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B.1 A model with time-consistent preferences

In our model from Section 1 in the paper, preferences are time inconsistent, since with objective

beliefs, the optimal work w1 from the time 0 perspective is w∗,01 (E)= min {1, (D0 + D1) (1+ E)}

(see Equation 6 in the paper), which is different from the optimal work from the time 1 perspective,

which isw∗1(E)=min {1, B1(1+E)} (see Equation 5 in the paper). This time inconsistency in pref-

erences does not alter the message of our paper, since D0 + D1 < B1, hence w∗,01 (E) < w∗1 (E),

and therefore it is not this time inconsistency that causes a preference for commitment in our

model, rather it is the time inconsistency in beliefs. Still, for completeness, we extend our baseline

model here by introducing the possibility that the past, not just the future, matters, and therefore

time-consistent preferences are possible, and then we show that all our results continue to hold.

We extend our model from Section 1 in the paper by altering Equations 2 and 3 to include past

utility, i.e.:

Vt := Êt

∑
τ≥0

βτ−tUτ


Ut := Êt

∑
τ≥0

φτ−tu (wτ )

 .
Now Equation 5 from the paper becomes

w∗1

({
Êt

})
= min

{
1, B0

(
1+ Ê0 [η]

)
+ B1

(
1+ Ê1 [η]

)}
, (B.1)

where B0 := φ2 φ
(1+φ)(β2+βφ+φ2)

, and now B1 := β (β + φ) φ
(1+φ)(β2+βφ+φ2)

. In addition, Equa-

tion 6 from the paper remains the same, i.e.,

w∗,01

({
Êt

})
= min

{
1, D0

(
1+ Ê0 [η]

)
+ D1

(
1+ Ê1 [η]

)}
,

with the difference that now D0 := φ
(
β2
+φ2)

(1+φ)(β2+βφ+φ2)
and D1 := βφ2

(1+φ)(β2+βφ+φ2)
. Indeed then,

with objective beliefs, we havew∗1 (E) = min {1, (B0 + B1) (1+ E)} =min {1, (D0 + D1) (1+ E)} =

w∗,01 (E), so preferences are time consistent.

All the propositions (and their proofs) in the paper remain essentially unchanged. In terms of

results, a slight exception is Proposition 4, whose results in this setting are essentially a more ex-

treme version of the results in the original setting from Section 1. In terms of proofs, the exceptions

are Propositions 2 and 4; their proofs in the new setting are very similar in spirit, but the details
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are somewhat different. As a result, in what follows we focus on restating and proving Proposi-

tions 2 and 4; the exact statements and proofs of all the remaining propositions, for the setting we

introduce here, are available from the authors upon request.

B.1.1 Optimism and the planning fallacy

Proposition B.1. (Optimism and the planning fallacy are optimal)

(i) ÊND
0 [η] and ÊND

1 [η] are piece-wise linear, weakly increasing functions of E [η].

(ii) Optimal beliefs are optimistic, i.e., ÊND
0 [η] ≤ E [η] and ÊND

1 [η] ≤ E [η].

(iii) Over time, beliefs become less optimistic, i.e., ÊND
0 [η] ≤ ÊND

1 [η].

(iv) The planning fallacy (under-estimation of task duration) is optimal, i.e.,

ÊND
0
[
w∗1 + w

∗

2
]
< E

[
w∗1 + w

∗

2
]

and ÊND
1
[
w∗1 + w

∗

2
]
< E

[
w∗1 + w

∗

2
]
.

(v) Optimal work is wND
1 := B0

(
1+ÊND

0 [η]
)
+B1

(
1+ÊND

1 [η]
)
≤min {1, (B0+B1) (1+E [η])}=:wRE

1 .

B.1.1.1 Proof of Proposition B.1

(i - iii) First, we argue that optimal beliefs satisfy B0

(
1+ Ê0

)
+ B1

(
1+ Ê1

)
≤ 1: If not, from

Equation B.1, the optimal work at t = 1 would be 1, and optimal beliefs could become more

optimistic, yielding anticipatory benefits, without altering behavior, so without cost. Thus, we

substitute w1 = B0

(
1+ Ê0

)
+ B1

(
1+ Ê1

)
and w2 = 1+ η − w1 into W .

Define the following constants:

F := φ (1+φ)+(1+φ) β+
(
1+φ−1)β2 MB0 := F B2

0+φ
2 (1− 2B0)

G B := F B0 B1 − φ
2 B1 − βφB0 MB1 := F B2

1+βφ (1− 2B1) ,

where F > 0, and it is easy to show that G B < 0, MB0 > 0, and MB1 > 0. Then:

dW
d Ê0

= −MB0

(
1+ Ê0

)
− G B

(
1+ Ê1

)
+ β2 B0 (1+ E)

dW
d Ê1

= −G B

(
1+ Ê0

)
− MB1

(
1+ Ê1

)
+ β2 B1 (1+ E) .

Setting the derivatives to 0, we find
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Ê†
0 =

φ2 B2
1+βφB0(1−B1)

MB0 MB1−G2
B

β2 (1+ E)− 1

Ê†
1 =

φ2 B1(1−B0)+βφB2
0

MB0 MB1−G2
B

β2 (1+ E)− 1,

and simple algebra verifies that MB0 MB1 > G2
B and Ê†

1 ≥ Ê†
0 .

We also note that B0

(
1+ Ê0

)
+B1

(
1+ Ê1

)
≤ 1 binds only if Ê0, Ê1 are both positive. Oth-

erwise, we would have Ê0 = 0 and Ê1 =
1−B0−B1

B1
since Ê†

0 ≤ Ê†
1 , but then W could be increased

by raising Ê0 by some ε > 0 and lowering Ê1 by B0
B1
ε, since at Ê0 = 0, Ê1 =

1−B0−B1
B1

we have
dW
d Ê0
−

B0
B1

dW
d Ê1
=

B0
B2

1
βφ (1− B0−B1) > 0.

So the possible solutions are:

• ÊND
0 = ÊND

1 = 0. In the interior we have Ê†
1 > Ê†

0 , so to find the Es for which ÊND
0 = 0

we use Ê†
1 in dW

d Ê0
and check when the resulting Ê0 is 0; we find ÊND

0 = 0 if E ≤ 1
sND

0
− 1,

where sND
0 := φ2 B2

1+βφB0(1−B1)

MB0 MB1−G2
B

β2. To find the Es for which ÊND
1 = 0 we use Ê0 = 0 in dW

d Ê1

and check when the resulting Ê1 is 0; we find ÊND
1 = 0 if E ≤ −cND

1
sND

1
, where sND

1 := β2 B1
MB1

,

cND
1 := sND

1 −
G B
MB1
− 1. So ÊND

0 = ÊND
1 = 0 if E ≤ −cND

1
sND

1
.

• ÊND
0 = 0 < ÊND

1 . We already know that ÊND
0 = 0 and ÊND

1 = sND
1 E + cND

1 for −cND
1

sND
1

< E ≤

1
sND

0
− 1. We also know that for Ê0 = 0 < Ê1, B0

(
1+ Ê0

)
+ B1

(
1+ Ê1

)
≤ 1 does not

bind, so can be ignored.

• ÊND
0 > 0 and ÊND

1 > 0 and no constraints bind. We know in this case optimal beliefs are

ÊND
0 = sND

0 (1+ E) − 1 < sND
1 (1+ E) − 1 = ÊND

1 , where sND
1 := φ2 B1(1−B0)+βφB2

0
MB0 MB1−G2

B
β2. For

these values, B0

(
1+ Ê0

)
+ B1

(
1+ Ê1

)
≤ 1 does not bind for E ≤ 1

B0sND
0 +B1sND

1
− 1, so

we combine this with the condition for Ê0 > 0, i.e., E > 1
sND

0
− 1.

