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B.1 A model with time-consistent preferences

In our model from Section 1 in the paper, preferences are time inconsistent, since with objective
beliefs, the optimal work w; from the time O perspective is w’f’O(E) =min {1, (Do + D1) (1 + E)}
(see Equation 6 in the paper), which is different from the optimal work from the time 1 perspective,
which is w] (E) =min {1, By (1+ E)} (see Equation 5 in the paper). This time inconsistency in pref-
erences does not alter the message of our paper, since Dy + D; < Bj, hence wf’o (E) < wy (E),
and therefore it is not this time inconsistency that causes a preference for commitment in our
model, rather it is the time inconsistency in beliefs. Still, for completeness, we extend our baseline
model here by introducing the possibility that the past, not just the future, matters, and therefore
time-consistent preferences are possible, and then we show that all our results continue to hold.
We extend our model from Section 1 in the paper by altering Equations 2 and 3 to include past

utility, i.e.:

Vi = B | D AU

_120

Uy = E | D ¢"u(w)

>0

Now Equation 5 from the paper becomes

w} ({E,}) — min {1, Bo (1 + 1 [n]) + B (1 + Iy [n])} : (B.1)

A2 ¢ — ¢ it -
where By := ¢ D P55 and now B; := S (S + ¢) L In addition, Equa

tion 6 from the paper remains the same, i.e.,
wp® ({&:}) = min {1, Do (14 Bo 1n1) + Dy (1481 11) ]

with the difference that now Dy = —2F+¢°) d Dy = p¢? Indeed th
0 .— (1+¢)(ﬁ2+ﬁ¢+¢2) an 1 -=— (1+¢)(ﬂ2+ﬂ¢+¢2). ndeed t en,

with objective beliefs, we have w] (E) = min {1, (Bo + B1) (1 + E)} =min {1, (Do + D;) (1 + E)} =

w’f’o (E), so preferences are time consistent.

All the propositions (and their proofs) in the paper remain essentially unchanged. In terms of
results, a slight exception is Proposition 4, whose results in this setting are essentially a more ex-
treme version of the results in the original setting from Section 1. In terms of proofs, the exceptions

are Propositions 2 and 4; their proofs in the new setting are very similar in spirit, but the details
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are somewhat different. As a result, in what follows we focus on restating and proving Proposi-
tions 2 and 4; the exact statements and proofs of all the remaining propositions, for the setting we

introduce here, are available from the authors upon request.

B.1.1 Optimism and the planning fallacy

Proposition B.1. (Optimism and the planning fallacy are optimal)

(i) I@ng [#] and ]ETD [#] are piece-wise linear, weakly increasing functions of E [n].

(ii) Optimal beliefs are optimistic, i.e., I@gD (7] < E[#y] and IAETD [#] < E[x].

(iii) Over time, beliefs become less optimistic, i.e., I@gD 7] < IAETD [#].

(iv) The planning fallacy (under-estimation of task duration) is optimal, i.e.,

ES” [w] + w3] < E [w] + w3] and BY° [wf + w3] < E[w] + w3].

(v) Optimal work is w\°:= By (1 + [n]) +B (1 W [;7]) <min {1, (Bo+B1) (1+E [5])} =: 0"

B.1.1.1 Proof of Proposition B.1

(i - 111) First, we argue that optimal beliefs satisfy By (1 + Eo) + B (1 +E 1) < 1: If not, from
Equation B.1, the optimal work at + = 1 would be 1, and optimal beliefs could become more
optimistic, yielding anticipatory benefits, without altering behavior, so without cost. Thus, we
substitute w1 = By (1 + EO) + B (1 + El) and wy = 1 + n — w; into W.
Define the following constants:
F o= ¢(I+¢)+(1+¢) p+(1+¢7") p? Mg, := FB2+¢*(1 —2By)
Gg = FByB| — ¢*B1 — p¢pBy Mg, = FB{+pp(1—2B)),

where F' > 0, and it is easy to show that Gp < 0, Mp, > 0, and Mp, > 0. Then:

;1_2: = _M30(1+E0)—GB(1+E1)+ﬂ2BO(1+E)
j?f - _GB(HEO)‘MBI (1+El)+5231(1+E).

Setting the derivatives to 0, we find
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At PBIHB¢Bo(1-B1) o _
EO - MBOMBI_GZB ﬁ (1 + E) 1

At ¢*BiI(1=Bo)+B9BE po _
El - MBOMBI—G%; IB (1+E) 1’

and simple algebra verifies that Mp Mp, > GzB and E I > l:?g

We also note that By (1 +1§o) +B (1 +E1) < 1 binds only if Eo, £, are both positive. Oth-

I_B(’—I_Bl since ES < E I, but then WV could be increased

erwise, we would have Eg = 0 and £y = —

by raising Eo by some ¢ > 0 and lowering E: by g—?e, since at Eo =0, E, = # we have

AW __BodWW _ By — Bn—
dEo By dEl BIZ'B¢ (1 Bo Bl) > 0.
So the possible solutions are:

° EgD = ETD = 0. In the interior we have EIT > Eg, so to find the E's for which EgD =0

we use EI in % and check when the resulting £ is 0; we find Eg’D =0ifE < o5 — 1,
0 So
ND . ¢*BI+BBo(1=B1) po 1 AND _ Ao AW
where 5, = Vg Mg —G B~. To find the E's for which £~ = 0 we use Eg = 0 in aF,
~ ~ _AND 2
and check when the resulting E; is 0; we find ETD =0ifEF < %}D , Where QTD = ﬁ/[f' ,
1

3
ND
ND,_ ND _ Gp AND _ SND —C
c = s 1.SoEy;” =E;" =0if E < N

~ ~ ~ ~ _ ND
° EgD =0< ETD. We already know that EgD = 0and EII\ID = gTDE + gTD for g < E <
Sy

Eo% — 1. We also know that for Eo =0 < El, By (1 + EO) + B (1 + El) < 1 does not
bind, so can be ignored.

