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We provide a new modeling framework to analyze a subsidy allocation problem with endogenous market

response, under a budget constraint on the total amount of subsidies that the central planner can pay. The

central planner’s objective is to maximize the aggregated market consumption of a good, or equivalently, to

maximize the consumer surplus. Using our framework, we identify sufficient conditions on the firms’marginal

cost functions, such that uniform subsidies are optimal. That is, the simple policy that allocates the same

subsidy to every firm is optimal, even if the firms are heterogeneous, and their efficiency levels are arbitrarily

different. This is an important insight because uniform subsidies is a policy commonly used in practice,

primarily because of its simplicity and perceived fairness. Moreover, we prove that, in many cases, uniform

subsidies do not only obtain the optimal aggregated market consumption, but at the same time obtain

the best social welfare solution. Furthermore, we show that the optimality of uniform subsidies is usually

preserved, even if the central planner is uncertain about the specific market conditions. Finally, we present

simulation results in relevant settings where uniform subsidies are not optimal. They suggest that the aggre-

gated market consumption induced by uniform subsidies is relatively close to the one induced by optimal

subsidies.
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1. Introduction

In this work, we study the important setting in which a central planer aims to impact a given

market. Specifically, her goal is to increase the aggregated market consumption of a good, by

providing co-payment subsidies that are paid, for each unit that is produced, to heterogeneous

and selfish (profit maximizers) producers (firms), who compete in the market. The motivation

to provide such subsidies stems from the positive societal externalities that can be obtained by

increasing the aggregated market consumption, and from the fact that left alone the resulting

market equilibrium induced by the selfish competing producers might not be socially optimal. A
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very current example, are the recent efforts around the production of infectious disease treatments

to the developing world, such as malaria drugs (e.g., Arrow et al. (2004)), and vaccines (e.g., Brito

et al. (1991)).

Furthermore, typically the central planer makes subsidy allocation in the presence of a budget

constraint that is often determined prior to the actual subsidy allocation decision. For example,

in some cases the central planner could be a foundation that raised a certain amount of money to

address a related issue, and it is then facing the challenge of how to allocate the budget towards co-

payment subsidies. Another challenge typically faced by the central planner, is that the intervention

in the market through the allocation of subsidies will likely change the market equilibrium induced

by the competing producers. Hence, to optimally allocate the subsidies, the central planer has to

take into account these complex dynamics.

In this paper, we propose a novel modeling framework to study strategic and operational issues

related to co-payment subsidy allocation. The models that we develop explicitly capture the setting

of a central planner aiming to maximize the aggregated market consumption of a good, in the

presence of a budget constraint and market competition between heterogeneous profit maximizing

firms. The firms are heterogeneous in terms of their respective efficiency and cost structure. This

is modeled through firm-specific marginal cost functions. The models that we develop fall into the

class of Mathematical Program with Equilibrium Constraints (MPEC). They are relatively general

and capture different cost structures, inverse demand functions, as well as a range of market dynam-

ics of quantity competition that are typical to the settings being studied. For example, the models

capture as special cases Cournot Competition with linear demand, as well as Cournot Competition

under yield uncertainty with linear demand and linear marginal cost functions. MPEC models are

typically computationally challenging, both to solve optimally and to analyze. However, by refor-

mulating these problems, we are able to develop tractable mathematical programs that provide

upper bounds on the optimal objective value, and allow the development of efficient algorithms.

Even more importantly, they allow analyzing the effectiveness of practical policies. In particular,

the paper focuses attention on the effectiveness of the commonly used uniform co-payments, in

which the per-unit co-payment is the same for all competing firms in the market. The common

use of uniform co-payments, in spite of the existence of heterogeneous firms, each with poten-

tially different efficiency level, is primarily driven by the simplicity of implementation, as well as

some notion of fairness. The paper addresses the important question of to what extent uniform

co-payments are effective in increasing the aggregated market consumption, compared to poten-

tially more sophisticated policies that could allow the co-payment to be firm-specific. Through

the mathematical programming upper bound relaxation that we develop, the paper provides some

surprising insights. First, we can show that for a large class of firm-specific cost structures, uniform
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co-payments are in fact optimal. That is, there is no loss of efficiency in using uniform co-payments

in these settings. Second, this insight is maintained even if one considers the case in which there

exists uncertainty about the future market state, and the central planner has to set up the subsidies

prior to the realization of the market condition. Third, in many cases uniform subsidies do not

only obtain the optimal (maximal) aggregated market consumption, but at the same time obtain

the best social welfare solution. Finally, in other settings, where uniform subsidies are not opti-

mal, extensive computational experiments suggest that they still perform, on average, very close

to optimal.

To demonstrate the applicability of the model and the relevance of the issues studied in the

paper, we next discuss in detail the case of malaria drugs.

Application: Global Subsidy for Malaria Drugs. A motivating example, where the setting modeled

in this paper exists in practice, is the global fight against malaria. This has been a long standing

challenge for the healthcare industry. About 300-500 million cases of malaria occur worldwide, and

more than two million people die of malaria, per year. To make matters worse, recently chloroquine,

the traditional drug for treating malaria, has become less effective due to growing resistance to this

medication. Artemisinin combination therapies (ACT) have been the successor drugs to chloroquine

in order to treat malaria; however, they are at least ten times more costly, see White (2008).

In 2004 the Institute of Medicine (IoM) reviewed the economics of antimalarial drugs. It identi-

fied that several manufacturers compete in an unregulated market, and concluded that the most

effective way of ensuring access to ACTs for the greatest number of patients, would be to provide a

centralized subsidy to the producers. The goal would be achieving high overall coverage of ACTs,

therefore, the subsidized price to the end user should be at least as low as the chloroquine. More-

over, the IoM recognized that firms had not invested in producing ACTs on the scale needed to

supply Africa, because there had been no assured market, therefore, the global capacity to produce

ACTs was quite limited, see Arrow et al. (2004).

In this context, the Roll Back Malaria Finance and Resource Working Group, and the World

Bank, developed in 2007 the Affordable Medicines Facility for malaria (AMFm), a concrete initia-

tive to improve access to safe, effective, and affordable malaria medicines. The AMFm manages US

$1.5 billion in funding, over five years, to pursue its main objective: increasing the consumption of

ACTs, see their technical report online AMFm Task Force (2007).

As usually implemented in practice, the policy proposed by AMFm consisted of giving a uniform

co-payment, see AMFm Task Force (2007). Namely, each firm receives the same co-payment for

each unit sold. Giving the right incentives to the firms producing these drugs can increase access

to them, hence, it has the potential to have a significant impact on this global problem, see Arrow

et al. (2004).
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Results and Contributions. The main contributions of this paper are the following:

New modeling framework for a subsidy allocation problem. We introduce a general opti-

mization framework to analyze subsidy allocation problems with endogenous market response,

under a budget constraint on the total amount of subsidies the central planner can pay. The central

planner’s objective is to maximize the aggregated market consumption of a good, or equivalently,

to maximize the consumer surplus. Our models allow general inverse demand and marginal cost

functions, assuming only that the inverse demand function is decreasing in the aggregated market

consumption, and that the firms’ marginal costs are increasing. These are standard assumptions

in the literature. In fact, they are more general than assumptions usually considered.

Sufficient conditions for the optimality of uniform co-payments. We compare uniform

co-payments to the optimal, and potentially differentiated, co-payment allocation, which provides

more flexibility, but it is potentially significantly harder to implement. The main result in this paper

shows that uniform co-payments are in fact optimal for a large family of marginal cost functions.

This family of marginal cost functions includes homogeneous functions of the same degree as a spe-

cial case. This result is surprising, considering that firms are heterogeneous, and particularly since

the assumptions on the inverse demand function are very general (essentially only monotonicity

and continuity). More importantly, it establishes sufficient conditions, such that the policy that is

frequently being used in practice (see, for example, AMFm Task Force (2007)) is actually optimal.

Additionally, we provide sufficient conditions for uniform co-payments to simultaneously maximize

the social welfare. In particular, we show that homogeneous functions of the same degree satisfy

these conditions as well.

Incorporate market state uncertainty. We extend the models by assuming that the central

planner does not know the exact market state with certainty (i.e., the specific inverse demand

function is uncertain), but she has a set of possible scenarios, and beliefs on the likelihood that each

scenario will materialize. We model this setting as a stochastic MPEC, where the central planner

decides her co-payment allocation policy with the objective of maximizing the expected aggregated

market consumption. This model is considerably harder to analyze, see Patriksson and Wynter

(1999). However, we show that uniform co-payments are still optimal in this setting, for a large

family of firms’ marginal cost functions. In particular, this family includes convex homogeneous

functions of the same degree. Moreover, the analysis suggests that the central planner only has to

consider the scenario with the highest aggregated market consumption at equilibrium, regardless

of the exact distribution over the different market states.

Tractable upper bound problems. Based on an innovative mathematical programming refor-

mulation of our model, we develop tractable upper bound problems. These are used extensively

in the analysis mentioned above. In addition, we use them to conduct a numerical study of the
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performance of uniform co-payments in relevant settings where they are not optimal. We consider

Cournot Competition with linear demand and constant marginal costs, and a more general setting

with non-linear demand, and non-linear marginal cost. The results obtained on data generated

at random suggest that the aggregated market consumption induced by uniform subsidies is on

average 96% optimal. We believe that the innovative reformulation of the model, and the resulting

upper bounds, would be useful to study additional interesting and important research questions.

The rest of the paper is structured as follows. Section 2 reviews related literature from operations

management and economics. In Section 3 we present our model, the uniform co-payments allocation

problem, and a relaxation of this problem. Section 4 presents the main result on sufficient conditions

for the optimality of uniform co-payments in the deterministic model. In Section 5 we extend

our model to consider the case when the central planner is uncertain about the market state.

Section 6 considers the alternative objective of maximizing social welfare, and presents sufficient

conditions for the optimality of uniform subsidies. Section 7 presents a numerical study of the

relative performance of uniform subsidies in settings where they are not optimal. Finally, Section

8 provides concluding remarks.

2. Literature Review

The subject of taxes and subsidies allocation and incidence has a vast literature in the economics

community. Fullerton and Metcalf (2002) present a thorough review of classical and recent result in

this area. The main areas of research in this literature are imperfect competition, partial equilibrium

models, and general equilibrium models. This paper is closely related to the study of subsidies

in imperfect competition models. However, the traditional approach in this literature assumes

homogeneous firms, and focuses on studying the impact of taxes, or subsidies, on the number of

firms participating in the market in a symmetric equilibrium, see Fullerton and Metcalf (2002).

