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This paper provides an applied managerial summary of the theory and empirical tests 

developed by the authors in a forthcoming Marketing Science article.  For detailed derivations, 
proofs of all propositions, screen shots of the web-based data collection, details on the empirical 
analysis, detailed statistical tests, and other material please refer to: 

Michael Yee, John Hauser, James Orlin, and Ely Dahan (2006), “Greedoid-Based Non-
compensatory Two-Stage Consideration-then-Choice Inference,” (April) forthcoming, 
Marketing Science. 

The present paper is presented as a summary of the paper to be published in Marketing 
Science.  Although we have endeavored to write new text, provide new figures, and organize the 
data in new tables specifically for this paper, should any conflict in copyright arise, it is to be 
resolved in favor of the Institute for Operations Research and Management Science (INFORMS), 
the publishers of Marketing Science. 

“MUST-HAVE” FEATURES 
There are over 300 make-model combinations of automobiles on the market, but the average 

consumer considers less than 10 make-model combinations.  If an automobile manufacturer can 
determine how to entice consumers to consider its make-model combinations, e.g., a Ford 
Mustang, then the manufacturer can reduce the choice set from 1 in 300 to 1 in 10—a factor of 
30.  By designing cars that will be considered, an automobile manufacturer greatly increases its 
chances of making a sale.  For example, General Motors (GM) believes that GM vehicles are 
better than consumers perceive them to be and that GM would gain share if consumers would be 
more willing to consider GM vehicles. 

The consideration-set challenge is not limited to automobiles.  A recent survey of websites 
selling personal digital assistants (PDAs) suggests that there are 21 models available at Circuit 
City, 25 at Staples, 27 at Microcenter, 30 at CompUSA, and 97 at Govconnection (MIT’s 
approved vendor).  It is the rare consumer who will evaluate all of the PDAs available before 
making a decision.  More likely, the consumer will screen on some characteristics before 
evaluating a small subset of the available PDAs. 

In each of these cases the managerial challenge is to identify the “must have” (or “must not 
have”) features that determine the consideration sets of consumers.  Must-have features are non-
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compensatory in the sense that a product with must-have features is preferred to a product 
without these must-have features even if the product without the must-have features is better on 
all other features. 

The identification of must-have features is related to the conjoint-analysis goal of identifying 
the most important features, but there are differences.  We seek to complement conjoint analysis 
methods.  In particular, we address two issues: (1) We seek to infer directly non-compensatory 
decision processes, e.g., processes in which some products have must-have features that drive 
consideration or choice. (2) We explore methods that apply well if the respondent is asked to 
indicate those profiles which he or she would consider.  This task can be used alone or in 
addition to the rank, rating, or choice tasks that are typical in conjoint analysis.  The methods we 
summarize are practical.  Empirical data suggests they often predict at least as well as traditional 
conjoint analysis. 

CONJOINT ANALYSIS ASSUMES, PRIMARILY, A COMPENSATORY MODEL 
Traditional conjoint analysis represents products by profiles of features and asks respondents 

to express their preferences among those profiles.  Respondents might rank the profiles, provide 
ratings that express preference, or simply choose from sets of profiles.  The basic preference 
model assumes that the preference for a profile can be expressed as a combination of the 
“partworths” of the feature levels.  In most cases, the preference function is separable, meaning 
that a preference score is an additive or multiplicative combination of the partworths for the 
levels of the features that describe the profile.  Although interaction terms are possible, they are 
not commonly used.  For ease of exposition we ignore interactions, although this does not affect 
our basic arguments. 

Figure 1 presents an additive model that illustrates how a respondent might evaluate two 
smartphones using a compensatory decision process.  In Figure 1, the partworth for “Verizon” is 
larger than the partworth for “Cingular,” but the other partworths of the Cingular phone, “flip,” 
“price = $299,” and “manufactured by Sony,” compensate for the fact that, all else equal, the 
respondent would prefer “Verizon” to “Cingular.”  An additive conjoint model predicts that the 
respondent would choose the Cingular smartphone. 
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Figure 1 
Illustration of a Compensatory Model 

Verizon = 10

Brick = 2

$499 = 1

…

Nokia = 3

Cingular = 3

Flip = 7

$299 = 6

…

Sony = 5

“Flip” and “$299”
can compensate for 
a lower partworth 
on “carrier.”