° EgD > 0 and ETD > 0 and no constraints bind. We know in this case optimal beliefs are

AND _ —ND _ —ND 1 _ pND D . $*Bi(1-Bo)+B$B 0
Ey =5, I+E)—1<5, (1+E)—1=E", wheres| := Vg M —G, p<. For

these values, By (1 + Eo) + Bj (1 + El) < 1 does not bind for E < ﬁ —1,s0

Bosy +Bi1s,

we combine this with the condition for Eg > 0, i.e., E > s = 1.
5o

o ESD > 0, EI]\TD > 0 and By (H—Eo) + B (H—El) < 1 binds, which happens when E >

———5 — 1. Weuse E = ﬁ — 1 in the unconstrained optimal beliefs, to get
Bosy +Bis, Bosy ~+Bi5s,
~ND END END AND
Ey =—>—p5 — 1l <—5—=5 — 1=E, .
0 = ByspP+B7\P Bosy D+ Bi5)° !
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To summarize, we have

where the critical values are ,uIZD = —5 ,uI;D ==p — 1, ,uZD =
81 s

Ey” 7] =0 = EP[m=o0 if Ely] <ul®

B3" a1 =0 < B =s"Elnl+¢°  if @°< Elp] <pP .

B =5 A+EM -1 < EPI=5"0+EM) -1 if @°< El <uy '
—ND _ND

FND — S0 _ ~ND _ 5 _ . ND

Ey [l = BOFOND+B]EII\ID 1 < E/"[nl= —BOFOND-N-BJII\ID 1 if uy < Ely]

ND
—Cy 1 -1

—ND —ND
Bosy +Bis;

We show optimal beliefs are optimistic; £y” < £)" so we just show for £}":

For E < p}", we have ETD =0<E.

For u}" < E < uj;, we have I:ZIFD =5" (1 + E) — 1, so it is optimistic if 5}~ < 1, which

after some algebra can be shown to be true.

For ,u’ZD <E< ,ul}ID, we have EII\ID = QTDE + QTD. Optimal beliefs in the ranges (,uIzD, ,uI;D]
and (u}°, uy] must be equal at E = p}°, so s\°E + ¢ =5]"(1+E)—1 < E at
E = u}°. Also, algebra shows that ¢\ < 0 is true, so s;"E + ¢}” < E at E = 0. Since

QTDE —|—£TD is a straight line, we conclude that E IfD < E, i.e., optimistic, for ,uED <E< ,uI;D.

For ,ul\{JD <E, ETD is the same as for E = ,ub{]D, so it is optimistic.

(iv) The planning fallacy is that [, [w’l“ + w;] <E [w’l“ + w;], fort = 0and r = 1. Using Equa-

tion 1, this simply becomes I, [#] < E[#], which we have shown above to be true, since optimal

beliefs are optimistic.

(v) Substituting, respectively, optimal beliefs from Equation B.2 and objective beliefs into Equa-
tion B.1, we have u'> = By (1 + Eg’D) + B (1 + ET’D) and ©** = min (1, (Bo + B1) (1 + E)}.

We know that EN° < E, EN° < E, so )" < w®".
0 1 1 1

B.1.2 Preference for commitment

Proposition B.2. (Self-imposed deadline)

(i) If p < ¢, optimal beliefs are identical to those absent a commitment device and the agent does

not impose a binding deadline.

(ii) If B > ¢, then:
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e Optimal expectations ]I:Zg 7], ]Ell) [#] are weakly increasing functions of IE [#].
e Optimal beliefs are optimistic (]Eg (7] < E[#5] and IAEIID (7] < E[#n])
e Optimal beliefs become more optimistic over time ( 1@8 [#] > I@l[f [7]).

e Time 0 optimal beliefs are more pessimistic (Eg [#] > IAEI(\)ID [#]) and time 1 optimal beliefs

more optimistic ( IAE? [#] < ]ETD [#]) than absent a commitment device.

e The optimal deadline w" := Dy (1—1—]@8 [17]) + D, (1+IAE]1) [;7]) binds (w7 ({IAE],)}) <yP), but

is smaller than wle.

o Complete overconfidence is optimal ( ig = ill) =0< X)

B.1.2.1 Proof of Proposition B.2

Step 1 — Optimal work given an arbitrary deadline and arbitrary beliefs

Combining the deadline w; > w with Equation B.1, the optimal work is w; ({I@,} , y/) =
min {1, max {1//, By (1 + Eo) + Bj (1 + El)}}

Step 2 — Optimal deadline given optimal work and arbitrary beliefs Deadline y & [w’f, 1] is
ignored at t = 1, so at t =0 the agent chooses v € [u)]“, 1] to maximize V. So at r =1 the agent

chooses w‘f({IAE,} , 1//) = . Substituting in V), we have
Vo o —[w2+DO[(1+Eo)2+ $0—2 (1+Eo) t//]—i—Dl [(1+E1)2+ S -2 (1+E1) w]]
%K—{W—Do(l-l—éo)—Dl (1+E1)},
so imposing y € [w}, 1] and using B — D; = Dy — By, we have
w* ({E,}) — B, (1+1§0) +B (1+E1) if £y < £, and By (1+E0) + B (1+é‘1) <1
w* ({]E,}) = Dy (1+E0) + D, (1+E1) if £, < Egand D, (1+EO) + D, (1+I§1) <1

w* ({IAE,}) =1 otherwise.

We show below that optimal beliefs are optimistic; combined with Dy + D; = By + Bj, this

proves the optimal deadline is smaller than w|"=(By + B) (1+E).
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Step 3 — Optimal beliefs given optimal work and optimal deadline The optimality of complete
overconfidence trivially follows from the quadratic utility assumption, so we turn our attention to
optimal expectations. They satisfy Bo(l +E0) + By (1 +I§“1) <1, Do(l +I§"o) + D, (1 +I§“1) <1.
If not, our expressions for w’f ({I@,} , 1,//), W ({IAEt }) show that optimal work at # =1 would be 1,
and optimal beliefs could become more optimistic, yielding anticipatory benefits without altering

behavior, so without cost. So we need only consider two cases.

Step 3 — Case A: If y* ({E}) = By (1 + Eo) + B (1 + El), then working as in Section

B.1.1.1 we find the same optimal beliefs, which indeed satisfy Eo < E 1.