Alternatively, models of differentiated products are considered, which give the firms some monopoly

power, and the focus is again on the number of firms active in the market in equilibrium. The reason

for this is that the number of competitors in the market is directly related to the ability to pass

taxes forward to the consumer. More generally, when analyzing comparative static properties in

oligopoly models, like the subsidy allocation in our case, it is fairly common to focus on symmetric

equilibria with homogeneous firms in order to obtain more precise insights, see, for example, Vives

(2001). In contrast, in our model we take an operational view: we assume heterogeneous firms that

produce a commodity, and we focus on the specific subsidy allocation among them. Additionally,

an important modeling characteristic we consider is the presence of a budget constraint, in terms

of the total amount of funding that can be allocated to these subsidies. This feature allows us to

investigate the interplay between the optimal subsidies structure, and the budget available.
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Within economics, one particular area that studies a problem related to the one considered in this

paper is the strategic trade policy literature, particularly the “third market model”, see Brander

(1995). In this model, n home firms and n∗ foreign firms export a commodity to a third market,

where the market price is set through Cournot Competition, with constant marginal costs, among

all the firms. The government can allocate subsidies to the home firms, increasing their profit at

the expense of the foreign competitors. The government’s utility is equal to the profit earned by

the home firms, minus the cost of the subsidy payments. Let us emphasize that the government

does not face a budget constraint, and that the firms’ profit is equally weighted with the cost of the

subsidy payments. An exception to the latter is found in Leahy and Montagna (2001), where the

cost of the subsidy payments is weighted by a parameter δ, interpreted as the social cost of funds.

An alternative interpretation of δ is to let it be the lagrange multiplier of a budget constraint for

the government, relating it to our model. We focus here in the case with heterogeneous firms. In

this setting, Collie (1993) and Long and Soubeyran (1997) assume a uniform subsidy and study its

effect in the market shares of the firms. Later, Leahy and Montagna (2001) assume linear demand,

and derive close form expressions for the optimal subsidies. They conclude that the optimal subsidy

policy is generally not uniform; and if the social cost of funds is sufficiently low then the government

should allocate higher export subsidies to more efficient firms. In contrast, in our model we assume

more general increasing marginal cost functions, and find conditions under which uniform subsidies

are optimal.

In the operations research and operations management communities, a growing literature has

been devoted to analyzing oligopoly models with congestion, e.g., Acemoglu and Ozdaglar (2007),

Johari et al. (2010). Recently, Correa et al. (2012) study markup equilibria, a particular case

of supply function equilibria, with firms that have increasing marginal costs. In supply function

equilibria firms are assumed to choose functions which map the quantity produced to prices, see

Klemperer and Meyer (1989). In markup equilibria firms are restricted to choose a supply function

of the form of a scalar times their marginal cost. Correa et al. (2012) find sufficient conditions for

the existence of markup equilibria for marginal cost functions very similar to the ones were uniform

co-payments are optimal in our model. The problem of controlling and reducing the contagion of

infectious diseases has been studied in the operations management literature mainly focusing on the

analysis of vaccine’s markets, particularly the influenza vaccine, its supply chain coordination -e.g.

Chick et al. (2008) and Mamani et al. (2012)- and the market competition under yield uncertainty

-e.g. Deo and Corbett (2009) and Arifoglu et al. (2012)- as opposed to our interest in subsidy

allocation. In particular, we consider the case of allocating subsidies to Cournot competitors under

yield uncertainty, and we show that if the demand and the marginal costs functions are linear,

then uniform co-payments are optimal in this setting.
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The motivation problem of allocating subsidies to increase the aggregated market consumption

of new malaria drugs is also studied by Taylor and Xiao (2013), however they take a very different

approach. Specifically, they consider the case of one firm and one retailer operating in a rural area

with no market competition. Their analysis focuses on the placement of the subsidy in the supply

chain, comparing the possibility of allocating co-payments to either the producers, or the retailers.

On the other hand, there is a growing trend in the operations management literature that studies

the problem of a central planner deciding rebates that are directed to the consumers, with the goal

of incentivizing the adoption of some technology, such as green technology, see, for example, Lobel

and Perakis (2012), Cohen et al. (2012), Chemama et al. (2013), Raz and Ovchinnikov (2013), and

Cohen et al. (2013). In contrast, motivated by a different set of practical applications, we focus on

co-payments that are allocated to the producers, for each unit sold in the market. More generally,

our work is related to the operations management literature that analyzes the impact of contract

design on the behavior of firms in a supply chain. A comprehensive overview of this literature is

provided in Cachon (2003). However, the focus of this framework is set on firms designing contracts

to maximize their profits, while we are interested in a central planner designing incentives to

maximize the aggregated market consumption of a good.

3. Model

In this section, we introduce a mathematical programming formulation of the subsidies allocation

problem. We then use this formulation to obtain a relaxation of the problem, which provides an

upper bound on the largest aggregated market consumption that can be induced with the available

budget.

We consider a market for a commodity composed by n≥ 2 heterogeneous competing firms. Each

firm i∈ {1, . . . , n} decides its output qi independently, with the goal of maximizing its own profit.

We assume that the introduction of subsidies in the market will induce an increase in the aggregated

market consumption, and that the firms do not have the installed capacity to provide all of it. This

implies that capacity is scarce in the market. We model this effect by assuming that the marginal

cost of each firm is increasing. Specifically, we assume that firms have a firm-specific non-negative,

increasing and differentiable marginal cost function on its production quantity, denoted by hi(qi).

Consumers are described by an inverse demand function P (Q), where Q≡
∑n

i=1 qi is the aggre-

gated market consumption. We assume that P (Q) is non-negative, decreasing and differentiable in

[0, Q̄], where Q̄ is the smallest value such that P (Q̄) = 0. This is equivalent to assuming that the

aggregated market demand for the good is bounded. This assumption captures the malaria drugs

example, where even if the new malaria treatment was given away for free there would be a finite

demand for it. Additionally, we assume that P (0) = P̄ > 0. This is equivalent to assuming that
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there exists a finite price such that the demand for the good becomes zero. This could be motivated

by the consumers of the good switching to a substitute product, or simply not being able to afford

it. In the malaria drugs example, there exist alternative treatments, which are less effective, that

consumers may choose instead. Moreover, this is precisely the motivation for introducing a subsidy

for the new malaria treatment in the first place.

The assumption on the market equilibrium dynamics is that each firm participating in the market

equilibrium, produces up to the point where its marginal cost equals the market price; and firms

that do not participate in the market equilibrium, must have a marginal cost of producing zero

units, which is larger than the market price. This can be expressed in the following condition:

For each i, j, if qi > 0, then hi(qi) = P (Q)≤ hj(qj). (1)

At this level of generality, in both the firms’ marginal costs and the inverse demand function,

an interpretation for this equilibrium condition is that firms act as price takers and compete on

quantity. However, we will show that for more specific families of marginal cost functions, or inverse

demand functions, well known imperfect market competition models will be special cases of our

model. These include Cournot Competition with linear demand, and Cournot Competition under

yield uncertainty, with linear demand and linear marginal cost functions. Assuming a decreasing

inverse demand function, and increasing firms’ marginal cost functions, ensure that there exists a

unique market equilibrium, see, for example, Marcotte and Patriksson (2007).

3.1. Co-payment Allocation Problem

We will refer to the problem faced by the central planner as the co-payment allocation problem

(CAP). The co-payment allocation problem is a particular case of a Stackelberg game, or a bilevel

optimization problem. In the first stage, the central planner allocates a given budget B > 0, in

the form of co-payments yi ≥ 0, to each firm i ∈ {1, . . . , n}, per each unit provided in the market.

Moreover, she anticipates that, in the second stage, the equilibrium output of each firm will satisfy

a modified version of the equilibrium condition. The difference in the market equilibrium condition

is given by the fact that, from firm i’s perspective, the effective price, for each unit sold, is now

P (Q) + yi, or equivalently its marginal cost is reduced by yi.

The central planner’s objective is to maximize the equilibrium aggregated market consumption.

This is equivalent to maximizing the consumer surplus. This is the appropriate objective in many

applications, where the central planner is a supra-national authority, like the World Bank, whose

main interest is effectively to maximize the aggregated market consumption, say of an infectious

disease treatment, without taking into account the additional surplus obtained by local producers
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(see Arrow et al. (2004) for further discussion on this topic for the case of malaria drugs). Addition-

ally, in Section 6, we will also analyze the case where the central planner’s objective is to maximize

the social welfare, including both the consumer and the producer surplus.

Finally, let us emphasize that the central planner can only allocate co-payments, and never charge

a tax for the units produced in the market. In other words, the co-payments being allocated have

to be non-negative. A formulation of the co-payment allocation problem is given in the following:

max
y,q,Q

Q

s.t.
n∑

i=1

qiyi ≤B (2)

yi ≥ 0, for each i∈ {1, . . . , n} (3)
n∑

i=1

qi =Q (4)

qi ≥ 0, for each i∈ {1, . . . , n} (5)

P (Q) + yi = hi(qi), for each i∈ {1, . . . , n}. (6)

This is a valid formulation even if there are firms that have a positive marginal cost of producing

zero units, which prevents them from participating in the market equilibrium. Namely, if for some

firm i we have hi(0)≥ P (Q), then we can just set qi = 0 and yi = hi(0)−P (Q)≥ 0. This is without

loss of generality, because setting qi = 0 ensures that firm i does not have any impact in the budget

constraint (2), and the non-negativity constraint on the co-payment yi ensures that the market

equilibrium condition is satisfied. In other words, constraint (6) does not imply that every firm has

to participate in the market equilibrium.

From the equilibrium condition given in constraint (6), it follows that we can replace all the

co-payment variables yi by hi(qi)−P (Q). Namely, we can reformulate the co-payment allocation

problem as if the central planner was deciding the output of each firm, as long as there exist

feasible co-payments that can sustain the outputs chosen as the market equilibrium. The feasibility

of the co-payments will be given by both the budget constraint (2), and the non-negativity of the

co-payments (3). We summarize this observation in the following proposition.

Proposition 1. The co-payments allocation problem faced by the central planner can be formu-

lated as follows:

maxq,Q Q

s.t.
n∑

j=1

qjhj(qj)−P (Q)Q≤B (7)

(CAP) hi(qi)≥ P (Q), for each i∈ {1, . . . , n} (8)
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n∑
j=1

qj =Q (9)

qi ≥ 0, for each i∈ {1, . . . , n}. (10)

The co-payments that the central planner must allocate to induce outputs q are,

yi(q) = hi(qi)−P (Q), for each i.

Constraint (7) is equivalent to the budget constraint (2). Note that it has a budget balance

interpretation, namely, the total cost in the market, minus the total revenue in the market, has to

be less or equal than the budget introduced by the central planner. Constraint (8) is equivalent to

the non-negativity of the co-payments (3).

3.2. Special Cases

Our model is fairly general. In particular, in this section, we discuss some well known imperfect

competition models that are captured as special cases.

Cournot Competition with Linear Demand. The classical oligopoly model proposed by Cournot

is defined in a very similar setting. The only difference is that, given all the other firms production

levels, each firm sets its output qi at a level such that it maximizes their profit Πi, where

Πi = P (Q)qi−
∫ qi

0

hi(xi)dxi.

If we assume P (Q) is decreasing and hi(qi) are increasing, for each i, as well as P ′(Q)+qiP
′′(Q)≤ 0,

then there exists a unique market equilibrium defined by the solution to the first order conditions

of the firms’ profit maximization problem, see Vives (2001). Namely, at equilibrium, each firm sets

its output at a level such that,

For each i, if qi > 0 then
∂Πi

∂qi
= 0, or equivalently, P (Q) = hi(qi)−P ′(Q)qi. (11)

In the equilibrium condition (11), the marginal cost must be equal to the marginal revenue, while

in the equilibrium condition (1), the marginal cost must be equal to the market price. Moreover,

the term P ′(Q)qi is not independent for each firm.