“Utility = sum of 
“partworths”

 

But what if the respondent is faced with over twenty smartphones and adopts a different, 
more-realistic screening rule.  As indicated in Figure 2, the respondent might consider only flip 
phones, with mini-keyboards, from Blackberry.  If this were the case, smartphones without these 
characteristics would never be considered and would never be chosen.  In a non-compensatory 
decision process, other features such as carrier, operating system, GPS capability, camera 
capability, and price cannot compensate for a smartphone that does not flip, have a mini-
keyboard, or is from Blackberry.   

Figure 2 
Illustration of a Non-Compensatory Decision Process 

Phone BrandPhone BrandMini KeyboardMini Keyboard

FlipFlip

“I will only consider
flip phones, with mini-keyboards, from 

Blackberry”
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In theory, an additive partworth model can represent such a process, but, in practice, such an 
additive model would put a strain on estimation.  We illustrate this capability with binary 
features for ease of exposition.  For binary features it is easy to identify a set of partworths that 
acts lexicographically.  Lexicography is a non-compensatory process in which the respondent 
evaluates profiles by features, one at a time, accepting that profile only if it is better or equal to 
other profiles on the feature currently being evaluated.  The respondent continues until all 
profiles have been sorted according to the task—full rank if traditional full-profile conjoint 
analysis, best of a set for choice-based conjoint analysis, or “considered” for a consideration 
task. 

One function that acts lexicographically for n binary features is to assign 2n-1 to the first 
evaluated feature, 2n-2 to the next feature, …, and 1 to the last evaluated feature.  For sixteen 
binary features, this means that the partworth for the first feature would be 32,768, the second 
feature 16,384, and the last feature 1.  Clearly, partworths that vary in magnitude by a factor of 
over thirty-two thousand would put a strain on most estimation procedures and would be 
extremely sensitive to response errors.  Furthermore, mimicking a lexicographic process by 
assigning values to partworths does not imply unique partworths, even to a positive linear 
transformation.  Other combinations such as 3n-1, 3n-2, …, 1 would also work.  In fact, still 
another set of “partworths,” the denominations of US currency, acts lexicographically.  A rational 
consumer would prefer 5¢ to 1¢, 10¢ to 5¢ plus 1¢, 25¢ to 10¢ plus 5¢ plus 1¢, etc. for 50¢, $1, 
$2, $5, $10, $20, $50, $100, all the way up to $10,000 – a form of currency no longer in 
circulation. 

CONSIDERATION TASK 
The standard task in conjoint analysis asks the respondent to indicate preferences.  Although 

most estimation procedures could be modified to deal with data in which the respondent simply 
expresses consideration, that has not been common.  While we expect that non-compensatory 
processes are common for choice tasks, we expect they are even more common for consideration 
tasks.  Thus, we want a method that handles consideration-set data naturally, as well as choice, 
ranking, or rating data. 

NON-COMPENSATORY MODELS 
In this paper we consider lexicographic models, an important class of non-compensatory 

models.  As defined above for binary features, a respondent acts lexicographically if he or she 
first ranks the features of profiles.  Those profiles with the first-ranked feature are preferred to 
those profiles without the first ranked feature.  In the case of ties on the first-ranked feature, we 
move to the next profile continuing until the tie is broken.  A profile with a higher-ranked feature 
is chosen even if another profile without the high-ranked feature is better on each and every 
lower-ranked feature. 

For example, consider four binary features of smartphones: flip preferred to brick, small 
preferred to large, mini-keyboard preferred to no keyboard, and a Palm operating system 
preferred to a Microsoft operating system.  Suppose the features are ranked flip, small, mini-
keyboard, and Palm.  Then if we represent profiles by indicting the features they have, this 
lexicographic ordering implies the following orders.  We have underlined the critical comparison. 
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• {flip, large, no keyboard, Microsoft}  {f brick, small, keyboard, Palm} 

• {flip, small, keyboard, Palm}  {flip, f large, keyboard, Palm} 

• {brick, large, keyboard, Microsoft}  {brick, large, f no keyboard, Palm} 

• {brick, large, keyboard, Palm} f  {brick, large, keyboard, Microsoft}. 

The basic idea extends to multi-level features, but, in order to model consumer decision 
making, we must consider how consumers treat levels within features.  Here we adopt Tversky’s 
(1972) nomenclature and call each level of a feature an “aspect.”  Basically, an aspect is a binary 
feature, e.g., “flip vs. brick” or “Verizon vs. not Verizon.”  A multi-level feature is then a set of 
linked aspects.  For example, the feature, “carrier,” can have one of four aspects: Verizon, 
Cingular, Sprint, or Nextel. 

