
Capability Erosion Dynamics

Authors:

Hazhir Rahmandad, Associate Professor of Industrial and Systems Engineering Virginia Tech, Visiting

Associate Professor, MIT Sloan School of Management, E62-462, 100 Main St., Cambridge, MA 02142,

hazhir@mit.edu

Nelson Repenning, Professor, MIT Sloan School of Management, E62-432, 100 Main St., Cambridge, MA
02142, nelson@mit.edu

Keywords:

Capability, Erosion, Resource Based View, Simulation, System Dynamics

ABSTRACT

The notion of capability is widely invoked to explain differences in organizational performance and research

shows that strategically relevant capabilities can be both built and lost. However, while capability

development is widely studied, capability erosion has not been integrated into our understanding of

performance heterogeneity. To understand erosion, we study two software development organizations that

experienced diverging capability trajectories despite similar organizational and technological settings.

Building a simulation-based theory, we identify the adaptation trap, a mechanism through which managerial

learning can lead to capability erosion: well-intentioned efforts by managers to search locally for the optimal

workload balance lead them to systematically overload their organization and, thereby, cause capabilities to

erode. The analysis of our model informs when capability erosion is likely and strategically relevant.

This is the pre-peer reviewed version of the following article: "Capability Erosion Dynamics." Rahmandad, Hazhir,
and Nelson Repenning. Strategic Management Journal Vol. 37, No. 4 (2016): 649-672. which has been published in
final form at http://doi.org/10.1002/smj.2354. This article may be used for non-commercial purposes in accordance
with Wiley Terms and Conditions for Self-Archiving.

http://doi.org/10.1002/smj.2354

INTRODUCTION

Explaining performance and productivity variations across firms in similar markets is a major concern of

strategy scholars and economists (Gibbons and Henderson 2010; Grant 2010; Syverson 2011). To explain

this observation several papers invoke the notion of capability, a set of routines that enable a firm to

produce a particular output given a set of inputs and targets (e.g., develop new products) (Winter 2003).

This perspective holds that variations in performance across firms in the same industry can be explained by

differences in their underlying capabilities (Nelson and Winter 1973; Hoopes and Madsen 2008; Leiblein

2011). Capabilities in this view manifest as a configuration of organizational routines and processes that

combine to create a complex (Denrell, Fang and Winter 2003), nonlinear performance landscape (Levinthal

1997; Levinthal 2000). The processes of imitation and adaptation on this landscape can lead to the

emergence of different capability configurations (Rivkin 2001; Rivkin and Siggelkow 2003) even in the

presence of competition (Lenox, Rockart and Lewin 2006; Lenox, Rockart and Lewin 2010), and thus the

observed heterogeneity.

One of the earliest articulations of the role of capabilities in determining competitive outcomes, Dierickx

and Cool (1989), recognized that capabilities tend to behave like “stock” or “level” variables, meaning that

they take time to both accumulate and erode. Subsequent research, however, has focused almost

exclusively on the processes governing the accumulation of capabilities, implicitly assuming that once a

particular configuration is achieved, the firm can continue to profit from any associated performance

benefits until environmental change renders one or more capabilities obsolete and the corresponding

configuration inferior. While turnover and forgetting may lead to the loss of some skills and minor disruption

to routines, local adaptation allows the firm to rebuild the capability and systematic erosion of capabilities is

not likely. Explaining heterogeneous performance outcomes using this perspective thus requires

understanding the mechanisms through which capabilities accumulate and how that accumulation might

differ across firms.

Despite the lack of attention given to it, erosion may play a significant role in determining competitive

outcomes. Consider two hypothetical cases: a) a population of firms in which it is very hard to find high-

performing configurations but easy to keep them, and where environmental changes gradually render high-

performing configurations ineffective; b) a population in which the high performing configurations are easy

to find but also likely to be lost. In both cases we would observe significant performance and capability

heterogeneity, but the underlying mechanisms would be very different. Leaving aside imitation effects,

differential capability acquisition rates will be the key mechanism in one, while the other will depend on

differences in capability erosion rates. As first suggested by Dierickx and Cool (1989), the possibility of

erosion could thus prove critical in explaining the distribution of firms’ performance. Occupying the high-

performing configurations in the strategic landscape might thus depend not only on the entry rate of firms to

those configurations, but also on the (undesired) exit rates from these configurations, i.e. due to capability

erosion.

Consider an empirical example. Several decades into the life of the software industry the basic

routines constituting effective software development capability are well known and stable (Cusumano and

Selby 1995; Jones 2000). Yet we do not find firms in this market uniformly mastering this capability and

many software projects continue to be significantly challenged. Figure 1 shows historical data on the

fraction of software projects falling in the Standish surveys’ successful, challenged, and failed categories.

While the category definitions and quality of such surveys could be debated, the basic finding that

performance patterns show little convergence over time is informative. Assuming firms do not need

decades to develop a capability (the elements of which are well-known), then performance heterogeneity

may better be explained by firms’ inability to sustain this capability, i.e. capability erosion.

<Insert Figure 1 here>

We begin by positioning capability erosion within the broader literature, including studies outside of strategy

research that document cases of organizational downfall. Next we draw on two case studies to describe the

processes underlying capability erosion and how it can be the unintended outcome of organizational

adaptation processes. Building on these cases we develop a simulation model to capture the mechanisms

that regulate the capability erosion dynamics we observe and the role of managerial action in these

dynamics. Analyzing the model allows us to identify the settings under which capability erosion dynamics

would be relevant. We use our findings to build a theory that connects capability erosion to strategy and

discuss the implications for research and practice.

Capability development and erosion

Explaining persistent performance differences across similarly positioned organizations has motivated

several recent studies in both strategy and economics (Gibbons et al. 2010; Grant 2010; Syverson 2011).

Large sample studies have shown that a substantial portion of the variation in firm performance arises from

differences in internal practices and capabilities even after controlling for industry and year effects (e.g.,

Rumelt 1991; Mauri and Michaels 1998; Spanos and Lioukas 2001; Bloom and Van Reenen 2007).

Studies performed at a more micro level reach similar conclusions. In situations ranging from heavy

manufacturing—pig iron (Salter 1960), steel (Ichniowski, Shaw and Prennushi 1997) and ship building

(Argote, Beckman and Epple 1990)— to cooking meals for commercial aircraft (Chew, Bresnahan and

Clark 1990) and human resource practices (Ichniowski and Shaw 2003), in-depth inquiries repeatedly find

significant differences in both the conduct and the outcomes of similar tasks. Large scale organizational

experiments have confirmed the significant performance impact of adopting alternative firm-level practices

(Bloom, Eifert, Mahajan et al. 2013). This line of research suggests both that internal practices and

capabilities matter, and that differences in those capabilities are not quickly eliminated by imitation

(Henderson and Cockburn 1994; Roberts and Dowling 2002; Syverson 2011).

For capabilities to have real explanatory power, they need to be understood and measured

independently of the performance outcomes ascribed to them (Williamson 1999; Priem and Butler 2001).

Therefore there has been increasing interest in the mechanisms through which capabilities are built,

developed, and matured (Helfat 2000; Helfat and Peteraf 2003). Building on Nelson and Winter (1982),

several theorists have advanced the notion that capabilities result from the repeated execution of specific

actions and experiential learning (Zollo and Winter 2002; Parmigiani and Howard-Grenville 2011). Early

studies emphasized the routine-driven and less mindful aspects of capability dynamics (Schreyoegg and

Kliesch-Eberl 2007). More recently, the cognitive and hierarchical foundations of capabilities have received

more attention (Gavetti 2005; Levinthal and Rerup 2006; Felin, Foss, Heimeriks et al. 2012; Foss,

Heimeriks, Winter et al. 2012) and several studies have focused on the dynamic capabilities that modify

operational capabilities and other organizational resources (Teece, Pisano and Shuen 1997; Eisenhardt

and Martin 2000; Winter 2003; Teece 2007).

Given the large and growing body of research on capability dynamics, it is curious that capability

erosion, defined as systematic loss of effective capabilities already established in an organization, has

received such little attention. If variations in capability levels are central to variations in firm performance, it

is conceivable that variations in capability erosion can be part of the explanatory mechanisms for

performance heterogeneity. Dierickx and Cool’s classic paper underlines the potential relevance of

resource erosion dynamics to performance heterogeneity (Dierickx et al. 1989), but subsequent research

on capability dynamics and economic research on productivity variation have largely excluded erosion as a

noteworthy possibility. Some formal models have considered the existence of organizational forgetting or

erosion (Hodgson and Knudsen 2004; Rahmandad 2012) due to turnover or insufficient organizational

memory systems (Argote 2012), but the phenomenon has not been considered as strategically relevant,

potentially because forgetting rates are seen as too small (Thompson 2007) or not systematically different

across competing firms. Overall, an existing capability is seen as subject to obsolescence, but the

underlying routines are perceived as robust and persistent once established (Helfat et al. 2003).

Two different bodies of literature motivate a more serious look at erosion. First, research on learning

curves suggests that organizations often forget at significant rates, empirically estimated to be as high as

40% per year, in settings from pizza franchises to aircraft production (Darr, Argote and Epple 1995;

Benkard 2000). Moreover these rates vary significantly across studies (Darr et al. 1995; Benkard 2000;

Thompson 2007). However, these studies do not delve into the mechanisms of capability erosion and the

sources of heterogeneity in forgetting rates.

Second, several case studies suggest that capability erosion can play a significant role in organization

failure (e.g., Hall 1976). Klein and Sorra (1996), Sterman et al. (1997), Easton and Jarrell (1998), Pfeffer

and Sutton (2000), and Repenning and Sterman (2002) all document cases in which firms had access to

valuable capabilities and resources but failed to capitalize fully on them or lost them over time. Carroll and

colleagues (Carroll, Sterman and Markus 1997) and Zuashkiani et al (Zuashkiani, Rahmandad and Jardine

2011) underline the potential for the loss of maintenance capability due to the reinforcing feedbacks that

promote reactive maintenance. Repenning (Repenning 2000; Repenning 2001) documents dynamics that

tip product development practices into an inefficient firefighting mode causing firms to lose their ability to

produce high quality products. Imbalanced growth and goal adjustment have been shown to erode service

capability and undermine a firm’s success in settings ranging from the airline industry (Morecroft 1997) to

banking (Oliva and Sterman 2001). Furthermore, the theory of normal accident posits that tightly coupled

systems always include inherent failure modes due to dysfunctional interactions among system

components that can compromise performance and safety of the large systems (Sagan 1993; Perrow 1999;

Rudolph and Repenning 2002).

