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Abstract

Motivated by an observational study of the effect of hospital ward versus inten-
sive care unit admission on severe sepsis mortality, we develop methods to address
two common problems in observational studies: (1) when there is a lack of covari-
ate overlap between the treated and control groups, how to define an interpretable
study population wherein inference can be conducted without extrapolating with
respect to important variables; and (2) how to use randomization inference to form
confidence intervals for the average treatment effect with binary outcomes. Our
solution to problem (1) incorporates existing suggestions in the literature while
yielding a study population that is easily understood in terms of the covariates
themselves, and can be solved using an efficient branch-and-bound algorithm. We
address problem (2) by solving a linear integer program to utilize the worst case
variance of the average treatment effect among values for unobserved potential out-
comes that are compatible with the null hypothesis. Our analysis finds no evidence
for a difference between the sixty day mortality rates if all individuals were admit-
ted to the ICU and if all patients were admitted to the hospital ward among less
severely ill patients and among patients with cryptic septic shock. We implement
our methodology in R, providing scripts in the supplementary material.

Keywords: Causal Inference; Full Matching; Common Support; Average Treatment
Effect; Causal Risk Difference; Integer Programming
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1 Introduction

1.1 Severe Sepsis Incidence and Mortality

Severe sepsis is a leading cause of morbidity and mortality worldwide. It is defined

as a systematic inflammatory response to infection that is accompanied by acute

organ dysfunction. Angus et al. (2001) estimate that severe sepsis afflicts roughly

750,000 individuals in the United States per year, of whom an estimated 215,000

perish. Gaieski et al. (2013) note that cases of severe sepsis appear to be on the

rise. In a recent study, Liu et al. (2014) found that sepsis contributed to one in

every two to three deaths in two complementary hospital cohorts, and suggest that

“improved treatment of sepsis (potentially a final hospital pathway for multiple

other underlying conditions) could offer meaningful improvements in population

mortality.”

A critical decision along this pathway is whether to admit a patient to an in-

tensive care unit (ICU), or rather to an appropriate hospital ward. It is estimated

that approximately 50 percent of severe sepsis patients in the United States are

admitted to an ICU after presentation to an emergency department, with the rest

being admitted to a hospital ward (Angus and van der Poll, 2013). Recent evi-

dence suggests that admission to a non-ICU setting may be increasing (Whittaker

et al., 2015). Severe sepsis varies in degree of gravity at time of presentation to

the emergency department. In general, sicker patients tend to be placed in the

ICU, and those exhibiting less severe symptoms are often admitted to the hospital

ward. Furthermore, Brun-Buisson et al. (1996) and Rohde et al. (2013) note that

there are systematic ways in which the epidemiology, site of infection, and organ

dysfunctions appear to vary between ICU and hospital ward patients.

The existing literature offers contrasting opinions on the optimal process of care
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for severe sepsis patients. Esteban et al. (2007) argue that there is a large population

of patients not admitted to the ICU who could “potentially benefit from more

aggressive resuscitation and innovative therapies” that are available in the ICU.

They found that severe sepsis patients in hospital wards had a higher estimated

mortality rate than those who were admitted to the ICU, although their result

was not statistically significant. On the other hand, Levy et al. (2008) found that

admission to an ICU covered by intensivists may result in worse health outcomes, in

part because patients may receive unnecessary (but potentially harmful) therapies

or procedures. It is feasible, then, that certain severe sepsis patients may be better

off if they were admitted to the hospital ward, as they would not be subjected to

interventions in the ICU that are not warranted given their condition. In keeping

with this hypothesis, Sundararajan et al. (2005) found that severe sepsis mortality

rates among non-ICU patients were lower than those among ICU patients.

The goal of our analysis is to assess the causal effect of ICU admission versus

hospital ward admission on health outcomes. To be precise, we aim to compare

the average health outcomes if all individuals were admitted to the ICU with the

average outcomes if all patients were admitted to the hospital ward. We use data

from a retrospective observational cohort study wherein hospital admissions of indi-

viduals with severe sepsis to the Hospital of the University of Pennsylvania between

January 2005 and December 2009 were examined; see Whittaker et al. (2015) for

further details on the data set. We only consider patients without hemodynamic

septic shock (a patient has hemodynamic septic shock if the patient has severe sep-

sis coupled with hypotension after initial fluid resuscitation) because patients with

hemodynamic septic shock are almost exclusively admitted to the ICU (ProCESS

Trial, 2014). Investigators identified 1507 remaining individuals with severe sepsis

but not hemodynamic septic shock, of whom 695 were admitted to an ICU and 812
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Table 1: Covariate Means and Standard Deviations, Original Population and Study
Population for Tier 1 Covariates. The first two columns are the covariate means (standard
deviations) in the initial study population, and the last two columns are the covariate
means (standard deviations) in the study population defined in Section 4.3.

Original Population Study Population
Covariate ICU Ward ICU Ward
Age 60.1 55.1 60.56 55.88

(17.4) (18.4) (17.1) (18.3)
Charlson comorbity index 2.52 2.41 2.43 2.48

(2.81) (2.64) (2.70) (2.65)
Initial serum lactate 4.26 2.56 3.22 2.61

(2.98) (1.23) (1.24) (0.956)
APACHE II score 17.7 13.6 16.9 13.8

(6.37) (5.27) (5.46) (4.73)

were admitted to a hospital ward. Thirty covariates detailing demographic infor-

mation, comorbidities, emergency department process of care, and site of infection

were identified by expert consultation as germane to the hospital pathway and to

health outcomes. We separated our covariates into three tiers of importance based

on an a priori assessment (i.e. before examining the data set) of their effect on

admission decisions and mortality. Our health outcome is a binary variable that

takes on the value 1 if a patient died any time between the date of admission and

60 days after hospital admission. The tier 1 covariates are listed in Table 1 along

with their means and standard deviations among ICU and hospital ward patients,

while remaining covariates are summarized in Appendix A.

A subgroup of severe sepsis patients who are of particular interest to the critical

care community are those with cryptic septic shock. These are severe sepsis patients

who have normal levels of systolic blood pressure (so do not have hemodynamic

septic shock) yet exhibit high levels of initial serum lactate (≥ 4 mmol/L) (Puskarich

et al., 2011). Initial serum lactate levels refer to the amount of lactic acid in
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the blood upon presentation to an emergency department. Initial serum lactate

levels have been associated with mortality for severe sepsis patients independent of

organ dysfunction, and are therefore thought to be a highly useful biomarker for

risk-stratifying patients upon presentation to an emergency department (Mikkelsen

et al., 2009). Some believe that cryptic septic shock patients should be classified as

septic shock patients and admitted to an ICU by default, while others suggest that

there may be no benefit to such a protocol; see Jones (2011) and Rivers et al. (2011)

for both sides of the debate. Hence, in addition to comparing ICU versus hospital

ward mortality among all severe sepsis patients without hemodynamic septic shock,

we would further like to compare mortality within the subgroup of cryptic septic

shock patients, as this subgroup may exhibit mortality outcomes that differ from

other severe sepsis patients. While only 10% of patients admitted to the hospital

wards had cryptic septic shock in our sample, this number was 44% for patients

admitted to the ICU.