Step 3 — Case B: ({Et }) Dy (1 -l—Eo) + D (1 +E1) we work as follows.
Substituting for w7 {I@ } ({I@,})) in W and differentiating w.r.t. Eoand E1:

SZ‘: = M, (14 Eo) =G (14 E1) + 2Dy (1 + E)
g_g‘j = G (14 £o) = Mp, (1+ E:) + 2Dy (1 + ),

where definitions of the constants mirror the corresponding ones in Section B.1.1.1 and where
algebra shows that Gp < 0, Mp, > O and Mp, > 0.
Ignoring the constraints and setting the derivatives to 0 we find
Ef = 50(0+E)—1

El = S0+E) -1

$*D}+B$Do(1—Dy) £ and 50 = ¢*D(1—Do)+pp D]
Mp,Mp, —G?3, 1 Mp,Mp, —G?3,

that Mp,Mp, > G%) and EIT < Eg. In addition, we note that Dy (1 + EO) + Dy (1 + El) <1

where ¥, So = 0 42 and where simple algebra shows

1—Do—

binds only if Eo, E 1 are both positive. If not, we would have Eo = Dy Di and E 1 = O since

E T < E " but then W could be increased by raising E by some ¢ > 0 and lowering Eg by g—(‘)g,

- Dy—D; andEl_OwehaveM—&M £¢2(1—D0—D1)>0.
0

1—
since at Eg = Dy b, — Doak,

So the possible solutions are:

. EOD = Elf — 0. In the interior we have Ey > E1, so to find the Es for which E? = 0 we use

the interior Eo in dE YV and check when the resulting E; is 0; we find E? | =0if E < -1
51
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To find the E's for which Eg =Oweuse £; =0in jgv and check when the resulting Eg is
0

A — 2
O;weﬁndE(?:Oingf, where sy = fr, ¢ == s — 372 — 1. So £g = E} =0
D
if E < 3.
§0

D
o« BV =0< ED WealreadyknowthaltE]f_OandE0 = sgE + ¢ for DO <E<Lt -1
So 51

We also know that for E1 =0 < Eo the constraint Dy (1 + EO) + D, (1 + El) < 1 does

not bind, so can be ignored.

° Eg > 0and E ]13 > (0 and no constraints bind. We know in this case optimal beliefs are Eg =
S5+ E)=1> 5 (1+E)— 1 = £}. For these values, Do (1+ £o) + Dy (14 £1) < 1

1 5 — 1, so we combine this with the condition for 12“([)) > 0,

does not bind for £ < —p5——
Dosy+Di5

ie, E> & —1.
51

° Eg > 0 and E]f > 0, and Dy (1 + ﬁo) + Dy (1 + El) < 1 binds, which happens when

E> —5—F5 —1. Weuse E = —5+— — 1 in the unconstrained optimal beliefs, to
Dosy+D1s) D()SO +Dis
_D -D
D ) S D
etEP=—50 ——1>—21 —_1=EP
get Lo Dosy+D15) Dosy+D15) I

To summarize, we have

EQ 7] =0 = En=0 if Eln] < u)
Ep (7] = spE 5] + cf > EPl=o0 it 42 < Elp < ub ®3)
B gl=5pA+E) -1 > E?[n]=5?(1+E[n])—1 if 4} < Elpl <up
-D
D - _ 5 D _ S—l _ . D
By [n] = Dosg+Di5) 1 > Eifnl= Dosg+Di5) 1 it uy < Elnl -,
where 4% = Y 1,and b, = 1 —
AL s K S Hu Do5g +Di5;

Comparing the well-being with a non-binding and with a binding deadline: We compare the
well-being from optimal beliefs that implement a non-binding deadline, found in Case A, with the
well-being from optimal beliefs that implement a binding deadline, found in Case B. Regarding
the critical values for E, algebra shows that u}> — uj o< uf — uy” o< uiy — ug, < p —¢.

Focusing first on the case f > ¢, we compare VV for various values of E:
L IFE < u, then B = BN = £P = £P = 0, 50 W = WP,
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2. If ,ulz < E < ,uED, Eg = gBE + gg is the only belief that changes from above. Since the

binding-deadline case is less constrained than above, we conclude that W™ < WP,

CIf ,uED <E< ,uT}ID, ETD = gTDE + QTD is the only belief that changes from above. Alge-
bra shows that W® — W"" is a quadratic in E whose leading term and the value where the

extremum is attained have opposite signs, so we have two cases:

e WP - W™ isaconcave quadratic in E, hence the values of E such that it is positive are

a convex set, so to show that W™ < W” for u}° < E < u”, we need to show it for
the endpoints. We showed this above for 4}, and we now show it for u}°: Plugging

for E = ,ul}ID, we calculate W® — W™ o< g — ¢ > 0.

e W" — W™ is a convex quadratic in E and the value of E at which the minimum is
D 2 2
attained is negative, hence not in [,u’ZD, ,uI;D] since ,u’ZD = stlD =1L ﬁj(/;,ﬁ;,)f > 0. So

WP — W™ is increasing for E € [u}°, 1}"]. so having shown that W™ < W” for

,uIzD implies it is also true for the whole range.

CIf ,uI;D <E< ,u];', EgD = EgD (1+E)—1and l:?ll\") = ETD (1 + E) — 1 are the only beliefs
that change from above. Algebra shows that W” — W"" is a quadratic in E, whose leading
term and the value where the extremum is attained have opposite signs, so we have the same
two cases as above, and to show that W™° < W" for ,uI;D < E < ,u];, we need to show it at

the endpoints. We already showed this for ,uI;D, and we show it below for ,u];.

CIfub <E< uy, E) =55 (14 E) — 1and E? =57 (1 4 E) — 1 are the only beliefs that
change from above. Algebra shows W° — W™’ « g — ¢ > 0.

. Note that W" and W"" both consist of a part that depends on subjective and a part that de-
pends on objective beliefs; the latter is the same for both, so we ignore it. We have shown
that for E > u,, optimal beliefs EOD , 12“11) remain at their level at E = 7, but optimal beliefs

r"ND
E

0 s E 11\113 have not hit the bound w; < 1 yet. So the part of WP that depends on subjec-

tive beliefs remains constant, while the corresponding part of W"" decreases as E increases
beyond u7;. Since we have already shown that W® > W™ for E < u{, this implies that

WP > WP also holds for E > u,.
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We conclude that for f# > ¢, W° < W> W™’ < W") for all E (for E > ,u]z). We work
identically to show that for f < ¢ the opposite is true, in which case a deadline is never optimal
and optimal beliefs are as in Equation B.2 (note that these beliefs need to satisty Dy (1 + ﬁgD ) +
D (1 + ETD) < By (1 + 12"8”3) + Bj (1 + E?D), because otherwise a deadline would be chosen
att = 0, which is suboptimal; indeed they do, since EgD < E 11\113 and By — D = Dy — By). Finally,

for p = ¢, W™ = W" and either set of beliefs is optimal.