While these studies provide examples of capability erosion, their impact on strategy research has been

limited. To be strategically significant, organizational pathologies need to be more than infrequent cases of

failure; they should reveal common mechanisms that could impact the heterogeneity of performance in a

population of firms. Not all maintenance organizations fall into the reactive mode, rates of “normal

accidents” vary significantly across industries, and forgetting rates are highly variable across different

organizations and it is exactly this variation that makes capability erosion an interesting mechanism to

study. Why are capabilities subject to erosion in some settings and resilient in others? Studying the

organizational characteristics, task structures, and feedback mechanisms that regulate capability erosion

rates might allow us to identify both the settings in which capability erosion matters for understanding

performance heterogeneity and the role of managers in moderating those dynamics. By connecting the two

disparate literatures, an explicit theory of capability erosion offers the possibility of new explanatory

mechanisms to understand firm heterogeneity and an enhanced understanding of organizational demise.

DATA AND METHODS

Our study of capability erosion is grounded in data from multiple-release software development. Product

Development (PD) is one of the major capabilities that influence firms’ performance (Eisenhardt et al. 2000;

Winter 2003) and an important empirical setting for studying capabilities (Chao, Kavadias and Gaimon

2009). Moreover, the software industry displays significant heterogeneity in PD performance (Moløkken

and Jørgensen 2003) despite the large literature on best practices (Jones 2000). While there is a rich

literature looking at PD in general (see (Brown and Eisenhardt 1995) and (Krishnan and Ulrich 2001) for

reviews), and single project dynamics (Abdel-Hamid and Madnick 1991; Ford and Sterman 1998; Lyneis

and Ford 2007), research on the dynamics of multiple-release product development processes has been

more limited.

Our method for building theory about capability erosion is the model-based case study (e.g. Perlow and

Repenning 2009). Our study proceeds in three steps, generating a different flavor of “theory” at each

juncture (Sutton and Staw 1995). In the first step we report an inductive study of two software

development projects within a single firm that displayed persistent and growing differences in performance,

despite sharing many similar features and repeated attempts to improve the performance of the lower

performing product. In the second step, we use both the case and existing theory to induce a simple

dynamic model that elaborates on the mechanisms that underlie capability erosion in our setting and yields

a logically consistent, formal theory of the phenomenon. Analyzing the model yields internally valid

inferences, well-defined boundary conditions for those inferences, and testable propositions (Harrison, Lin,

Carroll et al. 2007). In the final phase, we build on the insights from the formal model to outline a more

general, text-based theory of capability erosion and its implications. Our results are afflicted by the usual

limitations of theories inspired by small samples, but our use of multiple methods should enhance internal

consistency and better position future researchers to test the explanatory power of our theory.

The cases motivating the modeling work were selected inside Sigma, a global telecommunication firm,

using an intra-firm polar type research design (Yin 2009). With Sigma’s support, we identified Alpha and

Beta, two multiple release software products that showed significant differences in development outcomes

despite comparable technical complexity, resource loading, and incentive structures. We selected cases in

technologically stable markets to avoid confounding of exogenous technological shocks with capability

erosion. The comparison of these two product teams and their practices provided an opportunity to model

how differing approaches to sustaining PD capability could yield different performance levels, despite

similar exogenous conditions and the absence of technological shocks.

Data collection

At the study’s outset (summer 2004), the first author spent three months on site at Sigma conducting 48

semi-structured interviews, each lasting between 30 and 90 minutes. The interviews included members of

all the areas involved in product development within each product team: services, sales, architects and

systems engineers, developers, testers, customer service staff, sales support, marketing personnel, and

senior managers. Much of the initial effort focused on clearly delineating what was actually done to

develop new products (routines constituting the PD capability) and how that had changed over time. To

that end, the first author also travelled to two other sites, attended team meetings, and reviewed the

available archival data, mostly from Alpha’s case, including planning and review files for different releases

of the product, internal assessments conducted at the end of major releases, and quantitative data on code

development and bug fixing, human resources, and problems reported by customers. Additional interviews

were later conducted (until spring 2005) to evaluate and expand emerging model constructs and

relationships. These efforts included 22 additional interviews and a group session that elicited ideas from

26 experienced members of the firm.

Analysis

We analyzed the data in two phases. First, following standard practice for qualitative research (e.g. Glaser

and Strauss 1967) we focused on identifying emerging categories and causal relationships that informed

the development of the simulation model. In each interview we searched for PD practices, how they

changed over time, and how they related to major performance metrics (quality, cost, and schedule) and

looked for corroborations or disagreements across interviews. Based on these practices and the

observations on the site, we generated several hypotheses to explain observed differences in performance

outcomes across multiple releases of Alpha and Beta. Some of the identified processes confirmed the

existence of dynamics identified in prior research on firefighting (Repenning 2001), others however

revealed new mechanisms. The complete set of these dynamic hypotheses appears in the online technical

appendix. We then narrowed the list of hypotheses based on the most prominent themes found in the

interviews and product histories and focused our analysis on the mechanisms that extended beyond those

in prior research.

In the second phase, we integrated the hypotheses that emerged from the first phase into a single

cohesive theory via the development of a system dynamics simulation model (Forrester 1961; Sterman

2000; Gary 2005). The modeling process entailed first building a detailed model of software development

in Alpha and Beta, validated by the historical performance data, and then extracting the main dynamics in a

simpler, more stylized model that captured the essential elements of our emerging theory. This generic

model is discussed in detail in this paper (see (Rahmandad 2005) for a full report of the detailed model and

(Rahmandad and Weiss 2009) for an intermediate-size model focusing on concurrent software

development). Model formulations were developed based on case data and the relevant modeling

literature (Abdel-Hamid et al. 1991; Ford et al. 1998). We used the archival data and expert judgment to

parameterize and validate the detailed model. The parsimony of the generic model, however, comes at the

cost of simplified formulations and lack of calibration to numerical data. While we conceptually separate the

two phases of inductive research and modeling, in practice the modeling and fieldwork informed each other

in a continuous dialogue.

The simulation model served three purposes in our study. First, by flagging missing and inconsistent

components in our initial set of hypotheses, the formal model enforced the internal consistency of our

theory. Second, the use of simulation offset the cognitive limitations normally associated with drawing

inferences from dynamics theories (See Sterman 1994 for a summary of these limitations). Finally, via

extensive simulation experiments, the model enabled the derivation of testable predictions that extend our

theory beyond the context of the case studies in which it is developed.

VARIANCE IN SOFTWARE DEVELOPMENT AT SIGMA

The espoused development process at sigma

We first outline Sigma’s prescribed software development process, which all product teams were supposed

to follow, and then elaborate on the differing performance of the two projects we studied. Software is

typically developed in three phases (design, development, testing), which can be followed serially (e.g.

waterfall) or iteratively (e.g. spiral). Sigma’s development process was largely waterfall with the occasional

iterative element. The practices that constitute an effective software development capability are now well-

established (Jones 2000), and Sigma’s prescribed process closely followed accepted best practice for

waterfall development. In the concept design phase, the main features to be added to the next release are

chosen, the product architecture is designed, and general requirements for developing different pieces of

code are established. Subsequently, a more detailed outline of the requirements is developed that

describes the inputs, outputs, and performance requirements for the new or modified code. Next, software

engineers (developers) develop the code based on these requirements. The quality of the development

depends on several factors, including the developers’ skills, complexity of the software, adherence to good

practice (e.g., writing detailed requirements and doing code reviews), the quality of the code being built

upon, and the quality of the software architecture (MacCormack, Kemerer, Cusumano et al. 2003).

Preliminary tests (unit tests) are often run in this stage to insure the quality of the new chunks of code

before they are integrated together and sent to the quality assurance stage. Quality assurance entails

testing the code to find problems that stop the software from functioning as desired. Often these tests

reveal problems in the code that are referred back to developers for rework. This rework cycle continues

until the software passes the tests and is released. Due to the multitude of ways a product can be used in

the field, not all possible errors are discovered during testing. Therefore, there are always some bugs in

the released software.

Customers (typically large businesses in Sigma’s case) buy and install the software and require service

from the company. The service department follows up on problems reported by customers and refers bugs

to the development organization. Bugs, if they significantly detract from customer satisfaction, are fixed at

the customer site through an activity known as Current Engineering (CE). Non-critical bugs are fixed in a

subsequent release of the software, an activity known as Bug-fixing.

The development, launch, and service activities discussed above focus on a single release (version) of

the software, but there are typically multiple releases under development, resulting in two key

interconnections across the different releases. First, subsequent versions of the software build on their

predecessors and hence carry over problems in code and architecture if those problems are not remedied.

Second, because they draw off a common resource pool of developers, resources must be shared among

new development, fixing the architecture, bug-fixing and CE. Therefore, by influencing the level of CE and

bug-fixing, the quality of past releases impacts the resources available for new development.

Overview of two cases

The modeling was inspired by case studies of two projects, Alpha and Beta. Alpha is a Customer

Relationship Management (CRM) software for call centers. While initially produced by a small start-up

firm, Alpha was acquired by Sigma in 1996 and the team working on it has fluctuated around 120 full-time

employees. We focused our data-gathering effort on Alpha’s history post year 2000. Product Beta is part

of a telecommunication switch that is developed largely independently of its parent product, but is tested,

launched, and sold together with that parent. The majority of Beta’s over-80-person R&D team focuses on

developing software.

Over the study period, Beta’s development capability conforms to the above prescription, emphasizing

early review, root-cause analysis, and extensive automation of testing. As a result it often faces fewer

defects than many other products. When a field problem appears, the team does a root-cause analysis to

determine its sources, thus identifying and eliminating a potential failure mode in the underlying process.

While in other teams it is not unusual for thirty percent of the development resources to be engaged in

current engineering activities, in Beta this number has always remained under ten percent. Beta has also

delivered most of its releases on time. In two cases, Beta had to delay a release to remain in sync with its

parent product, which was delayed.

Alpha’s capability has been changing significantly over time. Whereas early releases were seen to

follow the best practices outlined above, over time Alpha’s development process lost its rigor. As a result,

while initial releases of Alpha met with significant success, led the market, and made the product a strategic

asset for Sigma, since 2003, due to increasing delays in delivery and low quality, Alpha has ceded its

leadership position. Alpha’s performance deteriorated in each of the three categories in which software

development is typically measured: schedule, quality, and productivity. Measured either in absolute terms

or as a percent of the original schedule, Alpha’s timeliness worsened or did not improve over the six

releases we studied (Figure 2-a). Quality, typically defined by customer’s experience of the software, is

measured by the number of serious bugs reported per customer in the first few months of installation of the

software. As shown in Figure 2-b, the number of bugs in Alpha grew on average over the period of study.

Finally, the productivity of the team can be measured by the number of lines of code developed per

individual involved with the R&D process. As shown in Figure 2-c, Alpha’s productivity declined

significantly over the second half of the study period (2000-2005).

<Insert Figure 2 about here>

Although Alpha and Beta shared many attributes, including size, resources and organizational and

incentive structures, and both had access to similar knowledge bases, their product development practices

and results diverged. The commonalities across the cases helped us in developing a generic model of the

contributors to PD capability dynamics; the variations assisted modeling work by providing insights into

different modes of operation which the common structure could generate. Next, we discuss the simulation

model, how it relates to the two cases, and how its analysis informs the role of managers in managing PD

capability.