• ÊND
0 > 0, ÊND

1 > 0 and B0

(
1+ Ê0

)
+ B1

(
1+ Ê1

)
≤ 1 binds, which happens when E >

1
B0sND

0 +B1sND
1
− 1. We use E = 1

B0sND
0 +B1sND

1
− 1 in the unconstrained optimal beliefs, to get

ÊND
0 =

sND
0

B0sND
0 +B1sND

1
− 1< sND

1

B0sND
0 +B1sND

1
− 1= ÊND

1 .
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To summarize, we have



ÊND
0 [η] = 0 = ÊND

1 [η] = 0 if E [η] ≤µND
L

ÊND
0 [η] = 0 < ÊND

1 [η] = sND
1 E [η]+ cND

1 if µND
L < E [η] ≤µND

I

ÊND
0 [η] = sND

0 (1+ E [η])− 1 < ÊND
1 [η] = sND

1 (1+ E [η])− 1 if µND
I < E [η] ≤µND

U

ÊND
0 [η] = sND

0

B0sND
0 +B1sND

1
− 1 < ÊND

1 [η] = sND
1

B0sND
0 +B1sND

1
− 1 if µND

U < E [η]

(B.2)

where the critical values are µND
L := −cND

1
sND

1
, µND

I := 1
sND

0
− 1, µND

U := 1
B0sND

0 +B1sND
1
− 1.

We show optimal beliefs are optimistic; ÊND
0 ≤ ÊND

1 so we just show for ÊND
1 :

• For E ≤ µND
L , we have ÊND

1 = 0 < E .

• For µND
I < E ≤ µND

U , we have ÊND
1 = sND

1 (1+ E) − 1, so it is optimistic if sND
1 < 1, which

after some algebra can be shown to be true.

• For µND
L < E ≤ µND

I , we have ÊND
1 = sND

1 E + cND
1 . Optimal beliefs in the ranges

(
µND

L , µ
ND
I

]
and

(
µND

I , µ
ND
U

]
must be equal at E = µND

I , so sND
1 E + cND

1 = sND
1 (1+ E) − 1 < E at

E = µND
I . Also, algebra shows that cND

1 < 0 is true, so sND
1 E + cND

1 < E at E = 0. Since

sND
1 E+cND

1 is a straight line, we conclude that ÊND
1 < E , i.e., optimistic, for µND

L < E ≤ µND
I .

• For µND
U < E , ÊND

1 is the same as for E = µND
U , so it is optimistic.

(iv) The planning fallacy is that Êt
[
w∗1 + w

∗

2
]
< E

[
w∗1 + w

∗

2
]
, for t = 0 and t = 1. Using Equa-

tion 1, this simply becomes Êt [η] < E [η], which we have shown above to be true, since optimal

beliefs are optimistic.

(v) Substituting, respectively, optimal beliefs from Equation B.2 and objective beliefs into Equa-

tion B.1, we have wND
1 = B0

(
1+ ÊND

0

)
+ B1

(
1+ ÊND

1

)
and wRE

1 = min {1, (B0 + B1) (1+ E)}.

We know that ÊND
0 <E , ÊND

1 <E , so wND
1 ≤w

RE
1 .

B.1.2 Preference for commitment

Proposition B.2. (Self-imposed deadline)

(i) If β ≤ φ, optimal beliefs are identical to those absent a commitment device and the agent does

not impose a binding deadline.

(ii) If β > φ, then:
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• Optimal expectations ÊD
0 [η], ÊD

1 [η] are weakly increasing functions of E [η].

• Optimal beliefs are optimistic (ÊD
0 [η] < E [η] and ÊD

1 [η] < E [η]).

• Optimal beliefs become more optimistic over time (ÊD
0 [η] ≥ ÊD

1 [η]).

• Time 0 optimal beliefs are more pessimistic (ÊD
0 [η] ≥ ÊND

0 [η]) and time 1 optimal beliefs

more optimistic (ÊD
1 [η]≤ ÊND

1 [η]) than absent a commitment device.

• The optimal deadline ψD :=D0

(
1+ÊD

0 [η]
)
+D1

(
1+ÊD

1 [η]
)

binds (w∗1
({
ÊD

t

})
≤ψD), but

is smaller than wRE
1 .

• Complete overconfidence is optimal (6̂D
0 = 6̂

D
1 = 0 < 6).

B.1.2.1 Proof of Proposition B.2

Step 1 – Optimal work given an arbitrary deadline and arbitrary beliefs

Combining the deadline w1 ≥ ψ with Equation B.1, the optimal work is w∗1
({

Êt

}
, ψ
)
=

min
{

1,max
{
ψ, B0

(
1+ Ê0

)
+ B1

(
1+ Ê1

)}}
.

Step 2 – Optimal deadline given optimal work and arbitrary beliefs Deadline ψ 6∈
[
w∗1, 1

]
is

ignored at t = 1, so at t = 0 the agent chooses ψ ∈
[
w∗1, 1

]
to maximize V0. So at t = 1 the agent

chooses w∗1
({

Êt

}
, ψ
)
=ψ . Substituting in V0, we have

V0 ∝ −

{
ψ2
+D0

[(
1+ Ê0

)2
+6̂0 −2

(
1+ Ê0

)
ψ

]
+D1

[(
1+ Ê1

)2
+6̂1 −2

(
1+ Ê1

)
ψ

]}
dV0
dψ ∝ −

{
ψ − D0

(
1+ Ê0

)
− D1

(
1+ Ê1

)}
,

so imposing ψ ∈
[
w∗1, 1

]
and using B1 − D1 = D0 − B0, we have


ψ∗
({

Êt

})
= B0

(
1+ Ê0

)
+ B1

(
1+ Ê1

)
if Ê0 ≤ Ê1 and B0

(
1+ Ê0

)
+ B1

(
1+ Ê1

)
≤ 1

ψ∗
({

Êt

})
= D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
if Ê1 ≤ Ê0 and D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
≤ 1

ψ∗
({

Êt

})
= 1 otherwise.

We show below that optimal beliefs are optimistic; combined with D0 + D1 = B0 + B1, this

proves the optimal deadline is smaller than wRE
1 =(B0 + B1) (1+E).
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Step 3 – Optimal beliefs given optimal work and optimal deadline The optimality of complete

overconfidence trivially follows from the quadratic utility assumption, so we turn our attention to

optimal expectations. They satisfy B0

(
1+ Ê0

)
+B1

(
1+ Ê1

)
≤ 1, D0

(
1+ Ê0

)
+D1

(
1+ Ê1

)
≤ 1.

If not, our expressions for w∗1
({
Êt

}
,ψ
)

, ψ∗
({
Êt

})
, show that optimal work at t = 1 would be 1,

and optimal beliefs could become more optimistic, yielding anticipatory benefits without altering

behavior, so without cost. So we need only consider two cases.

Step 3 – Case A: If ψ∗
({

Êt

})
= B0

(
1+ Ê0

)
+ B1

(
1+ Ê1

)
, then working as in Section

B.1.1.1 we find the same optimal beliefs, which indeed satisfy Ê0 ≤ Ê1.

Step 3 – Case B: If ψ∗
({
Êt

})
=D0

(
1+ Ê0

)
+D1

(
1+ Ê1

)
we work as follows.

Substituting for w∗1
({

Êt

}
, ψ∗

({
Êt

}))
in W and differentiating w.r.t. Ê0 and Ê1:

dW
d Ê0

= −MD0

(
1+ Ê0

)
− G D

(
1+ Ê1

)
+ β2 D0 (1+ E)

dW
d Ê1

= −G D

(
1+ Ê0

)
− MD1

(
1+ Ê1

)
+ β2 D1 (1+ E) ,

where definitions of the constants mirror the corresponding ones in Section B.1.1.1 and where

algebra shows that G D < 0, MD0 > 0 and MD1 > 0.