1.2 From Observational Study to Idealized Experiment

Randomization inference provides an appealing framework even when the data are

not the result of a randomized experiment. This is in keeping with the advice of

H.F. Dorn, as relayed in Cochran (1965), that “the planner of an observational

study should always ask himself the question, ‘how would the study be conducted

if it were possible to do it by controlled experimentation?’ ” Through matching on

observed covariates, we attempt to mimic a well-balanced randomized experiment.

Matching methods encourage researcher blinding, since matched sets can and should

be constructed without looking at the outcome of interest. Using randomizations

within this idealized experiment as the basis for inference also allows us to assess

the robustness of a study’s finding to unmeasured confounding through a sensitivity
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analysis. See Rosenbaum (2002b) for a discussion of using randomization inference

within observational studies.

Towards this end, we employ covariate matching to account for measured con-

founders that may bias our comparison of 60 day mortality rates if all patients had

been admitted to the ICU versus if all patients had been admitted to the hospital

ward, and then conduct inference with respect to the match that is produced; see

Stuart (2010) for a comprehensive overview of common matching algorithms. Full

matching, the algorithm used herein, is a type of matching algorithm that optimally

assigns individuals into strata consisting of either one treated unit and many control

units or one control unit and many treated units, and is particularly appealing for

studies where the ratio of treated individuals to control individuals is close to 1:1.

See Rosenbaum (1991) and Hansen (2004) for additional details on full matching.

In Section 2, we discuss the randomized experiment that full matching aims

to replicate. We begin our analysis in Section 3.1, where we discuss an issue en-

countered within our comparison of hospital wards and ICU that is common to

many observational studies: an inherent lack of covariate overlap. In Section 4,

we discuss how the maximal box problem marries together existing methods for ad-

dressing lack of covariate overlap with the intuitive appeal of a study population

whose boundaries are clearly defined in terms of important covariates.

Section 5 lays out the necessary framework for conducting inference on the aver-

age treatment effect in the idealized experiment we aim to uncover. Difficulties arise

due to the composite nature of a null hypothesis on the average treatment effect,

in that different allocations of potential outcomes can yield the same average treat-

ment effect while inducing different randomization distributions for its estimate. We

overcome these difficulties by finding a sharp upper bound on the variance of the

estimated average treatment effect over all elements of the composite null, which
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under a normal approximation allows us to carry out inference for the composite

null in question. In Section 6, we apply our methodology to our sepsis example.

Though seemingly unrelated, our solutions for defining an interpretable study

population and conducting randomization inference on the average treatment effect

with binary outcomes utilize methods from discrete optimization. Traditionally,

discrete optimization problems were viewed as tractable if the worst case instance

could be solved by an algorithm that grows polynomially in the instance’s size, and

statistician have typically limited themselves to using algorithms of this type. Both

of the problems we pose are NP-hard, meaning that there is no known polynomial

time algorithm for the worst case instances of these problems. However, there have

been recent advances in solving typical cases of these problems such that a typical

case of these problems can often be solved in a reasonable amount of time (Schrijver,

2003). In a recent paper, Zubizarreta (2012) highlighted the usefulness of mixed

integer programming for attaining well balanced matched strata. We illustrate that

when applying the methods described in this paper to our data set, solutions can be

attained in a matter of seconds. Through the methods developed in this work, we

hope to further emphasize the usefulness of discrete optimization for observational

studies and statistics in general.

2 Review of Causal Inference via Matching

2.1 Notation For a Stratified Randomized Experiment

Suppose there are I total strata, the ith of which contains ni ≥ 2 individuals. In

each stratum, mi ≥ 1 individuals receive the treatment, ni = mi − ni individuals

receive the control, and min{mi, ni − mi} = 1. Furthermore, mi is fixed across

randomizations, resulting in ni distinct assignments to treatment and control for
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each stratum i. Assignments are independent between distinct strata. Under the

potential outcomes framework with binary responses, each individual has two po-

tential binary outcomes: one under treatment, rT ij , and one under control, rCij ,

which are 1 if an event would occur and 0 otherwise. The true treatment effect for

individual j in stratum i is δij = rT ij − rCij , and is unobservable as each individual

receives either treatment or control. The observed response for each individual is

Rij = rT ijZij +rCij(1−Zij), where Zij is an indicator variable that takes the value

1 if individual j in stratum i is assigned to the treatment; see, for example, Neyman

(1923) and Rubin (1974). Each individual has observed covariates xij .

There are N =
∑I

i=1 ni individuals in the study, of whom NT =
∑I

i=1mi receive

the treatment and NC = N−NT receive the control. Let R = (R11, R12, ..., RI,nI
)T

and Z = (Z11, Z12, ..., ZI,nI
)T . Let Ω be the set of

∏I
i=1 ni possible values z of Z

under the given stratification. In a randomized experiment, randomness is modeled

through the assignment vector; each z ∈ Ω has probability 1/|Ω| of being selected.

Hence, quantities dependent on the assignment vector such as Z and R are random,

whereas rT ij , rCij , xij are fixed quantities. Let F = {rT ij , rCij ,xij , i = 1, .., I, j =

1, ..., ni}. For a randomized experiment, we can then write that P(Zij = 1|F ,Z ∈

Ω) = mi/ni, i = 1, .., I; j = 1, ..., ni and that P(Z = z|F ,Z ∈ Ω) = 1/|Ω|.

2.2 Matching and Observational Studies

In an observational study, we begin with an unmatched study population of size N .

