−ϵ)Dt

ϵDt
A(x) dx

− ln(λξt)
≤ 1− δ (A.2)

for all t > T (ω; ϵ). If lim supt→∞ wt ̸= 0, then one can always find ϵ > 0 and

t > T (ω; ϵ), such that wt > ϵ. But then

1 =

∫ (1−wt)Dt

wtDt
A(x) dx

− ln(λξt)
≤
∫ (1−ϵ)Dt

ϵDt
A(x) dx

− ln(λξt)
. (A.3)

Taking lim supt→∞ on both sides, implies 1 ≤ 1− δ, which is a contradiction.

A.2 Proof of Corollary 4.2

By assumption xA(x) < C for all x and C > 0. For every path of ξ that converges

to zero, let t be large enough so that λξt < 1. Then∫ (1−ϵ)Dt

ϵDt
A(x) dx

− ln(λξt)
≤ C

ln(1− ϵ)− ln(ϵ)

− ln(λξt)
(A.4)

which converges to zero almost surely as t → ∞.
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A.3 Proof of Corollary 4.3

Let D and D denote the upper and lower bound of Dt, 0 < D ≤ D. Let A(ϵ)

denote the maximum of A(x) on [ϵD, (1 − ϵ)D]. We then have
∫ (1−ϵ)Dt

ϵDt
A(x)dx ≤(

(1− ϵ)D − ϵD
)
A(ϵ), which is finite. Given that ξt → 0, a.s., as t → ∞ and hence

− ln(ξt) → ∞, a.s., we conclude that (25) holds, and agent B does not survive.

A.4 Proof of Proposition 4.4

We establish the upper bound. Derivation of the lower bound is analogous. For every

path of ξ that converges to zero, let t be large enough so that λξt < 1. Using the

Pareto optimality condition and the restriction A(x) ≤ Cx−1,

− lnλξt =

∫ (1−wt)Dt

wtDt

A(x)dx ≤
∫ (1−wt)Dt

wtDt

Cx−1dx = C ln
1− wt

wt

, (A.5)

which implies

wt

1− wt

≤ (λξt)
1/C . (A.6)

The upper bound then follows.

A.5 Proof of Proposition 4.5

Using Pareto optimality condition and concavity of the utility function,

λξt =
u′((1− wt)Dt)

u′(wtDt)
≥ u′(D)

u′(wtDt)
, (A.7)

which implies

u′(wtDt) ≥
u′(D)

λξt
(A.8)

and therefore

wt ≤
1

Dt

(u′)−1

(
u′(D)

λξt

)
≤ 1

D
(u′)−1

(
u′(D)

λξt

)
. (A.9)
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Similarly, to derive the lower bound, use

λξt =
u′((1− wt)Dt)

u′(wtDt)
≤ u′(D/2)

u′(wtDt)
, (A.10)

which implies

u′(wtDt) ≤
u′(D/2)

λξt
(A.11)

and therefore

wt ≥
1

Dt

(u′)−1

(
u′(D/2)

λξt

)
≥ 1

D
(u′)−1

(
u′(D/2)

λξt

)
. (A.12)

A.6 Proof of Proposition 4.6

For every path of ξ that converges to zero, let t be large enough so that λξt < 1.

Since A(x) is a non-increasing function,∫ (1−ϵ′)D

ϵ′D

A(x) dx ≥
∫ ϵD

ϵ′D

A(x) dx ≥ A(ϵD)D(ϵ− ϵ′), (A.13)

where 0 < ϵ′ < ϵ < 1− ϵ′. Condition (29) then implies that with positive probability,

we have

lim sup
t→∞

∫ (1−ϵ′)Dt

ϵ′Dt
A(x) dx

− ln(λξt)
= ∞ (A.14)

and hence a necessary condition for extinction is violated (from Theorem 4.1). Thus,

agent B survives.

Next, for any ϵ ∈ (0, 1/2) , find ϵn < ϵ. Then, since A(x) is a non-increasing

function,∫ (1−ϵ)D

ϵD

A(x) dx ≤ A(ϵD)D(1− 2ϵ) ≤ A(ϵnD)D(1− 2ϵ). (A.15)

Then,∫ (1−ϵ)Dt

ϵDt
A(x) dx

− ln(λξt)
≤ A(ϵnDt)Dt(1− 2ϵ)

− ln(λξt)
, (A.16)

and the result follows from applying (28) to show that we have a sufficient condition
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for extinction (25).