MODEL AND ANALYSIS

We develop our theory in two steps. First, we focus on explaining the decline observed in the Alpha PD

process across multiple releases. Building on a representation of the “physics” of developing software, we

show how Alpha’s management approach, while intendedly rational, created a phenomenon that we call

the adaptation trap—a set of dynamics that trapped the development team in a vicious cycle of declining

productivity and increasing demands, and eroded the PD capability. Second, we show how Beta’s

managers successfully avoided the adaptation trap and why Alpha was unable to learn from Beta’s

success.

The rise and fall of Alpha: the Adaptation Trap

In contrast to Beta, Alpha’s use of best practice has eroded with time. Over the period we studied, the level

of requirement review declined, code review and unit testing increasingly suffered, and documentation of

the code became increasingly incomplete. One experienced developer commented:

‘What I have seen is years and years of degradation — getting worse and worse over time.’

In two steps, we explain how a strategically important capability managed by well-intentioned managers

could reach such a state. We begin by showing how the basic physical structure of any work process, when

coupled with the effects of work pressure on productivity, creates a system with a tipping threshold, a level

of activity that once exceeded causes a sustained decline in performance. We then extend the model to

capture how the dynamics change when the work process in question creates an installed base of products

that can require additional attention (e.g., bugs that need to be fixed). The result is a system in which it is

easy for managers to learn the wrong lessons concerning the appropriate level of resource loading, thereby

inadvertently eroding the capability that they depend on.

Work Pressure and Tipping. Figure 3 shows the stock and flow structure and basic feedback

mechanisms of our initial formulation. The stocks (boxes) represent the integration of different flows (thick

valves and arrows) and help distinguish between a particular action or activity (flow) and its accumulated

impact (stocks). Stock and flow networks lie at the foundation of any dynamic system (Sterman 2000).

The variable Demand for New Features1 represents the flow of requests for additions to the product. In

both Alpha and Beta, new features were proposed by sales, services, and marketing groups and were

largely controlled by higher managers rather than R&D staff (see Figure 3).

Newly proposed features accumulate in the stock of Features Under Development, remaining in this

stock until they are developed, tested, and released in the market to become part of the Features in the

Current Release. The flow Feature Release captures the speed at which the PD organization develops

and releases new features.

<Insert Figure 3 about here>

PD capability manifests in this setting as the ability to transform requests into defect-free features. This

capability consists of a large number of individual and small group routines such as early emphasis on a

1 The names of variables that appear in the model diagrams are italicized when they are first introduced.

robust architecture, detailed requirements, code reviews, automated and unit testing, and root cause

analysis of errors. Companies that successfully build and maintain this capability will sustain higher rates

of feature release for a given resource base and, therefore, potentially achieve competitive advantage

through some combination of more features, faster release times, higher product quality, and lower cost.

Given this representation of the system’s “physics,” we now turn to how the PD capability is impacted by

management’s decisions. While individual and team processes such as gaining experience and learning

from peers are important early in the capability evolution process, our study period starts when the Alpha

team had developed plenty of experience and had a well-functioning PD capability. In this period

managers’ actions, and specifically the speed of work they required from their team (e.g. by increasing

demand for new features), had a profound impact on the daily routines of Alpha. In tracing how that speed

was set, our informants pointed to schedule pressure as a key driver (which we call Resource Ratio): the

ratio of Resource Demand for Development given the current stock of Features Under Development and

the Available Resources (Figure 3). In principal, instead of requiring higher work speed, managers can add

resources or cut the number of desired features to bring the demand for features in line with the team’s

ability to deliver them.

Alpha’s options appeared to be more limited. Headcount additions could be counterproductive due to

the associated learning curve and were not easily granted by senior management in a timely fashion.

Similarly, feature requests were rarely eliminated, both due to the dictates of the Sigma’s leadership and

Alpha’s own desire to satisfy its customers. One of the managers explains the rationale behind the team’s

philosophy of attempting to respond to the majority of customer requests:

 ‘[The] customer is the one who is out there, and that’s what you are focused on… if some customer
comes, and I see I can sell to this customer if we do this thing, and there will be 7 million dollars of revenue,
you would say yes.’

Given these constraints on team size and feature requests, Alpha’s PD team reacted to increases in its

workload largely through changes in its speed of work. Thus when Alpha experienced a growing Resource

Ratio, the team reacted by increasing Work Speed. The increased work speed would, in turn, lead to an

increase in the Feature Release Rate. Taken together these links create the balancing Get the Work Done

loop; as the demand for new features grows, engineers work faster, release more, and, thereby, balance

the surplus in the requested number of features. This loop gives the team a significant measure of

flexibility in managing the inevitable variations in its workload. Work speed can be adjusted quickly, thus

enabling the team to accommodate variations in its workload without constantly changing the delivery

schedule.

Regulating variations in demand through work-speed does have a potential downside. The increased

speed often comes through shortcuts and less attention to detail, leading to inadequate requirement

development, incomplete documentation, lack of code review, and poor unit testing (e.g. MacCormack et al.

2003). Moreover, stress induced by sustained pressure can reduce individual productivity and increase

absenteeism and turnover, further limiting output. If sustained over time, such changes in daily activities

turn into changes in individual routines, and then group routines and organizational culture regarding quality

standards. Thus, a sustained, high, resource ratio can erode PD capability and hurt performance. In the

words of a technical manager in Alpha:

‘There is … a lot of pressure put on people to say how can you do this as fast as you can, and people
fall back on the ways that they used to do it, so instead of going through all this process stuff [they would
say] ‘I know what to code, I can just code it up.’’

In our model, as the resource ratio (i.e. work pressure) grows, the error rate (broadly defined to include

anything that limits net productivity) increases, thereby slowing the net completion rate. As the completion

rate slows, the stock of pending features grows (assuming a constant inflow of feature requests) thus

feeding back to create even more work pressure. This new feedback, the Make More Mistakes loop, is

reinforcing and amplifies any given disturbance. When working in the downward direction— a growing

error rate, declining net output, and mounting resource ratio—the “Make More Mistakes” loop acts as a

vicious cycle.

The interplay of these two processes dictates how the net rate of Feature Release evolves with changes

in the Resource Ratio and thus represents a key assumption in our formulation. Consistent with

psychological research (Mandler 1984), and previous research in product development (Taylor and Ford

2006) and software development (Abdel-Hamid et al. 1991), our discussions with study participants pointed

to an inverted U-shape relationship between the resource ratio and the net output. At modest levels, a

growing resource ratio improves net productivity as the positive effect, resulting from working faster offsets

any increase in the error rate. However, with increased pressure, the diseconomies of speeding-up

(Dierickx et al. 1989) dominate, causing the net effect to become negative.

Building on these formulations, Figure 4-a shows a characterization of the system’s dynamics. We

begin with the inverted U-shape curve that relates the resource ratio to the rate of feature release and

shows both the system’s equilibria (steady states) and the dynamics around those equilibria. The system

has two equilibria, each of which occurs at the intersection of the rate of feature demand and the inverted-

U. These equilibria represent the points at which the resource ratio induces just enough work effort to meet

the current level of feature demand. Once the system reaches either of these points, it will be in steady

state (i.e. equilibrium) with the rate of feature release equaling the rate of feature demand. Although both

points represent equilibria, the dynamics around them are very different. The equilibrium that appears on

the upwardly-sloping portion of the inverted-U is stable, meaning that small perturbations from it are offset

by the system’s dynamics. For example, a small increase in the resource ratio (perhaps due to a

temporary increase by management in feature demand) would cause the feature completion rate to

increase above the steady-state feature demand rate. That would be manifesting as a temporary excursion

off the stable equilibrium and up the inverted U. Thus, the stock of features pending will reduce, bringing

the system back into balance, and into using the high-quality practices. Formally, in this region, the

balancing Getting Work Done loop dominates the system’s dynamics and functions exactly as managers

desire, constantly working to bring the level of outstanding work and the available resources into balance.

 <Insert Figure 4 about here>

In contrast, the equilibrium that occurs in the downwardly sloping portion of the inverted U is unstable,

implying that any deviation off that equilibrium, rather than being offset, will be reinforced. As indicated by

the arrows on the inverted-U, the system is unlikely to ever settle at this point since even the smallest

perturbation will push the system on to a new trajectory, away from the unstable equilibrium. Due to these

dynamics, the unstable equilibrium is often called a tipping point, capturing the idea that once an unstable

equilibrium is crossed, the system’s dynamics can change significantly.

Consistent with this intuition, the tipping point plays a key role in determining the dynamics of the

system we study. Figure 5 shows an experiment in which the Feature Demand rate has been temporarily

increased, e.g. due to requests of customers or the management. In the first experiment (Figure 5-a), the

shock is not sufficient to push the system over the tipping threshold and, consequently, the system is able

to absorb the shock and return to its initial performance level (as measured by the feature release rate). In

the second experiment (Figure 5-b), in contrast, the increase is large enough to push the system over its

tipping threshold. Here, rather than returning to the initial equilibrium, the system gets stuck in a vicious

cycle of growing feature demand, mounting resource ratio and a declining rate of feature release as the

organization increasingly moves away from good (long term) practices. As the experiment indicates, when

the system crosses its tipping threshold, performance declines significantly and does not recover.

Importantly, the decline in performance is due to changes in day-to-day PD processes that compromise

long-term quality and productivity, gradually changing PD team’s routines, and in short, eroding the PD

capability.

<Insert Figure 5 about here>

Three key features emerge from analysis of the model so far. First, due to the existence of the tipping

threshold, the organization’s response to temporary shocks is non-linear. Shocks that do not push the

system over the tipping threshold are offset and only require a temporary departure from good development

practice; absent an additional intervention, shocks that do exceed that limit cause a permanent decline in

performance and capability. Second, the size of the shock required to push the system over the tipping

threshold is determined by the distance between the stable equilibrium and the tipping point. When the

distance is large, the system can absorb a substantial shock; when it is small, a modest perturbation can

push performance over the edge. Third, the distance between the two equilibria is a function of the steady

state rate of feature demand. As shown in Figure 4-b, as the rate of feature demand (horizontal line)

requested by customers or management rises, the two equilibria move up the inverted-U and the distance

between them shrinks. At very high feature demand rates, both equilibria disappear and the system’s

dynamics are dominated by a downward capability eroding spiral. Thus, managers in this system face a

clear trade-off between performance and robustness: As they demand more features, performance

continues to improve (as long as they stay within the inverted-U). However, as feature demand rises, the

size of the shock required to push the system over its tipping threshold declines. This is a general result

that holds as long as mounting work pressure eventually leads to a decline in productivity.