Matching methods aim to create strata where the constituent individuals have sim-

ilar covariate values, or at a minimum similar probabilities of assignment to treat-

ment (Rosenbaum and Rubin, 1983; Stuart, 2010). Once a match is obtained, the

acceptability of the resulting stratification is assessed for covariate balance through

the use of various diagnostics, the most common of these being the standardized

8



difference (Rosenbaum, 2010). Let the notation introduced in Section 2.1 now ap-

ply to the stratification yielded by the matching algorithm. If the match passes the

balance diagnostics, randomization inference then proceeds under the assumptions

of no unmeasured confounding, common support for the assignment probabilities,

and equal probabilities of assignment within a matched strata. The assumption

of no unmeasured confounding states that given the observed covariates, the prob-

abilities of assignment to treatment are independent of the potential outcomes,

that is P(Zij = 1|xij) = P(Zij = 1|xij , rT ij , rCij), i = 1, ..., I; j = 1, ..., ni. This

probability is known as the propensity score, and we denote it by e(xij). The

assumption of common support for the assignment probabilities can be written

as 0 < e(xij) < 1, i = 1, ..., I; j = 1, ..., ni. Finally, the assumption of equal

probability of treatment assignment within a matched strata can be written as

e(xij) = e(xik) for all i = 1, ..., I; j, k = 1, ..., ni. Under these assumptions,

we have that P(Zij = 1|F ,Z ∈ Ω) = mi/ni, i = 1, .., I; j = 1, ..., ni and that

P(Z = z|F ,Z ∈ Ω) = 1/|Ω|, thus recovering the randomized experiment described

in Section 2.1.

3 Lack of Common Support

3.1 Imbalance Caused by Limited Covariate Overlap

We begin by conducting a full match on our entire study population. As was previ-

ously noted, we have 30 pre-treatment covariates that were deemed important for

both the probability of admission to the ICU versus the ward and for the outcome.

Of these, 13 contained missing values; see Appendix A for the percentages of missing

observations for these 13 covariates. To account for this, we include 13 new miss-

ingness indicators, and fill in the missing values with the mean of the covariates.
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As is discussed in Rosenbaum and Rubin (1984) and Rosenbaum (2010, Section

9.4), this facilitates balancing both the observed covariates and the pattern of miss-

ingness between the two groups being compared. We also include an indicator for

whether an individual has cryptic septic shock. We thus have 44 covariates that

could be used in constructing our matched sets. In determining which variables to

match on, the avoidance of various types of “collider-bias” (Greenland, 2003) must

be considered. We first do not control for any post-treatment variables in order to

avoid biases that stem from controlling for the consequence of an exposure. One

particular type of collider bias, M -bias, can be induced even when only controlling

for pre-treatment variables. Despite this, we choose to control for all 44 of these

pre-treatment covariates because of the work of Ding and Miratrix (2014), simula-

tion studies of Liu et al. (2012), and arguments of Rubin (2009) that suggest that

biases stemming from not controlling for a relevant pre-treatment covariate tend to

be more substantial than those that are caused by M -bias.

We use a rank-based Mahalanobis distance with a propensity score caliper of 0.2

standard deviations as our distance metric between ICU and hospital ward patients,

where the propensity scores are estimated via a logistic regression of our covariates

on the treatment indicator; for further discussion on the role of propensity score

calipers in multivariate matching, see Rosenbaum (2010, Section 8.3). In addition,

we match exactly on the cryptic septic shock indicator, meaning that each stratum

produced by the full match must either contain all cryptic septic shock patients or

none. We use standardized differences, defined as a weighted difference in means

divided by the pooled standard deviation between groups before matching, to assess

balance in our resulting matched strata for the remaining covariates (Stuart and

Green, 2008). A common rule of thumb is to deem the balance of a resulting

match acceptable if all absolute standardized differences fall below 0.1 (Rosenbaum,
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2010). We modify this rule slightly based on our covariate importance tiers, using

thresholds of 0.05, 0.10, and 0.15 for the standardized differences of tiers 1, 2, and 3

respectively. Thus, we require more stringent balance for those covariates that are

deemed to be of highest importance for the admission decision and for mortality.

We first perform an unrestricted full matching. Without any restrictions, full

matching can produce extremely large strata. When applied to our data set, there

are strata with ratios of hospital ward patients to ICU patients of 37:1, 1:21, 1:32,

and 1:65. Noting the potential for outlandishly large strata, Hansen (2004) advo-

cates placing a bound on the maximal allowable strata size in order to increase the

effective sample size (and thus, the power of the resulting analysis). In keeping with

this, we also performed full matches with restricted ratios of hospital ward patients

to ICU patients within a stratum, with ratios ranging from 2:1, 1:2 to 15:1, 1:15.

Neither the unrestricted full match nor any of the restricted full matches resulted

in an adequately balanced matched sample based on our standardized difference

thresholds.

Our failure to attain a suitably balanced stratification does not suggest a defi-

ciency with full matching; to the contrary, no matching algorithm should be able to

produce a suitably balanced stratification without discarding individuals, as there

is a severe lack of covariate overlap between patients admitted to the ICU and pa-

tients admitted to the hospital wards. Two covariates that were out of balance in

all of the restricted ratio matches were initial serum lactate levels and APACHE

II scores. As is described in Section 1, initial serum lactate is believed to be im-

portant for both the admission decision and for health outcomes. The APACHE II

score is a measure of disease severity using physiologic variables and chronic health

conditions (Knaus et al., 1985). As Figure 1 displays, virtually all of the patients

admitted to the hospital ward lie in the lower left hand quadrant of the scatterplot

11



of APACHE II scores versus initial serum lactate levels. Naturally, this lack of

overlap arises because many ICU patients are more severely ill than any hospital

ward patient. We cannot possibly infer the effect of admission to the ICU versus

the hospital ward on mortality for the severely ill ICU patients, as we lack patients

admitted to the hospital wards with which the outcomes of those ICU patients can

be fairly compared. Assessment of causal effects for those individuals would repre-

sent an analysis of “extreme counterfactuals,” resulting in an extrapolation to which

the data cannot honestly attest (King and Zeng, 2006). Rather, inference about

the effect of being admitted to an ICU or a hospital ward on mortality must be

restricted to the area of common support (i.e., those patients who were less gravely

ill at presentation), a fact to which restricted ratio full matches bear testament in

their inability to attain suitable balance.