Now, for the commonly assumed special case where the inverse demand function is linear, namely

P (Q) = a− bQ, it follows that P ′(Q) = −b. Define h̃i(qi) ≡ hi(qi) + bqi, for each i, then we can

rewrite the equilibrium condition as follows:

For each i, if qi > 0 then P (Q) = h̃i(qi).

This equilibrium condition is a special case of condition (1), but written for a modified cost function

h̃i(qi).
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Cournot Competition under Yield Uncertainty with Linear Demand and Linear Marginal Costs.

We consider the Cournot Competition under yield uncertainty model used in Deo and Corbett

(2009). We assume that each firm i ∈ {1, . . . , n} decides its production target q̄i, while the actual

output is uncertain and given by qi = αiq̄i, where αi is a random variable reflecting the random yield

for firm i. We assume that the random variables αi are identically and independently distributed

for all firms, with E[αi] = µ, and Var[αi] = σ2. Additionally, we assume a linear inverse demand

function P (Q) = a− bQ, where Q=
∑n

i=1 qi is again the aggregated market consumption.

We consider two marginal costs: (i) h̄(q̄i) per unit of production target, and (ii) h(qi) per unit

actually produced. The first cost is driven by the amount of raw materials needed for production,

while the second cost corresponds to the cost of packaging the actual output. Finally, we assume

Cournot Competition among the firms. Namely, given the production target of all the other firms,

each firm sets its production target q̄i to the level that maximizes its expected profit. We generalize

the model used in Deo and Corbett (2009) in two ways. First, we consider heterogeneous firms

while Deo and Corbett consider homogeneous firms. Second, Deo and Corbett assume a constant

marginal cost function and a fixed cost to enter the market, while we assume more general marginal

cost functions. Moreover, we extend the model to include a central planner allocating subsidies

to the competing firms, anticipating the market reaction to the subsidy allocation, and facing

a budget constraint. In order to do so, we assume that both marginal cost functions are linear.

Namely, we assume that h̄(q̄i) = ḡiq̄i, and h(qi) = giqi. Note that we consider heterogeneous firms,

where some of them may be more efficient than the others, depending on the values of the firm

specific parameters ḡi and gi.

Let us start by considering the second stage problem. Assume that the central planner allocates

a co-payment yi ≥ 0 to each firm i ∈ {1, . . . , n}. Each firm sets it production target q̄i to the level

that maximizes its expected profit, given by

E
[
P (Q)qi + yiqi−

∫ q̄i

0

h̄(xi)dxi−
∫ qi

0

h(xi)dxi

]
=E

[(
a− b

n∑
i=1

αiq̄i

)
αiq̄i + yiαiq̄i− ḡi

q̄2
i

2
− gi

α2
i q̄

2
i

2

]
.

The expectation is taken with respect to the random variables αi. This is a concave maximization

problem in q̄i, and therefore the first order condition is sufficient for optimality. In order to write

the first order condition in a compact form, define

g̃i ≡
ḡi
µ

+
σ2 +µ2

µ
gi + bµ+ 2b

σ2

µ
, h̃i(q̄i)≡ g̃iq̄i, Q̄=

n∑
j=1

q̄j, P̄ (Q̄) = a−µbQ̄.

Additionally, note that the expected market price has the following closed form expression,

E [P (Q)] = a−µb
n∑

i=1

q̄i = a−µbQ̄= P̄ (Q̄).
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Hence, we can write the first order condition of the firms’ profit maximization problem as follows:

P̄ (Q̄) = h̃i(q̄i)− yi. (12)

In order to define the co-payment allocation problem in this setting, it remains to address how will

the yield uncertainty be considered in the budget constraint. We consider two possible approaches

that will lead to optimization problems with similar structure.

First, assume that the central planner would like to find a co-payment allocation, such that it

satisfies the budget constraint in expectation, then we can write the budget constraint as follows:

E

[
n∑

i=1

qiyi

]
= µ

n∑
i=1

q̄iyi ≤B.

Alternatively, assume that the central planner takes a robust approach. Namely, she would like

to satisfy the budget constraint in each possible yield uncertainty realization. We will assume, for

simplicity, that the i.i.d. random yields for each firm have a bounded support, that is αi ∈ [α, ᾱ],

for each i. Then, we can write the budget constraint as follows:

ᾱ
n∑

i=1

q̄iyi ≤B.

Finally, assuming that the budget constraint must be satisfied in expectation (the robust

approach is analogous), we can use Equation (12) to write the central planner’s problem, like in

Proposition 1, as follows:

max
y,q̄

E [Q] = µ
n∑

i=1

q̄i = µQ̄

s.t.
n∑

i=1

q̄ih̃i(q̄i)− P̄ (Q̄)Q̄≤ B

µ
(13)

h̃i(q̄i)≥ P̄ (Q̄), for each i∈ {1, . . . , n} (14)
n∑

j=1

q̄j = Q̄ (15)

q̄i ≥ 0, for each i∈ {1, . . . , n}. (16)

The co-payments that the central planner must allocate to induce the production targets q̄, are

yi = h̃i(q̄i)− P̄ (Q̄), for each i. The resulting problem formulation is a special case of the co-payment

allocation problem (CAP).

3.3. An Upper Bound Problem

Note that under our assumptions, the co-payment allocation problem (CAP) is not necessarily a

convex optimization problem. In fact, we have only assumed that the marginal cost functions hi(qi)
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are increasing, for each i, and that the inverse demand function P (Q) is decreasing. In order to gain

some insights into the structure of the optimal solution, we ignore the non-negativity of the co-

payments and analyze the following relaxation, which provides an upper bound on the aggregated

market consumption that can be induced with the available budget B.

maxq,Q Q

s.t.
n∑

j=1

qjhj(qj)−P (Q)Q≤B (17)

(UBP )
n∑

j=1

qj =Q (18)

qi ≥ 0, for each i∈ {1, . . . , n}. (19)

This upper bound problem may still be non-convex, because of the budget constraint (17). However,

Lemma 1 below asserts that at optimality the budget constraint is tight (i.e. holds with equality),

and each active firm i must have a value of (hi(qi)qi)
′

equal to each other, and no larger than

any inactive firm. This property will be have a central role in proving the optimality of uniform

subsidies.

Lemma 1. Assume that the marginal cost functions hi(qi) are non-negative, increasing, and

differentiable in [0, Q̄); and that the inverse demand function P (Q) is non-negative, decreasing,

and differentiable in [0, Q̄]. Then, any optimal solution to the upper bound problem (UBP) must

satisfy the budget constraint (17) with equality, and also satisfy the following condition:

If qi > 0, then (hi(qi)qi)
′ ≤ (hj(qj)qj)

′
, for each i, j ∈ {1, . . . , n}.

Proof. The feasible set of problem (UBP) is closed and bounded. It is bounded because qi ∈

[0, q̌i], for each i, where q̌i is such that hi(q̌i)q̌i =B. Similarly,Q∈ [0, Q̌], where Q̌= maxi∈{1,...,n}{q̌i}.

On the other hand, it is closed because it is defined by inequalities on continuous functions. Addi-

tionally, the objective function of problem (UBP) is continuous. It follows that there exists an

optimal solution to problem (UBP).

Let (q∗,Q∗) be an optimal solution to problem (UBP). Assume by contradiction that the budget

constraint is not tight for (q∗,Q∗). Namely,

n∑
j=1

q∗jhj(q
∗
j )−P (Q∗)Q∗ =

n∑
j=1

q∗j (hj(q
∗
j )−P (Q∗))<B.

Then, we can increase the value of q∗i , for any index i, by ε > 0 sufficiently small, maintain feasibility,

and obtain a strictly larger objective value. This contradicts the optimality of (q∗,Q∗). Therefore,

the budget constraint must be tight for every optimal solution to problem (UBP).
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Assume by contradiction that there exist indexes i, j such that q∗i > 0 and (hi(q
∗
i )q∗i )

′
>(

hj(q
∗
j )q∗j

)′
. Then, we can decrease the value of q∗i , and increase the value of q∗j , both by the same

ε > 0 sufficiently small, and maintain feasibility. Specifically, the marginal change in the left hand

side of the budget constraint (17) is − (hi(q
∗
i )q∗i )

′
+
(
hj(q

∗
j )q∗j

)′
< 0. Therefore, the budget constraint

for this modified solution is satisfied, and not tight. However, this modified solution attains the

same objective value Q∗, and it is therefore optimal. This is a contradiction to the fact that the

budget constraint must be tight for every optimal solution to problem (UBP).

4. Optimality of Uniform Co-payments

The result obtained in this section asserts that uniform co-payments are optimal for the co-payment

allocation problem (CAP), for a large class of marginal costs functions hi(qi). Specifically, we show

that if the marginal cost functions satisfy Property 1 below, then uniform subsidies are optimal.

Property 1. For each i, j and each qi, qj ≥ 0, if hi(qi)>hj(qj) then (hi(qi)qi)
′ 6= (hj(qj)qj)

′
.

Next, we show that there exists a large class of marginal cost functions that satisfy Property

1 above. Consider the case, in which hi(qi) = h(giqi), where h(x) is non-negative, increasing, and

differentiable over x≥ 0, and gi > 0 is a firm specific parameter. This captures the setting, where

all firms use a similar technology, but can differ in their efficiency. Specifically, h(x) models the

industry specific marginal cost function, while gi > 0 models the efficiency of firm i.

In this setting there is no loss of generality in assuming h(0) = 0. Specifically, any positive value

for h(0) will affect each firm in the same way, and therefore will only shift the market price by a

constant that can be re-scaled to zero. This assumption implies that all firms have a positive output

in the market equilibrium, for any positive market price. Therefore, the underlying assumption

is that all firms have already entered the market before the subsidy is decided, and there is no

subsequent entry or exit of firms into the market. This assumption is reasonable in our setting,

where the subsidy is not permanent (it only applies until the budget is exhausted), and it is paid

ex-post to the firms, for each unit already sold.

In this setting, any function h(x), such that h(x) + h′(x)x is monotone will satisfy Property 1.

Specifically, for each such function we would have that hi(qi)>hj(qj) is equivalent, by definition,

to h(giqi)>h(giqj). However, h(x) increasing implies giqi > giqi. Moreover, h(x)+h′(x)x monotone

implies h(giqi) + h′(giqi)giqi 6= h(giqi) + h′(giqi)giqi. Which is, again by definition, equivalent to

(hi(qi)qi)
′ 6= (hj(qj)qj)

′
. Some functions that satisfy this condition, and the respective marginal cost

functions associated to them, are:

• h(x) = ex− 1, hi(qi) = egiqi − 1.

• h(x) = xu, for u> 0, hi(qi) = giq
u
i .

• h(x) = ln(x+ 1), hi(qi) = ln(giqi + 1).
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• Any polynomial with positive coefficients.