Lastly, since the utility function is of DARA type, condition (8) implies that

− ln(λξt) ≥ A((1− wt)Dt)Dt(1− 2wt) (A.17)

and therefore, using condition (30), limt→∞ wt = 1/2 a.s.

A.7 Proof of Corollary 4.7

Consider a set (of measure one) on which limt→∞
ln(Dt)
− ln(ξt)

= b and limt→∞ ξt = 0. On

this set,

lim
t→∞

A(ϵDt)ϵDt

− ln(λξt)
= lim

t→∞

1
Dt

ln(Dt)

− ln(λξt)

A(ϵDt)ϵDt

1
Dt

ln(Dt)
= ϵb lim

t→∞

A(ϵDt)
1
Dt

ln(Dt)
(A.18)

for any positive ϵ. Thus, by Proposition 4.6, agent B becomes extinct as long as the

risk aversion coefficient satisfies (31). According to the same proposition, if the risk

aversion coefficient satisfies (32), then agent B survives.

A.8 Proof of Propositions 5.1 and 5.2

As we show in corollary 4.2, there is no survival in models with bounded relative risk

aversion. Thus, wt converges to zero almost surely. Consider now the first term in

(12). By the mean value theorem and the bound given in the proposition, this term

equals

A(x⋆
t+s)Dt+swt+s ≤ C

Dt+swt+s

x⋆
t+s

, (A.19)

for some x⋆
t+s ∈ [(1−wt+s)Dt+s, Dt+s]. Since, almost surely, the ratio Dt+s

xt+s∗ converges

to one and wt+s converges to zero, we conclude that the first term in (12) converges to

zero almost surely. The same argument implies that the second term converges to zero

almost surely, and therefore there is no price impact. This proves Proposition 5.1.

Proposition 5.2 follows from the fact that bounding the endowment implies bounding

relative risk aversion on the interval (Dt(1− wt), Dt).
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A.9 Proof of Proposition 5.3

We use the tighter of the two upper bounds on the consumption share wt of agent B
in Proposition 4.4:∣∣∣∣∫ Dt

Dt(1−wt)

A(x) dx

∣∣∣∣ ≤ C |ln(1− wt)| ≤ C
∣∣∣ln(1 + (λξt)

1/C
)∣∣∣ ≤ C (λξt)

1/C .

Then,

|PI(t, s; 0)| =
∣∣∣∣∫ Dt+s

Dt+s(1−wt+s)

A(x) dx−
∫ Dt

Dt(1−wt)

A(x) dx

∣∣∣∣
≤
∣∣∣∣∫ Dt+s

Dt+s(1−wt+s)

A(x) dx

∣∣∣∣+ ∣∣∣∣∫ Dt

Dt(1−wt)

A(x) dx

∣∣∣∣
≤ C

(
(λξt)

1/C + (λξt+s)
1/C
)

(A.20)

A.10 Proof of Proposition 5.4

For every path of ξ that converges to zero, let t be large enough so that λξt < 1 and

therefore wt ≤ 1/2. Because aggregate endowment is bounded, D ≤ Dt ≤ D,

∣∣∣∣∫ Dt

Dt(1−wt)

A(x) dx

∣∣∣∣ ≤
(

sup
x∈[D/2,D]

A(x)

)
wtD (A.21)

and therefore

|PI(t, s; 0)| =
∣∣∣∣∫ Dt+s

Dt+s(1−wt+s)

A(x) dx−
∫ Dt

Dt(1−wt)

A(x) dx

∣∣∣∣
≤
∣∣∣∣∫ Dt+s

Dt+s(1−wt+s)

A(x) dx

∣∣∣∣+ ∣∣∣∣∫ Dt

Dt(1−wt)

A(x) dx

∣∣∣∣
≤

(
sup

x∈[D/2,D]

A(x)

)
D(wt + wt+s). (A.22)

A.11 Proof of Proposition 5.5

For every path of ξ that converges to zero, let t be large enough so that λξt < 1.

Consider the measure of price impact defined with respect to λ⋆ = 0, as given in (12).
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In an economy with DARA utility function,

0 ≤
∫ Dt

(1−wt)Dt

A(x)dx ≤ wtDtA((1− wt)Dt), (A.23)

and therefore, for price impact to exist asymptotically, it is necessary that

lim sup
t→∞

wtDt > 0, a.s. (A.24)

The equilibrium consumption sharing rule in (8) implies that

− ln(λξt) ≤
∫ Dt

wtDt

A(x) dx, (A.25)

and therefore, to satisfy the condition (A.24), the model primitives must satisfy

lim sup
t→∞

∫ Dt

1
A(x) dx

− ln(λξt)
≥ 1, a.s. (A.26)

where, because limt→∞ ξt = 0, a.s., the lower limit in the integral can be set to any

constant.