Ignoring the constraints and setting the derivatives to 0 we find

Ê†
0 = sD

0 (1+ E)− 1

Ê†
1 = sD

1 (1+ E)− 1,

where sD
0 := φ2 D2

1+βφD0(1−D1)

MD0 MD1−G2
D

β2 and sD
1 := φ2 D1(1−D0)+βφD2

0
MD0 MD1−G2

D
β2, and where simple algebra shows

that MD0 MD1 > G2
D and Ê†

1 ≤ Ê†
0 . In addition, we note that D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
≤ 1

binds only if Ê0, Ê1 are both positive. If not, we would have Ê0 =
1−D0−D1

D0
and Ê1 = 0 since

Ê†
1 ≤ Ê†

0 , but then W could be increased by raising Ê1 by some ε > 0 and lowering Ê0 by D1
D0
ε,

since at Ê0 =
1−D0−D1

D0
and Ê1 = 0 we have dW

d Ê1
−

D1
D0

dW
d Ê0
=

D1
D2

0
φ2 (1− D0 − D1) > 0.

So the possible solutions are:

• ÊD
0 = ÊD

1 = 0. In the interior we have Ê0 > Ê1, so to find the Es for which ÊD
1 = 0 we use

the interior Ê0 in dW
d Ê1

and check when the resulting Ê1 is 0; we find ÊD
1 = 0 if E ≤ 1

sD
1
− 1.
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To find the Es for which ÊD
0 = 0 we use Ê1 = 0 in dW

d Ê0
and check when the resulting Ê0 is

0; we find ÊD
0 = 0 if E ≤ −cD

0

sD
0

, where sD
0 := β2 D0

MD0
, cD

0 := sD
0 −

G D
MD0
− 1. So ÊD

0 = ÊD
1 = 0

if E ≤ −cD
0

sD
0

.

• ÊD
1 = 0 < ÊD

0 . We already know that ÊD
1 = 0 and ÊD

0 = sD
0 E + cD

0 for −cD
0

sD
0
< E ≤ 1

sD
1
− 1.

We also know that for Ê1 = 0 < Ê0 the constraint D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
≤ 1 does

not bind, so can be ignored.

• ÊD
0 > 0 and ÊD

1 > 0 and no constraints bind. We know in this case optimal beliefs are ÊD
0 =

sD
0 (1+ E)−1 > sD

1 (1+ E)−1 = ÊD
1 . For these values, D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
≤ 1

does not bind for E ≤ 1
D0sD

0+D1sD
1
− 1, so we combine this with the condition for ÊD

0 > 0,

i.e., E > 1
sD

1
− 1.

• ÊD
0 > 0 and ÊD

1 > 0, and D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
≤ 1 binds, which happens when

E > 1
D0sD

0+D1sD
1
− 1. We use E = 1

D0sD
0+D1sD

1
− 1 in the unconstrained optimal beliefs, to

get ÊD
0 =

sD
0

D0sD
0+D1sD

1
− 1 > sD

1

D0sD
0+D1sD

1
− 1 = ÊD

1 .

To summarize, we have

ÊD
0 [η] = 0 = ÊD

1 [η] = 0 if E [η] ≤ µD
L

ÊD
0 [η] = sD

0E [η]+ cD
0 > ÊD

1 [η] = 0 if µD
L < E [η] ≤ µD

I

ÊD
0 [η] = sD

0 (1+ E [η])− 1 > ÊD
1 [η] = sD

1 (1+ E [η])− 1 if µD
I < E [η] ≤ µD

U

ÊD
0 [η] = sD

0

D0sD
0 +D1sD

1
− 1 > ÊD

1 [η] = sD
1

D0sD
0 +D1sD

1
− 1 if µD

U < E [η] ,

(B.3)

where µD
L := −cD

0

sD
0

, µD
I := 1

sD
1
− 1, and µD

U := 1
D0sD

0+D1sD
1
− 1.

Comparing the well-being with a non-binding and with a binding deadline: We compare the

well-being from optimal beliefs that implement a non-binding deadline, found in Case A, with the

well-being from optimal beliefs that implement a binding deadline, found in Case B. Regarding

the critical values for E , algebra shows that µND
L − µ

D
L ∝ µ

D
I − µ

ND
I ∝ µ

ND
U − µ

D
U ∝ β − φ.

Focusing first on the case β > φ, we compare W for various values of E :

1. If E ≤ µD
L , then ÊND

0 = ÊND
1 = ÊD

0 = ÊD
1 = 0, so WND

=WD.
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2. If µD
L ≤ E ≤ µND

L , ÊD
0 = sD

0 E + cD
0 is the only belief that changes from above. Since the

binding-deadline case is less constrained than above, we conclude that WND <WD.

3. If µND
L ≤ E ≤ µND

I , ÊND
1 = sND

1 E + cND
1 is the only belief that changes from above. Alge-

bra shows that WD
−WND is a quadratic in E whose leading term and the value where the

extremum is attained have opposite signs, so we have two cases:

• WD
−WND is a concave quadratic in E , hence the values of E such that it is positive are

a convex set, so to show that WND < WD for µND
L < E ≤ µND

I , we need to show it for

the endpoints. We showed this above for µND
L , and we now show it for µND

I : Plugging

for E = µND
I , we calculate WD

−WND
∝ β − φ > 0.

• WD
−WND is a convex quadratic in E and the value of E at which the minimum is

attained is negative, hence not in
[
µND

L , µ
ND
I

]
since µND

L =
−cND

1
sND

1
=

β2
+βφ+φ2

β2(β+φ)
> 0. So

WD
−WND is increasing for E ∈

[
µND

L , µ
ND
I

]
, so having shown that WND < WD for

µND
L implies it is also true for the whole range.

4. If µND
I ≤ E ≤ µD

I , ÊND
0 = sND

0 (1+ E) − 1 and ÊND
1 = sND

1 (1+ E) − 1 are the only beliefs

that change from above. Algebra shows that WD
−WND is a quadratic in E , whose leading

term and the value where the extremum is attained have opposite signs, so we have the same

two cases as above, and to show that WND < WD for µND
I < E ≤ µD

I , we need to show it at

the endpoints. We already showed this for µND
I , and we show it below for µD

I .

5. If µD
I ≤ E ≤ µD

U , ÊD
0 = sD

0 (1+ E) − 1 and ÊD
1 = sD

1 (1+ E) − 1 are the only beliefs that

change from above. Algebra shows WD
−WND

∝ β − φ > 0.

6. Note that WD and WND both consist of a part that depends on subjective and a part that de-

pends on objective beliefs; the latter is the same for both, so we ignore it. We have shown

that for E > µD
U , optimal beliefs ÊD

0 , ÊD
1 remain at their level at E = µD

U , but optimal beliefs

ÊND
0 , ÊND

1 have not hit the bound w1 ≤ 1 yet. So the part of WD that depends on subjec-

tive beliefs remains constant, while the corresponding part of WND decreases as E increases

beyond µD
U . Since we have already shown that WD > WND for E ≤ µD

U , this implies that

WD >WND also holds for E > µD
U .
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We conclude that for β > φ, WND
≤ WD (WND < WD ) for all E (for E > µD

L ). We work

identically to show that for β < φ the opposite is true, in which case a deadline is never optimal

and optimal beliefs are as in Equation B.2 (note that these beliefs need to satisfy D0

(
1+ ÊND

0

)
+

D1

(
1+ ÊND

1

)
≤ B0

(
1+ ÊND

0

)
+ B1

(
1+ ÊND

1

)
, because otherwise a deadline would be chosen

at t = 0, which is suboptimal; indeed they do, since ÊND
0 ≤ ÊND

1 and B1−D1 = D0− B0). Finally,

for β = φ, WND
=WD and either set of beliefs is optimal.

B.2 Detailed proofs

In this section, we present detailed proofs of selected propositions in the paper.

B.2.1 Proof of Proposition 4

B.2.1.1 Step 1 – Optimal work given arbitrary deadline and arbitrary beliefs

Combining a deadline of the form w1 ≥ ψ with the result from Proposition 1, the optimal work is

w∗1

({
Êt

}
, ψ
)
= min

{
1,max

{
ψ, B1

(
1+ Ê1

)}}
.