For multi-level features we can have four different decision processes that vary on how 
consumers evaluate aspects (levels) within features.  These are: 

• lexicographic by features (LBF): the consumer first ranks the features and then ranks 
aspects within features 

• acceptance by aspects (ABA): the consumer first ranks aspects and then accepts profiles 
if they have the aspects 

• elimination by aspects (EBA): the consumer first ranks aspects and then rejects profiles if 
they do not have that aspect 

• lexicographic by aspects (LBA): the consumer first ranks aspects and then either accepts 
a profile if it has an aspect or rejects a profile if it does not have an aspect 

These four decision rules are illustrated in Figure 3 for playing cards.  Note that (1) if all 
features are binary, then all four decision models can provide the same ordering of profiles, (2) if 
some features are multi-level, then the decision models provide different ordering of profiles, and 
(3) LBA nests all of the other decision models.1

                                                 
1  When we say that two decision models can provide the same ordering of profiles, we mean, there exists an aspect- or feature-ordering that 

orders the profiles the same.  The aspect- or feature-ordering can be different in the two models being compared.  For example, for a given 
ABA model there exists an EBA model that ranks profiles in the same order.  To transform an ABA model into an EBA model, we reverse all 
binary aspects (e.g., change Verizon to not Verizon) and reverse the ranking of aspects.  We can always represent an LBF model by an ABA 
model if we constrain aspects within a feature to be contiguous in a rank order, but we can identify ABA models that are not represented by 
equivalent LBF models.  We can represent any LBF, ABA, or EBA model by an equivalent LBA model. 
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Figure 3 
Four Lexicographic Heuristics Illustrated with Playing Cards 

♣ , ♠, A, ♥

♦ ♥

♥, ♦

♥ ♦

LBALexicographic
By Aspects

♣ , J , , EBAElimination
By Aspects

♠, A,ABAAcceptance
By Aspects

(♠ > > > ♣), 
(A > J)LBFLexicographic

By Features

Ranking
Rule

TLA
(Three-
Letter 

Acronym)
Simplifying

Heuristic

♣ , ♠, A, LBALexicographic
By Aspects

♣ , J , , EBAElimination
By Aspects

♠, A,ABAAcceptance
By Aspects

(♠ > > > ♣), 
(A > J)LBFLexicographic

By Features

Ranking
Rule

TLA
(Three-
Letter 

Acronym)
Simplifying

Heuristic

♥

♦ ♥

♥, ♦

♥ ♦ J♦J♠ J♣A♣A♦J♥A♥A♠

First
Choice

by 2nd
Choice

3rd
Choice

by 4th
Choice

5th
Choice

6th
Choice

7th
Choice

Last
Choice

J♠ J♦ J♣A♣A♦ J♥A♥A♠

J♦ J♣A♣A♦ J♥J♠A♥A♠

J♠ J♦ J♣A♣A♦ J♥A♥A♠

Totally
Diverge
Totally
Diverge

 

WHY NOT JUST ENUMERATE ALL LEXICOGRAPHIC MODELS? 
A lexicographic model is a simple model and it is an easy decision rule for a consumer to 

use.  Furthermore, while the set of all compensatory models is defined on an uncountable infinite 
set of partworth values (  for n aspects), there are only finitely many lexicographic orderings 
of aspects.  For example, if we know which aspects are favorable, e.g., the respondent prefers 
flip smartphones to brick smartphones, then there are n! possible lexicographic orderings of the n 
aspects.

1−ℜn

2  If we need to infer which aspects are favorable, then there are 2n n! possible 
lexicographic orders. 

If the number of aspects is small, then it is feasible to enumerate exhaustively all possible 
lexicographic orders and choose, for each respondent, the lexicographic order of aspects that best 
describes that respondent’s profile ordering (rating or choice).  For example, with 3 aspects we 
need only consider 3! = 6 aspect orders for ABA or EBA and only 233! = 48 aspect orders for 
LBA.  With 4 aspects we need only consider 4! = 24 and 244! = 384 aspect orders for ABA and 
LBA, respectively. 