Next, we use∫ Dt

1

A(x)dx =

∫ Dt

1

A(x)
1

x
x dx ≤ max

z∈[1,Dt]
γ(z) ln(Dt), (A.27)

to establish the first inequality in (36). Then, starting from (24), we have∫ (1−ϵ)Dt

ϵDt

A(x)dx ≥ A(Dt)(1− 2ϵ)Dt = γ(Dt)(1− 2ϵ) (A.28)

for any ϵ > 0. Thus, a corollary of Theorem 4.1 is that a weaker necessary condition

for extinction is

lim sup
t→∞

γ(Dt)

− ln(λξt)
≤ 1, a.s.. (A.29)

which yields the second inequality in (36).
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On-Line Appendix (Appendices B and C) for

Market Selection

In this on-line Appendix for “Market Selection” we include explicit calculations

for our examples (Section B), including an example of the impact of distorted beliefs

on the prices of non-primitive claims. We follow that with our analysis of the case of

state dependent preferences (Section C).

B Examples

B.1 Examples 3.1 and 3.2

First, we establish survival results. For every path of ξ that converges to zero, let t

be large enough so that λξt < 1. Consider the Pareto optimality condition (8). wt is

given by

wt =
1

2

(
1 +

ln(λξt)

Dt

)
(B.1)

if it satisfies wtDt > 1, i.e., (B.1) describes the equilibrium consumption share of

agent B if

1

2
(ln(λξt) +Dt) > 1. (B.2)

Given the specification of the beliefs and the endowment process,

lim
t→∞

1

2

(
1 +

ln(λξt)

Dt

)
=

1

2

(
1− δ2/2

µ

)
a.s. (B.3)

In case (i), µ > δ2/2, and therefore (B.2) is satisfied for large enough t. Then,

(B.1) holds and limt→∞ wt > 0, thus agent B survives.

In case (ii), µ < δ2/2, and therefore, for large enough t, (B.2) is violated. We

conclude then that, for large enough t, wt ≤ D−1
t , and therefore agent B fails to

survive.

In case (iii), either (B.2) holds, or wtDt ≤ 1, so that

wt ≤ min

(
D−1

t ,
1

2

(
1 +

ln(λξt)

Dt

))
. (B.4)
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Since both terms on the right-hand-side converge to zero almost surely, we conclude

that agent B fails to survive.

Next, we establish the price impact results. Consider a reference economy (ξt = 1)

with the utility weight λ⋆ ≥ 0. The Pareto optimality condition (8) implies that

− ln(λ⋆) =

∫ (1−w⋆
t )Dt

w⋆
tDt

A(x) dx, (B.5)

where w⋆
t is the consumption share process of agent B. Since limt→∞ Dt = ∞, this

implies that for almost every path of the economy, for large enough t,

w∗
t =

{
1
2

(
1 + ln(λ⋆)

Dt

)
, λ⋆ > 0,

0, λ⋆ = 0.
(B.6)

Then, the ratio of the pricing kernel in the heterogeneous-belief economy to the one

in the reference economy is given by

mt

m⋆
t

=

{
eDtwt− 1

2
Dt− 1

2
ln(λ⋆), λ⋆ > 0,

eDtwt , λ⋆ = 0.
(B.7)

Consider case (i), µ > δ2/2. In this case, limt→∞ wt = w∞ > 0 a.s. Thus, for almost

every path of the economy, for large enough t,

wtDt =
1

2
(Dt + ln(λξt)) . (B.8)

To show that there exists price impact, we must show that ln
(

mt+s

m⋆
t+s

m⋆
t

mt

)
does not

converge to zero. For large enough t,

ln

(
mt+s

m⋆
t+s

m⋆
t

mt

)
=


1
2

(
− δ2

2
s+ δ(Zt+s − Zt)

)
, λ⋆ > 0,

1
2

(
Dt+s −Dt − δ2

2
s+ δ(Zt+s − Zt)

)
, λ⋆ = 0,

(B.9)

The fact that Zt+s − Zt ∼ N (0, s) is independent of filtration at t establishes that

there is price impact in case (i) for λ⋆ > 0. The case of λ⋆ = 0 follows an analogous

argument.