Specifically, all these functions have the property that h(x)x is convex over x≥ 0, therefore, h(x)+

h′(x)x is increasing. Note that the marginal cost functions h(x) are allowed to be concave, e.g.,

h(x) = xu for 0<u< 1, and h(x) = ln(x+1). Moreover, note that hi(qi) = giq
u
i corresponds exactly

to the only homogeneous function of degree u> 0 in one variable.

4.1. Sufficient Optimality Condition

The next one is the main result in this section.

Theorem 1. Assume that the marginal cost functions hi(qi) are non-negative, increasing, and

differentiable in [0, Q̄); the inverse demand function P (Q) is non-negative, decreasing, and differ-

entiable in [0, Q̄]. If the marginal cost functions satisfy Property 1, then uniform co-payments are

optimal for the co-payment allocation problem (CAP).

Proof. The existence of an optimal solution to problem (UBP) was shown in Lemma 1. Let

(q,Q) be an optimal solution to problem (UBP). We will show that if the marginal cost functions

satisfy Property 1, then (q,Q) induces uniform co-payments for every firm with a positive output

qi > 0. Moreover, (q,Q) is feasible for the co-payment allocation problem (CAP), and therefore

optimal.

From Lemma 1 it follows that (q,Q) is such that the budget constraint is binding, and for each

i, j with qi > 0 and qj > 0, we must have (hi(qi)qi)
′ = (hj(qj)qj)

′. The assumption that the marginal

cost functions satisfy Property 1 implies hi(qi) = hj(qj), which implies that uniform subsidies are

optimal. Specifically, because the budget constraint is tight, it follows that hi(qi)−P (Q) =
B

Q
> 0

for every i such that qi > 0.

In order to show that the solution (q,Q) is feasible for the co-payment allocation problem (CAP),

it remains to show that the firms that do not participate in the market equilibrium effectively have

a marginal cost of producing zero units, which is larger than the induced market price. Specifically,

(q,Q) is such that, for each i, j with qi > 0 and qj = 0, we have,

hj(0)−P (Q)≥ hi(qi) +h′i(qi)qi−P (Q)≥ hi(qi)−P (Q) =
B

Q
> 0.

The first inequality follows from Lemma 1, and the second inequality follows from hi(qi) increasing.

The equality follows from the fact that the budget constraint is tight, and qi > 0.

Hence, (q,Q) is also feasible for the co-payment allocation problem (CAP), and therefore optimal.

Moreover, (q,Q) induces uniform co-payments. Therefore, uniform co-payments are optimal for

the co-payment allocation problem (CAP).
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This result is surprising, considering that the assumptions on the inverse demand function are

very general, and particularly since firms can be heterogeneous and the central planner has the

freedom to allocate differentiated co-payments to each firm.

The intuition behind this result comes from the market equilibrium condition and the budget

constraint. Essentially, if the central planner allocates a larger co-payment to a firm, then its

resulting market share will increase, which is exactly the rate at which it will consume budget. This

will in turn make less budget available to the rest of the firms, and therefore, their co-payments

would have to decrease. Theorem 1 shows that if the marginal cost functions of the firms satisfy

Property 1, then the net effect of this change will never be positive.

In particular, Theorem 1 applies for the special cases we considered in Section 3.2. For Cournot

Competition with linear demand, uniform co-payments are optimal for any marginal cost func-

tions hi(qi), such that the functions h̃i(qi) = hi(qi) + bqi satisfy Property 1. Specifically, if the

marginal cost functions are linear, that is hi(qi) = giqi, for each i, then uniform co-payments are

optimal. Similarly, for Cournot Competition under yield uncertainty with linear demand, if both

marginal costs are linear, then uniform subsidies are optimal. Note that in both cases we allow for

heterogeneous firms, where some of them can be significantly more efficient than others.

5. Incorporating Market State Uncertainty

A natural extension of the model discussed in Section 3, is to consider the setting where the central

planner does not know the market state (defined by the inverse demand function) with certainty,

but generally she will have a set of possible market state scenarios, and beliefs on the likelihood

that each scenario will materialize.

In more details, we assume that she has a discrete description of the market state uncertainty,

where each scenario s∈ {1, . . . ,m} is realized with probability ps. Each scenario s is characterized

by a scenario dependent inverse demand function P s(Qs). For each scenario s ∈ {1, . . . ,m}, we

make assumptions like in Section 3. Namely, we assume that, each inverse demand function P s(Q)

is non-negative, decreasing and differentiable in [0, Q̄s], where Q̄s is the smallest value such that

P s(Q̄s) = 0. Similarly, for the market equilibrium condition we assume that if scenario s realizes,

then firms set their output qsi at a level such that, for each i, j, if qsi > 0, then hi(q
s
i ) = P s(Qs)≤

hj(q
s
j ).

Similar to Section 3, a formulation of the co-payments allocation problem under market state

uncertainty can be written as follows:

max
(qs,Qs)s∈{1,...,m},y

m∑
s=1

Qsps
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s.t.
n∑

j=1

qsjyj ≤B, for each s∈ {1, . . . ,m} (20)

yi ≥ 0, for each i∈ {1, . . . , n} (21)
n∑

j=1

qsj =Qs, for each s∈ {1, . . . ,m} (22)

qsi ≥ 0, for each i∈ {1, . . . , n}, s∈ {1, . . . ,m} (23)

hi(q
s
i )−P s(Qs)− yi ≥ 0, for each i∈ {1, . . . , n}, s∈ {1, . . . ,m} (24)

qsi (hi(q
s
i )−P s(Qs)− yi) = 0, for each i∈ {1, . . . , n}, s∈ {1, . . . ,m}. (25)

The objective is to maximize the expected aggregated market consumption. Constraint (20) is

the budget constraint, for each market state scenario. Constraint (21) corresponds to the non-

negativity of the co-payments. Constraint (22) defines the aggregated market consumption for each

scenario. Finally, constraints (23)-(25) are the complementarity constraints, which tie together the

different scenarios. They state that, in each scenario, each firm either participates in the market

equilibrium, in which case it produces the quantity that equates its marginal cost with the market

price plus the co-payment; or its marginal cost of producing zero units is strictly larger than the

market equilibrium price plus the co-payment, in which case the firm is inactive. Naturally, each

firm must get the same co-payment in each possible scenario.

In other words, constraints (23)-(25) correspond to the non-anticipativity constraints, and they

state that co-payments are a first stage decision made by the central planner before the uncertainty

is realized. This is precisely what prevents us from using the co-payments to eliminate the com-

plementarity constraints from the model formulation, similarly to Proposition 1. This makes the

problem significantly harder to analyze. In order to somewhat simplify this formulation, we make

the additional assumption that producing zero units has a marginal cost of zero, as stated in the

following Proposition.

Proposition 2. If we additionally assume

• hi(0) = 0 for each i∈ {1, . . . , n}
Then, the co-payments allocation problem under market state uncertainty faced by the central

planner can be re-written as follows:

max(qs,Qs)s=1,...,m

m∑
s=1

Qsps

s.t.
n∑

j=1

qsjhj(q
s
j )−P s(Qs)Qs ≤B, for each s∈ {1, . . . ,m} (26)

hi(q
s
i )≥ P s(Qs), for each i∈ {1, . . . , n}, s∈ {1, . . . ,m} (27)

(SCAP )
n∑

j=1

qsj =Qs, for each s∈ {1, . . . ,m} (28)
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qsi ≥ 0, for each i∈ {1, . . . , n}, s∈ {1, . . . ,m} (29)

hi(q
s
i )−P s(Qs) = hi(q

s′
i )−P s′(Qs′), for each

i∈{1,...,n},
s,s′∈{1,...,m}. (30)

The co-payments that the central planner must allocate to induce outputs {qs}s∈{1,...,m} are,

yi = hi(q
s
i )−P s(Qs), for each i∈ {1, . . . , n}, s∈ {1, . . . ,m}. (31)

Proposition 2 states that, if the marginal cost of producing zero units is zero, then every firm

will participate in the market equilibrium, for any non-negative market price. Therefore, Equation

(31) holds, and we can eliminate the variables yi from the problem formulation.

Like in Proposition 1, constraint (26) corresponds to the budget constraint. Namely, for each

scenario s, the total cost minus the total revenue in the market has to be less or equal than

the budget introduced by the central planner. Constraint (27) is the non-negativity of the co-

payments, it ensures that the solution proposed by the central planner can be sustained as a market

equilibrium by allocating only subsidies, and not taxes. Like before, the only constraint that ties

all the scenarios together is the non-anticipativity constraint (30), which states that each firm must

get the same co-payment in each possible scenario.

This problem is still hard to analyze directly, which motivates us to develop a relaxation that

provides an upper bound on the expected aggregated market consumption that can be induced

with the available budget, as shown below. All the proofs in this section are presented in Appendix

A.

5.1. An Upper Bound Problem

We start with a simple observation that is derived from the structure of problem (SCAP).

Lemma 2. For any feasible solution to the co-payments allocation problem under market state

uncertainty (SCAP), without loss of generality, the scenarios can be renumbered, such that the

following inequalities are true:

P 1(Q1)≥ P 2(Q2)≥ . . .≥ Pm(Qm), (32)

hi(q
1
i )≥ hi(q

2
i )≥ . . .≥ hi(q

m
i ), for each i, (33)

q1
i ≥ q2

i ≥ . . .≥ qmi , for each i, (34)

Q1 ≥Q2 ≥ . . .≥Qm, (35)
n∑

j=1

q1
jyj ≥

n∑
j=1

q2
jyj ≥ . . .≥

n∑
j=1

qmj yj, (36)

where
∑n

j=1 q
s
jyj is the total amount spent in co-payments in scenario s.
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Let (qs,Qs)∗s=1,...,m be an optimal solution to the co-payment allocation problem under scenario

uncertainty (SCAP), and assume that the scenarios are numbered such that Equations (32)-(36)

above hold. Then, we claim that the solution to problem (SUBP) below provides an upper bound

on the expected aggregated market consumption that can be induced with the available budget.

Specifically, problem (SUBP) is derived from problem (SCAP) by adding constraints (41) and (42)

below, and replacing the non-anticipativity constraint (30), with the relaxed version (43).

maxqs,Qs

m∑
s=1

Qsps

s.t.
n∑

j=1

qsjhj(q
s
j )−P s(Qs)Qs ≤B, for each s∈ {1, . . . ,m} (37)

hi(q
s
i )≥ P s(Qs), for each i∈ {1, . . . , n}, s∈ {1, . . . ,m} (38)

(SUBP )
n∑

j=1

qsj =Qs, for each s∈ {1, . . . ,m} (39)

qsi ≥ 0, for each i∈ {1, . . . , n}, s∈ {1, . . . ,m} (40)

P 1(Q1)≥ P s(Qs), for each s∈ {1, . . . ,m} (41)

Q1 ≥Qs, for each s∈ {1, . . . ,m} (42)

hi(q
s
i )−P s(Qs)≤ hi(q

1
i )−P 1(Q1), for each i∈{1,...,n},

s∈{1,...,m}.. (43)

Problem (SUBP) is a valid relaxation of problem (SCAP). Specifically, the optimal solution of

problem (SCAP), (qs,Qs)∗s=1,...,m, is feasible for problem (SUBP), and attains the same objective

value. To argue the feasibility of solution (qs,Qs)∗s=1,...,m for problem (SUBP), recall from Lemma

2 that s= 1 is the scenario that attains the largest value for both the induced market price (see

(32)), and the induced aggregated market consumption (see (35)), in solution (qs,Qs)∗s=1,...,m. It

follows that adding constraints (41) and (42), does not cut-off solution (qs,Qs)∗s=1,...,m. Finally,

solution (qs,Qs)∗s=1,...,m satisfies constraint (43) with equality.