With exhaustive enumeration we could use any reasonable metric to define “best.”  For 
example, we might maximize a Spearman rank correlation, a Kendall’s τ rank correlation, or, 
perhaps, the number of paired violations.3   

The challenge comes when the number of aspects grows.  For example, Martignon and 
Hoffrage (2002) study a famous lexicographic problem and exhaustively enumerate all 
lexicographic orders for a 9-aspect problem.  Their problem requires a total of 9! = 362,800 
orders to be evaluated.  They report computations that required two days to complete.  On 
                                                 
2  If the model is constrained to LBF there are fewer possible orderings (m1!m2! for m1 features at m2! levels each). 
3  Minimizing the number of paired violations is equivalent to maximizing Kendall’s τ. 
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today’s computers we can do such computations much faster, perhaps minutes or even seconds.  
With 300 respondents and 9 aspects, exhaustive enumeration might still be feasible for 9 aspects.  
However, when we increase the challenge to a 16-aspect problem, then we must evaluate 16! 
aspect orders for ABA.  However, 16!= 57,657,600 * 9! if we knew the preferred direction of 
each aspect.  It is much worse if we must infer the preferred direction of each aspect: 21616! = 
3,778,648,473,600 * 9!.  If the Martignon and Hoffrage algorithm took just a single second to 
run, an LBA problem would take almost 120,000 years.  Clearly, exhaustive enumeration of 
reasonably-sized problems will not be feasible any time soon, even taking Moore’s Law of 
increased computing power into account. 

GREEDOID METHODS DEVELOPED BY YEE, ET. AL. (2006) 
Fortunately, the relationship between an aspect order and an induced profile order has special 

structure.  Yee, et. al. (2006) establish that this relationship can be described by a greedoid 
language if the goodness of fit measure is to minimize the number of paired comparisons that are 
violated.  Based on the mathematics developed for greedoid languages, Yee, et. al. prove the 
following propositions. 

1. if there exists a lexicographic ordering on the aspects that induces a profile ordering that 
matches the respondent’s profile ordering, then the aspect ordering can be found with a 
polynomial-time algorithm (a greedy algorithm). 

2. if there is no lexicographic ordering on the aspects that induces a profile ordering that 
perfectly matches the respondent’s profile ordering, then the best-fitting aspect ordering 
(or orderings) can be found with a dynamic program that runs in the order of 2n steps. 

3. the dynamic programming algorithm can be altered slightly to allow the paired orderings 
to be weighted differentially.  A weighted algorithm also runs in the order of 2n steps. 

Yee, et. al. and, later, Yee (2006) prove, in addition, a series of propositions that speed the 
algorithm further.  The net result is that there is a simple algorithm that can solve reasonably-
sized problems in a second or less.  (The simple algorithm requires only a dozen lines of pseudo-
code.  More complicated algorithms require more code, but run significantly faster.)  Yee, et. al. 
further demonstrate that if the manager is only interested in the aspects that are ranked highly, 
then even large problems, say 50 aspects, can be solved in reasonable time. 

With the greedoid-based dynamic programming algorithms it is now feasible to use realistic 
preference, choice, or consideration tasks to infer the best lexicographic ordering of the aspects. 

BENCHMARKS 
We consider two traditional benchmarks.  The first is hierarchical Bayes and the second 

LINMAP.  In our empirical test, we collect data with either a rank-order data or a consider-then-
rank task, thus the appropriate hierarchical Bayes model is a ranked-logit model, which we label 
HBRL.  LINMAP is a traditional model based on linear programming (Srinivasan and Shocker 
1973).  However, recently, Srinivasan (1998) recognized that the performance of LINMAP could 
be improved by requiring that partworths be chosen to assure strict rank orderings of the profiles.  
In previous versions, if the respondent ranked profile i above profile j, then LINMAP’s 
goodness-of-fit measure would not penalize a set of partworths that rated profile i equal to 
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profile j.  The new version of LINMAP adds a penalty for partworths that allow ties.  (See 
Srinivasan 1998 for details.)   We provide comparisons between the two versions of LINMAP. 

There is an important complication that we must take into account when using either HBRL 
or LINMAP as benchmarks.  HBRL and LINMAP are additive models and, hence, have the 
capability to identify partworths that act as if the respondent were using a lexicographic model.  
(Review Section 2.)  Although finding such partworths may not be practical when there is 
response error, such partworths are theoretically feasible.  Any benchmark comparisons must 
take this (theoretical) nesting of models into account. 