In case (ii), µ < δ2/2 and thus limt→∞
Dt

− ln(ξt)
= 0 a.s. The Pareto optimality then

states that for almost every path of the economy, for large enough t,

Dt(1− wt)− 1− ln (wtDt) = − ln(λξt) (B.10)
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and therefore limt→∞ wtDt = 0 a.s.. This implies that there is no price impact relative

to the benchmark economy with λ⋆ = 0.

In case (iii), µ = δ2/2 and therefore lim supt→∞ wtDt = ∞ a.s. Then, for almost

every path, there exists an unbounded increasing sequence of times tk such that

wtkDtk > 1. For t = tk, using (B.1), the ratio mt

m⋆
t
is given by

mt

m⋆
t

=

{
e

1
2
ln(λξt)− 1

2
ln(λ⋆), λ⋆ > 0,

eDtwt , λ⋆ = 0.
(B.11)

Since, along such a sequence, Ztk+s−Ztk > |δ|s infinitely often, we can select a further

subsequence t′k, such that wt′k
Dt′k

> 1 and Zt′k+s − Zt′k
> |δ|s. Note that this implies

that wt′k+sDt′k+s > 1 and therefore
mt′

k
+s

m⋆
t′
k
+s

is also given by (B.11). Then, for λ⋆ > 0,

ln

(
mt′k+s

m⋆
t′k+s

m⋆
t′k

mt′k

)
=

1

2

(
−δ2

2
s+ δ(Zt′k+s − Zt′k

)

)
(B.12)

and therefore ln

(
mt′

k
+s

m⋆
t′
k
+s

m⋆
t′
k

mt′
k

)
> δ2s/4. Thus, ln

(
mt+s

m⋆
t+s

m⋆
t

mt

)
fails to converge to zero on

a set of measure one and we conclude that there exists price impact for λ⋆ > 0. The

case of λ⋆ = 0 follows an analogous argument.

B.2 Example 3.3

Define δAt = µ̂A
t − µ. Then, using the Kalman Filter,

dδAt = −δAt ν
A
t dt+ νA

t dZt and dνA
t = −

(
νA
t

)2
dt (B.13)

and therefore

δAt =
δA0

νA
0 t+ 1

+
νA
0

νA
0 t+ 1

Zt. (B.14)
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Next, from the definition of ξAt , we have

ln(ξAt ) = −1

2

∫ t

0

(
δAs
)2

ds+

∫ t

0

δAs dZs

= −
∫ t

0

(
1

2

(
δA0
)2 1

(νA
0 s+ 1)2

+
1

2

(
νA
0

)2 1

(νA
0 s+ 1)2

Z2
s + δA0 ν

A
0

1

(νA
0 s+ 1)2

Zs

)
ds

+

∫ t

0

δAs dZs. (B.15)

Integration by parts yields∫ t

0

δAs dZs =

∫ t

0

(
δA0

νA
0 s+ 1

+
νA
0

νA
0 s+ 1

Zs

)
dZs

=
1

2

νA
0

νA
0 t+ 1

Z2
t +

δA0
νA
0 t+ 1

Zt

+

∫ t

0

(
−1

2

νA
0

νA
0 s+ 1

+
1

(νA
0 s+ 1)2

(
1

2

(
νA
0

)2
Z2

s + δA0 ν
A
0 Zs

))
ds.

(B.16)

Plugging the last equation into the expression for ln(ξAt ) results in

ln(ξAt ) =
1

2

νA
0

νA
0 t+ 1

Z2
t +

δA0
νA
0 t+ 1

Zt −
∫ t

0

1

2

(
δA0
)2 1

(νA
0 s+ 1)2

ds−
∫ t

0

1

2

νA
0

νA
0 s+ 1

ds.

(B.17)

Combining a similar expression for B, and assuming min(νA, νB) > 0, we have

ln(ξBt )− ln(ξAt ) =

(
1

2

νB
0

νB
0 t+ 1

− 1

2

νA
0

νA
0 t+ 1

)
Z2

t +

(
δB0

νB
0 t+ 1

− δA0
νA
0 t+ 1

)
Zt

(B.18)

+

(
−1

2

(
δB0
)2

νB
0

+
1

2

(
δA0
)2

νA
0

)
− 1

2
ln

(
1 + νB

0 t

1 + νA
0 t

)
. (B.19)

The first two terms converge to a constant since Z2
t /t → 1, a.s., and Zt/t → 0, a.s.