5.2. Optimality of Uniform Co-payments

In this section, we consider again the setting where all firms use a similar technology, but they can

differ in their respective efficiency, similar to the assumptions in Section 4. Specifically, we consider

the case, in which hi(qi) = h(giqi), where h(x) is non-negative, increasing, and differentiable over

x > 0, and gi > 0 is a firm specific parameter. The function h(x) models the industry specific

marginal cost function, while gi models the efficiency of firm i. Recall from Section 4 that we

can assume, without loss of generality, that h(0) = 0, therefore, we will refer to the co-payment

allocation problem under market state uncertainty (SCAP), and its upper bound problem (SUBP).
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We now present sufficient conditions, which ensure that uniform subsidies maximize the expected

aggregated market consumption in this setting. Specifically, we show that if the firms’ marginal

cost functions satisfy Property 2 below, then uniform subsidies are optimal for the co-payments

allocation problem under market state uncertainty (SCAP).

Property 2. The function h(x) is convex, and such that for any x1 > x2 ≥ 0, and x1 > x3 >

x4 ≥ 0, if
h(x2)

h(x1)
>
h(x4)

h(x3)
then

h′(x2)

h′(x1)
>
h′(x4)

h′(x3)
.

Note that Property 2 implies Property 1, discussed in Section 4. Specifically, h(x) increasing and

convex implies that h(x)+h′(x)x is increasing. This is a sufficient condition for Property 1 to hold.

Remark 1. The functions hi(qi) = giq
m
i , for m≥ 1, and hi(qi) = egiqi − 1, satisfy Property 2.

Note, from Remark 1, that from the examples of marginal cost functions that satisfy Property

1 given in Section 4, all the ones that are also convex satisfy Property 2 as well. In this sense,

the extra requirements in Property 2, with respect to Property 1, are mainly driven by the con-

vexity assumption. Finally, note that functions hi(qi) = giq
m
i , for m ≥ 1, are the unique convex

homogeneous functions in one variable.

Theorem 2 below shows that there exists an optimal solution to the upper bound problem

(SUBP), such that the co-payments induced in scenario s = 1, the one that attains the largest

aggregated market consumption (see (35)), and the largest amount spent in co-payments (see (36)),

are uniform. This result will play a central role in proving the main result in this section.

Theorem 2. Assume that the inverse demand function P (Q) is non-negative, decreasing, and

differentiable in [0, Q̄]. Assume that the marginal costs functions are given by hi(qi) = h(giqi) for

each i, for any increasing and continuously differentiable function h(x), such that h(0) = 0. If h(x)

satisfies Property 2, then there exists an optimal solution to the upper bound problem (SUBP),

(q̂s, Q̂s)s=1,...,m, such that, hi(q̂
1
i )−P 1(Q̂1) = y1 for each i∈ {1, . . . , n}, for some value y1 > 0.

To prove Theorem 2, we show the following lemmas that will be useful in the analysis. Specifically,

we will consider the optimal solution to problem (SUBP) with the smallest difference between

(maxi∈{1,...,n} {hi(q
1
i )}) and (mini∈{1,...,n} {hi(q

1
i )}) (from Lemma 3 below we know that such a

solution does exist). Note that proving Theorem 2, is equivalent to showing that this difference is

zero. We will assume by contradiction that this difference is strictly positive, and show that then

we can construct another optimal solution with an even smaller difference, a contradiction.

When constructing the modified optimal solution, Lemma 4 allows us to focus only on constraint

(43). On the other hand, using the convexity assumption on h(x), Lemma 5 provides bounds on

the impact that the modifications to the optimal solution have on constraint (43). These bounds

will allow us to complete the proof by arguing that the modified solution is feasible and optimal,

while attaining a smaller difference between the maximum marginal cost in scenario s= 1, and the

minimum marginal cost in scenario s= 1.
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Lemma 3. Under the assumptions of Theorem 2, there exists an optimal solution to problem

(SUBP) that attains the minimum of the gaps between the maximum marginal cost in scenario

s= 1, and the minimum marginal cost in scenario s= 1, induced by any optimal solution.

Lemma 4. Under the assumptions of Theorem 2, for any feasible solution to problem (SUBP),

(qs,Qs)s=1,...,m, if hi(q
s
i )>hj(q

s
j ) for some i, j, s, then we can transfer a sufficiently small εs > 0,

from qsi to qsj , without violating any of the constraints (37)-(42) related to scenario s.

Lemma 5. Under the assumptions of Theorem 2, for any feasible solution to problem (SUBP),

(qs,Qs)s=1,...,m, for any ε1 > 0, and for any scenario s 6= 1. The following conditions must hold:

If εs ≥ 0 satisfies ε1 ≤ h′(gi(q
s
i − εs))

h′(giq1
i )

εs, then hi(q
s
i − εs)−P s(Qs)≤ hi(q

1
i − ε1)−P 1(Q1).

If εs ≥ 0 satisfies
h′(gi(q

s
i + εs))

h′(giq1
i )

εs = ε1, then hi(q
s
i + εs)−P s(Qs)≤ hi(q

1
i + ε1)−P 1(Q1).

Theorem 3 below concludes this section characterizing a family of firms’ marginal cost functions

such that uniform co-payments are optimal, even if the central planner is uncertain about the

market state. This family includes convex homogeneous functions of the same degree.

Theorem 3. Assume that the inverse demand function P (Q) is non-negative, decreasing, and

differentiable in [0, Q̄]. Assume that the marginal costs functions are given by hi(qi) = h(giqi) for

each i, for any increasing and continuously differentiable function h(x), such that h(0) = 0. If h(x)

satisfies Property 2, then allocating the largest feasible uniform co-payment is an optimal solution

for the co-payment allocation problem under market state uncertainty (SCAP).

This result is surprising, as it shows that, with some additional conditions, the optimality of

uniform subsidies is preserved, even if the central planner is uncertain about the market state. Dif-

ferent market states induce different inverse demand functions, which can be arbitrarily different.

Moreover, the assumption on the inverse demand functions of each scenario are very mild. Specifi-

cally, we only assume that they are decreasing. This is a very relevant setup, as it corresponds to a

more realistic representation of the problem faced in practice, where there are large uncertainties

about different characteristics of the market state, which ultimately define the effective response

of the demand side to different market prices.

Moreover, the analysis suggests that the central planner only needs to consider the scenario

with the highest aggregated market consumption at equilibrium (see (35)), i.e., scenario s = 1,

regardless of the exact distribution over the different market states. Specifically, Theorem 2 shows

that uniform subsidies are optimal for scenario s= 1 in the relaxed upper bound problem (SUBP),

while Theorem 3 shows that the uniform subsidies induced by scenario s= 1, are in fact optimal for
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the co-payment allocation problem under market state uncertainty (SCAP). This insight suggests

that the central planner only needs to identify the scenario with the highest aggregated market

consumption at equilibrium, and implement the uniform subsidies induced by it, as opposed to

taking into consideration her beliefs on the likelihood that each market state will be realized, and

the effect that the subsidy allocation will have on each possible market state scenario.

6. Maximizing Social Welfare

In this section, we assume that the central planner’s objective is in fact to maximize social welfare.

Given some δ ∈ (0,1], which represents the social cost of funds, the central planner problem of

allocating subsidies to maximize social welfare can be written as follows:

max
y,q,Q

∫ Q

0

P (x)dx−
n∑

i=1

∫ qi

0

(h(xi)− yi)dxi− δ

(
n∑

i=1

qiyi

)
s.t. yi ≥ 0, for each i∈ {1, . . . , n} (44)

n∑
i=1

qi =Q (45)

qi ≥ 0, for each i∈ {1, . . . , n} (46)

P (Q) + yi = hi(qi), for each i∈ {1, . . . , n}. (47)

The first two terms in the objective function correspond to the sum of the consumer and producer

surplus, including the co-payments yi. The third term in the objective function corresponds to

the social cost of financing the subsidies. Note that in this problem there is no budget constraint.

Specifically, the social cost of funds δ ∈ (0,1] will induce a total amount invested in subsidies at

optimality, which can be interpreted as the implicit budget available. Constraint (44) states that

the central planner is only allowed to allocate subsidies, and not taxes, to the firms. Like in Section

3, constraint (47) does not imply that every firm has to participate in the market equilibrium.

From the equilibrium condition given in constraint (47), it follows again that we can replace all

the co-payment variables yi by hi(qi)−P (Q), as stated in the proposition below.

Proposition 3. The social welfare maximization problem can be written as follows:

maxq,Q SW(q,Q)≡
∫ Q

0

P (x)dx−
n∑

i=1

∫ qi

0

h(xi)dxi + (1− δ)

(
n∑

i=1

h(qi)qi−P (Q)Q

)
s.t. h(qi)≥ P (Q), for each i∈ {1, . . . , n} (48)

(CAP −SW )
n∑

i=1

qi =Q (49)

qi ≥ 0, for each i∈ {1, . . . , n}. (50)

The co-payments that the central planner must allocate to induce outputs q are,

yi(q) = hi(qi)−P (Q), for each i.
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The first two terms in the objective function correspond to the sum of the consumer and producer

surplus, with no subsidies. The third term corresponds to the increase in social welfare induced by

subsidies, minus the social cost of financing them. Constraint (48) states that the central planner

is only allowed to allocate subsidies, and not taxes, to the firms.

We will make the natural assumption that the social cost of funds, δ ∈ (0,1], is such that objective

function of problem (CAP-SW), SW (q,Q), is coercive1, and therefore there exists an optimal

solution, see, for example, Bertsekas (1999). Then, the budget B that the central planner spends in

subsidies, in order to maximize social welfare, can be written as follows. Let (q∗,Q∗) be an optimal

solution of problem (CAP-SW), then

B ≡
n∑

i=1

h(q∗i )q∗i −P (Q∗)Q∗.

6.1. Optimality of Uniform Co-payments

We conclude this section by characterizing settings where, in addition to maximizing the aggregated

market consumption, uniform co-payments also maximize social welfare. Specifically, we show that

if the marginal cost functions satisfy Property 3 below, then uniform subsidies are optimal for the

problem (CAP-SW).

Property 3. For each i, j and each qi, qj ≥ 0, if hi(qi)>hj(qj) then
hi(qi)

h′i(qi)qi
≥ hj(qj)

h′j(qj)qj
.

Two examples of marginal cost functions that satisfy Property 3, are

• hi(qi) = giq
u
i for u> 0.