Alpha’s performance clearly declined over the period of study, and a vicious cycle of accumulating

outstanding work, mounting work pressure and declining performance was a major factor—one team

member described it as: ‘Ever increasing pressure to deliver higher quality in shorter intervals with fewer

resources — it seems never good enough.’ Moreover, the interviews strongly suggest that the declining

performance resulted from changes in the way the work was executed. Several developers noted that, due

to schedule pressure, the Alpha team increasingly abandoned the elements of good software practice such

as documentation in favor of getting the work done more quickly. One developer reported:

‘Code review is not formal here… in my view it should be formal… that would be great, but honestly I
can’t imagine doing that here because it takes too much time… I would love to do it, because that is an
obvious way to improve the quality, but the time it would take to do it’

The effect on the team’s morale was predictable:

‘…people are frustrated…everybody is under pressure, and specially as it gets closer and closer, we get
upper management say I want you to work weekends, I want you to work seventy hours a week, and I want
everybody to work from home till it is dawn, I don’t want to come any hour of the day and find the place
empty, and people say gee I am working my ass off and I am not getting the raise, they cancelled my
vacation, what do I get out of it, when it is done there is another release right behind it, and I have to go
through the same thing again. You end up in survival instinct, so it is like hang out and survive…. all this
would definitely affect the quality.’

Alpha’s capability clearly suffered the consequences of this increasingly ad hoc and high pressure mode

of execution. While it started well, Alpha’s quality declined significantly and later releases were plagued

with bugs requiring additional resources for remediation. One might have expected the Alpha team to

recognize that they were tipping into a vicious cycle and to have reduced the emphasis on speed

accordingly. Our interviews pointed to two complementary reasons for why such response was not

adopted by Alpha. At one level, the management’s mental frame for analyzing and responding to schedule

pressure assumed a positive, albeit diminishing, relationship between required speed and actual output.

The simple decision rule of asking for more to get more was intuitive and easy to act upon, which partly

explains its persistence. A second mechanism for persistence of this heuristic relates to how the managers

learn in such settings, which we elaborate on under adaptation trap.

The Adaptation Trap. The impact of errors in development goes beyond the immediate rework they

require when discovered. Some errors escaped the quality assurance process and remained in the

software shipped to customers. When discovered by customers, these errors would be referred back to the

R&D department. If the problem interfered with an important customer need, R&D would assign engineers

to fix the problem, usually through quick, customized patches at the customer site. Such current

engineering (CE) could take a significant share of R&D resources: Alpha allocated 30-50 percent of

development resources to CE work; Beta, in contrast, kept this number below 10 percent.

Current engineering introduces two important wrinkles to our analysis. First, CE requires additional

resources. Second, those resource requirements can only be known with a significant delay. Customers

must buy, install and use the new release before CE resource needs are revealed. In this section, we show

how these two features make the challenge of learning to appropriately balance resources and demands

far more difficult, and thus the capability erosion dynamics more likely.

<Insert Figure 6 about here>

Figure 6 shows the structure of our expanded model2. The flow of Feature Release now accumulates in

a stock of Features in the Current Release, representing the installed base of code released to Sigma’s

customers. A new flow, Defect Introduction, now runs in parallel to Feature Release, and captures the

stream of defects in new features that are not identified by in-house testing. The defect flow accumulates

in the stock of Defects in the Current Release, representing the stock of defects in software currently being

used by customers.

Defects in the field are eventually discovered and create additional demand for PD resources via current

engineering. The demand for CE increases the schedule pressure and thus the Error Rate. These new

links add an additional reinforcing feedback to the model, the Current Engineering loop. As the stock of

defects grows and customers request additional Current Engineering, developers face even more demands

on their time and must work faster to meet their delivery targets. As we discussed in the previous section,

the increased work speed can result in an even greater error rate, causing the stock of defects in the field

to grow further. Note that the strength (or gain) of this loop is potentially high as current engineering is

often extremely costly relative to fixing problems before they are released (Boehm 1981) and is usually

resolving the problem of a single customer. As one developer reported: ‘When somebody goes to fix a

defect, they can write just as much code [as new development].’

While Alpha’s PD team had little impact on feature demand rate (thus treating feature demand as

exogenous in Figure 3), regulating this demand rate (as well as project deadline and resources) was the

main lever managers had at their disposal for getting the best possible result from the PD organization. The

addition of current engineering and the delays associated with perceiving its full impact increases the

challenge facing those managers for two reasons. First, CE requires additional resources and thus

reduces the capacity of the organization to develop new features. This shifts the inverse U-shape graph in

Figure 4 down. Accounting for the magnitude of the shift creates a second challenge. Consider the

2 Detailed model equations, consistent with model reporting guidelines (Rahmandad and Sterman 2012)

are available in an online appendix.

decision to increase the rate of feature demand: Due to the delay in perceiving the increased CE demand,

in the short run, the system behaves as though no additional errors (from the additional features) make it to

the customer sites. Therefore, the delay increases the apparent capacity of the system. In fact, as the

fraction of errors that goes undiscovered grows, so too does the apparent capacity of the system to do

additional work (since resources do not appear to be needed for rework) (see Figure 7). In other words, in

the short-run, the system will behave as though it has more capacity than is actually available.

<Insert Figure 7 about here>

This feature of the system—that its short-term behavior differs significantly from the long run

performance—makes learning difficult. Recall the distance between the stable equilibrium and the tipping

threshold is determined by the feature demand. Increasing the rate of feature demand makes the system

more susceptible to a descent into destructive firefighting. Thus, the task facing managers is to trade-off

the higher level of performance that comes with a higher feature demand against the decline in the

system’s robustness to temporary shocks.

Such a decision is not particularly amenable to formal analysis. The organization’s true capacity is

difficult to estimate as is the workload associated with a given set of features. Managers are thus likely to

engage in local search, progressively increasing the workload through more feature demand or tighter

deadlines, and monitoring the performance of the system to determine whether the increases yield a higher

rate of feature release. Such local search processes are central to how organizational routines adapt and

create better performance (Nelson et al. 1982). Tightening the schedule to get the maximum feasible

performance was a common strategy in Sigma. A program manager comments:

‘The thinking that [a higher manager] had, and we think we agree with this, is that if your target is X and
everybody is marching for that target, you fill the time for that target. If you are ahead of the game, people
are probably going to relax a little bit: because we are ahead of the game, we don't need to work so hard,
we can take a longer lunch, we can do whatever; and guess what? Murphy's law says you now won't make
that target. So […] you shoot for X minus something, you drive for X minus something so that you build in
on Murphy’s law to a point.’

Localized search coupled with a system that displays different short and long run dynamics leads to the

notion of the Adaptation Trap. Consider Figure 7 and imagine a manager attempting to set the appropriate

balance of work and resources by incrementally increasing the rate of feature demand. In the short-run,

the system will behave as described by the upper inverted-U (which we label the apparent system). Such

local search will lead to a level of loading somewhere near the peak of the apparent curve. However, if the

true, long-run, behavior of the system is described by the lower curve, then the adaptation process will

have expanded feature demand beyond the sustainable capacity of the PD organization. When the

additional CE work does eventually start to appear, the PD organization will find itself past its tipping

threshold and on the slippery slope of firefighting. The tight schedule and high feature demand, which

initially seemed so effective, will cause the rate of feature release to fall below feature demand. That leads

to continued growth in the stock of features to be developed and, thereby, ensures that pressure stays high

and that the organization remains in the firefighting mode. Thus, in contrast to early experiments in which

an exogenous shock was required to push the system over the edge (and previous analyses of tipping

behavior in organizations such as (Repenning 2002) and (Rudolph et al. 2002)), the Adaptation Trap notion

suggests that such a decline can occur endogenously, resulting from the well-intentioned efforts of

managers to optimize their system. Due to delays inherent in getting feedback, managers do not receive

complete information about the results of their experiments, leading them to systematically overload their

development teams.

The existence of the adaptation trap depends on managers not fully accounting for the delays in the

system. Were they to fully account for delays in assessing the consequence of each incremental increase,

they would be less likely to overshoot. At Sigma, the calculation of expected resource needs for CE was

far less complicated: development teams were expected to dedicate no more than 10% of their resources

to CE activities. This rule was integral to resource allocation across projects. We found the application of

this heuristic was not challenged in the presence of contrary data, let alone be modified in recognition of

delays involved in perceiving CE needs. Experimental research, in which subjects have repeatedly been

shown to both underestimate time delays and fail to properly account for their impact on a system’s

dynamics (e.g. Sterman 1989; Diehl and Sterman 1995), further supports the core adaptation trap

mechanism.

Beta’s success in avoiding capability erosion

The previous discussion identifies the cognitive heuristics and consequent dynamics that can result in

capability erosion, thus raising the question of why Beta did not fall prey to the dynamics that were so

damaging to Alpha. The first order answer is simple; in contrast to Alpha’s emphasis on flexibility and

immediate efficiency, Beta was not willing to adjust its PD routines when the demand for new features

exceeded its ability to deliver them; the new features simply had to wait. A manager explains:

‘In [Beta]… we have lots and lots of huge pressures… [but] we don’t skip process, because that is the
tone we set… I have had people who skip process and I have had them fired, that it is not a platitude, I
insist.’

 Interestingly, though, we heard similar statements from managers of the Alpha team and they

made repeated attempts to improve their use of best practice. Yet, despite their best intentions, the Alpha

team appeared incapable of making the difficult decisions necessary to manage their resources effectively.

Comparing the two projects suggests that whereas both projects “talked a good game”, only Beta was able

to translate the desire to match resources to demand into specific, operational practices. Three such

practices appeared to be critical in avoiding the adaptation trap dynamics that proved so damaging to

Alpha.

First, in contrast to Alpha, Beta dedicated a separate team, comprising about 10% of its developers, to

current engineering. The fungibility of resources among the different phases of development is a key

source of the dynamics we study. The positive feedback at the heart of our analysis becomes dominant

when scarce development resources are pulled away from high productivity early-phase development work

and dedicated to low productivity current engineering work. Beta’s policy of fixing the allocation of

resources to low productivity CE work greatly weakened this feedback and made their system far less

prone to tipping. Note, however, that this policy restricted Beta’s flexibility and short-term effectiveness. If

CE demand exceeded 10%, then limiting the allocation of resources to CE could result in numerous

unresolved customer complaints and negatively affect demand for the product; if CE demand was less than

10%, valuable engineering resources would be wasted.

 Second, the Beta leadership enforced a “No-Late-Feature” rule. While the Alpha team frequently

accepted changes in requirements far into the design phase—thus necessitating rework and further

process shortcuts—Beta’s managers resisted the pressure to add features once design started. The ability

to match demands with resources allowed Beta to execute most of its work following best practice (i.e. few

shortcuts) resulting in a low error rate and a small amount of CE. Again, note that this policy restricted

Beta’s ability to respond to its market. If a valued customer made a late feature request, Beta was not able

to meet it until the next release.