The last term converges to a constant as well, −1
2
ln

νB0
νA0
. Thus ln ξt = ln(ξBt )− ln(ξAt )

converges to a constant, and so (8) with A(x) = x−1 implies that both agents survive.

If νB > νA = 0, then ξBt = ξt → 0, a.s., and so Proposition 4.6 implies that B does

not survive.

4



B.3 Example 3.4

Agent B’s beliefs are characterized by the density process

ξt = exp

(
t∑

s=1

(
−
δ2s−1

2
+ δs−1ϵs

))
, (B.20)

The process Mt =
∑t

s=1 δs−1ϵs is a martingale.

Since limt→∞
(
1
t

∑t
s=1 δ

2
s−1

)
= E[δ2t ], the quadratic variation process of Mt con-

verges to infinity almost surely under P, and therefore limt→∞ Mt/
(∑t

s=1 δ
2
s−1

)
= 0,

a.s. (see Shiryaev 1996, §7.5, Th. 4). This implies that limt→∞ ξt = 0 a.s. and hence

the condition (28) in Proposition 4.6 is satisfied. We conclude that agent B does not

survive in the long run.

B.4 Example 3.5

Survival results follow from Proposition 4.6, since the logarithm of the belief density

ratio ln(ξt) exhibits linear growth, while the aggregate endowment Dt grows expo-

nentially. Price impact results follow from Proposition 5.7.

B.5 Example of the Impact of Distorted Beliefs on the Prices

of Non-Primitive Claims

Consider a discrete-time economy with log-utility preferences, time-preference param-

eter ρ, and the aggregate endowment given by Dt. Assume that agent A has correct

beliefs, and agent B’s beliefs are distorted, with the density equal to ξt. Assume that

ξt → 0 a.s. as t → ∞ (see Section 3 for the discussion of this condition on beliefs).

Let the utility weight of agent B be one.

According to Corollary 4.2, agent B fails to survive in the long run. Moreover,

according to Proposition 5.1, agent B has no long-run price impact on the Arrow-

Debreu prices in this economy.

Consider a long-lived, non-primitive state-contingent claim H, with the cash flow

stream given byDH
t = 1[ξt≥1]. Note that the payoff ofH is a function of the underlying

state space, and hence is defined without an explicit connection to agent B.
In an economy without belief distortions, the state-price density is πt = exp(−ρt)D−1

t ,

5



and hence the price of asset H is

PH,hom
t = Dt Et

[
∞∑
t+1

e−ρ(s−t)D−1
s 1[ξs≥1]

]
. (B.21)

In the economy with heterogeneous beliefs,

πt = e−ρt1 + ξt
Dt

, (B.22)

and the price of H is

PH,het
t = Dt (1 + ξt)

−1 Et

[
∞∑
t+1

e−ρ(s−t)D−1
s (1 + ξs) 1[ξs≥1]

]
. (B.23)

Since

PH,het
t

PH,hom
t

≥ 2

1 + ξs
, (B.24)

and ξt → 0, a.s., we conclude that the price of asset H is affected, in the long run,

by the distorted beliefs of agent B. The reason for price impact of B’s beliefs on asset

H is that the payoff of H is concentrated on a set of states in which agent B has

a nontrivial consumption share. This set of states has an asymptotically vanishing

probability but is relevant for the pricing of long-lived non-primitive state-contingent

claims.

B.6 Proof of Propositions 5.6, 5.7, and 5.8

Since the utility function is of the DARA type, condition (8) implies that

| ln(λξt)| ≥ A(Dt)Dt|1− 2wt|. (B.25)

Furthermore, using the fact that xA(x) is an increasing function,

| ln(λξt)| ≥ A (Dt)Dt|1− 2wt| ≥ A

(
Dt

2

)
Dt

∣∣∣∣12 − wt

∣∣∣∣ , (B.26)
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which implies that

0 ≤
(
1

2
− wt

)2

A

(
Dt

2

)
Dt ≤

(ln (λξt))
2

A
(
Dt

2

)
Dt

→ 0, P− a.s. (B.27)

Because, by assumption, lim inft→∞ A(Dt/2)Dt > 0, (B.27) implies limt→∞ wt = 1/2,

a.s. This proves Proposition 5.6.

Next, we prove Proposition 5.7. To show that there is price impact, we first verify

that for a reference economy with λ⋆ = 1, the difference

PI(t, s; 1) ≡
∫ Dt+s(1−wt+s)

1
2
Dt+s

A(x) dx−
∫ Dt(1−wt)

1
2
Dt

A(x) dx (B.28)

does not converge to zero almost surely. The above expression corresponds to λ⋆ = 1

in the definition of price impact.