• hi(qi) = ln(giqi + 1).

Note that these marginal cost functions also satisfy Property 1. Therefore, for these two marginal

cost functions uniform subsidies maximize both the consumer surplus and social welfare.

This leads to the main result of this section.

Theorem 4. Assume that the marginal cost functions hi(qi) are non-negative, increasing, and

differentiable in [0, Q̄); the inverse demand function P (Q) is non-negative, decreasing, and dif-

ferentiable in [0, Q̄]; and the social cost of funds δ ∈ (0,1] is such that it induces a finite central

planner’s budget B. If the marginal cost functions satisfy Property 3, then uniform co-payments

are optimal for the social welfare maximization problem (CAP-SW).

Proof. Let (q∗,Q∗) be the optimal solution of problem (CAP-SW). First, we show that (q∗,Q∗)

must satisfy,

(1− δ)< hi(q
∗
i )

hi(q∗i ) +h′i(q
∗
i )q∗i

, for each i. (51)

1 SW (q,Q) is coercive if SW (qk,Qk)−→−∞ for any feasible sequence such that ||(qk,Qk)|| −→∞.
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Specifically, the expression in the objective function of problem (CAP-SW) related to the aggre-

gated market consumption Q, is strictly increasing in Q. Namely,

∂

∂qi

(∫ Q

0

P (x)dx− (1− δ)P (Q)Q

)
= δP (Q)− (1− δ)P ′(Q)Q> 0.

Where the inequality follows from the inverse demand function P (Q) being non-negative and

decreasing. On the other hand, the remaining expression in the objective function of problem

(CAP-SW), related to firm i’s output qi, is such that,

∂

∂qi

(
(1− δ)

n∑
i=1

h(qi)qi−
n∑

i=1

∫ qi

0

h(xi)dxi

)
= (1− δ)(hi(qi) +h′i(qi)qi)−hi(qi).

Therefore, if Equation (51) does not hold. Namely, if there exists an index i such that, (1 −

δ)(hi(q
∗
i ) + h′i(q

∗
i )q∗i )− hi(q

∗
i ) ≥ 0, then we can increase q∗i by ε > 0 sufficiently small, and obtain

a feasible solution that attains a strictly larger objective value. This is a contradiction to the

optimality of (q∗,Q∗).

Second, assume by contradiction that there exist indexes i, j, with q∗i > 0 and q∗j > 0, such

that hi(q
∗
i ) > hj(q

∗
j ). The fact that the marginal cost functions satisfy Property 3 implies that

hi(q
∗
i )

h′i(q
∗
i )q∗i

≥
hj(q

∗
j )

h′j(q
∗
j )q∗j

. From direct algebraic manipulations, it follows that,

hi(q
∗
i )

hi(q∗i ) +h′i(q
∗
i )q∗i

≤
hi(q

∗
i )−hj(q

∗
j )

hi(q∗i ) +h′i(q
∗
i )q∗i −hj(q∗j )−h′j(q∗j )q∗j

. (52)

Now, Equations (51) and (52) imply that

(1− δ)<
hi(q

∗
i )−hj(q

∗
j )

hi(q∗i ) +h′i(q
∗
i )q∗i −hj(q∗j )−h′j(q∗j )q∗j

.

Therefore, we can transfer ε > 0 sufficiently small from q∗i to q∗j , and obtain the following positive

marginal change in the objective function, hi(q
∗
i ) − hj(q

∗
j ) − (1 − δ)(hi(qi) + h′i(qi)qi − hj(q

∗
j ) −

h′j(q
∗
j )q∗j )> 0. Namely, there exists a feasible solution with a strictly larger objective value. This

contradicts the optimality of (q∗,Q∗).

Hence, we conclude that for each i, j, with q∗i > 0 and q∗j > 0, it must be the case that hi(q
∗
i ) =

hj(q
∗
j ). Therefore, uniform subsidies maximize social welfare.

7. Empirical Performance

In Section 4, we have identified conditions on the firms’ marginal cost functions that guarantee the

optimality of uniform co-payments to maximize the aggregated market consumption of a good. In

this section we study the performance of uniform co-payments, in relevant setting where they are

sub-optimal. More precisely, we consider two experimental settings. On the one hand, we consider

Cournot Competition with linear demand and constant marginal cost. On the other hand, we study
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QU/QOPT n=2 n=3 n=10 n=20

Min. 0.9360 0.9175 0.9182 0.9442
1st Qu. 0.9776 0.9734 0.9785 0.9828
Median 0.9919 0.9845 0.9849 0.9876
Mean 0.9860 0.9806 0.9834 0.9866
3rd Qu. 0.9983 0.9930 0.9902 0.9912
Max. 1.0000 1.0000 1.0000 0.9991

Table 1 Relative Performance of Uniform Co-payments - Cournot Constant MC

a more general setting with non-linear demand, and non-linear marginal costs. Our goal here is

to study empirically the performance of uniform co-payments on problems with data generated at

random.

Note that in order to evaluate the relative performance of uniform subsidies, we need to be able

to compute the aggregated market consumption induced by them. Proposition 4 below addresses

this issue.

Proposition 4. Assume that the marginal cost functions hi(qi) are non-negative, increasing,

and differentiable in [0, Q̄); and the inverse demand function P (Q) is non-negative, decreasing,

and differentiable in [0, Q̄]. Then, the market equilibrium induced by the largest feasible uniform

co-payment can be computed as the solution to the following convex optimization problem,

minq

n∑
j=1

∫ qj

0

hj(xj)dxj −
∫ qn+1

0

P (Q̄−xn+1)dxn+1−B ln(Q̄− qn+1)

s.t.
n∑

j=1

qj + qn+1 = Q̄

(UCAP ) qi ≥ 0, for each i.

Assuming that the inverse demand function P (Q) is decreasing, and that the firms’marginal cost

functions hi(qi) are increasing, implies that problem (UCAP) is a convex optimization problem.

On the other hand, in the experimental settings we consider, it will always be the case that at least

the upper bound problem (UBP) is a convex optimization problem. To solve these problems we

used CVX, a package for specifying and solving convex programs, see Grant and Boyd (2012). We

will denote by QU, QOPT and QUB the aggregated market consumption component of the optimal

solutions to problems (UCAP), (CAP) and (UBP), respectively.

Cournot Competition with Linear Demand and Constant Marginal Costs The model presented

in Section 3 captures Cournot Competition with linear demand and non-decreasing marginal cost

functions hi(qi). Specifically, this implies that the modified marginal cost function defined in Section

3.2, h̃i(qi)≡ hi(qi) + bqi, is increasing. In particular, in this section we consider constant marginal

costs. Although the constant marginal costs case moves away from the our scarce installed capacity



Author: On the Effectiveness of Uniform Subsidies in Increasing Market Consumption
26 00(0), pp. 000–000, c© 0000 INFORMS

Figure 1 Relative Performance of Uniform Co-payments - Cournot Constant MC

assumption, it is a well understood model where uniform co-payments are not optimal. Therefore,

it is interesting to study the performance of uniform co-payments in this setting.

Specifically, in this section we assume P (Q) = a− bQ, and hi(qi) = ci, for each i. Therefore, the

modified marginal cost is h̃i(qi) = ci + bqi, for each i. Under these assumptions, the co-payment

allocation problem (CAP) is a convex optimization problem. Therefore, we solve both the uniform

co-payments allocation problem (UCAP) and the co-payment allocation problem (CAP), and we

compare their objective functions directly. We consider four cases in the number of firms partici-

pating in the market, n∈ {2,3,10,20}. For each one of this four cases, we solve 1,000 instances of

the problem. These instances are randomly generated, with parameters sampled from the following

distributions: a, b are uniformly distributed in [0,50], ci are independent and uniformly distributed

in [0, a], for each i.

Figure 1 presents a boxplot of the results for the ratio QU/QOPT, while Table 1 presents some

summary statistics. It is interesting that the minimum value of the ratio QU/QOPT never went

below 91% in the simulation results. Moreover, the mean and median values are above 98%, for each

value of the number of firms participating in the market n. This suggests that, in most cases, the

aggregated market consumption induced by uniform co-payments is fairly close to the aggregated

market consumption induced by the optimal co-payment allocation.

Price Taking Firms with Non-linear Demand and Marginal Costs Now we consider a more gen-

eral experimental setup, with non-linear demand, and non-linear marginal costs, where the firms

act as price takers. In this setting we assume P (Q) = a− bQm0 , and hi(qi) = ci + giq
mi
i for each i.
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Figure 2 Relative Performance of Uniform Co-payments - Nonlinear Instance

QU/QLB n=2 n=3 n=10 n=20

Min. 0.7321 0.7000 0.7149 0.8076
1st Qu. 0.9554 0.9497 0.9592 0.9747
Median 0.9874 0.9808 0.9836 0.9892
Mean 0.9698 0.9661 0.9710 0.9784
3rd Qu. 0.9985 0.9966 0.9952 0.9972
Max. 1.0000 1.0000 1.0000 1.0000

Table 2 Relative Performance of Uniform Co-payments - Nonlinear Instance

Under these assumptions, the co-payment allocation problem (CAP) is a non-convex optimization

problem. However, the upper bound problem (UBP) is a convex optimization problem. Therefore,

we solve both the uniform co-payments allocation problem (UCAP) and the upper bound problem

(UBP), and we compare their objective functions.

We consider again four cases in the number of firms participating in the market, n∈ {2,3,10,20}.

For each one of this four cases, we solve 1,000 instances of the problem. These instances are

randomly generated, with parameters sampled from the following distributions: a, b are uniformly

distributed in [0,50]. For each i, ci are independent and uniformly distributed in [0, a], gi are

independent and uniformly distributed in [0,50], and mi are independent and uniformly distributed

in (0,20]. Finally, m0 is uniformly distributed in (0,3].

Note that P (Q) = a− bQm0 , m0 ∈ (0,3], captures both convex and concave decreasing inverse

demand functions. Similarly, hi(qi) = ci + giq
mi
i , mi ∈ (0,20] for each i captures both convex and

concave marginal cost firms. The results for the ratio QU/QLB are displayed in Figure 2 and in
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Table 2. The minimum value of the ratio QU/QLB never went below 70% in the simulation results.

Moreover, the mean and median values are above 96%, for each value of the number of firms

participating in the market n, where in this case we are not comparing directly to the optimal

solution, but to an upper bound. This suggests that again, in most cases, the aggregated market

consumption induced by uniform co-payments is fairly close to the aggregated market consumption

induced by the optimal co-payment allocation.

8. Conclusions

We provide a new modeling framework to analyze the problem of a central planner injecting a

budget of subsidies into a competitive market, with the objective of maximizing the aggregated

market consumption of a good. This is equivalent to maximizing the consumer surplus. The co-

payment allocation policy that is usually implemented in practice is uniform, in the sense that

every firm gets the same co-payment. A central question in this paper is how efficient uniform

co-payments are compared to the optimal subsidy allocation, assuming that some firms could be

significantly more efficient than others.