Finally, Beta’s approach to learning differed significantly from that employed by Alpha. Beta often

capitalized on the learning opportunity provided by the defects it did discover. Whereas Alpha reacted to a

new field problem by trying to fix it quickly so that they could get back to their backlog of new features, the

Beta team frequently took the time to trace an error back to a flaw in their development process and then

adjusted that process accordingly. Results of those analyses could impact personnel review and

incentives, particularly if developers were found to have departed from best practice, thus strongly

communicating the behaviors that Beta valued from its members. While the Alpha team members were

often implicitly rewarded for getting things done quickly, the Beta members were explicitly penalized for

such (apparently) time saving departures.

Each of Beta’s interventions appear, at least ex post, to be smart but also somewhat obvious ways to

insure that the development team continued to maintain its capability. The relative simplicity of Beta’s

practices and the consequent results—Beta was regarded as one of the best managed projects in Sigma—

raises the question of why did Alpha not follow suit? The first part of the answer is simply that it probably

wasn’t as simple as it looked after the fact. A long line of experimental and theoretical research highlights

the challenges of learning in dynamically complex settings (Brehmer 1992; Repenning et al. 2002;

Rahmandad 2008); and the dynamic complexity arising from the tipping point and the adaptation trap would

make it hard for any manager to learn the right lessons from their experience and avoid capability erosion.

But, the dynamic complexity of software development notwithstanding, Beta managed to figure it out, and

Alpha did not.

Beta’s success in avoiding erosion appears to turn on a combination of luck and a willingness to learn

from experience. By chance, some of the key managers in Beta had prior experience with capability

erosion dynamics. These managers report that those experiences significantly influenced their belief in the

utility of adhering to good practice. In contrast, members of the Alpha team reported few such formative

experiences. One of the Beta managers recalled:

‘Early in my career… when I was in an organization that did wireless… we were under tremendous
market pressure to get the product out…and you just do anything you can to get anything out, not one
comment was put in a lot of code, not one thing was inspected, not one thing was documented, you know,
it was classic, and it never worked, and still to this date it is in the field, and it has problems… and that’s
where I really cut my teeth and learned my lesson’

Beta was also lucky in another way. Two times during the history we studied, Beta’s parent product

experienced a significant delay even though the Beta team was on track to hit the original schedule. Those

delays provided the Beta team with time to reflect, improve their processes, and prepare for the next

releases. These delays pulled Beta farther below its tipping threshold, allowing them to increase the

effectiveness of their work. One of the Beta managers reflected on how this externally imposed delay

allowed the team to reinforce its capability:

‘How we got here? The answer is in investing in [the] future. And from the [Beta’s] perspective we got
lucky. If I go back to the first release [of Beta],… they [the parent product] were running into many more
schedule problems than we were … this allowed us to go back and actually do a lot of things that we would
have preferred to have done at the beginning but we never got the time to do... So we benefited by that
additional time to really add a lot of foundational components.’

The delays not only helped Beta place more focus on the high-productivity front end of the development

process, but the success of those efforts further reinforced the linkage between good practices and good

performance.

In contrast to Beta’s ability to learn from the experience of its members and capitalize on its good

fortune, three factors likely conspired to prevent Alpha from learning a similar lesson. First, the project was

staffed by a younger, less experienced team, many of whom had never been associated with a major

failure. Second, the project was initially quite successful, thus reinforcing the team’s belief that they were

on the right track and did not need to revisit their approach to developing software. Finally, note how the

system’s dynamics caused the cost of adopting Beta’s practice to rise over time. Beta dedicated a fixed

team to current engineering, about 10% of its resources, but as Alpha’s performance declined its CE

demand often fluctuated to as high as 50% of its total activity. Creating a dedicated CE team would have

dramatically reduced the team’s ability to generate new features and threatened the viability of the project.

Similarly, the growing number of quality problems eroded Alpha’s bargaining position with customers,

making enforcing a “no late feature” rule increasingly infeasible. Finally, with hundreds of errors reported

from the field, conducting root-cause analysis was increasingly costly, undermining incentives for high

quality work. Thus, even if Alpha did eventually come to realize the wisdom of Beta’s approach, as the

project continued, capitalizing on those insights became increasingly infeasible.

CAPABILITY EROSION AND STRATEGY

Explaining the existence of persistent performance differentials in similarly positioned firms remains a

challenge facing strategy scholars (Gibbons et al. 2010). A growing body of literature tackles this question

by detailing the difficulties that organizations face in finding their way to the optimal configuration of

resources and capabilities required by their chosen context. Research by Levinthal (Levinthal 1997), Rivkin

(Rivkin 2001) and others shows that performance landscapes can be quite “rugged”, complicating the

discovery of optimal configurations. Moreover, from low exploration (March 1991) to hot stove effect

(Denrell and March 2001), and dominance of local search resulting in competency traps (Levitt and March

1988), existing research documents multiple mechanisms through which learning can be inefficient in

exploring these rugged landscapes. While powerful in many situations, this paradigm is less well suited to

explaining cases in which key elements of the optimal configuration are well-documented and easily

accessible but somehow remain unused. In many industries, the practices associated with success are

both well understood and well established, and a growing line of research shows that adding even simple

capabilities can lead to substantial improvements in performance (Bloom et al. 2013). In the language of

rugged landscapes, these studies suggest that there is visibly higher ground in close proximity and yet

many firms are not successful in their efforts to maintain those positions.

Following the seminal work of Dierickx and Cool (1989), reintroducing erosion offers the possibility

of a more complete theory of differential performance rooted in different capability trajectories. The first

contribution of our study is to show that capabilities can erode on a strategically relevant time scale. Alpha

was a highly successful product and initially viewed as central to Sigma’s future growth and success; less

than a decade later it was put on hold due to poor performance. Capitalizing on the observation that

erosion can influence competitive outcomes requires a theory that details both the conditions under which it

is likely and what separates those firms that avoid it from those that do not. While we are far from a

complete account, the second contribution of our study is to both identify a potential erosion mechanism

and a set of testable conditions under which that mechanism is likely to exist.

The erosion mechanism emerging from our study starts with the notion of capability as a locally

stable configuration of interaction patterns among organizational members that accomplishes certain tasks.

These patterns are embedded in individual memories, organizational routines, and the physical structure of

tasks. Capability erosion is then understood as a set of endogenous dynamics that take an organization

from an efficient capability configuration to an inferior one. Prior theory acknowledges that organizations

will often temporarily deviate from such configurations due to environmental shocks, turnover, or inefficient

organizational memory systems (Argote 2012). Existing theory implicitly assumes, however, that with time

such departures will be offset and therefore have little competitive significance. Our study indicates that

under the competitive pressures firms commonly face, three features can combine to create a system in

which such minor departures, rather than being offset, are amplified, and thus have the potential to yield a

competitively inferior position.

The first requirement is the existence of an unfavorable temporal trade-off when departing from the

optimal configuration. In the setting we study, software engineers could improve short-run productivity by

skimping on review, testing, and documentation but this decision caused subsequent quality problems.

This type of trade-off has been identified in a variety of situations, including maintenance (Carroll et al.

1997; Zuashkiani et al. 2011), manufacturing (Repenning et al. 2002), new product development

(Repenning 2001), and financial services (Oliva et al. 2001), but its strength is likely to vary widely across

settings. In the case we study the trade-off was acute. Good software practice dictates a variety of

activities that can easily be skipped in favor of “… just writing the code.” However, code written without

attention to the overall architecture, continuous review and testing, or clear documentation often contains a

large number of bugs, which must eventually be fixed. A variety of studies clearly show that, in the long

run, it is far more efficient to do it right the first time (Boehm 1981).

Not every configuration, however, may be subject to the same trade-off. For example, while

studies suggest that preventive maintenance is useful for many types of sophisticated manufacturing

equipment (and thus subject to an unfavorable temporal trade-off), the trade-off is often non-existent for

easily replaced parts like light bulbs—it’s optimal to just replace them when they burn out. When there is

no possibility of boosting current throughput at an implicitly unfavorable cost, then the erosion mechanism

we study does not exist. Thus, our first proposition is that, all else being equal, the stronger the unfavorable

temporal trade-off, the more likely that erosion will play a role in determining competitive outcomes.

The second requirement is resource fungiblity, meaning that the same resources are used to

address both sides of the temporal trade-off. In the Alpha project, resource fungibility was high as

engineers could move easily from new work to fixing bugs. The combination of the unfavorable temporal

trade-off and fungibility creates the self-reinforcing feedback process at the heart of our analysis. In the

Alpha project, when engineers skimped on good development practice, thus departing from the optimal

capability configuration, they created bugs they themselves eventually had to fix; as the resources required

for bug fixing grew, the engineers had even less time to work on new features, thus necessitating further

departures from good practice and pushing the organization further from the optimal capability

configuration. Much like the first proposition, software development is a strong case in point: resources

are often perfectly fungible, with development teams working on everything from developing new features

to fixing issues at specific customer sites.

Fungibility may be less present in other contexts and thus make the dynamics we discussed less

likely. For example, heavy manufacturing, such as car production, probably represents an intermediate

point on the fungibility continuum. When problems appear in the field, engineers need to develop a fix and

insure that the underlying defect is eliminated in future production. In contrast to Alpha and Beta, however,

engineers in this context rarely go fix individual automobiles. Even further along the fungibility continuum,

many development environments do not offer the possibility of rectifying past mistakes and thus present no

trade-off. Fashion goods, for example, often miss the mark and do not sell well, but once a product is

released, designers (unlike software engineers) cannot issue “updates” or “bug fixes” to rectify their earlier

missteps. We would not expect to see the erosion mechanism we study in this setting. Our second

proposition is thus: all else being equal, as the fungibility of resources across the unfavorable temporal

trade-off increases, erosion will play a more significant role in determining competitive position.

The final condition concerns the delay between the “better” and the “worse” part of the temporal

trade-off. Organizational research at a variety of levels highlights time delays as a critical variable. At the

micro level, delays between action and outcome have been shown to hamper learning (Denrell, Fang and

Levinthal 2004; Rahmandad 2008; Rahmandad, Repenning and Sterman 2009) and both their duration and

impact are often underestimated (Sterman 1989). At the organizational level, delays have been implicated

in a variety of pathologies (Hall 1976; Perlow, Okhuysen and Repenning 2002; Repenning et al. 2002;

Azoulay, Repenning and Zuckerman 2010). In the setting we study, the delay between departing from an

optimal configuration (abandoning good development practice) and realizing its full consequence (bugs

reported in the field) greatly increases the complexity of the manager’s task. They must both trade off an

immediate benefit (more code) against a future cost that will not be revealed for weeks or even months,

and anticipate any additional resources that the initial departure might eventually require. The adaptation

trap results because managers search for the optimum resource utilization faster than they receive

feedback about their past decisions. As the delay between the “better” and the “worse” parts increases, so

too does the self-reinforcing process that erodes capability and drives the organization away from the

optimal configuration.