B.2.1.2 Step 2 – Optimal deadline given optimal work and arbitrary beliefs

Since a deadline ψ 6∈
[
w∗1, 1

]
will be ignored at t = 1, at t = 0 the agent chooses deadline

ψ ∈
[
w∗1, 1

]
to maximize V0. So at t = 1 the agent will optimally choose w∗1

({
Êt

}
, ψ
)
= ψ .

Manipulating V0, we have

V0 ∝ −
1
2

{
ψ2
+D0

[(
1+ Ê0

)2
+6̂0 − 2

(
1+ Ê0

)
ψ

]
+D1

[(
1+ Ê1

)2
+6̂0 − 2

(
1+ Ê1

)
ψ

]}
dV0

dψ
∝ −

{
ψ − D0

(
1+ Ê0

)
− D1

(
1+ Ê1

)}
,

where D0 := β2
+φ2

β2+φ2+β+φ+βφ
, D1 := βφ

β2+φ2+β+φ+βφ
, so imposing ψ ∈

[
w∗1,1

]
:


ψ∗

({
Êt

})
= B1

(
1+ Ê1

)
if D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
≤ B1

(
1+ Ê1

)
≤ 1

ψ∗
({

Êt

})
= D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
if B1

(
1+ Ê1

)
≤ D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
≤ 1

ψ∗
({

Êt

})
= 1 otherwise.
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B.2.1.3 Step 3 – Optimal beliefs given optimal work and optimal deadline

The optimality of complete overconfidence trivially follows from the assumption of quadratic util-

ity, so we turn our attention to optimal expectations. They satisfy B1

(
1+ Ê1

)
≤ 1, D0

(
1+ Ê0

)
+

D1

(
1+ Ê1

)
≤ 1. If not, from our expressions for w∗1

({
Êt

}
,ψ
)

, ψ∗
({
Êt

})
, we see that optimal

work at t=1 would be 1, and optimal beliefs could become more optimistic, yielding anticipatory

benefits without altering behavior, so without cost. So we need only consider two cases.

First, letψ∗
({
Êt

})
= B1

(
1+ Ê1

)
; working as in Section A.2, we find the same optimal beliefs,

which indeed satisfy D0

(
1+ Ê0

)
+D1

(
1+ Ê1

)
≤ B1

(
1+ Ê1

)
≤1.

Second, let ψ∗
({
Êt

})
=D0

(
1+ Ê0

)
+D1

(
1+ Ê1

)
; in what follows, we find the optimal be-

liefs and check when the condition B1

(
1+ Ê1

)
≤ D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
≤ 1 is satisfied.

Substituting for w∗1
({
Êt

}
,ψ∗

({
Êt

}))
in W and differentiating w.r.t. Ê0, Ê1, we have

dW
d Ê0

= −MD0

(
1+ Ê0

)
− G D

(
1+ Ê1

)
+ β2 D0 (1+ E) (B.4)

dW
d Ê1

= −G D

(
1+ Ê0

)
− MD1

(
1+ Ê1

)
+ β2 D1 (1+ E) , (B.5)

where

G D := F D0 D1 − φ
2 D1 − βφD0

MD0 := F D2
0 + φ

2 (1− 2D0)

MD1 := F D2
1 + βφ (1− 2D1) ,

and simple algebra shows that G D < 0, MD0 > 0, and MD1 > 0.

Ignoring the constraints and setting the derivatives to 0 we find

Ê†
0 = sD

0 (1+ E)− 1

Ê†
1 = sD

1 (1+ E)− 1,

where sD
0 := φ2 D2

1+βφD0(1−D1)

MD0 MD1−G2
D

β2 and sD
1 := φ2 D1(1−D0)+βφD2

0
MD0 MD1−G2

D
β2, and where we can show that

MD0 MD1 − G2
D > 0 and Ê†

0 ≥ Ê†
1 . In addition, we note that D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
≤ 1

binds only if Ê0, Ê1 are both positive. If not, we would have Ê0 =
1−D0−D1

D0
and Ê1 = 0 since

Ê†
0 ≥ Ê†

1 , but then W could be increased by raising Ê1 by some ε > 0 and lowering Ê0 by D1
D0
ε,

since at Ê0 =
1−D0−D1

D0
and Ê1 = 0 we have dW

d Ê1
−

D1
D0

dW
d Ê0
=

D1
D2

0
φ2 (1− D0 − D1) > 0.
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Imposing Ê0≥0, Ê1≥0, and D0

(
1+ Ê0

)
+D1

(
1+ Ê1

)
≤1, but still ignoring B1

(
1+ Ê1

)
≤

D0

(
1+ Ê0

)
+D1

(
1+ Ê1

)
, the possible optimal beliefs are:

• Ê††
0 = Ê††

1 = 0. In the interior we have Ê0 ≥ Ê1, so to find the Es for which Ê††
1 = 0

we use the interior Ê0 in dW
d Ê1

and check when the resulting Ê1 is 0; we find Ê††
1 = 0 if

E ≤ 1
sD

1
− 1. To find the Es for which Ê††

0 = 0 we use Ê1 = 0 in dW
d Ê0

and check when the

resulting Ê0 is 0; we find Ê††
0 = 0 if E ≤ −cD

0

sD
0

, where sD
0 := β2 D0

MD0
, cD

0 := sD
0 −

G D
MD0
− 1. So

Ê††
0 = Ê††

1 = 0 if E ≤ −cD
0

sD
0

.

• Ê††
1 = 0< Ê††

0 . We already know that Ê††
1 = 0 and Ê††

0 = sD
0 E+cD

0 for −cD
0

sD
0
< E ≤ 1

sD
1
− 1.

We also know that for Ê1 = 0< Ê0 the constraint D0

(
1+ Ê0

)
+D1

(
1+ Ê1

)
≤ 1 does not

bind, so can be ignored.

• Ê††
0 > 0 and Ê††

1 > 0 and no constraints bind. We know in this case optimal beliefs are

Ê††
0 = sD

0 (1+E)− 1> sD
1 (1+E)− 1= Ê††

1 . For these values, the constraint D0

(
1+ Ê0

)
+

D1

(
1+ Ê1

)
≤1 does not bind for E≤ 1

D0sD
0+D1sD

1
− 1, so we combine this with Ê††

0 >0, i.e.,

E> 1
sD

1
− 1.

• Ê††
0 >0 and Ê††

1 >0 and the constraint D0

(
1+ Ê0

)
+D1

(
1+ Ê1

)
≤1 binds, which happens

when E> 1
D0sD

0+D1sD
1
− 1. We use E= 1

D0sD
0+D1sD

1
− 1 in the unconstrained optimal beliefs,

to get Ê††
0 =

sD
0

D0sD
0+D1sD

1
− 1> sD

1

D0sD
0+D1sD

1
− 1= Ê††

1 .

To summarize, ignoring B1

(
1+ Ê1

)
≤ D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
, we have



Ê††
0 [η] = 0 = Ê††

1 [η] = 0 if E [η] ≤ µD
L

Ê††
0 [η] = sD

0E [η]+ cD
0 > Ê††

1 [η] = 0 if µD
L < E [η] ≤ µD

I

Ê††
0 [η] = sD

0 (1+ E [η])− 1 > Ê††
1 [η] = sD

1 (1+ E [η])− 1 if µD
I < E [η] ≤ µD

U

Ê††
0 [η] = sD

0

D0sD
0 +D1sD

1
− 1 > Ê††

1 [η] = sD
1

D0sD
0 +D1sD

1
− 1 if µD

U < E [η]

(B.6)

where µD
L := −cD

0

sD
0

, µD
I := 1

sD
1
− 1, and µD

U := 1
D0sD

0+D1sD
1
− 1.

Now we impose B1

(
1+ Ê1

)
≤ D0

(
1+ Ê0

)
+ D1

(
1+ Ê1

)
. Using simple algebra, we see

that D0 ≤ B1 − D1, so we observe the following:

B-11



• The constraint binds for E < µD
L , since for Ê††

0 = Ê††
1 = 0 it is violated.