Using our framework, we show that uniform co-payments are in fact optimal for a large a family

of marginal cost functions. Moreover, we show that the optimality of uniform co-payments is

preserved, under less general conditions, in the case where the central planner is uncertain about

the market state. Furthermore, we show that uniform co-payments also maximize the social welfare

for a large a family of marginal cost functions. Finally, we study the performance of uniform co-

payments in relevant settings where they are not optimal. Our simulation results suggest that

the aggregated market consumption induced by uniform co-payments is relatively close to the

aggregated market consumption induced by the optimal co-payment allocation. It is an interesting

research question to explore whether there exist theoretical bounds on the effectiveness of uniform

subsidies in these settings.

In summary, we present interesting evidence that gives theoretical support to the use of uniform

co-payments in practice. Therefore, decision makers facing the problem of allocating subsidies

to increase the aggregated market consumption of a good, should not spend time and resources

developing sophisticated allocation policies, as it is very likely that the very simple uniform subsidy

policy will attain most of the potential benefits. Future research on this topic should study whether

these insights are preserved in dynamic models, where the subsidy allocation may change over

time, or under different market equilibrium conditions, such as supply function equilibria.
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Appendix. Online Appendix

A. Proofs of Section 5

Lemma 2. For any feasible solution to the co-payments allocation problem under market state uncertainty

(SCAP), without loss of generality, the scenarios can be renumbered, such that the following inequalities are

true:

P 1(Q1)≥ P 2(Q2)≥ . . .≥ Pm(Qm), (53)

hi(q
1
i )≥ hi(q

2
i )≥ . . .≥ hi(q

m
i ), for each i, (54)

q1
i ≥ q2

i ≥ . . .≥ qmi , for each i, (55)

Q1 ≥Q2 ≥ . . .≥Qm, (56)
n∑

j=1

q1
j yj ≥

n∑
j=1

q2
j yj ≥ . . .≥

n∑
j=1

qmj yj , (57)

where
∑n

j=1 q
s
jyj is the total amount spent in co-payments in scenario s.

Proof. Assume, without loss of generality, the first chain of inequalities (53). Using Equation (31), and

given that the co-payments yi are the same for each scenario, we conclude the second set of inequalities (54).

From here, hi(qi) increasing implies the third set of inequalities (55). Summing over all firms gives us the

fourth set of inequalities (56). Finally, given that the co-payments yi are the same for each scenario, from

the third set of inequalities we get,

q1
i yi ≥ q2

i yi ≥ . . .≥ qMi yi, for each i,

and summing over all firms gives us the fifth set of inequalities (57).

Lemma 3. Under the assumptions of Theorem 2, there exists an optimal solution to problem (SUBP) that

attains the minimum of the gaps between the maximum marginal cost in scenario s= 1, and the minimum

marginal cost in scenario s= 1, induced by any optimal solution.

Proof. The feasible set of problem (SUBP) is closed and bounded. It is bounded because qsi ∈ [0, q̌i], for

each i, s, where q̌i is such that hi(q̌i)q̌i =B. Similarly, Qs ∈ [0, Q̌], for each s, where Q̌= maxi∈{1,...,n}{q̌i}.

On the other hand, it is closed because it is defined by inequalities on continuous functions. Additionally,

the objective function of problem (SUBP) is continuous. It follows that there exists an optimal solution.

Define the set Γ, as the set of all the optimal solutions to problem (SUBP). The set Γ is closed and

bounded. It is bounded because it is a subset of the feasible set, which is bounded. On the other hand, denote

by z∗ the optimal value of the objective function in problem (SUBP). Then, the set Γ is closed because it is

the intersection of the feasible set, which is closed, and the set {(qs,Qs)s=1,...,m :
∑m

s=1Q
sps ≥ z∗}, which

is closed because the functions Qs are continuous.

Define the set X(Γ), as the set of all the gaps between the maximum marginal cost in scenario s= 1, and

the minimum marginal cost in scenario s= 1, induced by any optimal solution. Namely,

X(Γ)≡
{
x

/
There exists (qs,Qs)s=1,...,m ∈ Γ s.t. x= max

i∈{1,...,n}

{
hi(q

1
i )
}
− min

i∈{1,...,n}

{
hi(q

1
i )
}}

.
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The set X(Γ) is also closed and bounded. Specifically, the maximum and the minimum of continuous functions

are continuous, therefore X(Γ) is the image of a compact set under a continuous mapping. Hence, x̂ ≡

minx∈X(Γ) x is well defined. Namely, the minimum of the gaps between the maximum marginal cost in scenario

s= 1, and the minimum marginal cost in scenario s= 1, induced by any optimal solution, is attained.

Lemma 4. Under the assumptions of Theorem 2, for any feasible solution to problem (SUBP),

(qs,Qs)s=1,...,m, if hi(q
s
i )> hj(q

s
j ) for some i, j, s, then we can transfer a sufficiently small εs > 0, from qsi

to qsj , without violating any of the constraints (37)-(42) related to scenario s.

Proof. The modified solution generates the same aggregated market consumption Qs. Therefore, we only

need to check that the budget constraint (37) for scenario s, and the non-negativity of the co-payments (38)

for scenario s, are still satisfied.

Specifically, from hi(qi) = h(giqi) with h(x) increasing it follows that hi(q
s
i ) > hj(q

s
j ) implies giq

s
i >

gjq
s
j . Together with h(x) convex, they imply (hi(q

s
i )qsi )

′
= h(giq

s
i ) + giq

s
ih
′(giq

s
i ) > h(gjq

s
j ) + gjq

s
jh
′(gjq

s
j ) =(

hj(q
s
j )qsj

)′
. It follows that the modified solution has a smaller total cost,

∑n

j=1 hj(q
s
j )qsj , while generating

the same aggregated market consumption Qs. Hence, it satisfies the scenario s budget constraint (37).

Additionally, (qs,Qs)s=1,...,m feasible for problem (SUBP), and constraint (38), imply hi(q
s
i ) > hj(q

s
j ) ≥

P s(qs). Therefore, hi(q
s
i − εs)≥ hj(q

s
j + εs)≥ P s(qs) holds for εs > 0 sufficiently small. Namely, the modified

solution also satisfies the non-negativity of the co-payments (38) related to scenario s.

Lemma 5. Under the assumptions of Theorem 2, for any feasible solution to problem (SUBP),

(qs,Qs)s=1,...,m, for any ε1 > 0, and for any scenario s 6= 1. The following conditions must hold:

If εs ≥ 0 satisfies ε1 ≤ h′(gi(q
s
i − εs))

h′(giq1
i )

εs, then hi(q
s
i − εs)−P s(Qs)≤ hi(q

1
i − ε1)−P 1(Q1). (58)

If εs ≥ 0 satisfies
h′(gi(q

s
i + εs))

h′(giq1
i )

εs = ε1, then hi(q
s
i + εs)−P s(Qs)≤ hi(q

1
i + ε1)−P 1(Q1). (59)

Proof. First, from hi(qi) = h(giqi), it follows that the left hand side of Equation (58) is equivalent to

h′i(q
1
i )ε1 ≤ h′i(qsi − εs)εs. Moreover, from this inequality and h(x) convex, it follows that hi(q

1
i )−hi(q

1
i − ε1)≤

h′i(q
1
i )ε1 ≤ h′i(qsi − εs)εs ≤ hi(q

s
i )−hi(q

s
i − εs).

Therefore, on the one hand we have hi(q
1
i )− hi(q

1
i − ε1)≤ hi(q

s
i )− hi(q

s
i − εs). On the other hand, from

constraint (43) it follows that hi(q
s
i )− P s(Qs) ≤ hi(q

1
i )− P 1(Q1). By adding up these two inequalities we

conclude,

hi(q
s
i − εs)−P s(Qs)≤ hi(q

1
i − ε1)−P 1(Q1).

Second, from hi(qi) = h(giqi), it follows that the left hand side of Equation (59) is equivalent to h′i(q
s
i +

εs)εs = h′i(q
1
i )ε1. Moreover, from this inequality and h(x) convex, it follows that hi(q

s
i + εs)−hi(q

s
i )≤ h′i(qsi +

εs)εs = h′i(q
1
i )ε1 ≤ hi(q

1
i + ε1)−hi(q

1
i ).

Therefore, on the one hand we have hi(q
s
i + εs)− hi(q

s
i )≤ hi(q

1
i + ε1)− hi(q

1
i ). On the other hand, from

constraint (43) it follows that hi(q
s
i )− P s(Qs) ≤ hi(q

1
i )− P 1(Q1). By adding up these two inequalities we

conclude,

hi(q
s
i + εs)−P s(Qs)≤ hi(q

1
i + ε1)−P 1(Q1).
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Theorem 2. Assume that the inverse demand function P (Q) is non-negative, decreasing, and differ-

entiable in [0, Q̄]. Assume that the marginal costs functions are given by hi(qi) = h(giqi) for each i, for

any increasing and continuously differentiable function h(x), such that h(0) = 0. If h(x) satisfies Property

2, then there exists an optimal solution to the upper bound problem (SUBP), (q̂s, Q̂s)s=1,...,m, such that,

hi(q̂
1
i )−P 1(Q̂1) = y1 for each i∈ {1, . . . , n}, for some value y1 > 0.

Proof. Let x̂ be as defined in the proof of Lemma 3. Namely, let x̂ be the minimum of the gaps between

the maximum marginal cost in scenario s= 1, and the minimum marginal cost in scenario s= 1, induced by

any optimal solution. The statement in the Theorem is equivalent to showing x̂= 0.

Assume by contradiction that x̂ > 0. Moreover, denote the optimal solution that induces x̂ by

(q̂s, Q̂s)s=1,...,m. Let the indexes min and max be such that, hmin(q̂1
min)≤ hi(q̂

1
i ) for each i, and hmax(q̂1

max)≥

hi(q̂
1
i ) for each i. The assumption x̂ > 0 is equivalent to hmax(q̂1

max) > hmin(q̂1
min). We will show that

we can construct an optimal solution (q̃s, Q̃s)s=1,...,m, such that it induces a strictly smaller gap x̃ =

maxi∈{1,...,n} {hi(q̃
1
i )}−mini∈{1,...,n} {hi(q̃

1
i )}< x̂, contradicting the definition of x̂.

Specifically, from Lemma 4, it follows that if we transfer an arbitrarily small ε1 > 0, from q̂1
max to q̂1

min,

then all the constraints (37)-(42) related to scenario s= 1 are still satisfied. Therefore, this modified solution

could only become infeasible due to violating the relaxed non-anticipativity constraints (43). We can avoid

this infeasibility as follows. We will show that for an arbitrarily small ε1 > 0, and for each scenario s 6= 1,

there exists εs ≥ 0 such that,

hmax(q̂smax− εs)−P s(Q̂s)≤ hmax(q̂1
max− ε1)−P 1(Q̂1), (60)

and

hmin(q̂smin + εs)−P s(Q̂s)≤ hmin(q̂1
min + ε1)−P 1(Q̂1). (61)

Namely, we will show that we can transfer some εs ≥ 0 from q̂smax to q̂smin, for each scenario s 6= 1, such that

the modified solution satisfies constraint (43). Additionally, we will show that the modified solution also

satisfies constraints (37)-(42), for each scenario s 6= 1. Hence, the modified solution is feasible for problem

(SUBP). Moreover, it is an optimal solution, and it attains a smaller gap than x̂.