We derive a set of bounds on PI(t, s; 1). Consider an element of the probability

space and the point in time such that λξt < 1. The DARA property of the utility

function and condition (8) imply that∫ Dt(1−wt)

1
2
Dt

A(x) dx ≤ 1

2

∫ Dt(1−wt)

Dtwt

A(x) dx = −1

2
ln(λξt). (B.29)

The same inequality holds if λξt ≥ 1:∫ 1
2
Dt

Dt(1−wt)

A(x) dx ≥ 1

2

∫ Dt(1−wt)

Dtwt

A(x) dx =
1

2
ln(λξt). (B.30)

Thus, for any value of λξt,∫ Dt(1−wt)

1
2
Dt

A(x) dx ≤ −1

2
ln(λξt). (B.31)

Next, we derive a lower bound on
∫ Dt(1−wt)

1
2
Dt

A(x) dx assuming λξt < 1. Since
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A(x)x is increasing, a Taylor expansion of the log function shows that∫ Dt(1−wt)

1
2
Dt

A(x) dx ≥
∫ Dt(1−wt)

1
2
Dt

A

(
Dt

2

)
Dt

2

1

x
dx

= A

(
Dt

2

)
Dt

2
ln (2− 2wt)

= A

(
Dt

2

)
Dt

[(
1

2
− wt

)
− 1

(1− w⋆
t )

2 (1− 2wt)
2

]
,

(B.32)

where w⋆
t ∈

[
wt,

1
2

]
. Applying another Taylor expansion of the log function,

− ln (λξt) =

∫ Dt(1−wt)

Dtwt

A(x) dx

≤ A

(
Dt

2

)
Dt

(
1

2
− wt

)
+

∫ Dt
2

Dtwt

A

(
Dt

2

)
Dt

2

1

x
dx

= A

(
Dt

2

)
Dt

(
1

2
− wt

)
− A

(
Dt

2

)
Dt

2
ln (2wt)

= A

(
Dt

2

)
Dt

(
1

2
− wt

)
−

A

(
Dt

2

)
Dt

[
−
(
1

2
− wt

)
− 1

(w⋆⋆
t )2

(1− 2wt)
2

]
,

(B.33)

where w⋆⋆
t ∈

[
wt,

1
2

]
. The inequality (B.27) implies that the last term in (B.33)

approaches zero almost surely as t approaches ∞.

Assume now that λξt ≥ 1. Proceeding as above,∫ 1
2
Dt

Dt(1−wt)

A(x) dx ≤
∫ 1

2
Dt

Dt(1−wt)

A

(
Dt

2

)
Dt

2

1

x
dx

= −A

(
Dt

2

)
Dt

2
ln (2− 2wt)

= −A

(
Dt

2

)
Dt

[(
1

2
− wt

)
− 1

(1− w∗
t )

2 (1− 2wt)
2

]
,

(B.34)
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where w∗
t ∈ [1/2, wt]. Thus, we recover a similar inequality as for the case of λξt < 1:∫ Dt(1−wt)

1
2
Dt

A(x) dx ≥ A

(
Dt

2

)
Dt

[(
1

2
− wt

)
− 1

(1− w∗
t )

2 (1− 2wt)
2

]
.

(B.35)

Furthermore,

ln(λξt) =

∫ Dtwt

Dt(1−wt)

A(x) dx ≥ A

(
Dt

2

)
Dt

(
wt −

1

2

)
+

∫ Dt/2

Dt(1−wt)

A(x) dx,∫ Dt/2

Dt(1−wt)

A(x) dx =

∫ Dt/2

Dt(1−wt)

(A(x)x) x−1 dx

≥ −A(Dt(1− wt))Dt(1− wt) ln(2(1− wt))

= A(Dt(1− wt))Dt(2− 2wt)

[
(wt − 1/2) +

1

(1− w∗∗
t )2

(1− 2wt)
2

]
≥ A

(
Dt

2

)
Dt(2− 2wt)

[
(wt − 1/2) +

1

(1− w∗∗
t )2

(1− 2wt)
2

]
,

(B.36)

where w∗
t ∈ [1/2, wt]. The first inequality in the above expression follows from A(x)x

being weakly increasing, and second from A(x) being weakly decreasing. We now use

the fact that (wt − 1/2) converges to zero almost surely.