Sigma probably represents an intermediate case on the length of possible delays between better

and worse behaviors. Development managers at Sigma were able to see the quality of their teams’ work

over the course of six to twelve months. The delays are much longer in other industries. In the auto

industry, for example, it can take several years to develop a new vehicle and then at least one more year

before the true quality of that vehicle has been revealed (consider Toyota’s turn of fortune in 2009, likely

the result of product development problems many years before). On the other side of the continuum,

website developers can often get feedback on their work in a matter of days or even hours. The

mechanism we study is thus likely to be more relevant in explaining differential performance in the auto

industry than in website development. Our third proposition is that, all else being equal, as the delay

between “better” and “worse” grows, erosion plays a more significant role in explaining outcomes.

Our analysis thus suggests that the influence of capability erosion on competitive outcomes is

contingent upon the nature of the configurations that the industry in question requires. For configurations

characterized by unfavorable temporal trade-offs, highly fungible resources, and long delays in realizing the

consequences of departures from optimality, rates of capability erosion can be high and therefore

contribute to differential competitive outcomes. In contrast, for configurations that are not characterized by

strong trade-offs, where resources are not fungible, and/or where managers received rapid and complete

feedback on the costs and benefits of departures, the erosion mechanisms identified in our study are less

likely to play a significant role.

Implications

Beyond positioning future researchers to test the impact of erosion on competitive performance, our study

offers three additional implications for the ongoing search on the sources of differential performance. First,

the existing literature recognizes that a capability can eventually become a liability. Established capabilities

focus managers’ attention on a limited set of cues and may blind them to disruptive changes in the

environment (Porac, Thomas and Badenfuller 1989; Tripsas 2009). Firms not locked into those capabilities

may find it easier to identify the need for change and adjust their orientation towards the distant, more

fruitful, capability bundles required by the new environment. In a similar vein, some capability configurations

may be more difficult to maintain and therefore more prone to erosion than others. Existing theory is

largely silent on the relative fragility of different capability configurations, but there is good reason to believe

that they are not all created equally. Vastly different forgetting rates across different production processes,

(Darr et al. 1995; Benkard 2000; Thompson 2007), and variation in safety incident rates across

organizations (Roberts 1990; Sagan 1993; Perrow 1999; Weick, Sutcliffe and Obstfeld 1999), could be

manifestations of different capability erosion rates and not empirical anomalies.

This conceptualization opens several avenues for future inquiry. For example, several scholars have

documented the benefits of the so-called High Commitment Work Practices (Berg, Kalleberg and

Appelbaum 2003; Ichniowski et al. 2003; Gittell, Seidner and Wimbush 2010), a suite of practices that

sometimes combine to produce exemplary performance. These gains are driven in part by the willingness

of employees to go beyond the “letter of the contract” in return for above-average wages, and/or job

security. Simple game theoretic models, however, suggest that deviations by management from such

“relational contracts” could cause that configuration to unravel. Consistent with this prediction, there are

several examples of firms that struggled to maintain this configuration (Rubinstein and Kochan 2001).

Similarly, scholars have amply documented how the choice of technology shapes the organizational

processes that surround it (e.g., Barley 1986; Black, Carlile and Repenning 2004) and technology choices

clearly influence the optimal capability configuration. Future research may be profitably focused on the

question of whether some choices are more stable than others. For example, automating production tasks

might initially be seen as removing the human element and therefore yielding a configuration less prone to

erosion. However, sophisticated automation often requires more sophisticated maintenance and thus

strengthens the unfavorable temporal trade-offs discussed above. Therefore the net outcome is unclear: is

erosion more, or less, likely in high technology settings? A more nuanced understanding of erosion

dynamics is needed to shed light on the role of capability resiliency in determining competitive outcomes as

technology mediates the transformation of different industries. Studying erosion dynamics may also inform

related phenomena. For example, safety researchers continue to debate whether tightly coupled systems

will always be prone to failure due to unforeseen interactions among system components (Sagan 1993;

Perrow 1999), or can such modes be mitigated by collective mindfulness that allows early detection of

failure modes (Roberts 1990; Weick et al. 1999). A systems perspective for understanding safety structures

in organizations, the vicious loops potentially embedded in them, the dynamics that erode those safety

capabilities, and the management’s role in controlling these systems, could be essential for bridging the

different perspectives on organizational safety (Leveson, Dulac, Marais et al. 2009).

Our second implication concerns the role of managers in offsetting erosion. Managers play an

increasingly central role in the current accounts of organizational strategy and a growing body of research

focuses on the role of managerial cognition in perceiving and reacting to environmental change through the

investment in and deployment of alternative capabilities (Nadkarni and Barr 2008; Eggers and Kaplan

2009). Existing capabilities are often implicated in the failure to make such adjustments as past success

narrows the search for new configurations and creates inertia. While strategic change and renewal

(Agarwal and Helfat 2009) are essential for understanding firm heterogeneity, erosion may also place a

premium on managerial ability. The situation we study is dynamically complex (i.e. characterized by

multiple interacting components, significant non-linearities, and appreciable time delays) and much

experimental research demonstrates the inability of many human subjects to understand and control such

environment (for summaries see Sterman 1994; Sterman 2000; Cronin, Gonzalez and Sterman 2009).

There is thus good reason to believe that even without a significant environmental shock managers may

differ in their ability to avoid erosion. Beta’s management did so quite successfully, Alpha’s did not.

Focusing the attention on the ability (or lack thereof) to manage the dynamics of erosion opens a new

path for pursuing the question of persistent performance differentials in seemingly similar enterprises: What

separates those managers who avoid erosion from those who do not? It may be that the ability to manage

such dynamics is an innate character trait. Alternatively, experience and training may offer more

explanatory power. On this score, the Beta project offers a tantalizing prospect. Learning in complex

dynamic systems is often most effective when managers have experienced relevant cause and effect

relationships in extreme, far from the equilibrium conditions (Sterman 2000). When queried as to the

sources of their ongoing success, Beta’s leader referenced experience with a project that failed

spectacularly and the necessity of learning the value of good practice “… the hard way” (i.e. through

failure). Alpha’s managers, in contrast, because they were younger and started outside the company, had

fewer such experiences. Thus, a significant past failure, because it clearly revealed the links between

departing from the optimal configuration and the subsequent performance decline, may have been central

to the Beta manager’s current success. Recent research supports this view, suggesting that the transfer of

experience across similar situations is critical in understanding complex dynamics (Gary, Wood and

Pillinger 2012).

Note, however, that most organizations will actively select against managers who have been associated

with such extreme failures. Certainly, as was the case with Beta, some will survive and their hard-won

skills will eventually allow them to thrive. However, this is likely to be the exception rather than the rule.

The utility of “performance management”—a current euphemism for selecting out lower performers— has

become an almost unchallengeable assumption in modern management practice (e.g., Spence 1976;

Welch and Welch 2005). And, while such selection may insure that the remaining managers have a high

propensity for effort, our analysis suggests that it is less clear whether the survivors have the best

understanding of the systems that they are managing. Future research could thus be profitably directed at

testing the hypothesis that past experience with significant erosion may actually equip managers to avoid it

in the future. If this hypothesis is borne out, then the ability to avoid capability erosion is likely to be a

competency that is both valuable and rare since those with the experiences that create such competency

will often be selected out of the population.

The final implication of our work is methodological. Whereas the formal models in the strategy literature

are often inherited from economics or biology (e.g., NK models) and are thus quite abstract, in this study

we build a formal dynamic model grounded in the field observations of capability dynamics. Our approach

offers several benefits. We are both able to connect elements of our theory directly to the challenges faced

by real managers and the characterization of the system’s dynamics provided by our model enables us to

map the results of experimental studies of cognition in dynamic systems into actual organizational practice.

In doing so, we generate hypotheses concerning which capabilities will be difficult to sustain. Formal

models grounded in case data help capture how important features of the technology setting interact with

managerial cognition and learning to create strategically relevant mechanisms such as tipping and

adaptation trap. Simulation further enables formal analysis of the resulting temporal complexity, something

that would not be feasible using qualitative methods (March 2001). This approach allows us to uncover

capability erosion as a relevant theoretical construct that has been absent from the previous research and

may offer a promising venue for deepening our understanding of the sources of competitive advantage

(Gary, Kunc, Morecroft et al. 2008). Both abstract models and rich case-specific analyses have contributed

to our understanding of individual and firm-level behavior. By providing a more rigorous link between these

two approaches, our method offers the possibility of a more unified account of strategic behavior.

Limitations and future research

Our findings come with the usual caveats associated with inductive studies and there are two particularly

significant threats to the validity of our findings. First, though Alpha and Beta were similar on many

dimensions, we cannot rule out every alternative explanation for the differences we observed. Differences

in the underlying technology and the capabilities of the supporting engineering teams may have

contributed. Retrospective bias may have also influenced how informants recalled past experiences in the

two cases. Second, studying a single firm restricts the generalizability of any finding, particularly in our case

as we use an intra-firm comparison to theorize about inter-firm differentials. We address some of these

problems by using dynamic modeling to organize the structures and causal mechanisms observed in the

field into an internally consistent model that captures the behaviors we observed. More importantly, using a

formal model to organize our findings allows us to derive precise and testable predictions and thereby

enables future scholars to evaluate the utility of our theory in explaining observed differences in competitive

performance. The model developed in this study is very simple and does not include potentially relevant

factors such as changes in development resources, schedule modification, feature cancellation, product

architecture, and market response to quality and timeliness. More detailed models should be used to

provide operational advice. Another fruitful extension is to capture interaction between capability erosion

and market competition. For example, firms with eroding capabilities often lose market share, which may

reduce future demand pressure and allow for their recovery. On the other hand, they may also lose critical

resources and face further downward pressure (Rahmandad 2012). Finally, this research is also limited by

focusing on a single capability, product development. Identifying key dynamics that can erode different

capabilities in different contexts can lead to a productive research program with both theoretical and

managerial implications.

Acknowledgments: Special thanks to Martine Devos, David Weiss, Randy Hackbarth, John Palframan,

and Audris Mockus and several members of Sigma organization for their support of, and contribution to,

this research. We are also grateful for the valuable feedback of anonymous reviewers, Michael Cusumano,

Bob Gibbons, Rebecca Henderson, Shayne Gary, Jan Rivkin, John Sterman, Jeroen Struben, Lourdes

Sosa, Gokhan Dogan, Ezra Zuckerman, Kate Kellogg, and several seminar participants at MIT, Stanford,

Wharton, and the Academy of Management.

REFERENCES
Abdel-Hamid T, Madnick SE. 1991. Software project dynamics: An integrated approach. Englewood Cliffs,

NJ, Prentice-Hall.
Agarwal R, Helfat CE. 2009. Strategic Renewal of Organizations. Organization Science 20(2): 281–293.
Argote L. 2012. Organizational learning : creating, retaining and transferring knowledge. New York,

Springer.
Argote L, Beckman SL, Epple D. 1990. The Persistence and Transfer of Learning in Industrial Settings.