• If the constraint stops binding for some µD
L ′ ∈

(
µD

L , µ
D
I

]
, then it binds ∀ E ≤ µD

L ′ and does

not bind for any E > µD
L ′ , because i) in

(
µD

L , µ
D
I

]
, Ê††

0 is increasing in E and Ê††
1 is con-

stant, so the constraint is relaxed as E increases; and ii) substituting from Equation B.6, the

constraint becomes (B1 − D1) sD
1 ≤ D0sD

0 for E > µD
I , i.e., it does not depend on E , so if it

does not bind at µD
I , it does not bind above it.

• If the constraint does not stop binding in
(
µD

L , µ
D
I

]
, then it binds for all values of E , because

by our argument above, if it binds at µD
I , it binds above it.

So there are two possibilities: the constraint binds for all E , or it only binds up to µD
L ′ ∈

[
µD

L , µ
D
I

]
.

So we check if it is satisfied for the values of Ê††
0 , Ê††

1 for E > µD
U (see Equation B.6); the con-

straint becomes (B1 − D1) sD
1 ≤ D0sD

0 , which is equivalent to 0 ≤ β3
−φ3
+βφ2, which is equiva-

lent to β ≥ βL (φ) for βL (φ) := 2
3

3

√√
31

108 +
1
2φ ≈ 0.68233φ. Next, we examine these two cases.

β ≥ βL

(
φ
)

In this case, the constraint (B1−D1)
(

1+ Ê1

)
≤ D0

(
1+ Ê0

)
binds only up to a µD

L ′ ∈
[
µD

L , µ
D
I

]
.

Since Ê††
1 = 0 for E ≤ µD

I , using it in the constraint, we have ÊD
0 =

B1−D1−D0
D0

and ÊD
1 = 0 for

E ≤µD
L ′ . For E >µD

L ′ optimal beliefs are as in Equation B.6. Note that µD
L ′ is the E such that the

constraint binds with optimal beliefs for the range µD
L<E≤µD

I (see Equation B.6); we find µD
L ′ :=

1
sD

0

(
B1−D1−D0

D0
− cD

0

)
. Before we compare the well-beings with and without a binding deadline,

we determine the ordering of the cutoffs; we already know µND
L < µND

U and µD
L ′ < µD

I < µD
U .

Determine ordering of E cutoffs.

• We have µND
U − µ

D
U = −

φ
β2
φ5
+3βφ4

+5β2φ3
+2β3φ2

+β4φ−β5

(β+φ)2(β4+2β2φ2+βφ3+φ4)
. Let the numerator be C1; then

5
βC1 −

dC1
dβ > 0. So C1 < 0 ⇒ dC1

dβ < 0, and so C1 > 0,∀β < βU (φ), and negative

otherwise. βU (φ) is a multiple of φ, and solving numerically we find βU (φ) ≈ 2.6491φ.

• We have µND
L −µ

D
L ′=−

φ
β2
φ6
+(1+β)φ5

+(2+3β)βφ4
+2(2+β)β2φ3

+β3φ2
+β4φ−β5

−β6

(β2+φ2)2
(β+φ)(1+β+φ)

. Let the numer-

ator be C2; then 5
β

C2 −
dC2
dβ > 0. So C2 < 0 ⇒ dC2

dβ < 0, and so C2 > 0,∀β < β (φ), and

negative otherwise. We find numerically that C2
(
β=βL (φ)

)
> 0, C2

(
β=βU (φ)

)
<
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0, so βL (φ) < β (φ) < βU (φ). In addition, implicitly differentiating C2 and using

C2
(
β = β (φ)

)
= 0, we can show β (φ) is increasing in φ.

• Algebra shows that µND
L < µD

I .

• We have µND
U − µ

D
I =

φ
β

β(1+φ)
(
β3
+φ3
+2βφ2)

+φ2(3β3
+β2φ+β+φ+φ2)

(β+φ)2(β4+φ3+φ4+2β2φ2+βφ2+βφ3)
> 0.

Thus, we have shown that:
µND

L < µD
L ′ < µD

I < µND
U < µD

U if βL (φ) < β ≤ β (φ)

µD
L ′ < µND

L < µD
I < µND

U < µD
U if β (φ) < β ≤ βU (φ)

µD
L ′ < µND

L < µD
I < µD

U < µND
U if βU (φ) < β

Compare the well-beings. The difference in W with and without a deadline is

WD
−WND = 1

2 F
(

B0

(
1+ÊND

0

)
+B1

(
1+ÊND

1

))2
−

1
2 F
(

D0

(
1+ÊD

0

)
+D1

(
1+ÊD

1

))2

+
1
2

(
φ2
(

1+ÊND
0

)2
+βφ

(
1+ÊND

1

)2
)
−

1
2

(
φ2
(

1+ÊD
0

)2
+βφ

(
1+ÊD

1

)2
)

+

(
φ2
(

1+ÊD
0

)
+βφ

(
1+ÊD

1

)
+β2(1+E)

)(
D0

(
1+ÊD

0

)
+D1

(
1+ÊD

1

))
−

(
φ2
(

1+ÊND
0

)
+βφ

(
1+ÊND

1

)
+β2(1+E)

)(
B0

(
1+ÊND

0

)
+B1

(
1+ÊND

1

))
.

(B.7)

Before considering the three sub-cases, β∈
(
βL (φ) , β (φ)

]
, β∈

(
β (φ) , βU (φ)

]
, and β > βU (φ)

separately, we make a few general observations about WD
−WND:

• Optimal beliefs are piece-wise linear in E and WD
− WND is a quadratic in beliefs, so

WD
−WND is a differentiable piecewise quadratic in E .

• For E ≤ min
{
µD

L ′, µ
ND
L

}
, where ÊND

t = ÊD
t = 0, algebra shows WD

−WND
= −

βφ3(2β2
+βφ+2φ2)

2[(β2+φ2)(1+β+φ)]2 <

0.

• For E > max
{
µND

U , µ
D
U

}
, where w1 ≤ 1 binds in both cases, algebra shows WD

−WND
=

−
φ
2
φ5
+3βφ4

+5β2φ3
+2β3φ2

+β4φ−β5

(β+φ)2(β4+2β2φ2+βφ3+φ4)
= µND

U − µ
D
U , so i) if β > βU (φ), then µD

U < µND
U and

WND <WD for E > µND
U , or ii) if β ≤ βU (φ), thenµND

U ≤ µ
D
U and WD

≤WND for E > µD
U .

We now consider the three sub-cases in detail:
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1. For βL (φ) < β ≤ β (φ), we have µND
L <µD

L ′ <µ
D
I <µ

ND
U <µD

U . Using beliefs for E =µND
U

from Equations A.1, B.6 and E=µND
U in WD

−WND:

WD
−WND

∝ −

(
φ5
+ 3βφ4

+ 5β2φ3
+ 2β3φ2

+ β4φ − β5
)
,

which is negative for β < βU (φ); this shows WD < WND for E = µND
U . We already know

that WD < WND for E > µD
U . Also WD

− WND is decreasing in
[
µND

U , µ
D
U

]
, since the

component in W that does not depend on beliefs is common to WD and WND so it drops

out, and the component that depends on beliefs is constant for WND because beliefs have

hit the bound w1 ≤ 1, but decreasing for WD. So we conclude that WD < WND in the

whole range
[
µND

U , µ
D
U

]
. Finally, WD

−WND < 0 up to µND
L , and concave in

[
µND

L , µ
D
L ′
]

since the optimal beliefs that implement the non-binding deadline become less constrained.

Then, we can conclude that WD < WND for all E , since the only two possibilities are i)

WD
−WND is concave in

[
µD

L ′, µ
D
I

]
, but then even if WD

−WND is convex in
[
µD

I , µ
ND
U

]
,

it can only have one root in this range, which would imply that WD
−WND > 0 at µND

U ,

and we have shown this is not true; and ii) WD
−WND is convex in

[
µD

L ′, µ
D
I

]
, so it is also

convex in
[
µD

I , µ
ND
U

]
since the optimal beliefs that implement the binding deadline become

less constrained, which implies that it can only have one root (in one or the other range),

which would imply that WD
−WND > 0 at µND

U , and we have shown this is not true. Thus,

for βL (φ) < β ≤ β (φ), a binding deadline is never chosen.