If the goal is simply to find the model that predicts best, then this complication does not 
matter.  We place no constraints on either HBRL or LINMAP and choose the model that predicts 
best.  However, we might have other goals.  We might want to gather evidence to attempt to infer 
the decision rule that the respondent is using.  In this case, we might take as evidence a finding 
that the best lexicographic model predicts better than the best compensatory model.  In order to 
gather such evidence, we must define what we mean by compensatory. 

In general, compensatory means that doing well on some aspects can compensate for doing 
poorly on other aspects.  The least restrictive version of a non-compensatory decision rule is an 
additive partworth model in which the largest (aspect-based) partworth exceeds the sum of all 
other (aspect-based) partworths, plus, the second-largest partworth exceeds the sum of all 
remaining partworths, and so on to the smallest partworth (Kohli and Jedidi 2006).  
Unfortunately, imposing constraints based on this least restrictive definition is difficult 
computationally because such a set of constraints does not imply a convex set. 

A simpler and more-realistic set of constraints is to define a q-compensatory model such that 
no partworth ratio is larger than q.  (The largest partworth can be no larger than q times the 
smallest partworth.)  This is an extension of the definition used by Bröder (2000) in psychology.  
(Bröder’s comparison used q = 1.)  Note that this is a definition.  By the principle of optimality, 
imposing the q-constraints will lead to worse fit, although it might lead to better predictions.  
Thus, we cannot, in principle, write an algorithm to find the “best” q, unless we use holdout data 
to identify q, which would not be appropriate.  

We compare models on three metrics.  Our fit measure is the percent of ranked-pairs that are 
not violated.  This measure is optimized by the greedoid-based dynamic program, although the 
program is searching over a finite set of orders compared to an uncountable infinite set of 
partworths that is evaluated by HBRL or LINMAP.  Although the details vary, this fit measure is 
close to that which is optimized by LINMAP.  This fit measure is not optimized by HBRL, 
although we expect that HBRL will do well on this fit measure.   

In addition to our fit measure, we compare the performance of the greedoid-based dynamic 
program and the benchmarks on their ability to predict holdout data.  The two measures of 
prediction are (1) holdout pairs that are not violated and (2) holdout hit rate. 

EMPIRICAL DATA 
Yee, et. al. tested greedoid methods with a 2x2 empirical experiment in which respondents 

evaluated 32 smartphones profiles that varied on 16 aspects which were grouped into seven 
features: carrier (Verizon, Cingular, Sprint, Nextel), manufacturer (Sony, Samsung, Nokia, 
Blackberry), price ($99, $199, $299, $499), operating system (Palm, Microsoft), form (flip, 
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brick), keyboard (mini, none), and size (small, large).  Half the respondents were asked to first 
indicate which smartphones they would consider and then to rank only those smartphones that 
they would consider.  The other respondents ranked all 32 smartphones. In a full-crossed design, 
half of the respondents were allowed to presort smartphones by features and half were not.  
There was also a fifth cell in which respondents were presented with only 16 smartphones in the 
consider-then-rank, no-sort task. 

Screen shots are given in Yee, et. al.  Respondents were shown a fractional factorial of 32 
profiles.  Each profile (smartphones) was represented by icons which illustrated the features.  
The task and the questionnaire was pretested carefully and respondents understood the task, the 
icons, and the questions.  To indicate consideration, respondents clicked on the smartphone icon.  
After the click, the considered smartphone was surrounded by a blue box.  When respondents 
were finished indicating their consideration set, they clicked to continue.  Smartphones that were 
not considered disappeared from the screen and only the considered smartphones were displayed.  
Respondents then clicked on their first choice, which disappeared from the screen.  This 
continued until all considered smartphones had been ranked.  Respondents in the rank-only task 
where not shown the consideration screen; they completed the rank task for all 32 smartphone 
profiles.  In the two experimental cells in which respondents were allowed to presort the 
smartphone profiles, they were presented with three drop-down boxes in which they could 
choose features on which to sort.  They could sort as many or as few times as they wanted. 

In the holdout task, respondents were presented with two sets of four additional smartphone 
profiles, chosen from a second fractional factorial of the seven features.   We designed the 
holdout task so that it had a different look and feel.  In particular, respondents sorted the four 
profiles with a task similar to that which is used to sort slides in Microsoft PowerPoint.  They 
then indicated which, if any, of the profiles they would consider.4  Prior to completing the 
holdout task, and after the initial consider-the-rank or rank-only task, respondents completed a 
mini-IQ test to cleanse short-term memory (Frederick 2005). 