Management Science 36(2): 140–154.
Azoulay P, Repenning NP, Zuckerman EW. 2010. Nasty, Brutish, and Short: Embeddedness Failure in the

Pharmaceutical Industry. Administrative Science Quarterly 55(3): 472–507.
Barley SR. 1986. Technology as an Occasion for structuring: evidence from observations of CT Scanners

and Social Order of Radiology Departments. Administrative Science Quarterly 31: 78–108.
Benkard CL. 2000. Learning and forgetting: The dynamics of aircraft production. American Economic

Review 90(4): 1034–1054.
Berg P, Kalleberg AL, Appelbaum E. 2003. Balancing work and family: The role of high-commitment

environments. Industrial Relations 42(2): 168–188.
Black LJ, Carlile PR, Repenning NP. 2004. A dynamic theory of expertise and occupational boundaries in

new technology implementation: Building on barley's study of CT scanning. Administrative
Science Quarterly 49(4): 572–607.

Bloom N, Eifert B, et al. 2013. Does Management Matter? Evidence from India. Quarterly Journal of
Economics 128(1): 1–51.

Bloom N, Van Reenen J. 2007. Measuring and explaining management practices across firms and
countries. Quarterly Journal of Economics 122(4): 1351–1408.

Boehm BW. 1981. Software engineering economics. Englewood Cliffs, N.J., Prentice–Hall.
Brehmer B. 1992. Dynamic Decision Making: Human control of complex systems. Acta Psychologica 8(1):

83–90.
Brown SL, Eisenhardt KM. 1995. Product Development – Past Research, Present Findings, and Future–

Directions. Academy of Management Review 20(2): 343–378.
Carroll J, Sterman JD, Markus AR. 1997. Playing the Maintenance Game: How Mental Models Drive

Organization Decisions. Debating Rationality: Nonrational Elements of Organizational Decision
Making. R. N. Stern and J. J. Halpern. Ithaca, NY, ILR Press: 99–121.

Chao RO, Kavadias S, Gaimon C. 2009. Revenue Driven Resource Allocation: Funding Authority,
Incentives, and New Product Development Portfolio Management. Management Science 55(9):
1556–1569.

Chew WB, Bresnahan T, Clark K. 1990. Measurment, coordination, and learning in a multiplant network.
Measures for Manufacturing Excellence. R. Kaplan. Boston, MA, Harvard Business School Press.

Cronin MA, Gonzalez C, Sterman JD. 2009. Why don't well–educated adults understand accumulation? A
challenge to researchers, educators, and citizens. Organizational Behavior and Human Decision
Processes 108(1): 116–130.

Cusumano MA, Selby RW. 1995. Microsoft secrets : how the world's most powerful software company
creates technology, shapes markets, and manages people. New York, Free Press.

Darr ED, Argote L, Epple D. 1995. The acquisition, transfer, and depreciation of knowledge in service
organizations: Productivity in franchises. Management Science 41(11): 1750–1762.

Denrell J, Fang C, Levinthal DA. 2004. From T–Mazes to labyrinths: Learning from model–based
feedback. Management Science 50(10): 1366–1378.

Denrell J, Fang C, Winter SG. 2003. The economics of strategic opportunity. Strategic Management
Journal 24(10): 977–990.

Denrell J, March JG. 2001. Adaptation as information restriction: The hot stove effect. Organization
Science 12(5): 523–538.

Diehl E, Sterman J. 1995. Effects of Feedback Complexity on Dynamic Decision Making. Organizational
Behavior and Human Decision Processes 62(2): 198–215.

Dierickx I, Cool K. 1989. Asset Stock Accumulation and Sustainability of Competitive Advantage.
Management Science 35(12): 1504–1511.

Easton GS, Jarrell SL. 1998. The effects of total quality management on corporate performance: An
empirical investigation. The Journal of Business 71(2): 253.

Eggers JP, Kaplan S. 2009. Cognition and Renewal: Comparing CEO and Organizational Effects on
Incumbent Adaptation to Technical Change. Organization Science 20(2): 461–477.

Eisenhardt KM, Martin JA. 2000. Dynamic capabilities: What are they? Strategic Management Journal
21(10–11): 1105–1121.

Felin T, Foss NJ, Heimeriks KH, Madsen TL. 2012. Microfoundations of Routines and Capabilities:
Individuals, Processes, and Structure. Journal of Management Studies 49(8): 1351–1374.

Ford DN, Sterman JD. 1998. Dynamic modeling of product development processes. System Dynamics
Review 14(1): 31–68.

Forrester JW. 1961. Industrial Dynamics. Cambridge, The M.I.T. Press.
Foss NJ, Heimeriks KH, Winter SG, Zollo M. 2012. A Hegelian Dialogue on the Micro–Foundations of

Organizational Routines and Capabilities. European Management Review 9(4): 173–197.
Gary MS. 2005. Implementation strategy and performance outcomes in related diversification. Strategic

Management Journal 26(7): 643–664.
Gary MS, Kunc M, Morecroft JDW, Rockart SF. 2008. System dynamics and strategy. System Dynamics

Review 24(4): 407–429.
Gary MS, Wood RE, Pillinger T. 2012. Enhancing mental models, analogical transfer, and performance in

strategic decision making. Strategic Management Journal 33(11): 1229–1246.
Gavetti G. 2005. Cognition and hierarchy: Rethinking the microfoundations of capabilities' development.

Organization Science 16(6): 599–617.
Gibbons R, Henderson R. 2010. Relational contracts and the origins of organizational capabilities. The

Handbook of Organizational Economics. R. Gibbons and J. Roberts. Princeton, NJ, Princeton
University Press.

Gittell JH, Seidner R, Wimbush J. 2010. A Relational Model of How High–Performance Work Systems
Work. Organization Science 21(2): 490–506.

Glaser BG, Strauss AL. 1967. The discovery of grounded theory; strategies for qualitative research.
Chicago,, Aldine Pub. Co.

Grant RM. 2010. Contemporary strategy analysis. Hoboken, NJ, John Wiley & Sons.
Hall RI. 1976. A System Pathololgy of an Organization: The Rise and Fall of the Old Saturday Evening

Post. Administrative Science Quarterly 21(2): 185–211.
Harrison JR, Lin Z, Carroll GR, Carley KM. 2007. Simulation modeling in organizational and management

research. Academy of Management Review 32(4): 1229–1245.
Helfat CE. 2000. Guest editor's introduction to the special issue: The evolution of firm capabilities.

Strategic Management Journal 21(10–11): 955–959.

Helfat CE, Peteraf MA. 2003. The dynamic resource–based view: Capability lifecycles. Strategic
Management Journal 24(10): 997–1010.

Henderson R, Cockburn I. 1994. Measuring Competence – Exploring Firm Effects in Pharmaceutical
Research. Strategic Management Journal 15: 63–84.

Hodgson GM, Knudsen T. 2004. The firm as an interactor: firms as vehicles for habits and routines.
Journal of Evolutionary Economics 14(3): 281–307.

Hoopes DG, Madsen TL. 2008. A capability–based view of competitive heterogeneity. Industrial and
Corporate Change 17(3): 393–426.

Ichniowski C, Shaw K. 2003. Beyond incentive pay: Insiders' estimates of the value of complementary
human resource management practices. Journal of Economic Perspectives 17(1): 155–180.

Ichniowski C, Shaw K, Prennushi G. 1997. The effects of human resource management practices on
productivity: A study of steel finishing lines. American Economic Review 87(3): 291–313.

Jones C. 2000. Software assessments, benchmarks, and best practices. Boston, MA, Addison–Wesley.
Klein KJ, Sorra JS. 1996. The challenge of innovation implementation. Academy of Management Review

21(4): 1055–1080.
Krishnan V, Ulrich KT. 2001. Product development decisions: A review of the literature. Management

Science 47(1): 1–21.
Leiblein MJ. 2011. What Do Resource– and Capability–Based Theories Propose? Journal of Management

37(4): 909–932.
Lenox MJ, Rockart SF, Lewin AY. 2006. Interdependency, competition, and the distribution of firm and

industry profits. Management Science 52(5): 757–772.
Lenox MJ, Rockart SF, Lewin AY. 2010. Does Interdependency Affect Firm and Industry Profitability? An

Empirical Test. Strategic Management Journal 31(2): 121–139.
Leveson N, Dulac N, Marais K, Carroll J. 2009. Moving Beyond Normal Accidents and High Reliability

Organizations: A Systems Approach to Safety in Complex Systems. Organization Studies 30(2–3):
227–249.

Levinthal D. 2000. Organizational capabilities in complex worlds. The Nature and Dynamics of
Organizational Capabilities. G. Dosi, R. Nelson and S. Winter. New York., Oxford University Press:
363–379.

Levinthal D, Rerup C. 2006. Crossing an apparent chasm: Bridging mindful and less–mindful perspectives
on organizational learning. Organization Science 17(4): 502–513.

Levinthal DA. 1997. Adaptation on rugged landscapes. Management Science 43(7): 934–950.
Levitt B, March JG. 1988. Organizational Learning. Annual Review of Sociology 14: 319–340.
Lyneis JM, Ford DN. 2007. System dynamics applied to project management: a survey, assessment, and

directions for future research. System Dynamics Review 23(2–3): 157–189.
MacCormack A, Kemerer CF, Cusumano M, Crandall B. 2003. Trade–offs between productivity and

quality in selecting software development practices. Ieee Software 20(5): 78–+.
Mandler G. 1984. Mind and body : psychology of emotion and stress. New York, W.W. Norton.
March JG. 1991. Exploration and exploitation in organizational learning. Organization Science 2(1): 71–

87.
March JG. 2001. Foreword. Dynamics of organizations: computational modeling and organization

theories. A. Lomi and E. R. Larsen.
Mauri AJ, Michaels MP. 1998. Firm and industry effects within strategic management: An empirical

examination. Strategic Management Journal 19(3): 211–219.
Moløkken K, Jørgensen M. 2003. A review of surveys on software effort estimation. IEEE International

Symposium on Empirical Software Engineering, Rome, Italy.
Morecroft JDW. 1997. The Rise and Fall of People Express: A Dynamic Resource–Based View.

Proceedings of the 15th International System Dynamics Conference: "Systems Approach to

Learning and Education into the 21st Century". Y. Barlas, V. G. Diker and S. Polat. Istanbul,
Turkey, Bogazici University Printing Office. 2: 579–586.

Nadkarni S, Barr PS. 2008. ENVIRONMENTAL CONTEXT, MANAGERIAL COGNITION, AND STRATEGIC
ACTION: AN INTEGRATED VIEW. Strategic Management Journal 29(13): 1395–1427.

Nelson R, Winter SG. 1973. Toward an evolutionary theory of economic capabilities. American Economic
Review 63(2): 440–449.

Nelson RR, Winter SG. 1982. An evolutionary theory of economic change. Cambridge, Mass., Belknap
Press of Harvard University Press.