2. For β (φ) < β ≤ βU (φ), we haveµD
L ′ < µND

L < µD
I < µND

U < µD
U . We know WD

−WND < 0

up to µD
L ′ and convex in

[
µD

L ′, µ
ND
L

]
, since the optimal beliefs that implement the bind-

ing deadline become less constrained. Also, as in the previous sub-case we can show that

WD <WND in the whole range
[
µND

U , µ
D
U

]
. So the possibilities are:

• If WD
−WND has a root in

[
µD

L ′, µ
ND
L

]
, it also has one in

[
µND

L , µ
ND
U

]
, since WD <WND

at µND
U .

• WD
−WND has one root in

[
µND

L , µ
D
I

]
and one in

[
µD

I , µ
ND
U

]
or two roots in

[
µND

L , µ
D
I

]
,

since WD <WND at µND
U .

• WD
−WND has no roots, and so WD <WND for all E .

3. For βU (φ) < β, we have µD
L ′ < µ

ND
L < µD

I < µ
D
U < µ

ND
U . Using beliefs for E = µD

U from
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Equations A.1, B.6 and E=µD
U in WD

−WND:

WD
−WND

∝ −

(
φ5
+ 3βφ4

+ 5β2φ3
+ 2β3φ2

+ β4φ − β5
)
,

which is positive for β > βU (φ). An analogous argument to the one used in sub-case

1 shows that WD > WND in the whole range
[
µD

U , µ
ND
U

]
. Also WD

− WND < 0 up

to µD
L ′ , and convex in

[
µD

L ′, µ
ND
L

]
since the optimal beliefs that implement the binding-

deadline become less constrained. Thus, WD
− WND has an odd number of roots. But

since it is piece-wise quadratic, it can only have up to one root in
[
µD

L ′, µ
ND
L

]
and up to

two roots in each of
[
µND

L , µ
D
I

]
and

[
µD

I , µ
D
U

]
, for a total of up to five roots; but if it has

two roots in either of the latter two ranges, it cannot have two roots in the other. So we

conclude that WD
−WND has either one or three roots. Plotting all the possible cases in

which there are three roots, we see that the common characteristic in all these cases is that

WD
−WND has a minimum in

[
µD

I , µ
D
U

]
and this minimum is negative. Plugging the optimal

beliefs for this range in WD
−WND, we find that WD

−WND is a quadratic with extreme

value WD
−WND

=
1
2

φ2(β3
+β4
+φ3
+β2φ2

+βφ+3βφ2
+3β2φ+2β3φ

)
β3+β4+φ3+φ4+2β2φ2+βφ+3βφ2+3β2φ+2βφ3+2β3φ

> 0. So we conclude

WD <WND for E < µ ∈
[
µD

L ′, µ
D
U

]
and WD

≥WND otherwise.

In conclusion, for β≥β (φ) we have WD
≥WND for E ∈ M (β, φ) where M (β, φ) is a (possibly

empty) convex set, and WD <WND for all other values. Note that both in this case (β ≥ βL (φ))

and in the case below (β < βL (φ)), whenever WD < WND the optimal expectations are ÊND
t

from Equation A.1, as long as they satisfy D0

(
1+ ÊND

0

)
+ D1

(
1+ ÊND

1

)
≤ B1

(
1+ ÊND

1

)
, be-

cause otherwise a deadline would be chosen at t = 0, which is suboptimal. Since ÊND
0 = 0 and

B1 > D0 + D1, this condition is trivially satisfied.

β < βL

(
φ
)

Here, the constraint (B1 − D1)
(

1+ Ê1

)
≤ D0

(
1+ Ê0

)
binds for all E . So optimal beliefs im-

plementing the binding deadline must always be proportional, so they are both constants or both

proportional to E . Given that we have the constraints Ê0 ≥ 0, Ê1 ≥ 0 and w1 ≤ 1, we conclude

that there are values of E , µD
I ′ andµD

U ′ to be defined below, that partition the E space in regions: for

E ≤ µD
I ′ optimal beliefs do not depend on E because Ê0 ≥ 0 and Ê1 ≥ 0 bind, for µD

I ′ < E ≤ µD
U ′

optimal beliefs are proportional to E , and for µD
U ′ < E optimal beliefs do not depend on E because

w1 ≤ 1 binds. We now determine µD
I ′ and µD

U ′ , and the optimal beliefs in the various ranges of the
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E space.

Equations B.4 and B.5 give the F.O.C. of W w.r.t. Ê0 and Ê1 when ignoring the constraints

Ê0 ≥ 0, Ê1 ≥ 0 and w1 ≤ 1. Forming the Lagrangian, L, to account for (B1 − D1)
(

1+ Ê1

)
≤

D0

(
1+ Ê0

)
, but still ignoring the other constraints, the F.O.C. are:

dL
d Ê0

= −MD0

(
1+ Ê0

)
− G D

(
1+ Ê1

)
+ β2 D0 (1+ E)+ λD0

dL
d Ê1

= −G D

(
1+ Ê0

)
− MD1

(
1+ Ê1

)
+ β2 D1 (1+ E)− λ (B1 − D1) .

Combining these F.O.C. with the constraint, we get

ÊD
0 =

B1−D1
D0

D0 + D1

2G D +
B1−D1

D0
MD0 +

D0
B1−D1

MD1

β2 (1+ E)− 1 (B.8)

ÊD
1 =

D0 +
D0

B1−D1
D1

2G D +
B1−D1

D0
MD0 +

D0
B1−D1

MD1

β2 (1+ E)− 1. (B.9)

These are the optimal expectations in µD
I ′ < E ≤ µD

U ′ , where no other constraints bind.

Clearly ÊD
0 > ÊD

1 , so Ê1 ≥ 0 binds first. Setting ÊD
1 = 0 in Equation B.9, we have µD

I ′ :=

1
β2

2G D+
B1−D1

D0
MD0+

D0
B1−D1

MD1

D0+
D0

B1−D1
D1

−1. So for E≤µD
I ′ , we have ÊD

1 =0, which substituted in (B1−D1)
(

1+ Ê1

)
≤

D0

(
1+ Ê0

)
yields ÊD

0 =
B1−D1−D0

D0
.

Using interior optimal beliefs from Equations B.8 and B.9 inw∗1
({

Êt

}
,ψ∗

({
Êt

}))
=D0

(
1+ Ê0

)
+

D1

(
1+ Ê1

)
, i.e., the optimal work given the optimal binding deadline, and setting it to 1, we find

µD
U ′ := 1

β2

2G D+
B1−D1

D0
MD0+

D0
B1−D1

MD1

2D0 D1+
B1−D1

D0
D2

0+
D0

B1−D1
D2

1

−1. Using E=µD
U ′ in these beliefs, we get ÊD

0 =
1
B1

B1−D1
D0
−1,

ÊD
1 =

1
B1
− 1 for E>µD

U ′ .

Determine ordering of E cutoffs We know µND
L < µND

U , µD
I ′ < µD

U ′ . Also:

• µND
L − µ

D
I ′ = −

φ2

β2
β5
+β4φ+β4

+2β3φ2
+2β3φ+2β2φ3

+3β2φ2
+βφ4

+2βφ3
+φ5
+φ4

(β2+φ2)2
(β+φ)(β+φ+1)

< 0.

• Algebra shows that µND
U > µD

I ′ .

• µND
U − µ

D
U ′ = −

φ2

β2

(
β2
+βφ+φ2)2

(β3+β2φ+βφ2+φ3)2 < 0.
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Thus, µND
L < µD

I ′ < µND
U < µD

U ′ .