3.2 Different Types of Overlap

Before proceeding, we discuss a few different notions of covariate overlap. The first

notion, which we call strong overlap, is that for every treated unit in the data,

there is a control unit that has similar or the same covariate values and that for

every control unit, there is a treated unit that has similar or the same covariate

values. While strong overlap is most desirable and can be readily diagnosed in

low dimensions through visual tools such as scatterplots, it is difficult to obtain

when there are a moderate or high number of covariates because of the curse of

dimensionality. The second notion, which we call interpolation overlap, is that for

any treated unit, an estimate of that treated unit’s counterfactual control potential

outcome given the unit’s covariates can be inferred through an interpolation rather

than an extrapolation of the observed control outcomes and that for any control

unit, an estimate of the control’s unit counterfactual potential outcome can be
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Figure 1: Lack of Common Support and the Maximal Box. This figure shows a scatter plot of
initial serum lactate levels and APACHE II scores. The plot also shows the maximal box, which
is the solution to the optimization problem posed in Section 4. The rectangular boundaries
represent the study population identified as having a common support, wherein subsequent
inference will be restricted. It was formed by finding the rectangle containing the largest number
of filled points, subject to excluding all hollow points in the plot. The triangles represent ICU
patients, and the circles represent hospital ward patients. Whether a point is filled or hollow
is described in Section 4.3 in detail, and has to do with whether or not it was determined that
a given individual was in the area of viable common support for his or her observed tier 1
covariates. Points are jittered to avoid overplotting.

inferred through interpolation. King and Zeng (2006) present an operational way to

check for interpolation overlap by means of the convex hull of the treated and control

covariate distributions. According to their criterion, one is performing interpolation

if a given treated (control) individual is in the convex hull of the control (treated)

covariate distributions, and is performing extrapolation otherwise. Interpolation

overlap then exists if all treated units are in the convex hull of the control units,

and all control units are in the convex hull of the treated units. Unfortunately, as
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noted in King and Zeng (2006) their interpolation overlap criterion is also difficult to

obtain in moderate and high dimensions. In Appendix B, we demonstrate through a

simulation study that even when the treated and control covariate distributions are

identical, the number of individuals for which “interpolation” is identified as being

performed by the convex hull diagnostic decreases substantially as the covariate

dimension increases.

3.3 Existing Methods for Achieving Overlap

A lack of overlap is typically addressed by defining a study population restriction

wherein adequate overlap can be attained. Many methods are motivated by the fact

that, asymptotically, strong overlap is present if and only if the propensity score

at a given covariate value, e(xj), is bounded away from 0 and 1 for all individu-

als j ∈ {1, ...N}. In this sense, the propensity score provides a scalar indication

of both the existence of and the extent of covariate overlap. Dehejia and Wahba

(1999) recommend removing treated units whose propensity scores are larger than

the maximal propensity score among the control units, and removing control units

whose propensity score are smaller than the minimal propensity score among the

treated units. Crump et al. (2009) define a study population by seeking the subset

of the covariate space which minimizes the efficiency bound for the variance of the

study population average treatment effect. Based on this optimality criteria, they

find that for a wide range of distributions a close approximation to the optimal

selection rule is to drop all units with estimated propensity scores outside of [0.1,

0.9]. One concern with propensity score approaches for attaining overlap for fi-

nite sample inference is that while boundedness away from 0 and 1 implies strong

overlap asymptotically, for finite samples treated (control) individuals with nonzero

propensity scores may still lack comparable control (treated) individuals in terms
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of their observed covariates. Another concern is that these propensity scores must

be estimated, so that individuals with nonzero estimated propensity scores may

nonetheless fall outside the area of overlap.

Other methods directly deal with the covariates themselves when defining a new

study population. King and Zeng (2006) identify a multivariate space wherein one

performs interpolation rather than extrapolation by removing treated individuals

whose covariates lie outside of the convex hull of the covariates for the control

individuals, and removing control individuals whose covariates lie outside of the

convex hull of the covariates for the treated individuals. Rosenbaum (2012) de-

scribes a method for optimal subsampling wherein one chooses an upper bound on

how many treated units can be removed from the resulting matched sample. Hill

and Su (2013) employ Bayesian Additive Regression Trees (Chipman et al., 2010) to

identify areas of common support, using the fact that the variability of individual-

level conditional expectations tend to increase drastically in such areas. Individuals

are then classified as being inside or outside the area of common support based on

thresholds for these variances.

Though easy to implement and often accompanied by theoretical justifications,

the resulting study population returned by these methods is often unappealing as

it may be difficult to interpret in terms of the covariates themselves. This makes it

difficult to succinctly and transparently describe the individuals to whom the per-

formed inference applies. Furthermore, for study populations defined by propensity

scores alone, a researcher’s notion of which individuals have high or low “propen-

sity” for treatment may be vastly different from the individuals designated as such

through fitting a propensity score model to the data. A practitioner not participat-

ing in the study could then have a misconception of the individuals to whom the

inference applies based on his or her preconceived notion of which individuals are
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likely to receive treatment or control. In his Design of Observational Studies book,

Rosenbaum advises that when excluding extreme individuals “it is usually better to

go back to the covariates themselves, xj , perhaps redefining the population under

study to be a subpopulation of the original population” (Rosenbaum, 2010, Section

3.3.3). Stuart (2010) further echoes this sentiment, arguing that “it can help the

interpretation of results if it is possible to define the discard rule using one or two

covariates” (Stuart, 2010, page 15).

To illustrate the potential confusion arising from a study population definition

in terms of propensity scores, suppose we decided to apply the suggestion of Crump

et al. (2009) to our tier 1 covariates in order to define our study population. In

its most succinct form, the resulting study population would be defined as {i :

logit(3.5−0.0049(agei)+0.069(CCIi)−0.46(init. ser. laci)−0.12(APACHE IIi)) ∈

[0.1, 0.9]}. The boundaries of this set would likely hold little meaning to practi-

tioners, as it is hard to characterize qualitatively the individuals who fall within

these bounds. Inference performed on this subset would pertain to a set of indi-

viduals who lack a clear characterization on the basis of the covariates of interest

themselves, limiting how actionable the findings may be.

Traskin and Small (2011) suggest a tree based approach for defining an internally

valid study population based on values of covariates alone. In the first step of their

method, the practitioner uses a pre-existing methods for study population definition

of her choice; any of those described at the beginning of this section would be valid

choices. For each individual, this outputs an indicator of whether or not that

individual belongs to the area of common support (and hence, should be included

in the new study population). The user next fits a regression tree of a designated

depth that aims to minimize the probability of misclassification, and defines the

study population based on the resulting tree (rather than by the method used in
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the initial step). While resulting in a markedly more interpretable study population,

by their very nature trees result in interval restrictions that are path dependent,

rather than intervals that are universally applicable for all individuals.

Restrictions to rectangular regions of the covariate space are appealing as they

can be explicitly defined in terms of the intersection of a series of intervals, rather

than as a complicated function of the observed covariates. Each interval pertains

to a unique covariate, allowing one to paint a coherent description of the resulting

study population through covariate-specific constraints. This allows the practitioner

to clearly understand the restriction that each covariate imposes on the study pop-

ulation. Currently, little guidance exists on how to define these covariate based

inclusion criterion. Ad-hoc choices based on inspection may discard large propor-

tions of individuals, and further may fail to discard individuals who are identified

as problematic.