B.2 Detailed proofs

In this section, we present detailed proofs of selected propositions in the paper.

B.2.1 Proof of Proposition 4
B.2.1.1 Step 1 - Optimal work given arbitrary deadline and arbitrary beliefs
Combining a deadline of the form w; > w with the result from Proposition 1, the optimal work is

i (8] ) = min {1.max [ 31 (14 1) ]

B.2.1.2 Step 2 - Optimal deadline given optimal work and arbitrary beliefs

Since a deadline v ¢ [w]“, 1] will be ignored at t+ = 1, at + = 0 the agent chooses deadline
W E [w’f, 1] to maximize V. So at ¢+ = 1 the agent will optimally choose w7 ({I@,} , 1//) = y.
Manipulating Vj, we have

Vo o —% [z//2+Do [(1+Eo)2+io ~2(1+£) w]+D1 [(1+E1)2+ $9-2 (1+I§“1)w“

Zl;«—{w—Do(lJrEo)—D] (1+1§"1)},

where Do::%, D, ::m, so imposing y € [w’l“,l]:
o ([8]) =B (1+ £1) it Do (1+ £o) + D1 (14 £1) < By (14 £1) <1
w* ({E,}) = Dy (1 +Eo) + D (1+El) if B, (1+E1) < Dy (1+ Ao) + D) (1+El) <1
14

* ({E,}) =1 otherwise.
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B.2.1.3 Step 3 — Optimal beliefs given optimal work and optimal deadline

The optimality of complete overconfidence trivially follows from the assumption of quadratic util-
ity, so we turn our attention to optimal expectations. They satisfy By (1 +E 1) <1, Do(l +E0) +
Dy (1+E1) < 1. If not, from our expressions for w{ ({I@Z;} ,1//), w* ({I@, }), we see that optimal
work at =1 would be 1, and optimal beliefs could become more optimistic, yielding anticipatory
benefits without altering behavior, so without cost. So we need only consider two cases.

First, let y* ({I@, }) =B (1 +E 1) ; working as in Section A.2, we find the same optimal beliefs,
which indeed satisfy Dy (1-{—1;"0) + D, (1+E1) < B (1+E1> <l1.

Second, let y* ({IAE, }) =Dy (1—|—E0) + D (1 +E1); in what follows, we find the optimal be-
liefs and check when the condition B; (1 + El) < Dg (1 + Eo) + Dy (1 + El) < 1 is satisfied.

Substituting for w} ({]E,} 2w ({I@lt })) in YV and differentiating w.r.t. EO, E 1, we have

;12: = —Mp, (1 + Eo) —Gp (1 + El) + B2Dy (1 + E) (B.4)
daw R R
P T —Gp (1 n Eo) — M), (1 + El) +A2D (1 + E), (B.5)
where
Gp := FDyD\—¢*D— BpDy
Mp, := FD}+ ¢*(1 —2Dy)
Mp, = FD}+ps(1—2Dy),

and simple algebra shows that Gp < 0, Mp, > 0, and Mp, > 0.

Ignoring the constraints and setting the derivatives to 0 we find
Ef = 550+E) -1
El = 570+E) -1,

212 2 2
D ¢*DI+BpDo(1-Dy) 1o D ¢*D1(1—Do)+p$D;
where 5, = >—p° and 5| = P

0 MpyMp, —G2 1 MpyMp,—G7,

Mp,Mp, — GZD > ( and ES > EIT In addition, we note that Dy (1 + Eo) + Dy (1 + El) <1

f?, and where we can show that

1—Dy— D

Do and E; = 0 since

binds only if Eo, E, are both positive. If not, we would have Ey =
Eg > E I but then WV could be increased by raising Ei by some ¢ > 0 and lowering Eo by g—(‘)g,

. r_ 1=Dy—D o dw _ DidW __ Dy 42 1 _ —
since at Eg = Do and £ = 0 we have af,  Doad, — D§¢ (1= Dg— Dy) > 0.
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Imposing 12”0 >0, El >0, and Dy (1+E0) + D (1+E1) <1, but still ignoring B (1+l:?1) <
Dy (1 —|—E0) + D (1 +E1), the possible optimal beliefs are:

° EAST = EAIT = 0. In the interior we have Eo > El, so to find the E's for which l:fTT =0
jW Elf = oif

E < -5 — 1. To find the Es for which ETT =Oweuse £; = 0in % A V' and check when the
51
D

2
resultngolsO WeﬁndE”L—Ole < 4,ZDO,Whelre 8 :/1;\/13(?’98 :zgg—]f/;’—go—l. So

N N _D
Eff=E"=0ifE <R

QO
° Elﬁ =0< E(T. We already know that E}LT = 0 and E(T _soE—l—c0 for X <E< % l.
We also know that for El =0< Eo the constraint Dy (1 +Eo) + D, (1+E ) <1 does not

bind, so can be ignored.

° EAgT > 0 and E T~ 0 and no constraints bind. We know in this case optimal beliefs are

E(T =5, (1+E) —1>5] (1+E) — 1:1%?. For these values, the constraint Dy (l—i-Eo) +

D (1+E1) < 1 does not bind for E < —1—— — 1, so we combine this with EST >0, i.e.,
Dosy+ D15

E>}D—1.

51

e £;">0and £]"> 0 and the constraint Dy (1 +Eo) +D (1 +E1) < 1 binds, which happens

when E> —1—— — 1. We use E = ——p5+—— — 1 in the unconstrained optimal beliefs,
Doso +D1§ Dos, +D1s1
_D R
togetEﬁ s—‘) — 1>% — 1:E}LT.
Doso +D1S Dosy+D1s

To summarize, ignoring B (1 + El) < Dy (1 + Eo) + Dy (1 + El), we have

B =0 = E'n=0 if Elnl < u}
' (1] = sgB ] + ¢ > El'g=0 if u) < Elgl <u) ©6)
* .
By [71]=§3(1+E[11])—1 > E”[n]—ff(uﬂz ) —1 if u0< Ely] < ub
insEl A—O_ At sl _ . D
By ] = 5 ipm = 1 > Bl =g -1 0w < El]
where D'=_—£(l)) D':L—land D-:+_1
A A

20
Now we impose B (1 + E1) < Dy (1 + Eo) + D (1 + El) Using simple algebra, we see

that Dy < By — Dy, so we observe the following:
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o The constraint binds for E < ,u]z, since for EST —E IT = 0 it is violated.

e If the constraint stops binding for some ,ulz/ € (,u]z, ,u];], then it binds V E < ,ulz, and does
not bind for any £ > /ﬂz/, because 1) in (,ulz, ,ull)], EST is increasing in E and EIT is con-
stant, so the constraint is relaxed as E increases; and ii) substituting from Equation B.6, the
constraint becomes (B; — D) Elf < D0§8 for E > ,uII) , 1.e., it does not depend on E, so if it

does not bind at ,ull), it does not bind above it.

e If the constraint does not stop binding in (,u]z, ,u]])], then it binds for all values of E, because

by our argument above, if it binds at ,u];, it binds above it.