Compare the well-beings WD
− WND is as given in Equation B.7, so as already argued, is

piecewise quadratic and continuously differentiable. We show that WD < WND everywhere (so a

deadline is never optimal and optimal expectations are ÊND
t ):

1. If E≤µND
L , optimal expectations are ÊND

0 = ÊND
1 =0 and ÊD

0 =
B1−D1−D0

D0
> ÊD

1 =0. Plugging

these in, we find WD
−WND

=−
1
2
βφ3(2β2

+βφ+2φ2)
(β2+φ2)2

(β+φ+1)2
<0.

2. If µND
L < E ≤ µD

I ′ , the optimal beliefs without a deadline become less constrained, so

WD
−WND is concave (so WD <WND) in this range.

3. If µD
U ′ < E optimal expectations are ÊND

0 =
1
B1
− 1< 1

B1

B1−D1
D0
− 1 = ÊD

0 and ÊND
1 = 0 <

1
B1
− 1 = ÊD

1 , and optimal work are wND
1 = w

D
1 = 1 since w1 ≤ 1 binds. So actions are the

same but the binding-deadline case has more pessimistic beliefs, hence WD <WND.

4. Given that WD <WND for E 6∈
[
µD

I ′, µ
D
U ′
]

and WD
−WND is concave for µND

L < E ≤ µD
I ′ ,

WD>WND anywhere in
[
µD

I ′, µ
D
U ′
]

requires WD
−WND convex in

[
µD

I ′, µ
ND
U

]
, but this neces-

sitates that it is decreasing and concave in the left neighborhood of µD
U ′ , which contradicts

differentiability at µD
U ′ .

B.2.2 Proof of Proposition 5

Finding the optimal beliefs We work as in Sections B.2.1.1 and B.2.1.2, to findw∗1
({

Êt

}
,ψ
)
=

min
{

1,max
{
ψ, B1

(
1+ Ê1

)}}
and


ψ∗,ED

({
Êt

})
= B1

(
1+ Ê1

)
if D0 (1+E)+D1

(
1+ Ê1

)
≤ B1

(
1+ Ê1

)
≤1

ψ∗,ED
({

Êt

})
= D0 (1+E)+D1

(
1+Ê1 [η]

)
if B1

(
1+ Ê1

)
≤D0 (1+E)+D1

(
1+ Ê1

)
≤1

ψ∗,ED
({

Êt

})
= 1 otherwise,

where ψ∗,ED
({

Êt

})
is the optimal externally-imposed deadline, given expectations Êt .
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We are interested in the optimal beliefs that implement a binding deadline, i.e., the case

B1

(
1+ Ê1

)
≤D0(1+E)+D1

(
1+ Ê1

)
≤1. Working as in Section A.4, we find

dW
d Ê0

= −φ2
{(

1+ Ê0

)
−

[
D0 (1+ E)+ D1

(
1+ Ê1

)]}
dW
d Ê1

= −βφ (1− D1)
(

1+ Ê1

)
+ β2 D1 (1+ E)+ φ2 D1

(
1+ Ê0

)
.

Imposing Ê0 ≥ 0, we have dW
d Ê0

< 0, so ÊED
0 = 0, and so “interior” optimal Ê1 is Ê†

1 =

β2(1+E)+φ2

MD1
D1 − 1. Now impose all constraints:

• We check if B1

(
1+ Ê1

)
≤ D0 (1+ E)+ D1

(
1+ Ê1

)
binds for some E with interior be-

liefs. Substituting ÊED
0 and Ê†

1 in the constraint, we can write it as
(B1−D1)

φ2 D1
MD1

D0−(B1−D1)
β2 D1
MD1

≤ 1+ E .

Algebra shows the denominator less the numerator of the LHS is positive, so since E ≥ 0,

the constraint does not bind.

• We check if Ê1 ≥ 0 binds for any E . Setting Ê†
1 =

β2(1+E)+φ2

MD1
D1 − 1 = 0, we see the

constraint binds for E below µED
I := 1

β2

(
MD1
D1
− φ2

)
− 1= β+φ

β2 >0.

• We check if B1

(
1+ Ê1

)
≤ D0 (1+E) + D1

(
1+ Ê1

)
binds for some E < µED

I . We sub-

stitute ÊED
0 = ÊED

1 = 0 into the constraint, to find that it is satisfied with equality at µED
L :=

B1−D1−D0
D0

=
βφ

(β2+φ2)(1+β+φ)
. Algebra verifies µED

L ≤ µ
ED
I . But it turns out the constraint

cannot be satisfied as E drops below µED
L because: i) since ÊED

0 = ÊED
1 = 0, we cannot

reduce ÊED
0 or ÊED

1 ; ii) since B1 ≥ D1, raising ÊED
1 does not help; and iii) raising ÊED

0 does

not help. Thus, no beliefs implement the externally-imposed binding deadline for E ≤ µED
L .

• We check if D0 (1+E)+D1

(
1+ Ê1

)
≤1 binds. Using interior optimal beliefs in it, we find

that it binds for E > µED
U :=

MD1−φ
2 D2

1
D0 MD1+β

2 D2
1
− 1. Using E=µED

U in the interior beliefs, we get

ÊED
0 =0 < β2

+φ2 D0
D0 MD1+β

2 D2
1

D1 − 1= ÊED
1 for E>µED

U .

So optimal beliefs implementing the externally-imposed deadline satisfy ÊED
0 =0,


ÊED

1 [η] = 0 if µED
L ≤ E [η] ≤ µED

I

ÊED
1 [η] = β2(1+E[η])+φ2

MD1
D1 − 1 if µED

I < E [η] ≤ µED
U

ÊED
1 [η] = β2

+φ2 D0
D0 MD1+β

2 D2
1

D1 − 1 if µED
U < E [η]
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where µED
L := B1−D1−D0

D0
, µED

I := 1
β2

(
MD1
D1
− φ2

)
− 1, µED

U :=
MD1−φ

2 D2
1

D0 MD1+β
2 D2

1
− 1. For E < µED

L , a

binding deadline cannot be implemented and optimal beliefs satisfy ÊED
0 = ÊED

1 =0.

We have shown ÊED
0 = 0≤ ÊED

1 , i.e., beliefs become more pessimistic over time. So to prove

optimism, we just need to show ÊED
1 ≤ E . For E ≤ µED

I , we have ÊED
1 = 0 < E . For µED

U < E , we

have ÊED
1 =

β2
+φ2 D0

D0 MD1+β
2 D2

1
D1 − 1 < µED

U . For µED
I < E ≤ µED

U , as a function of E , ÊED
1 is a straight

line segment whose endpoints lie below the line E , so ÊED
1 < E .

Having determined optimal expectations ÊED
t , we define ψED := ψ∗,ED

({
ÊED

t

})
.

Outsider’s deadline is stricter than the agent’s deadline To show this, we need to show

ψED
≥ ψD, i.e., D0

(
E − ÊD

0

)
≥ D1

(
ÊD

1 − ÊED
1

)
. Straightforward algebra shows this is true for

interior beliefs (so also for beliefs above the interior). Now we show it is true for all remaining

beliefs for which a binding self-imposed deadline is optimal. From Section B.2.1, we know that

ÊD
1 ≥ 0 binds first as E becomes smaller, then D0

(
1+ ÊD

0

)
≥ (B1 − D1)

(
1+ ÊD

1

)
binds, and

finally ÊD
0 ≥ 0 binds. We also know that once either of the latter two constraints binds, the self-

imposed deadline is not optimally chosen because it yields weakly lower well-being, so we just

need to check what happens when ÊD
1 ≥ 0 binds. But we already know from Section B.2.1 that

ÊD
0 ≤E , hence D0

(
E − ÊD

0

)
≥D1

(
ÊD

1 − ÊED
1

)
.

Outsider’s deadline is smaller than wRE
1 We have shown that beliefs are optimistic; combined

with D0 + D1 < B1, this trivially proves ψED < wRE
1 .