We combine the inequalities in (B.32–B.36), and use the fact that wt − 1/2 con-

verges to zero almost surely, to conclude that

lim
t→∞

∫ (1−wt)Dt

1
2
Dt

A(x) +
1

2
ln(λξt) = 0, a.s. (B.37)

We have thus established asymptotic behavior of the price-impact measure PI(t, s; 1),

which corresponds to the reference economy with λ⋆ = 1:

lim
t→∞

PI(t, s; 1)− 1

2
(ln ξt+s − ln ξt) = 0, a.s. (B.38)

We conclude that if the condition (39) fails to hold, then PI(t, s;λ⋆ = 1) vanishes

asymptotically, and thus agent B does not exert long-run price impact.

This establishes that condition (39) is necessary for price impact. Moreover, (B.38)

shows that the SDF does not depend on λ asymptotically, which means that the

asymptotic behavior of the SDF in this economy is independent of the initial wealth

9



distribution between agents A and B.
Next, we establish sufficiency of conditions (39) and (40) for price impact. Ac-

cording to (B.38), the SDFs in two economies with ξt = 1 and λ > 0 are the same

asymptotically. Thus, the price impact measures PI(t, s;λ⋆), λ⋆ > 0, satisfy

lim
t→∞

PI(t, s;λ⋆)− 1

2
(ln ξt+s − ln ξt) = 0, a.s. (B.39)

Condition (39) then implies that PI(t, s;λ) does not vanish asymptotically for any

λ⋆ > 0.

We now need to consider only the behavior of PI(t, s; 0).

PI(t, s; 0) =

∫ Dt+s

(1−wt+s)Dt+s

A(x) dx−
∫ Dt

(1−wt)Dt

A(x) dx. (B.40)

Note that∫ Dt

(1−wt)Dt

A(x) dx =

∫ Dt

Dt/2

A(x) dx−
∫ (1−wt)Dt

Dt/2

A(x) dx. (B.41)

Thus,

PI(t, s; 0) = −PI(t, s; 1) +

∫ Dt+s

Dt+s/2

A(x) dx−
∫ Dt

Dt/2

A(x) dx. (B.42)

Using (B.38), together with (39) and (40), we conclude that PI(t, s; 0) does not vanish

asymptotically. This completes the proof of Proposition 5.7.

Proposition 5.8 follows as a special case from the proof of Proposition 5.7 above

by setting ξt = 1.

C State-Dependent Preferences

In this section, we extend our results on survival and price impact to models with

state-dependent preferences. Let the utility function take the form u(C,H), where C

is agent’s consumption and H is the process for state variables affecting the agent’s

utility. We assume that H is an exogenous adapted process. This specification covers,

as an important special case, models of external habit formation, or catching-up-with-

the-Joneses preferences, as in Abel (1990) and Campbell and Cochrane (1999), in

which case the process H is a function of lagged values of the aggregate endowment.
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As we show below, the general lessons of the previous sections apply to state

dependent preferences. However, the dependence of risk aversion variables other

than consumption level affects the validity of MSH in economies with state-dependent

preferences. The addition of state variables to the utility function means that the

coefficient of risk aversion may be more variable, and, in particular, it may no longer

be bounded even with CRRA-like preferences.

Theorem 4.1 extends to the case of state-dependent preferences. Let A(C,H) and

γ(C,H) denote, respectively, the coefficients of absolute and relative risk aversion at

consumption level C. Then we obtain an analog of Proposition 4.6:

Proposition C.1 Assume that limt→∞ ξt = 0, a.s., and that the utility function

u(C,H) exhibits DARA: the coefficient of absolute risk aversion A(C,H) is decreasing

in C. Then, for agent B to go extinct it is sufficient that there exists a sequence

ϵn ∈ (0, 1
2
) converging to zero such that for any n

lim
t→∞

A(ϵnDt, Ht)Dt

− ln(ξt)
= 0, a.s. (C.43)

For agent B to survive, it is sufficient that for some ϵ ∈ (0, 1
2
)

Prob

[
lim sup
t→∞

A(ϵDt, Ht)Dt

− ln(ξt)
= ∞

]
> 0. (C.44)

If, in addition,

lim
t→∞

A(Dt, Ht)Dt

− ln(ξt)
= ∞, a.s. (C.45)

then limt→∞ wt =
1
2
, a.s.