3.4 An Attainable Objective

As outlined in this section, there are inherent difficulties with attaining strong

overlap in high dimensions. We thus instead seek to define a study population

characterized by three principles which are both attainable and verifiable. Firstly,

we would like the study population to demonstrate overlap with respect to those

covariates deemed most important for the treatment and the outcome. By limit-

ing ourselves to a small set of important covariates to focus on for overlap, both

strong and interpolation overlap can be potentially obtained for a reasonably sized

study population. Furthermore, the overlap with respect to these most important

covariates can be verified using visual aids such as scatterplots. Secondly, our study

population should be such that balance can be attained on all covariates. As balance

is a property of the marginal distributions for the treated and control individuals,
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standard metrics such as standardized differences can speak to balance being at-

tained for all covariates. Finally, we would like our study population to have a

simple definition in terms of important covariates while not being overly wasteful

in discarding individuals.

Our approach to achieving these goals is two-fold. We begin by constructing,

through the solution to the maximal box problem, a study population that incor-

porates existing methods for identifying individuals outside the area of common

support with respect to important covariates, retains as many viable individuals as

possible, and is readily interpretable based on important covariates as it defined

through the intersection of interval restrictions. After this, we use full matching

to arrive upon a stratification that mimics a well-balanced randomized experiment

within this study population. We then proceed with inference in the resulting study

population only if the balance on all covariates is deemed acceptable.

4 Defining a Study Population

4.1 The Maximal Box Problem

A box [`,u] is defined to be a closed interval (hyperrectangle) of Rp,

[`,u] := {x ∈ Rp : `i ≤ xi ≤ ui ∀i ∈ {1, .., p}}

Suppose one has a finite collection of vectors {xj}, j = 1, ..., N, that can be

partitioned into two disjoint sets of “positive” points, X+ and “negative” points,

X−. The maximal box problem aims to find the lower and upper boundaries of a

box, [˜̀, ũ], such that the corresponding box contains the maximal number of points

in X+ while containing none of the points in X−. Explicitly, [˜̀, ũ] is the arg max
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of the following optimization problem (MB, for maximal box):

maximize |[`,u] ∩ X+| (MB)

subject to |[`,u] ∩ X−| = 0,

where the notation |A| denotes the number of elements of set A. Henceforth, we

refer to |[`,u] ∩ X+| as the cardinality of a box [`,u].

Eckstein et al. (2002) describe the problem in detail. They prove that the

problem is NP-hard in general, but is polynomial time for any fixed dimension p.

They provide an efficient branch and bound algorithm for solving it, which they

show to have modest computation time in practice. They also provide a mixed

integer programming formulation of the problem, which facilitates its use with freely

available and commercial solvers.

4.2 From Maximal Boxes to Study Populations

Let D(xj ,X,Z) be a binary decision rule that determines whether a point xj needs

to be excluded from the analysis to ensure covariate overlap. For example, the

recommendations of Dehejia and Wahba (1999), denoted DDW (xj ,X,Z), and the

rule proposed in Crump et al. (2009) (the simplified version of the rule), denoted

as DC(xj ,X,Z), can be written in this form as:

DDW (xj ,X,Z) =


1 {ê(xj) ≤ max{ê(xk) s.t. Zk = 0}} if Zj = 1

1 {ê(xj) ≥ min{ê(xk) s.t. Zk = 1}} if Zj = 0

DC(xj ,X,Z) = 1 {ê(xj) ∈ [0.1, 0.9]}

Our sets of positive and negative points are then defined based on the decision
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rule, with X+ := {xj : D(xj ,X,Z) = 1}, and X− := {xj : D(xj ,X,Z) = 0}.

We then solve (MB) using these designations of positive and negative points. The

resulting maximal box is one that contains the largest possible number of observa-

tions who could feasibly have been in the study population, while eliminating all

individuals who were designated for exclusion. The study population defined by

the maximal box has a clear interpretation in terms of the covariates themselves:

an individual is in the study population if ˜̀ ≤ xj ≤ ũ, and is excluded otherwise.

We note that as p (the number of covariates used to define the maximal box)

increases, the number of positive points in corresponding maximal box is non-

decreasing. At the same time, this increases the potential computational burden,

as there are at most |X+|2p possible candidates for the boundaries of the maximal

box (Eckstein et al., 2002). Thus, in practice we recommend forming the bound-

aries on the maximal box based on values of the most important covariates. Note

that defining a study population on the basis of important covariates can also be

justified on the basis of interpretability. If one defined a study population using a

maximal box formed from a large number of covariates, the resulting study pop-

ulation would likely be just as cryptic as one determined solely by the estimated

propensity scores. Further, Hill and Su (2013) argue that methods for common

support restriction should primarily consider those covariates that are most impor-

tant for the outcome. As such, we seek to define a study population based on the

most important pre-treatment covariates. We also recommend using covariates that

are not binary for constructing the maximal box as the resulting restriction would

either eliminate one of the categories entirely, or (more commonly) be the whole

range [0,1]. If there is a binary covariate of considerable importance, we recom-

mend accounting for it by either exactly matching or almost exactly matching on

the binary covariate (Rosenbaum, 2010, Sections 9.1 and 9.2) for details.
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There is a possibility that the resulting maximal box only contains a small

fraction of the positive points. This means there is no easy way to define a region of

good overlap between the treated and control individuals without eliminating the

vast majority of the data. In Appendix C, we discuss an extension of the maximal

box problem posed in Eckstein et al. (2002) that may be appropriate in this setting.

This generalization allows for a small number, C, of points marked for exclusion

(negative points) to be included within the bounds of the maximal box, which would

in turn allow for the incorporation of more positive points; see Appendix C for more

discussion on the ramifications of choosing C > 0. In our example, we proceed with

C = 0, thus requiring the exclusion of all points marked as being outside the area

of viable support.

4.3 Application to Our Original Population

As defining a maximal box with all 44 covariates would yield a highly unwieldy 44

dimensional box with limited interpretability, we instead aim to construct a maxi-

mal box using our four tier 1 covariates: age, Charlson comorbidity index, APACHE

II scores, and initial serum lactate levels. Our approach is to fit a propensity score

model using a logistic regression on our four tier 1 covariates, and to then employ the

simplified criterion of Crump et al. (2009) with these propensity scores to determine

which observations had to be removed. We use this reduced propensity score model

because individuals within the area of common support on our important variables

may be nonetheless extreme with respect to other, less important, covariates, which

may in turn lead to them being marked for removal if we used the full propensity

score model. As our focus is on attaining covariate overlap and balance for our

most important variables while seeking balance on all other variables, we wanted

our exclusion metric to reflect lying in the area of covariate overlap with respect to
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our most important variables. See Appendix D for a more detailed discussion of this

goal and the behavior of alternative strategies. Denoting the tier 1 covariate for in-

dividual j as x(1)
j , our decision rule is DC,Tier1(xj ,X,Z) = 1

{
ê
(
x
(1)
j

)
∈ [0.1, 0.9]

}
.