RESULTS (SUMMARIZED FROM YEE, ET. AL. 2006) 
Table 1 summarizes the empirical comparisons reported in Yee, et. al.  As expected, both 

LINMAP and the greedoid-based lexicographic-by-aspects (LBA) model do well on fitted pairs, 
although LINMAP is slightly (but significantly) better.  HBRL, which does not optimize fitted 
pairs, does less well.  Constraining the model to be q-compensatory reduces fit, more so for 
HBRL than for LINMAP.  It appears that LINMAP can readjust its optimization to overcome the 
q-constraint. 

                                                 
4  For an analysis of the holdout consideration data, see Yee (2006). 
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Table 1 
Fit and Predictive Ability (from Yee, et. al. 2006) 

 Fit (Pairs) Holdout Pairs Holdout Hit Rate 

Lexico by aspects 95.5% 74.5%* 59.7%* 
Lexico by features 82.8% 65.8% 48.1% 

HBRL 87.1% 74.3%* 54.9% 

HBRL (q) 82.8% 69.0% 48.9% 

LINMAP 96.9%* 73.6%* 54.9% 

LINMAP (q) 95.7% 73.6%* 56.9%* 
*Best or not significantly different than best at 0.05 level 
 

The more interesting comparison is on the holdout data.  LBA does better, albeit not 
significantly so on holdout pairs, than either HBRL or LINMAP.  We are quite impressed with 
this result, which we interpret as “at least as well,” because LBA is a much more highly 
constrained model than either HBRL or LINMAP.  It certainly suggests further investigation. 

When we constrain the additive models so that they are truly q-compensatory, then holdout 
predictions are significantly worse for HBRL (q).5  One interpretation is that respondents may, in 
fact, be using simpler non-compensatory decisions.  However, this interpretation can at best be 
treated as initial evidence and is subject to further empirical tests. 

The comparison to a LINMAP-based q-compensatory model is quite interesting.  Because 
LINMAP optimizes fitted pairs, there is a danger of over-fitting the data.  Various constraints 
might help mitigate over-fitting.  The non-compensatory constraints are one such set of 
constraints and they seem to improve holdout predictions at the expense of fit.6  On the other 
hand, the q-compensatory constraints might also mitigate over-fitting.  The improvement is slight 
relative to an unconstrained LINMAP, and not as much as LBA, but it is interesting and worth 
future research.  

Finally, recall that LBF is nested within the more-general LBA.  LBF is another form of 
constraints and may prevent over-fitting if respondents are truly using features rather than the 
more-detailed aspects to rank profiles.  However, on average, predictions are not improved with 
LBF (relative to LBA) suggesting that most respondents are likely using aspects rather than 
features to order profiles.  This result is intuitive in this category.  Respondents might have a 
favorite carrier, say Verizon, which becomes an acceptance aspect.  Once the consideration set is 
limited to Verizon, the respondent may prefer to rank on other aspects, say price or form, than 
rank on the remaining carriers. 

                                                 
5  In this table we use q = 4.  Yee, et. al. provide results for q that varies from q = 2 to q = ∞.  The qualitative interpretations are relatively 

insensitive to the choice of q within reasonable ranges. 
6  The greedoid-based dynamic program searches over a finite set of aspect orderings rather than an uncountable infinite set of partworths.  For 

every ordering there is a set of partworths that acts isomorphically. 
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Yee, et. al. also use the data to address a series of behavioral questions. We summarize the 
results here: 

• the consider-then-rank task is rated significantly better on enjoyment, interest, and 
perceived accuracy and, for the no-sort cells, takes significantly less time to complete, 

• about 2/3rds of the respondents’ holdout predictions are at least as good with LBA as 
with a compensatory model and predictions are, on average, about 5 points higher, 

• about 2/3rds of the respondents appear to be using aspects rather than features to sort 
profiles, 

• Yee, et. al. obtain the same pattern of significance with either holdout hit rates or holdout 
pairs, 

• giving respondents the opportunity to presort profiles does not appear to provide a 
significant difference in respondents’ tendency to use lexicography, 

• more respondents appear to be lexicographic if they are asked to complete a rank task 
than a consider-then-rank task,7 

• for the consider-then-rank task, there does not appear to be a significant difference in the 
use of lexicography among those respondents who asked to evaluate 32 profiles as 
compared to 16 profiles.8 