B.3 Additional proofs

B.3.1 Additional proofs for Section 1

Here, we provide a formal proof of the claim made in Section 1.3, that a cost of belief distortion

modeled as a quadratic cost that is increasing in the (absolute) difference between objective and

subjective expectations about the random variable in our model, η, leads to less optimistic, but still

optimistic, beliefs. The assumption of quadratic payments is made for tractability.

In terms of notation, optimal quantities for the case with a belief distortion cost contain a “dc”

in their superscripts.
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Claim B.1. (Costs of belief distortion)

A cost −1
2

(
Et [η]− Êt [η]

)2
at time t that is increasing in the absolute difference between objec-

tive and time t subjective expectations about the random variable η,
∣∣∣Et [η]− Êt [η]

∣∣∣, results in

time t beliefs that are less optimistic, i.e., ÊND,dc
0 [η] > ÊND

0 [η] and ÊND,dc
1 [η] > ÊND

1 [η], but still

optimistic, i.e., ÊND,dc
0 [η] < E [η] and ÊND,dc

1 [η] < E [η].

Proof of Claim B.1 The only change from the setup in Section 1 is that now Equation 3 becomes

Ut := Êt

[∑
τ≥t

φτ−t
(

u (wτ )−
1
2

(
Eτ [η]− Êτ [η]

)2
)]

. (B.10)

We first work as in the proof of Proposition 1 in Section A.1 to find the optimal amount of work

w1 in period 1. The agent chooses w1 at t = 1 to maximize V1. Using Equations 1 and B.10, V1

becomes

Ê1

[
u (w1)+ (β + φ) u (1+ η − w1)−

1
2

(
E − Ê1

)2
]
,

which is concave in w1. Using u (w)=−1
2w

2, the F.O.C. yields w†
1

({
Êt

})
= B1

(
1+ Ê1

)
, where

B1 =
β+φ

1+β+φ as before, and imposing w1 ≤ 1 yields w∗,dc
1 = min

{
1, B1

(
1+ Ê1

)}
.

Now we work as in the proof of Proposition 2 in Section A.2. Repeating the argument there,

we can show that optimal expectations satisfy B1

(
1+ Ê1

)
≤ 1, so we can substitute w1 =

B1

(
1+ Ê1

)
and w2 = 1 + η − w1 into W . Using Equations 2 and B.10 to substitute for V and

U , respectively, in W , and doing some algebra, we can write

W = E
[
(β+φ) u(w1)+φ

2Ê0 [u(1+η − w1)]+βφÊ1 [u(1+η − w1)]+β2u(1+η − w1)
]

−
1
2

[(
E − Ê0

)2
+ (β + φ)

(
E − Ê1

)2
]
.

The first line of the RHS of this equation is simply the well-being in the absence of a cost of belief

distortion. So dW
d Êt

equals its counterpart in the case without a cost of belief distortion, plus a con-

stant times E − Êt , which is positive given that beliefs are optimistic. Thus, optimal beliefs with

a cost of belief distortion are less optimistic than without a cost of belief distortion. It is obvious

that optimal beliefs will still be optimistic, since E − Êt is positive only if beliefs are optimistic,

while it would be negative if beliefs were pessimistic.
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B.3.2 Additional proofs for Section 6

In this section, we provide formal proofs of two claims made in Section 6: first, that an incentive

for the speed of task completion modeled as a payment at t = 2 that is quadratic and decreasing in

total work, w1 + w2, leads to more optimistic beliefs; and second, that an incentive for the accu-

racy of task duration prediction modeled as a payment at t = 2 that is quadratic and decreasing in

the (absolute) difference between objective and subjective expectations about task duration, 1+ η,

leads to less optimistic beliefs. The assumption of quadratic payments is made for tractability.

In terms of notation, optimal quantities for the case with an incentive for the speed of task com-

pletion contain an “s” in their superscripts, while optimal quantities for the case with an incentive

for the accuracy of task duration prediction contain an “a” in their superscripts.

Claim B.2. (Incentive for speed of task completion)

A payment −1
2 (w1 + w2)

2 at t = 2 that is decreasing in total work, w1 + w2, makes beliefs

(weakly) more optimistic, i.e., ÊND,s
0 [η] ≤ ÊND

0 [η] and ÊND,s
1 [η] ≤ ÊND

1 [η].

Proof of Claim B.2 The only change from the setup in Section 1 is that now Equation 3 becomes

Ut := Êt

[
φ2−t

(
−

1
2
(w1 + w2)

2
)
+

∑
τ≥t

φτ−tu (wτ )

]
. (B.11)

We first work as in the proof of Proposition 1 in Section A.1, to find the optimal amount of work

w1 in period 1. The agent chooses w1 at t = 1 to maximize V1. Using Equations 1 and B.11, V1

becomes

Ê1

[
u (w1)+ (β + φ) u (1+ η − w1)+ (β + φ)

(
−

1
2
(1+ η)2

)]
,

which is concave in w1. Using u (w)=−1
2w

2, the F.O.C. yields w†
1

({
Êt

})
= B1

(
1+ Ê1

)
, where

B1 =
β+φ

1+β+φ as before, and imposing w1 ≤ 1 yields w∗,s1 = min
{

1, B1

(
1+ Ê1

)}
.

Now we work as in the proof of Proposition 2 in Section A.2. Repeating the argument there, we

can show that optimal beliefs satisfy B1

(
1+ Ê1

)
≤ 1, so we can substitute w1 = B1

(
1+ Ê1

)
and w2 = 1+ η−w1 into W . Using Equations 2 and B.11 to substitute for V and U , respectively,
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in W , and doing some algebra, we can write

W = E
[
(β+φ) u(w1)+φ

2Ê0 [u(1+η − w1)]+βφÊ1 [u(1+η − w1)]+β2u(1+η − w1)
]

+β2E
[
−

1
2
(1+ η)2

]
+ φ2Ê0

[
−

1
2
(1+ η)2

]
+ βφÊ1

[
−

1
2
(1+ η)2

]
.

The first line of the RHS of this equation is simply the well-being in the absence of an incentive

for speed. So differentiating, we see that for t = 0 and for t = 1, dW
d Êt

equals its counterpart in

the case without an incentive for speed, minus a constant times 1+ Êt . Thus, optimal beliefs with

an incentive for speed are (weakly, since the constraint Êt ≥ 0 may bind) more optimistic than

without an incentive for speed.

Claim B.3. (Incentive for accuracy of task duration prediction)

A payment −1
2

(
E [η]− Êu [η]

)2
at t = 2 that is decreasing in the absolute difference between

objective and time u subjective expectations about task duration,
∣∣∣E [η]− Êu [η]

∣∣∣, where u is 0 or

1, makes time u beliefs less optimistic, i.e., ÊND,a
0 [η] > ÊND

0 [η] or ÊND,a
1 [η] > ÊND

1 [η].

Proof of Claim B.3 The only change from the setup in Section 1 is that now Equation 3 becomes

Ut := Êt

[
φ2−t

(
−

1
2

(
E − Êu

)2
)
+

∑
τ≥t

φτ−tu (wτ )

]
. (B.12)

Working exactly as in the proof of Claim B.2 above, we find that the optimal work at time 1 is

w∗,a1 = min
{

1, B1

(
1+ Ê1

)}
.

Again working exactly as in the proof of Claim B.2 above, we can write the well-being as

W = E
[
(β+φ) u(w1)+φ

2Ê0 [u(1+η − w1)]+βφÊ1 [u(1+η − w1)]+β2u(1+η − w1)
]

−
1
2

(
β2
+ βφ + φ2) (E − Êu

)2
.

The first line of the RHS of this equation is simply the well-being in the absence of an incen-

tive for accuracy. So dW
d Êt

equals its counterpart in the case without an incentive for accuracy,

plus
(
β2
+ βφ + φ2) (E − Êu

)
, which is positive given that beliefs are optimistic. Thus, optimal

beliefs with an incentive for accuracy are less optimistic than without an incentive for accuracy.
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