This results in 108 individuals being marked for exclusion. We have implemented

the branch and bound algorithm of Eckstein et al. (2002) in the R programming

language (R Development Core Team, 2014), and used it to find our study popu-

lation; a script for our implementation is provided in the supplementary materials.

For this data set, our implementation took 2 seconds to run on a desktop computer

with a 3.40 GHz processor and 16.0 GB RAM.

We created a maximal box using all four tier 1 covariates, and also created one

using only initial serum lactate and APACHE II scores. The cardinalities of these

boxes were very close to one another (1214 and 1208 respectively). As such, we

use the box defined using only initial serum lactate and APACHE II scores for

enhanced interpretability. The resulting maximal box is displayed as the rectangle

in Figure 1. As can be seen, the study population under investigation can be

explicitly defined as those individuals in our initial study whose APACHE II scores

are between 5 and 29 and whose initial serum lactate levels are between 1.2 and 5.8

mmol/L. Our study population thus restricts analysis to those individuals who had

less severe, but not the least severe, conditions upon presentation to the emergency

department. The study population defined by the maximal box includes 701 out of

812 patients admitted into the wards and 507 out of 695 patients admitted to the

ICU, resulting in 1208 out of the original 1507 individuals being available for further

study; furthermore, it contains 86.3% of all individuals whose estimated propensity

scores were deemed acceptable by our decision rule. Table 1 shows the means and

standard deviations of the tier 1 covariates among this study population; values

for the other covariates can be found in Appendix A. As can be seen, restricting

22



ourselves to this study population improved pre-matching balance for many of the

covariates.

We now proceed with a full matching on our study population of 1208 individuals

whose condition upon presentation was less severe. We first refit our propensity

score model on this study population to exploit the so-called balancing property

of the propensity score within our population of interest (Rosenbaum and Rubin,

1983). We use a rank-based Mahalanobis distance with a propensity score caliper

of 0.2 standard deviations computed with respect to this study population alone

to define distance between ICU and hospital ward patients. Further, we require

exact matching for the cryptic septic shock indicator. Given our distances, we

run a series of full matches ranging from most restrictive to less restrictive until

a suitably balanced matched sample could be attained. We found that a 1:7, 7:1

restricted full matching was able to adhere to the standardized difference tolerances

defined in Section 3.1, as is displayed in Figure 2.

With our match deemed suitably balanced, we are ready to proceed with infer-

ence within the stratified randomized experiment we have aimed to replicate. Our

goal is to assess not only whether there is a substantial difference in mortality rates

depending on admission to the ICU or the hospital ward, but also to measure the

extent of the effect. In order to do so, we now discuss performing inference and

constructing confidence intervals for the average treatment effect.

5 Randomization Inference for the Average Treat-

ment Effect with Binary Outcomes

The average treatment effect with binary outcomes (also known as the causal risk

difference) is the difference between the proportion of positive responses among

23



Balance in Study Population with Full Matching

Absolute Standardized Differences

Hypertension

HIV

ESRD

Diabetes

Chronic renal

Chronic liver

COPD

CHF

CAD

Tier 3:   

Year

Resp. infection

Bacteremia

Cellulitis

Urinary infection

GI infection

Hypotension

DNR order

Lowest sbp, mm Hg

Acute kidney infection

Transplant

Oncology

WBC count

Max resp. rate/min

Max temperature (F)

Max heart rate/min

Female

Tier 2:   

APACHE II score

Initial serum lactate

CCI

Age

Tier 1:   

0.0 0.1 0.2 0.3 0.4 0.5 0.6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Before
After, 1:7, 7:1

●

Figure 2: Covariate Imbalances Before and After Full Matching, Study Population. The dotplot
(a Love plot) shows the absolute standardized differences without matching, and after conducting
a restricted 1:7, 7:1 full matching on our study population. The vertical dotted lines correspond
to the standardized difference tolerances for each of the three covariate tiers. Although not
shown here, all standardized differences corresponding to our 13 missingness indicators had
standardized differences below 0.1, indicating that the pattern of missing data was also balanced
between the ICU and hospital ward groups.

the potential outcomes under treatment and the potential outcomes under con-

trol, δ := (1/N)
∑I

i=1

∑ni
j=1 δij . It it identifiable under the assumption of strong

ignorability (Rosenbaum and Rubin, 1983), and an unbiased estimator of the av-

erage treatment effect under a stratified design is given by δ̂ :=
∑I

i=1(ni/N)δ̂i,

where δ̂i =
∑ni

j=1 (ZijRij/mi − (1− Zij)Rij/(ni −mi)) is the estimated average

treatment effect within stratum i (Rosenbaum, 2002b, Section 2.5).

We consider tests of the null hypothesis that (1/N)
∑I

i=1

∑ni
j=1 δij = δ0, δ0 ∈

{d/N : d ∈ [−N,N ] ∩ Z}, where Z denotes the set of all integers. In reality,

a null hypothesis of this form is a large collection of hypotheses on the set of
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treatment effects, δ = [δ11, δ12, ..., δI,ni ]. Let Dδ0 be the set of all δ such that

(1/N)
∑I

i=1

∑ni
j=1 δij = δ0 and such that the treatment effects are compatible with

the observed data. The latter requirement means that if unit j in stratum i received

the treatment in the observed experiment, the value of rT ij is fixed at Rij and hence

δij can equal either Rij or Rij−1. If said unit received the control, the value of rCij

is fixed at Rij , and δij can equal either −Rij or 1−Rij . To reject a null hypothesis

(1/N)
∑I

i=1

∑ni
j=1 δij = δ0, we require that we reject the null hypothesis that the

allocation of treatment effects equals δ for all δ ∈ Dδ0 .

5.1 Existing Methods

Inspired by the work of Neyman (1923), randomization inference for average treat-

ment effect across randomization is typically conducted by finding a consistent

estimator of an upper bound on the variance of the estimated ATE resulting in

randomization inference that asymptotically has the proper Type I error rate; see

Ding (2014) among many. Robins (1988) improves upon the upper bound of Ney-

man (1923) for binary outcomes under an unstratified design and uses the resulting

upper bound to create confidence intervals that are narrower than those based on a

Wald-type procedure. More recently, Aronow et al. (2014) provide asymptotically

sharp upper bounds on var(δ̂) under general potential outcomes.