So there are two possibilities: the constraint binds for all E, or it only binds up to ,u]z/ € [ ,ulz, ,ull)].
So we check if it is satisfied for the values of EST, E I "for E > ,uDU (see Equation B.6); the con-

straint becomes (B; — D) E]f < DOEB, which is equivalent to 0 < 3 — ¢ + f¢?, which is equiva-

lentto B > B (¢) for B (¢) := 3,/ 755 + 3¢ =~ 0.68233¢. Next, we examine these two cases.
B> B ()
In this case, the constraint (B} — D) <1+E1) < Dy (l—i—Eo) binds only up to a ,ulz, € [,u]z, ,ull)].

Since E{" =0 for E < 4%, using it in the constraint, we have Ej = %ﬁ)_m and EY = 0 for

E < uf,. For E > i}, optimal beliefs are as in Equation B.6. Note that 7, is the E such that the

constraint binds with optimal beliefs for the range ,u]z <E< ,u]; (see Equation B.6); we find ,u]z, =

£ (w - gg). Before we compare the well-beings with and without a binding deadline,
0

3o
we determine the ordering of the cutoffs; we already know u}° < w3y and Y, < uf < uy).

Determine ordering of E cutoffs.

ND

e We have uj;y — up, = _ b O3B 452G 125324 plp—pp

B (B+d)* (BH+2242+pp3+¢7)

%Cl — % >0. SoC; <0=> %—Cﬂ‘ < 0,and so C; > 0,V8 < By (¢), and negative

otherwise. S, (¢) is a multiple of ¢, and solving numerically we find 5, (¢) &~ 2.6491¢.

. Let the numerator be C;; then

_ ¢ $4U+PE +Q+3B) S 2B+ B+ 0= =B | ot the numer-

e We have yED—,u]z/ =

s (B+62) B+ (1+5-+) -
ator be C,; then %CZ — % >0.S0C; <0 = dd% < 0,and so C, > 0,V < f(¢), and

negative otherwise. We find numerically that C; (ﬁ:,EL (¢)) > 0, C (ﬂ:EU (¢)) <



0, so f; (¢) < B(¢p) < Py (¢). In addition, implicitly differentiating C, and using
C> (B = B (¢)) = 0, we can show f (¢) is increasing in ¢.

e Algebra shows that ,ulzD < ,u];.

BU+¢) (B2 +p3+289%)+¢2 383+ p+B+d+¢?) S 0.

ND D __ ¢
e Wehave u;; —u; = B B0V B+ 83+ 12522+ B2+ 0°)

Thus, we have shown that:

ND ND

py <up <y <py <ugy ifBL@) <p<B@
ND ND

Hp < up <y <py <pgy @) << By @)
pp < uy < pp <py <uy it By (@) <p
Compare the well-beings. The difference in WV with and without a deadline is
WP = L F(By(14£)°) 8, (14£7)) =L P (Do (14£D) +01 (14+£D))’
(0 (14850 40 (14£°) ) - (42 (14£8) 4p0(14£7))
+(#2 (1+£) +86 (1+£7) +52(1+E)) (Do (14+£5 ) + D1 (1+£7))
(42 (1+E5°) 159 (14 EY) +£20+E)) (Bo (1+-£3°) +B1 (1+£17))).

Before considering the three sub-cases, f € (EL @), p (¢)], pe (E (®), By (¢)], and g > By (¢)

separately, we make a few general observations about JA° — W"":

(B.7)

e Optimal beliefs are piece-wise linear in E and W® — W"" is a quadratic in beliefs, so

WP — WP is a differentiable piecewise quadratic in E.

_ BE B +pp247)
2 (B2+42) (1+8+H) |

o For E < min{u},, 1)}, where E}° = E} = 0, algebra shows W"—W"" =

0.

e For E > max {u}, up,}, where w; < 1 binds in both cases, algebra shows W° — W™" =

P P3PS H283P2 Y= _ ND D o - D ND
2 (B2 | AU T e SOV IS > fy (@), then wy < iy and

WP < WPfor E > puby, orii)if B < By (¢), then uyy < uy, and WP < WP for E > ).

We now consider the three sub-cases in detail:



1. For B (¢) < B < B(¢), we have u}° < u}, < uj < uy < uy,. Using beliefs for E = up;

from Equations A.1, B.6 and E =y} in W° — W™:
WP =W o = (654 3p4* + 5207 + 286> + po - 7)),

which is negative for < B (¢); this shows W° < WP for E = ,uI;]D. We already know
that W° < W'" for E > ,uz. Also WP — W™ is decreasing in [,u?]D, ,u%], since the
component in WV that does not depend on beliefs is common to YW" and W™" so it drops
out, and the component that depends on beliefs is constant for YWW"" because beliefs have
hit the bound w; < 1, but decreasing for WP. So we conclude that W° < W™ in the
whole range [,ul\l]]D, ,uDU]. Finally, W — W™ < 0 up to yED, and concave in [,uTZD, ,u]z/]
since the optimal beliefs that implement the non-binding deadline become less constrained.
Then, we can conclude that W° < W"P for all E, since the only two possibilities are 1)
WP — W™ is concave in [,u]z/, ,u'I)], but then even if W — W™’ is convex in [,ull), ,ull\]]D],
. . . . . D ND ND
it can only have one root in this range, which would imply that W~ — W™ > 0 at u,
and we have shown this is not true; and ii) W° — W™’ is convex in [u},, u7], so it is also
convex in [,ul;, ,uI;]D] since the optimal beliefs that implement the binding deadline become
less constrained, which implies that it can only have one root (in one or the other range),

which would imply that W” — W™ > 0 at u;, and we have shown this is not true. Thus,

for B; (¢) < f < P (¢), a binding deadline is never chosen.