• when the analysis is replicated on a data set from Lenk, et. al. (1996), Yee, et. al. obtain a 
similar pattern of results as with the smartphone data.  For example, LBA does just as 
well as HBRL on holdout hit rate.  It does well, but not quite as well as HBRL on holdout 
pairs.9   

Table 2 
Additional Results on LINMAP and the Use of Self-Explicated Data 

 Fit (Pairs) Holdout Pairs Holdout Hit Rate 

Strict LINMAP w/o SEs 96.9%* 73.6%* 54.9%* 
Classic LINMAP w/o SEs 79.3% 67.2% 45.5% 

Strict LINMAP w/ SEs 88.3% 72.3%* 53.1%* 
HBRL w/o SEs 87.1% 74.3%* 54.9%* 
HBRL w/ SEs 79.4% 69.3% 49.9% 
*Best or not significantly different than best at 0.05 level. 

                                                 
7  The number of pairs on which the model fit is optimized is less with the consider-then-rank task than with the full-rank task..  Although this 

applies equally to HBRL, LINMAP, and the greedoid-based dynamic program, we cannot rule out an interaction in the sense that one of the 
methods might be more sensitive than the others to the amount of information available. 

8  At first glance this null result appears to contradict the standard results in behavioral science such as in Payne, Bettman, and Johnson (1993).  
However, the majority of the standard results deal with a choice task rather than a consider-then-rank task.  The Yee, et. al. data compare the 
percent of non-compensatory decision making for the consider-then-rank task.  Most of the pairs in the consider-then-rank task result from 
consideration decisions by the respondent.  The second rank-phase plays only a small role in estimation. 

9  LINMAP does not do as well as HBRL on the Lenk, et. al. data.  The original Lenk, et. al. data were ratings data.  HBRL, LINMAP, and the 
greedoid-based dynamic program are based on degrading the ratings data to retain only rank-order information.  Interestingly, the holdout hit 
rate obtained with LBA and HBRL on the degraded data is not significantly different than the holdout hit rate that Lenk, et. al. obtained using 
HB on the metric data. 
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ADDITIONAL RESULTS 
Yee, et. al. do not report a comparison of classic LINMAP to the new strict-pairs LINMAP.  

Nor do they report the details of a comparison in which the estimation methods use self-
explicated data as well as the rank (or consider-then-rank) data.  These results are presented in 
Table 2. 

As predicted by Srinivasan (1998), the new strict-pairs LINMAP does significantly better 
than classic LINMAP on fit, holdout pairs, and holdout hit rate.   

When self-explicated data (SEs) are added to LINMAP as constraints, the fit measure is 
degraded as is expected by the principle of optimality.  However, LINMAP with SEs does as 
well as LINMAP without SEs on both holdout pairs and holdout hit rate.  As recommended by 
Sawtooth (Sawtooth Software 2001), we expect HBRL with SEs as constraints to improve 
predictive ability.  This does not seem to be the case with our data.  See also discussion in Hauser 
and Toubia (2005) and Liu, Otter, and Allenby (2005). 

SUMMARY 
Greedoid-based methods provide a new, practical means to infer non-compensatory decision 

processes from the data that we normally collect for conjoint analysis.  The data collected by 
Yee, et. al. were based on a full-profile rank task or a full-profile consider-then-rank task.  The 
data collected by Lenk, et. al. (1996) were based on a full-profile ratings task.  The greedoid-
based dynamic program is also applicable to choice tasks and/or partial-rank tasks.  With suitable 
modification, it should be applicable to partial-profile task. 

The greedoid methods and related developments in the inference of non-compensatory 
decision making are new, but promising.  Initial empirical tests suggest that the new methods fit 
or predict holdout data as well as less-constrained methods (see also Kohli and Jedidi 2006).  The 
methods are easy to use, fast, and feasible for practical numbers of aspects.  They can identify 
the features that respondents “must-have,” that is, features that are ranked highly in a 
lexicographic aspect order.  We are optimistic and hope that other researchers continue to explore 
non-compensatory inference from conjoint-like data. 

Greedoid-based methods are certainly not the only means to analyze non-compensatory 
decisions.  Kohli and Jedidi (2006) used a modified greedy heuristic and report excellent results.  
Gilbride and Allenby (2004) use an HB specification to infer a screening process and also report 
excellent results. 
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