For a stratified design, the variance for the estimated ATE is

var(δ̂) =

I∑
i=1

n2i
N2

(
S2
T i

mi
+

S2
Ci

ni −mi
−
S2
δi

ni

)
(1)

where S2
T i =

∑ni
j=1(rT ij − r̄T i)2/(ni − 1), S2

Ci =
∑ni

j=1(rCij − r̄Ci)2/(ni − 1), and

S2
δi =

∑ni
j=1(δij − δ̄i)2/(ni − 1). The procedures of Neyman (1923), Robins (1988)

and Aronow et al. (2014) can be readily extended to stratified designs where mi
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and ni − mi are sufficiently large for each stratum i. However, these procedures

have deficiencies when there are strata for which either mi or ni − mi = 1, as

these procedures require an estimate of the variance of the treated and control

groups in each strata. When mi or ni − mi = 1, unbiased estimators for S2
T i or

S2
Ci do not exist. Matched strata returned by pair matching, fixed ratio matching,

variable ratio matching and full matching have this property, rendering the existing

bounding techniques based solely on in-sample estimates inapplicable.

Rigdon and Hudgens (2015) present two methods for conducting randomization

inference and constructing confidence intervals for the average treatment effect with

binary outcomes in an unstratified design. The first method proceeds by combining

two tests on the attributable effect of Rosenbaum (2001) and Rosenbaum (2002a)

through means of a Bonferroni correction. They then mention that this approach,

while potentially conservative, can be readily applied to stratified randomized ex-

periments. In the second method, hypothesis testing proceeds by conducting ran-

domization inference on δ for all δ ∈ Dδ0 , meaning that this procedure has level

α for testing the corresponding composite null. Confidence intervals are then con-

structed by inverting tests for values under the null δ0 ∈ {d/N : d ∈ [−N,N ] ∩ Z},

where Z again denotes the set of all integers. In their description, inference is con-

ducted by explicitly performing a randomization test for each δ ∈ Dδ0 . Noting

the inherent computational burden in this process as N increases in an unstratified

experiment, they suggest a Monte-Carlo procedure to approximate the required per-

mutation test. For stratified experiments, they suggest that this approach becomes

computationally unwieldy quite quickly, thus advocating the use of a potentially

conservative method based on the attributable effect in this setting.

Our procedure combines elements of the classical Neyman approach and the

hypothesis test inversion approach of Rigdon and Hudgens (2015). Our approach is

26



not purely Neymanian in that although we are testing Neyman’s null hypothesis, we

do not proceed by seeking a consistent upper bound on var(δ̂); rather, we explicitly

compute the largest value of var(δ̂) possible among the elements of Dδ0 for each null

hypothesis. The resulting bound on the variance of the average treatment effect for

a given null hypothesis is sharp, as it is attained by a member of the composite

null δ∗ ∈ Dδ0 . As a test of a composite null hypothesis is size α only if the supre-

mum over all elements of the composite null of the probability of rejection is α,

asymptotically our testing procedure has exactly size α asymptotically so long as a

normal approximation is justified. This is because since the numerator is the same

for the test statistic for any null in Dδ0 , namely δ̂− δ0, the p-value computed under

a normal approximation will be maximized by the member of the composite null

with the largest denominator of the test statistic, i.e, the member with the largest

variance. Rejection on the basis of this worst-case p-value then implies rejection

for all elements of the composite null. For finite samples, discrepancies in actual

versus advertised size stem only from the strength of the normal approximation.

We show in Appendix E that for our case study, the true distribution of the average

treatment corresponding to the worst-case allocations of potential outcomes is well

approximated by a normal distribution. In Appendix F, we discuss why our stan-

dard errors are necessarily larger than those attained in other common scenarios

(for example, in testing Fisher’s sharp null).

As will be discussed in Section 5.2, the use of a normal approximation allows us

to overcome the computational issues encountered in Rigdon and Hudgens (2015).

This normal approximation can be justified under very mild conditions. Let σ2i =

n2i (S
2
T i/mi + S2

Ci/(ni −mi)− S2
δi/ni) be the contribution to var(Nδ̂) from strata i

(i.e.,
∑I

i=1 σ
2
i /N

2 = var(δ̂)), and let Σ =
∑I

i=1 σ
2
i . Let n∗ be an upper bound on

the maximal size of a stratum.
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Theorem 1. If Σ→∞ as I →∞, then (Nδ̂ −Nδ)/
√

Σ
d→ N (0, 1).

Proof. Since our outcomes are binary, the maximal contribution of an individual

summand niδ̂i to
∑I

i=1 niδ̂i = Nδ̂ is bounded in absolute value by n∗. Using

Lyapunov’s central limit theorem applied to a sequence of independent bounded

random variables (Lehmann, 2004, Corrolary 2.7.1), we have that (Nδ̂ − Nδ) d→

N (0,Σ) as I →∞ provided that Σ→∞ as I →∞.

This requirement precludes a certain type of degeneracy. Namely, it cannot be

the case that only finitely many strata have nonzero variances for δ̂i. This, coupled

with a bound on the maximal strata size, suffices for asymptotic normality to hold.

5.2 Integer Programming for the Maximal Variance

In theory, the maximal variance for a given composite null, H0 : δ = δ0, could be

found by enumerating all 2N possible allocations of unobserved binary potential

outcomes, computing var(δ̂) through (1) for each allocation, and finding the max-

imal variance among the allocations that satisfy δ ∈ Dδ0 . Such a naïve approach

quickly becomes computationally infeasible: in our application, this would would

require enumerating 21208 sets of potential outcomes.

Our approach is to instead pose the problem of maximizing the variance within a

composite null as an integer program. Roughly stated, the resulting integer program

optimizes the variance over the values of the unobserved potential outcomes, subject

to the resulting allocation of potential outcomes being a member of the composite

null. Though many equivalent formulations of the desired optimization problem

are possible, the one we choose explicitly avoids symmetric solutions, known to

cripple the computation time of integer programs (Margot, 2010), by having each

decision variable correspond to a unique distribution on the contribution to the
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overall estimated average treatment effect from a given stratum. Our approach

exploits three essential facts. Firstly, there is symmetry between strata in that (a)

ni = ni′ , (b)
∑ni

j=1 ZijRij =
∑n′

i
j=1 Zi′jRi′j and (c)

∑ni
j=1(1 − Zij)Rij =

∑n′
i
j=1(1 −

Zi′j)Ri′j for symmetric strata i and i′, meaning that any allocation of potential

outcomes for strata i is also a feasible allocation for strata i′. Secondly, there is

symmetry within strata in that Zij = Zik and Rij = Rik for symmetric individuals

j and k in stratum i, meaning that the var(δ̂i) remains the same if the values for

the unobserved potential outcome are permuted among symmetric individuals in

stratum i. Finally, there is independence between strata which allows us to sum

strata-wise variance contributions together to arrive at the overall variance of the

estimated average treatment effect. In combination, these three facts allow this

seemingly daunting optimization problem to be solved in a matter of seconds. See

Appendix G for a detailed discussion of our integer programming formulation.