2. Forf(¢) < B < By (¢p), wehave u), < u}’ < uj < ujy < u- Weknow WP— W <0
up to u;, and convex in [uY,, u}"]. since the optimal beliefs that implement the bind-
ing deadline become less constrained. Also, as in the previous sub-case we can show that

WP < W™ in the whole range [,uZD, ,u%]. So the possibilities are:
o If W® — W™’ has aroot in [,u]z,, ,ulzD], it also has one in [,ulzD, ,ulzl]D], since W® < WP
at ,ul;]D.
e W — W"P has one root in [,uIZD, ,u]?] and one in [,u[;, ,ulz,D] or two roots in [,uiD, ,u]])],
since W” < W™ at ,u(N]D.
e W" — W™ has no roots, and so W" < W for all E.
3. For By (¢) < B, we have u}, < uy° < u < u, < ujy. Using beliefs for E = uy, from
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Equations A.1, B.6 and E :,ug in WP — WP:
WP =W o — (47 +380" + 587 + 28767 + ¢ — ),

which is positive for # > B, (¢#). An analogous argument to the one used in sub-case
1 shows that W" > W"? in the whole range [,uDU, ,u?]D]. Also W° — W™ < 0 up
to ,u]z/, and convex in [,u]i/, ,uED] since the optimal beliefs that implement the binding-
deadline become less constrained. Thus, W° — WP has an odd number of roots. But
since it is piece-wise quadratic, it can only have up to one root in [x},, ;"] and up to
two roots in each of [,uIZD, ,u];] and [,u[;, ,ug], for a total of up to five roots; but if it has
two roots in either of the latter two ranges, it cannot have two roots in the other. So we
conclude that W” — W™ has either one or three roots. Plotting all the possible cases in
which there are three roots, we see that the common characteristic in all these cases is that
WP — W™ has a minimum in [,u];, ,u%] and this minimum is negative. Plugging the optimal

beliefs for this range in W® — W"°, we find that W° — W"" is a quadratic with extreme
D ND _ 1 BB SO+ B3 3B +279)

valie W = W = 2 g + 5+ 2B+ o 3D B G204+ 259

WP < W for E < p € [u},, ] and WP > W otherwise.

> 0. So we conclude

In conclusion, for > f (¢) we have W° > WP for E € M (8, ¢) where M (B, ¢) is a (possibly
empty) convex set, and W° < W"® for all other values. Note that both in this case (8 > £, (¢))
and in the case below (8 < B (¢)), whenever W° < W™ the optimal expectations are K}
from Equation A.1, as long as they satisfy Dy (l + ESD) + D, (1 + E?D) < By (1 + ETD), be-
cause otherwise a deadline would be chosen at ¢ = 0, which is suboptimal. Since EgD = 0 and
B1 > Do + Dy, this condition is trivially satisfied.

B < B (o)

Here, the constraint (B; — Dy) (1 + 1;“1> < Dy (1 + Z:ZO) binds for all E. So optimal beliefs im-
plementing the binding deadline must always be proportional, so they are both constants or both
proportional to E. Given that we have the constraints Eo > 0, E 1 > 0and w; < 1, we conclude
that there are values of E, u[;, and uz, to be defined below, that partition the E space in regions: for
E < ,u[;, optimal beliefs do not depend on E because Eo > (0 and E 1 > 0 bind, for ,u];, < E < ,u%/
optimal beliefs are proportional to E, and for ,u]z,, < E optimal beliefs do not depend on E because

w1 < 1 binds. We now determine ,ul;, and yll)],, and the optimal beliefs in the various ranges of the
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E space.

Equations B.4 and B.5 give the FO.C. of W w.r.t. Eo and £, when ignoring the constraints
Ey>0,E; >0and w; < 1. Forming the Lagrangian, £, to account for (B; — D) (1 + El) <
Dy (1 + Eo), but still ignoring the other constraints, the F.O.C. are:

;go = Mo (1 + EO) —Gp (1 + El) + 82Dy (1 + E) + 2Dy
;‘_é - _GD(1+E°)_MD1 (1+El)+ﬁ201(1+E)—i(Bl—Dl),

Combining these F.O.C. with the constraint, we get

B1—D; D,
R o + D
EY = Do B(+E)—1 (B.8)
’ 2GD + BID_ODl MDO + BlDODl MDI
. Dy + 22D,
EY = Bi=Di (1 +E)—1. (B.9)

2Gp + B My, + 525 M,

These are the optimal expectations in ,ull), <E< ,u][)J/, where no other constraints bind.

Clearly Ep > E’f, so £y > 0 binds first. Setting £} = 0 in Equation B.9, we have u}, :=
| 2Gp+715 MDO+Bl ~5Mp,
ﬁZ D0+ B]—D] D
Dy (1+Eo) yields Eg = %ﬁ)_%.

Using interior optimal beliefs from Equations B.8 and B.9 in w{ ({I@,} V& ({I@Jt })) =Dy ( 1+ Eo)—l—

—1. Sofor E < ,ul;/, we have E'sz, which substituted in (B} — D) (1+E1) <

D (1 +E 1) i.e., the optimal work given the optimal binding deadline, and setting it to 1, we find

2Gp+2s 1MD +520 M .
D,_L OBlDl 1 . __ D - . D__ 1 B—D;
Uy = ﬁ . s 1. Using E = u;, in these beliefs, we get E =3 Dy -1,
D
El=5—1 forE>,uU,

Determine ordering of £ cutoffs We know u LD < ,uU us < uU, Also:

o (NP _ P = O PGPS Y AP P+ 2P+ ()
Lorre (B2+62)° (b+d) (B+4+1)
e Algebra shows that uy, > uf.

#* (B+Bp+¢2)
B (B3+52p+pp>+¢7)

ND D _
® Uy —Hy =~



Thus, ,uIZD < ,ull)/ < ,u’l\]]D < ,uDU/.
Compare the well-beings " — W"" is as given in Equation B.7, so as already argued, is
piecewise quadratic and continuously differentiable. We show that W" < W™ everywhere (so a

deadline is never optimal and optimal expectations are ]EtND):

1. If E < )", optimal expectations are £y° = EY°=0and Ep = %{Do

3 2 2
these in, we find W° - WP = _% B¢’ (2p ;“ﬁ¢+2¢ ) -
(B2 +42)° (B+o+1)?