In a growing economy (Dt → ∞, a.s.) with accumulating differences in beliefs and

state-independent preferences, survival of agent B requires local utility curvature to

decline slowly enough, so that lim supD→∞ A(D)D = ∞, a.s. (see Proposition 4.6).

This is not the case if preferences are state-dependent. In many common models

with external habit formation, the process Ht is such that the process A(Dt, Ht)Dt

is stationary. In such cases, survival and price impact results are sensitive to the

assumptions on beliefs and the aggregate endowment. As the following example

illustrates, agent B may survive if the stationary distribution of risk aversion has a

sufficiently heavy right tail, so that the condition (C.43) is violated.
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Example C.2 Consider two discrete-time economies with external habit formation.

Let the utility curvature, A(x,H), of the two agents be

A(x,H) =
1

x
+

H

x2
, (C.46)

where Ht = Dt−1. Assume that the disagreement process follows

ln(ξt) = −1

2
t+

t∑
n=1

Zn, (C.47)

where Zn are distributed according to a standard normal distribution and are inde-

pendent of the endowment process. Assume that limt→∞ ξt = ∞, a.s.

Endowment growth is independently and identically distributed over time in both

economies. Assume that the endowment process Dt is independent of the disagree-

ment process ξt, which means that agents A and B disagree on probabilities of payoff-

irrelevant states.12 In the first economy, endowment growth has bounded support,

0 < g ≤ Dt

Dt−1
≤ g < ∞. In the second economy, g = 0. Moreover, in the second

economy, the distribution of endowment growth is such that

Prob

[
Dt

Dt−1

< x

]
> x1/3 (C.48)

for sufficiently small x. Then, agent B becomes extinct in the first economy, and

survives in the second economy.

In the first economy, it is clear that condition (C.43) is satisfied for any positive

ϵn, and thus agent B does not survive. In the second economy, the distribution of

endowment growth is such that relative risk aversion exhibits frequent large spikes,

1Another example of an economy in which belief differences are independent of the aggregate
endowment is a multi-sector economy in which agents agree on the distribution of the aggregate
endowment, but disagree about the distribution of sectors’ shares in the aggregate endowment.

2Survival results in this example do not depend on the joint distribution of the endowment
process and the disagreement process. Thus, one may assume that the two agents disagree about
the probabilities of payoff-relevant states by specifying Dt

Dt−1
to be a nonlinear function of Zt. The

assumption of independence of endowment and beliefs makes it easy to establish price impact results
below.
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namely

Prob
(
A(ϵDt, Ht)ϵDt > t3

)
= Prob

(
1 +

Dt−1

ϵDt

> t3
)

≥ Prob

(
ϵ
Dt

Dt−1

< t−3

)
> ϵ−1/3t−1.

Such spikes in risk aversion occur frequently enough that the condition (C.44) holds.

Specifically, since
∑∞

t=1 t
−1 = ∞, the Borel-Cantelli lemma implies that

lim sup
t→∞

A(ϵDt, Ht)ϵDtt
−3 ≥ 1 a.s. (C.49)

Since limt→∞(− ln(ξt))t
−3 = 0 a.s., (C.44) follows.

The following propositions extend some of our results on price impact to economies

with state-dependent preferences. Their proofs follow closely the results of Sections

4 and 5.

Proposition C.3 There is no price impact or survival in models with limt→∞ ξt = 0

a.s., and utility curvature such that A(x,H) ≤ Cx−1.

In the model with state-independent preferences, bounding the endowment pro-

cess implies bounding risk aversion. This, in turn, implies a lack of price impact. With

state-dependent preferences, a bounded endowment no longer implies that risk aver-

sion is bounded, and therefore there is no analog to the Corollary 4.3 and Proposition

5.2 for the economies with state-dependent preferences.

Returning to Example C.2, note that agent B has no price impact in the first

economy but exerts price impact in the second economy. The first result follows

the same argument as the proof of Proposition C.3, since bounded dividend growth

implies that A(x,H) ≤ Cx−1 over the interval (Dt(1 − wt), Dt). The second result

can be established using a slight modification of the proof of Proposition 5.7.3

3As we show above, lim supt→∞
Dt

Dt−1
t−3 ≥ 1, a.s., while limt→∞(ln(ξt))

2t−3 = 0, a.s., implying

that lim supt→∞ A(Dt,Ht)Dt/| ln(ξt)|2 = ∞, a.s. The price impact result then follows from inde-
pendence of Dt and ξt and the assumption that increments ln(ξt)− ln(ξt−1) are independent across
time.
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