6 Inference for Severe Sepsis Mortality

We now proceed with randomization inference on the study population defined by

our maximal box in Section 4.3. As a reminder, this consists of severe sepsis patients

without hemodynamic septic shock, with initial serum lactate between 1.2 and 5.8

mmol/L, and with APACHE II scores between 5 and 29. Of the 1208 patients in our

study population, 701 were admitted to the hospital ward and 507 were admitted

to the ICU. Our causal estimand is the difference between 60 day mortality rates if

all patients had been admitted to the ICU and if all patients had been admitted to

the hospital ward. Before matching, the unadjusted (and hence potentially biased)

estimates for these rates under ICU and hospital ward admissions are 24.3% and

12.0% respectively overall, and are 27.7% and 21.2% respectively within the cryptic

septic shock subgroup.
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Table 2: Estimated differences in severe sepsis mortality between patients admitted to
the ICU and the hospital ward in our study population, both overall and among patients
with cryptic septic shock. Positive values favor hospital ward admission, and negative
values favor ICU admission. The standard errors reported are the Wald-estimates

√
νTx∗

δ̂

and confidence intervals were constructed by inverting a series of tests as described in
Section 5.1.

Overall Cryptic S.S.
Estimated ATE 4.3% -0.8%

(SE) (3.7%) (9.0%)
95% Conf. Int. [-3.0%; 11%] [-18%; 17%]

After adjusting for measured confounders through covariate matching, the esti-

mated mortality rates under ICU and hospital ward admission are 19.4% and 15.1%

respectively overall, and are 26.0% and 26.8% respectively within the cryptic septic

shock subgroup. Table 2 shows the estimated average treatment effects (the dif-

ferences between proportions under ICU and hospital ward admission) both in our

overall study population and among the cryptic septic shock subgroup. We also

report 95% confidence intervals, which were formed by inverting a series of hypoth-

esis tests as discussed in Section 5.1. Both of these confidence intervals contain 0,

indicating that we lack substantial evidence to suggest that there is a nonzero effect

both overall and in the cryptic septic shock subgroup. Through our implementation,

we were able to construct the reported confidence intervals in 0.42 seconds using

Gurobi, and 0.72 seconds to solve using the freely available lpSolve on a desktop

computer with a 3.40 GHz processor and 16.0 GB RAM. This demonstrates that

confidence intervals can be constructed using our integer programming formulation

efficiently using both commercial and freely available solvers.
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7 Discussion

As expected, we found that common support was not present for the most severely

ill sepsis patients. The subset of septic shock patients, which include those with

hemodynamic compromise or evidence of hypoperfusion, are routinely admitted di-

rectly to the ICU and therefore an observational study cannot address the effect

of these triage decisions.For the population with substantial common support, our

findings suggested that there was no clear benefit to direct ICU admission for non-

shock, severe sepsis patients. In fact, recognizing our wide confidence intervals, the

magnitude of the potential benefit of direct ICU admission after adjusting for all

measured confounders through matching at the leftmost extreme of our confidence

interval was relatively small at 3%. While larger studies are required to substanti-

ate our findings, our analysis suggests that the common practice in hospitals with

strained ICUs (occupancy rates approaching 100%) to defer ICU admission for many

severe sepsis patients does not result in demonstrable harm to the patients.

By using the maximal box problem to define a study population for further

analysis, we arrived at a study population with a readily interpretable interpretation

in terms of important covariates wherein acceptable balance could be attained. One

downside of our method is that it is not guaranteed that suitable balance can be

attained in the returned study population. That is, one may arrive at a study

population defined in terms of important covariates where it is difficult to find a

matching procedure that attains suitable balance on all covariates. One option

is to simply iterate: covariates for which suitable balance cannot be achieved can

be used in defining a study population through the maximal box problem, and

then one could again try to attain balance within the proposed study population.

An interesting area for future research would be to create a procedure where the

returned study population is guaranteed to have a match with acceptable balance.
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With fixed ratio matching, recent work on mixed-integer programming matching

(Zubizarreta, 2012) and cardinality-matching (Zubizarreta et al., 2014) may provide

insight into how to incorporate the balancing constraints into the optimization

problem.

In our application, we determined which covariates were most important for the

treatment and the outcome (and hence those for which we seek verifiable overlap)

through consultation with subject matter experts. In other applications, practi-

tioners may not want to rely solely on prior information for determining which

covariates are important and rather allow the data itself to attest to this. While

model selection for the propensity score model can be conducted without concern,

one must be careful when assessing the impact of covariates on the outcome variable

as it could potentially bias the resulting inference by compromising the “researcher

blinding” that makes matching so appealing (Rubin and Waterman, 2006). One

path forward would be to employ sample splitting, thus assessing importance of

covariates for the outcome using data that is not involved in the matched analysis.

Through our analysis of the impact of ward versus ICU admission on 60 day

mortality rates, we have shown that the applicability of discrete optimization in

causal inference extends far beyond matching algorithms. In fact, discrete opti-

mization provides a powerful set of tools for solving many problems common to

observational studies and, more broadly, statistics in general. The availability of

efficient solvers can serve as the impetus for new methods that trade potentially

unverifiable model assumptions for an increase in computation time. This is not to

say that computational burden should not be considered when developing statisti-

cal methodology; rather, it is to caution against limiting the imagination solely on

the basis of the computational power of the present day. As history has borne out,

what is intractable today may be feasible tomorrow.
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SUPPLEMENTARY MATERIAL

Appendices Appendix A provides summary statistics for all of the covariates used

in matching. In addition, it contains the percentages of missingness for the

13 covariates with missing values. Appendix B demonstrates the difficulty of

verifying interpolation overlap in moderate and high dimensions. Appendix C

discusses an extension of the maximal box problem that allows for including up

to C negative points instead of 0. Appendix D compares the study population

derived in Section 4.2 to those derived using other exclusion criteria. Appendix

E displays the appropriateness of the normal approximation for inference on

the ATE in this example. Appendix F discusses the value of the standard error

used for conducting inference, and compares it to standard errors for three

other procedures for conducting inference with binary outcomes. Appendix G

contains the technical details of our integer programming formulation. (.pdf

file)

R-script for maximal boxes: maxbox.R provides code for producing a maximal

box. (.R file)

R-script for binary ATE: ATEbinary.R provides functions for estimation and in-

ference on the ATE when responses are binary. One can compute the exact

maximal standard errors using the Gurobi commercial solver or the freely

available lpSolve package in R. Academic licenses for Gurobi are freely avail-

able, as is an R package. See their website for details. (.R file)
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