> E? =0. Plugging

2. If u}° < E < pf, the optimal beliefs without a deadline become less constrained, so

WP — W™ is concave (so W < W"P) in this range.

3. If ,u%, < E optimal expectations are l:ng =g — 1< BLIB‘D;OD‘ —1= I;“([)) and EII\ID: 0 <
Bll —-1= E]f and optimal work are wTD = w]f = 1 since w; < 1 binds. So actions are the

same but the binding-deadline case has more pessimistic beliefs, hence W® < WP,

4. Given that W® < WP for E ¢ [,u];,, ,u][)],] and W” —W"" is concave for ,u’ZD <E< ,u];,,
WP > W™ anywhere in [}, uy) ] requires WP =W convex in [ 4}, 137’ ], but this neces-
sitates that it is decreasing and concave in the left neighborhood of /f[)],, which contradicts

differentiability at ,ull)],.

B.2.2 Proof of Proposition 5

Finding the optimal beliefs We work as in Sections B.2.1.1 and B.2.1.2, to find ({I@t} , w) -
min {1, max {1//, B (H—E])}} and

V/*’ED({AI}) = By (1+E1) if Dy (1—+—E)+D1 (1—|—E1) < B; (1+El) <1
v ({&]) = Do+ Ey+Dy (1481 1) if B (14£1) <Dy A+ E)+Dy (1+£1) <1
l//*’ED({At}) =1 otherwise,

where y*"° {]Et }) is the optimal externally-imposed deadline, given expectations E,.



We are interested in the optimal beliefs that implement a binding deadline, i.e., the case

B, (1+I§‘1) <Dy(14+E)+D, <1+E1) < 1. Working as in Section A.4, we find

daw ~ N
=~ = —¢2{(1+E0) - [Do(1+E)+D1 (1+E1)]}
dEy
daw 2 2 2 5
= 46 (1= D) (14 E1) + £2D1 (1 + E) +¢° Dy (1 + Eo).
1
Imposing £y > 0, we have S_EV < 0,50 E° = 0, and so “interior” optimal £ is E] =
0
ﬁz(l;f[—gl)ﬂsle — 1. Now impose all constraints:

e We check if B; (1 + 12"1) <Dy(1+4+E)+ D (1 + El) binds for some E with interior be-

liefs. Substituting EgD and E 1T in the constraint, we can write it as

Do—(B1—Dirt ~
Algebra shows the denominator less the numerator of the LHS is positive, so since E > 0,

the constraint does not bind.

e We check if £; > 0 binds for any E. Setting ET = MD 1 =0, we see the

constraint binds for E below u" 1 : ﬂ2 (& — ¢2) ﬁ;f > 0.

o We check if B (1+E1) < Dy (1+E) + D, (1+1§1) binds for some E < #%°. We sub-
stitute ESD = ElfD = 0 into the constraint, to find that it is satisfied with equality at ,uiD =
Bi=Di=Dy _ b¢ . Algebra verifies ,uED < ,u]}:D. But it turns out the constraint

Dy (B*+47) (1++4)
cannot be satisfied as E drops below u} because: i) since E;° = E}” = 0, we cannot

reduce Ej;” or E|" ; ii) since B; > Dy, raising E|” does not help; and iii) raising E;” does

not help. Thus, no beliefs implement the externally-imposed binding deadline for E < ,uiD

e We checkif Dy (1+E)+ D, (1 +E 1) <1 binds. Using interior optimal beliefs in it, we find

. Ep.  Mp,—¢°D} _ ) _ ED . ) ) )
that it binds for £ > u;; = DoMp, +5°D? 1. Using E = u;; in the interior beliefs, we get
AED B>+4>Dy 4 __ pED ED
E,; =0 < —DOMDl+ﬁZD%D1 I=E" for E> uy;

So optimal beliefs implementing the externally-imposed deadline satisfy ESD =0,

B [p1=0 it 4 < Elgl <@t
A 2 2 .
EP [g) = FEEIEED 1 if p” < Elyl <y

~ 24 42 .
[EP [i7]=—D£4;“1¢+5£D]2D1—1 if 4 < Eln]
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— 1. For E < ui°, a

— — Mp Mp, — 2D2
Wherelu]zD::M ED ., 1 (_1_¢2)_1,Iul£2}3,_ \—9"Dj

Dy » M1 = g2 \ Dy " DoMp,+p>D}
binding deadline cannot be implemented and optimal beliefs satisfy Eg> = Et°=0.

We have shown ESD =0< E ]fD, 1.e., beliefs become more pessimistic over time. So to prove
optimism, we just need to show E]fD < E.ForE < ,u]}:D, we have E]fD =0 < E. For ,u];]D < E, we
have EI° = %Dl — 1 < u¥p. For 4" < E < p}y, as a function of E, £t is a straight
line segment whose endpoints lie below the line E, so E]fD < E.

Having determined optimal expectations ]I:ZfD, we define ™ 1= y*"™ ({]I:ZfD})

Outsider’s deadline is stricter than the agent’s deadline To show this, we need to show
™ > P, ie., Dy (E - Eg) > D (Ell) - EfD). Straightforward algebra shows this is true for
interior beliefs (so also for beliefs above the interior). Now we show it is true for all remaining
beliefs for which a binding self-imposed deadline is optimal. From Section B.2.1, we know that
E]f > 0 binds first as E becomes smaller, then D (1 + EOD) > (B1 — Dy) (1 + E]f) binds, and
finally E([)’ > 0 binds. We also know that once either of the latter two constraints binds, the self-
imposed deadline is not optimally chosen because it yields weakly lower well-being, so we just
need to check what happens when E 11) > 0 binds. But we already know from Section B.2.1 that
Eg < E, hence Dy (E — EOD) > Dy (E]f — E?D).

}m

Outsider’s deadline is smaller than w We have shown that beliefs are optimistic; combined

with Dy + Dy < By, this trivially proves y™> < w".

B.3 Additional proofs

B.3.1 Additional proofs for Section 1

Here, we provide a formal proof of the claim made in Section 1.3, that a cost of belief distortion
modeled as a quadratic cost that is increasing in the (absolute) difference between objective and
subjective expectations about the random variable in our model, 7, leads to less optimistic, but still
optimistic, beliefs. The assumption of quadratic payments is made for tractability.