From Lemma 5 it follows that, for an arbitrarily small ε1 > 0, and for each scenario s 6= 1, it is enough to

show that there exists an εs ≥ 0 such that it satisfies the following stronger condition,

h′(gmin(q̂smin + εs))

h′(gminq̂1
min)

εs = ε1 ≤ h′(gmax(q̂smax− εs))
h′(gmaxq̂1

max)
εs. (62)

Specifically, from Equation (58) it follows that the inequality in (62) implies condition (60). Additionally,

from Equation (59) it follows that the equality in (62) implies condition (61).

Now we show that for an arbitrarily small ε1 > 0, and for each scenario s 6= 1, there exists an εs ≥ 0

such that conditions (60) and (61) are satisfied, and constraints (37)-(42) for scenario s are also satisfied.

We do so by considering all possible cases. Specifically, if scenario s is such that hmax(q̂smax)− P s(Q̂s) <

hmax(q̂1
max)− P 1(Q̂1), then, for an arbitrarily small ε1 > 0, taking εs = 0 satisfies conditions (60) and (61),

and constraints (37)-(42) for scenario s, and we are done with this case.
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It follows that, without lost of generality, we can focus on an scenario s such that hmax(q̂smax)−P s(Qs) =

hmax(q̂1
max)−P 1(Q̂1). From constraint (41) it follows that P 1(Q1)≥ P s(Qs). Note that if P 1(Q̂1) = P s(Q̂s),

then hmax(q̂smax) = hmax(q̂1
max)> hmin(q̂1

min)≥ hmin(q̂smin), where the last inequality follows from Lemma 2.

Therefore, the convexity of h(x) implies that taking an arbitrarily small εs = ε1 > 0 satisfies conditions (60)

and (61). Moreover, Lemma 4 ensures that constraints (37)-(42) for scenario s are also satisfied, and we are

done with this case.

Therefore, without lost of generality, assume P s(Q̂s)<P 1(Q̂1). This implies,

hmax(q̂smax)

hmin(q̂smin)
≥
hmax(q̂1

max)−

>0︷ ︸︸ ︷(
P 1(Q̂1)−P s(Q̂s)

)
hmin(q̂1

min)−
(
P 1(Q̂1)−P s(Q̂s)

) >
hmax(q̂1

max)

hmin(q̂1
min)

.

The first inequality follows from hmax(q̂smax)−P s(Qs) = hmax(q̂1
max)−P 1(Q̂1) and constraint (43). The second

inequality follows from hmax(q̂1
max) > hmin(q̂1

min). Hence, from hi(qi) = h(giqi), the fact that h(x) satisfies

Property 2, and the strict inequality above, we conclude that scenario s satisfies,

h′(gmaxq̂
s
max)

h′(gmaxq̂1
max)

>
h′(gminq̂

s
min)

h′(gminq̂1
min)

. (63)

From Equation (63) it follows that the stronger condition (62) is satisfied for εs > 0 sufficiently small.

Therefore, conditions (60) and (61) hold, and we are done with this case. This completes the analysis of all

possible cases.

To summarize, we have shown that there exist ε1 > 0, and εs ≥ 0 for each scenario s 6= 1, such that the

modified solution (q̃s, Q̃s)s=1,...,m, defined by,

q̃smin = q̂smin + εs, for each s∈ {1, . . . ,m},

q̃smax = q̂smax− εs, for each s∈ {1, . . . ,m},

q̃si = q̂si , for each i /∈ {min,max}, s∈ {1, . . . ,m}.

is an optimal solution to the upper bound problem (SUBP). Specifically, it is feasible and it attains the same

objective value as the optimal solution (q̂s, Q̂s)s=1,...,m. Moreover, by potentially repeating this argument

for the finite number of pair of indexes i, j ∈ {1, . . . , n}, we conclude that its gap x̃= maxi∈{1,...,n} {hi(q̃
1
i )}−

mini∈{1,...,n} {hi(q̃
1
i )} is strictly smaller than x̂. This contradicts the definition of x̂.

Hence, we conclude that x̂= 0. Therefore, hi(q̂
1
i ) = hj(q̂

1
j ), for each i, j. Or equivalently, hi(q̂

1
i )−P 1(Q̂1) =

y1 for each i∈ {1, . . . , n}.

Theorem 3. Assume that the inverse demand function P (Q) is non-negative, decreasing, and differen-

tiable in [0, Q̄]. Assume that the marginal costs functions are given by hi(qi) = h(giqi) for each i, for any

increasing and continuously differentiable function h(x), such that h(0) = 0. If h(x) satisfies Property 2,

then allocating the largest feasible uniform co-payment is an optimal solution for the co-payment allocation

problem under market state uncertainty (SCAP).
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Proof. We will show that there exists an optimal solution to the upper bound problem (SUBP) that

induces uniform co-payments. Moreover, this solution is feasible for the co-payment allocation problem under

market state uncertainty (SCAP). Therefore, uniform co-payments are optimal for problem (SCAP).

From Theorem 2 it follows that there exists an optimal solution to the upper bound problem (SUBP)

(q̂s, Q̂s)s=1,...,m such that hi(q̂
1
i )− P 1(Q̂1) = y1 for each i. We will show first that there exists an optimal

solution for problem (SUBP), (q̃s, Q̂s)s=1,...,m, such that hi(q̃
s
i )− P s(Q̂s) = ys for each i, for each scenario

s 6= 1, for some value ys > 0. Then, we will conclude by showing that we must have ys = y1 for each s.

Plugging in y1 in the budget constraint for scenario s= 1 we obtain y1 ≤ B

Q̂1
. Moreover, for this solution

we can decompose the upper bound problem (SUBP) for each scenario s 6= 1, and obtain the following

independent problem,

minq,Q Qps

s.t.

n∑
j=1

qjhj(qj)−P s(Q)Q≤B (64)

hi(qi)≥ P s(Q), for each i∈ {1, . . . , n} (65)

(SLBP − s)
n∑

j=1

qj =Q (66)

qi ≥ 0, for each i∈ {1, . . . , n} (67)

P 1(Q̂1)≥ P s(Q) (68)

Q̂1 ≥Q (69)

hi(qi)−P s(Q)≤ y1, for each i∈ {1, . . . , n}. (70)

It follows that the components of the optimal solution to the upper bound problem (SUBP) corresponding

to scenario s, (q̂s, Q̂s), must be an optimal solution for problem (SLBP-s) as well. Note that the budget

constraint (64) is redundant for this problem. Specifically, we have,
n∑

i=1

qihi(qi)−P s(Q)Q≤Qy1 ≤Q B

Q̂1
≤B.

The first inequality follows from constraint (70), the second inequality follows from y1 ≤ B

Q̂1 , and the third

inequality follows from constraint (69). Therefore, without loss of generality, we can drop the budget con-

straint in scenario s 6= 1 (64).

Exactly as in Lemma 3, the feasible set of problem (SLBP-s) is closed and bounded, and its objective

function is continuous. It follows that there exists an optimal solution. Now we show that there exists an

optimal solution for problem (SLBP-s), (q̂s, Q̂s), such that hi(q̂
s
i )−P s(Q̂s) = ys, for each i, for some value

ys > 0. Specifically, assume by contradiction that this is not the case. It follows that there must exist indexes

min and max such that hmin(q̂smin) ≤ hi(q̂
s
i ) for each i, hmax(q̂smax) ≥ hi(q̂

s
i ) for each i, and hmin(q̂smin) <

hmax(q̂smax). On the other hand, let q̃s be the optimal solution to the following optimization problem.

min
q

n∑
j=1

qjhj(qj)

s.t.

n∑
j=1

qj = Q̂s

qi ≥ 0, for each i∈ {1, . . . , n}
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We show that (q̃s, Q̂s) is feasible for problem (SLBP-s). Because budget constraint (64) is redundant, and the

aggregated market consumption Q̂s is fixed, it follows that we only need to check that constraints (65) and

(70) are satisfied. From hi(qi) = h(giqi), and h(x) convex and increasing, it follows that the objective function

of this problem is convex. The first order conditions are (hi(q̃
s
i )q̃si )′ = (hj(q̃

s
j )q̃sj )′ for each i, j. Moreover,

because h(x) satisfy Property 2, we conclude hi(q̃
s
i ) = hj(q̃

s
j ) for each i, j.

Additionally, we claim that hmin(q̂smin) < hi(q̃
s
i ) < hmax(q̂smax) for each i. In fact, if hmax(q̂smax) >

hmin(q̂smin)≥ hi(q̃
s
i ), for each i, then we must have,

∑n

j=1 q̃
s
j <

∑n

j=1 q̂
s
j = Q̂s. This is a contradiction to the

feasibility of solution (q̃s, Q̂s). Similarly, if hi(q̃
s
i )≥ hmax(q̂smax)>hmin(q̂smin), for each i, then we must have,∑n

j=1 q̃
s
j >

∑n

j=1 q̂
s
j = Q̂s. This is a contradiction to the feasibility of solution (q̃s, Q̂s). This implies, together

with the feasibility of (q̂s, Q̂s) for problem (SLBP-s), that,

hi(q̃
s
i )>hmin(q̂smin)≥ P s(Q̂s), for each i,

and,

hi(q̃
s
i )−P s(Q̂s)<hmax(q̂smax)−P s(Q̂s)≤ y1, for each i.

Namely, constraints (65) and (70) are satisfied. Therefore, (q̃s, Q̂s) is feasible for problem (SLBP-s). Moreover,

it attains the same objective value than (q̂s, Q̂s), therefore it is also optimal. Finally, from hi(q̃
s
i ) = hj(q̃

s
j )

for each i, j, it follows that hi(q̃
s
i )−P s(Q̂s) = ys for each i∈ {1, . . . , n} for some value ys > 0.

Finally, we show that we must have ys = y1 for each scenario s. From hi(qi) = h(giqi), it follows that, for

any given value of ys ≥ 0, Q̂s is uniquely determined by the solution of the equation,

Q̂s(ys) =

n∑
i=1

h−1
(
P s(Q̂s(ys)) + ys

)
gi

.

It follows that, Q̂s(ys) is increasing in ys. Assume by contradiction that ys < y1, then we can increase ys by

ε > 0 sufficiently small, and obtain a strictly better objective value while keeping feasibility. In fact, the only

constraint that might prevent this increase is the budget constraint (64), which is not tight. This contradicts

the optimality of (q̃s, Q̂s).

We have shown that there exists an optimal solution to the upper bound problem (SUBP) (q̃s, Q̂s)s=1,...,m

such that, hi(q̂
s
i )− P s(Q̂s) = y1 for each i ∈ {1, . . . , n}, and for each s ∈ {1, . . . ,m}, for some value y1 ≥ 0.

That is, it satisfies the relaxed non-anticipativity constraints with equality. Therefore, it is feasible in the

co-payment allocation problem under market state uncertainty (SCAP). Hence, uniform co-payments are

optimal for problem (SCAP).