In terms of notation, optimal quantities for the case with a belief distortion cost contain a “dc”

in their superscripts.
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Claim B.1. (Costs of belief distortion)

A cost —% (E, 7] — IAE, [11])2 at time t that is increasing in the absolute difference between objec-
tive and time t subjective expectations about the random variable n, |E; [n] — ]Et [#]|, results in
time t beliefs that are less optimistic, i.e., IAEI(\)ID’dC [#] > I@gD [#] and IAETD’dC [#] > IAETD [n], but still

optimistic, i.e., B> [5] < E [n] and E\°* [5] < E[).

Proof of Claim B.1 The only change from the setup in Section 1 is that now Equation 3 becomes

U =B, [Z . (u (we) = 5 (e ) ~ B [11])2)} . (B.10)

T>t

We first work as in the proof of Proposition 1 in Section A.1 to find the optimal amount of work
wp in period 1. The agent chooses wi at ¢t = 1 to maximize Vj. Using Equations 1 and B.10, V;

becomes

~ 1 A\ 2
B [u o)+ G4 Put+r—w -5 (£ £1) ],

which is concave in w;. Using u (w) = —%wz, the F.O.C. yields wI ({I@],}) = B (1+E1), where

B = lﬁ/?ip as before, and imposing w; < 1 yields u)T’dC = min {1, B (1+E1)}.

Now we work as in the proof of Proposition 2 in Section A.2. Repeating the argument there,

we can show that optimal expectations satisfy Bj (1 + E 1) < 1, so we can substitute w; =

B (1 + El) and wy = 1 + n — wy into V. Using Equations 2 and B.10 to substitute for V and

U, respectively, in VW, and doing some algebra, we can write

W= E[(B+6) u(wn)+¢*Eo lul+n — w)l+BoE: [u(1+1 — w)l+F2u(l+1 — w)
1 A \2 A2
—5[(E—E0) +(ﬁ+¢)(E—E1)]

The first line of the RHS of this equation is simply the well-being in the absence of a cost of belief
distortion. So % equals its counterpart in the case without a cost of belief distortion, plus a con-
stant times E — E;, which is positive given that beliefs are optimistic. Thus, optimal beliefs with
a cost of belief distortion are less optimistic than without a cost of belief distortion. It is obvious

that optimal beliefs will still be optimistic, since E — E; is positive only if beliefs are optimistic,

while it would be negative if beliefs were pessimistic.
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B.3.2 Additional proofs for Section 6

In this section, we provide formal proofs of two claims made in Section 6: first, that an incentive
for the speed of task completion modeled as a payment at ¢ = 2 that is quadratic and decreasing in
total work, w; + w», leads to more optimistic beliefs; and second, that an incentive for the accu-
racy of task duration prediction modeled as a payment at + = 2 that is quadratic and decreasing in
the (absolute) difference between objective and subjective expectations about task duration, 1 + 7,
leads to less optimistic beliefs. The assumption of quadratic payments is made for tractability.

In terms of notation, optimal quantities for the case with an incentive for the speed of task com-
pletion contain an “s” in their superscripts, while optimal quantities for the case with an incentive

for the accuracy of task duration prediction contain an “a” in their superscripts.

Claim B.2. (Incentive for speed of task completion)
A payment —% (w1 + w2)? at t = 2 that is decreasing in total work, wy + w), makes beliefs

(weakly) more optimistic, i.e., I@gD’S [7] < EgD [n] and IAETD’S 7] < IAETD [7].

Proof of Claim B.2  The only change from the setup in Section 1 is that now Equation 3 becomes

U, = E, [¢2_t (—% (w1 + wz)z) + Zqﬁt_[” (wr)} : (B.11)

>t

We first work as in the proof of Proposition 1 in Section A.1, to find the optimal amount of work
w1 in period 1. The agent chooses wj at ¢t = 1 to maximize Vj. Using Equations 1 and B.11, V]

becomes

Ey [u(w1)+(ﬂ+¢)u(1+n—w1)+(ﬂ+¢) (—%(an)},

which is concave in w;. Using u (w) = —%wz, the F.O.C. yields wif ({I@;}) =B (1+E1), where
B = lf;fqﬁ as before, and imposing w; < 1 yields wf’s = min {1, B (1—|—l:?1)}.
Now we work as in the proof of Proposition 2 in Section A.2. Repeating the argument there, we

can show that optimal beliefs satisfy Bj (1 +E 1) < 1, so we can substitute w; = B (1 +E 1)
and wy = 1+ — w; into WW. Using Equations 2 and B.11 to substitute for V and U, respectively,
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in W, and doing some algebra, we can write

W= E[(8+¢) u(wn)+¢Bo u(l+n — )]+ [u(1+7 = w)l+Su(l+7 = w)]

| =g et |+ B | =g |+ gl | <S a2

The first line of the RHS of this equation is simply the well-being in the absence of an incentive
for speed. So differentiating, we see that for # = 0 and for ¢ = 1, %\j equals its counterpart in
the case without an incentive for speed, minus a constant times 1 + l:?t. Thus, optimal beliefs with
an incentive for speed are (weakly, since the constraint E >0 may bind) more optimistic than

without an incentive for speed.

Claim B.3. (Incentive for accuracy of task duration prediction)
~ 2
A payment —% (IE [#] — E, [77]) at t = 2 that is decreasing in the absolute difference between

objective and time u subjective expectations about task duration, |E [n] — IAEM [#] ‘, where u is 0 or

1, makes time u beliefs less optimistic, i.e., IAEI(\)ID’a 7] > I@lgD [#] or ]ETD’a 7] > IAETD [#].

Proof of Claim B.3 The only change from the setup in Section 1 is that now Equation 3 becomes

N B 1 A\ 2 B
U, =T, |:¢2 ’ (—5 (E . Eu) ) +> ¢ (wf)} . (B.12)
T>t

Working exactly as in the proof of Claim B.2 above, we find that the optimal work at time 1 is

wT’a = min {1, B, (l-l-él)}.
Again working exactly as in the proof of Claim B.2 above, we can write the well-being as
W = E[(B+9) u(w)+§ o lu(l+y = wi)+ g (41 — )]+ Bu( 47 — w)]
1 2 2 0\
—> (B +po+¢") (E- L) .

The first line of the RHS of this equation is simply the well-being in the absence of an incen-

tive for accuracy. So g?} equals its counterpart in the case without an incentive for accuracy,
t

plus (,82 + o+ ¢2) (E — Eu) which is positive given that beliefs are optimistic. Thus, optimal

beliefs with an incentive for accuracy are less optimistic than without an incentive for accuracy.
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