Oliva R, Sterman JD. 2001. Cutting corners and working overtime: Quality erosion in the service industry.
Management Science 47(7): 894–914.

Parmigiani A, Howard–Grenville J. 2011. Routines Revisited: Exploring the Capabilities and Practice
Perspectives. Academy of Management Annals 5: 413–453.

Perlow LA, Okhuysen GA, Repenning NP. 2002. The speed trap: Exploring the relationship between
decision making and temporal context. Academy of Management Journal 45(5): 931–955.

Perlow LA, Repenning NP. 2009. The dynamics of silencing conflict. Research in Organizational Behavior,
Vol 29 29: 195–223.

Perrow C. 1999. Normal accidents : living with high–risk technologies. Princeton, N.J., Princeton
University Press.

Pfeffer J, Sutton RI, NetLibrary Inc. 2000. The knowing–doing gap: how smart companies turn knowledge
into action. Boston, Mass., Harvard Business School Press: xv, 314 p.

Porac JF, Thomas H, Badenfuller C. 1989. Competitive Groups as Cognitive Communities – the Case of
Scottish Knitwear Manufacturers. Journal of Management Studies 26(4): 397–416.

Priem RL, Butler JE. 2001. Is the resource–based "view" a useful perspective for strategic management
research? Academy of Management Review 26(1): 22–40.

Rahmandad H. 2005. Three essays on modeling dynamic organizational processes. Sloan School of
Management. Cambridge, Massachusetts Institute of Technology. Ph.D.

Rahmandad H. 2008. Effect of delays on complexity of organizational learning. Management Science
54(7): 1297–1312.

Rahmandad H. 2012. Impact of Growth Opportunities and Competition on Firm–Level Capability
Development Trade–offs. Organization Science 23(1): 138–154.

Rahmandad H, Repenning N, Sterman J. 2009. Effects of feedback delay on learning. System Dynamics
Review 25(4): 309–338.

Rahmandad H, Sterman JD. 2012. Reporting guidelines for simulation-based research in social sciences.
System Dynamics Review 28(4): 396-411.

Rahmandad H, Weiss D. 2009. Dynamics of concurrent software development. System Dynamics Review
25(3): 224–249.

Repenning NP. 2000. A dynamic model of resource allocation in multi–project research and
development systems. System Dynamics Review 16(3): 173–212.

Repenning NP. 2001. Understanding fire fighting in new product development. The Journal of Product
Innovation Management 18: 285–300.

Repenning NP. 2002. A simulation–based approach to understanding the dynamics of innovation
implementation. Organization Science 13(2): 109–127.

Repenning NP, Sterman JD. 2002. Capability traps and self–confirming attribution errors in the dynamics
of process improvement. Administrative Science Quarterly 47(2): 265–295.

Rivkin JW. 2001. Reproducing knowledge: Replication without imitation at moderate complexity.
Organization Science 12(3): 274–293.

Rivkin JW, Siggelkow N. 2003. Balancing search and stability: Interdependencies among elements of
organizational design. Management Science 49(3): 290–311.

Roberts KH. 1990. Some Characteristics of One Type of High Reliability Organization. Organization
Science 1(2): 160–176.

Roberts PW, Dowling GR. 2002. Corporate reputation and sustained superior financial performance.
Strategic Management Journal 23(12): 1077–1093.

Rubinstein SA, Kochan TA. 2001. Learning from Saturn : possibilities for corporate governance and
employee relations. Ithaca, ILR Press.

Rudolph JW, Repenning NP. 2002. Disaster Dynamics: Undrstanding the Role of Quantity in
Organizational Collapse. Administrative Science Quarterly 47: 1–30.

Rumelt RP. 1991. How Much Does Industry Matter. Strategic Management Journal 12(3): 167–185.
Sagan SD. 1993. The limits of safety : organizations, accidents, and nuclear weapons. Princeton, N.J.,

Princeton University Press.
Salter WEG. 1960. Productivity and technical change. Cambridge Eng., University Press.
Schreyoegg G, Kliesch–Eberl M. 2007. How dynamic can organizational capabilities be? Towards a dual–

process model of capability dynamization. Strategic Management Journal 28(9): 913–933.
Spanos YE, Lioukas S. 2001. An examination into the causal logic of rent generation: Contrasting Porter's

competitive strategy framework and the resource–based perspective. Strategic Management
Journal 22(10): 907–934.

Spence M. 1976. Competition in Salaries, Credentials, and Signaling Prerequisites for Jobs. Quarterly
Journal of Economics 90(1): 51–74.

Sterman J. 2000. Business dynamics: systems thinking and modeling for a complex world. Boston,
McGraw–Hill/Irwin.

Sterman JD. 1989. Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision
Making Experiment. Management Science 35(3): 321–339.

Sterman JD. 1994. Learning in and about complex systems. System Dynamics Review 10(2–3): 91–330.
Sterman JK, Repenning NP, Kofman F. 1997. Unanticipated side effects of successful quality programs:

Exploring a paradox of organizational improvement. Management Science 43: 503–521.
Sutton RI, Staw BM. 1995. What Theory Is Not. Administrative Science Quarterly 40(3): 371–384.
Syverson C. 2011. What Determines Productivity? Journal of Economic Literature 49(2): 326–365.
Taylor T, Ford DN. 2006. Tipping point failure and robustness in single development projects. System

Dynamics Review 22(1): 51–71.
Teece DJ. 2007. Explicating dynamic capabilities: The nature and microfoundations of (sustainable)

enterprise performance. Strategic Management Journal 28(13): 1319–1350.
Teece DJ, Pisano G, Shuen A. 1997. Dynamic capabilities and strategic management. Strategic

Management Journal 18(7): 509–533.
Thompson P. 2007. How much did the liberty shipbuilders forget? Management Science 53(6): 908–918.
Tripsas M. 2009. Technology, Identity, and Inertia Through the Lens of "The Digital Photography

Company". Organization Science 20(2): 441–460.
Weick KE, Sutcliffe KM, Obstfeld D. 1999. Organizing for high reliability: Processes of collective

mindfulness. Research in Organizational Behavior, Vol. 21, 1999 21: 81–123.
Welch J, Welch S. 2005. Winning. New York, HarperBusiness Publishers.
Williamson OE. 1999. Strategy research: Governance and competence perspectives. Strategic

Management Journal 20(12): 1087–1108.
Winter SG. 2003. Understanding dynamic capabilities. Strategic Management Journal 24(10): 991–995.
Yin RK. 2009. Case study research : design and methods. Los Angeles, Calif., Sage Publications.
Zollo M, Winter SG. 2002. Deliberate learning and the evolution of dynamic capabilities. Organization

Science 13(3): 339–351.
Zuashkiani A, Rahmandad H, Jardine A. 2011. Mapping the dynamics of overall equipment effectiveness

to enhance asset management. Journal of Quality in Maintenance Engineering 17(1): 74–92.

1 2 3 4 5 6

Problems Reported in First 3 Month Per Site

y = -0.034343 + 0.18815x R= 0.58617

P
ro

b
le

m
s
 P

e
r

C
u
s
to

m
e
r

S
it
e

Time (Year)

TABLES AND FIGURES

Figure 1– The fraction of IT projects surveyed by Standish group over years that fall into categories of

successful (on time and budget), challenged (failing to meet time and budget goals), and failed (had to

be abandoned). Source: http://www.standishgroup.com/

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994 1996 1998 2000 2002 2004 2006 2008 2010

Failed Challenged Succeeded

0

20

40

60

80

100

120

140

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R1 R2 R3 R4 R5 R6

Schedule Delays, Percent and Absolute

P
e
rc

e
n
t
D

e
la

y

A
b
s
o

lu
te

 D
e
la

y
 (Y

e
a
r)

Release

Absolute DelayPercent Delay

a b

http://www.standishgroup.com/

Figure 2– Alpha’s performance on a) Percentage delay from original schedule (left) and absolute delay

(right). b and c) Quality in bugs reported in first 3 month of installation (both axes are zero based, scale

hidden for confidentiality reasons), and d) Alpha’s productivity; in new lines of code per person per

week

Figure 3– The basic stock and flow structure for multiple–release product development. Also included

are the balancing (Get the Work Done) and reinforcing (Make More Mistakes) loops.

1 2 3 4 5 6

Average Productivity

0

50

100

150

200

250

L
in

e
s
 o

f
C

o
d
e
 p

e
r

P
e
rs

o
n
 p

e
r

W
e
e
k

Year

Features Under

Development

Features in the

Current ReleaseDemand for New

Features
Feature

Release

Resource Demand

for Development

Resource

Ratio
Work Speed

Error Rate

Available

Resources

+

+

+

+

+

-

-

B R

Get the Work
Done

Make More
Mistakes

c
c

System Performance

150 Feature

11 Feature/Month

90 Feature

5.5 Feature/Month

30 Feature

0 Feature/Month

0 5 10 15 20 25 30 35 40 45 50

Time (Month)

Features Under Development : Oct06-Base Feature

Feature Addition : Oct06-Base Feature/Month

Feature Release : Oct06-Base Feature/Month

Figure 4– a) Inverse–U shape curve of Feature Release as a function of Resource Ratio. b) Increasing Feature

Demand increases feature release (up to maximum capacity); it also reduces robustness (the distance between

stable equilibrium and tipping point).

Fe
at

u
re

 D
em

an
d

 A
n

d
 R

e
le

as
e

Featu
res U

n
d

er D
evelo

p
m

en
t

 Time (Month) Time (Month)

Figure 5– The reaction of simulated PD system to two slightly different demand shocks a) The system recovers

through the balancing “Get the Work Done” loop. b) Tipping point is crossed and the reinforcing “Make More

Mistakes” loop dominates, thus performance deteriorates.

F
e

a
tu

re
 R

e
le

a
s
e

Resource Ratio

Feature Demand

Initial Pressure

Stable Equilibrium

Tipping Pressure

Tipping Point

Maximum

Capacity

a)
Reinforcing Loop DominatesBalancing Dominates

F
e

a
tu

re
 R

e
le

a
s
e

Resource Ratio

Shift in Feature

Demand and Release
Shift in

Robustness

b)

System Performance

11

8.25

5.5

2.75

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Time (Month)

Feature Addition : Oct06-Base Feature/Month

Feature Addition : Oct06-Base Feature/Month

System Performance

150

125

100

75

50

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Time (Month)

Features Under Development : Nov05-BigShock Feature

System Performance

150 Feature

11 Feature/Month

30 Feature

0 Feature/Month

0 50

Time (Month)

Features Under Development : Oct06-Base Feature

Feature Addition : Oct06-Base Feature/Month

Feature Release : Oct06-Base Feature/Month

Feature Demand

Features Under

Development

Feature Release

a)

System Performance

150 Feature

11 Feature/Month

30 Feature

0 Feature/Month

0 50

Time (Month)

Features Under Development : Oct06-Tipped Feature

Feature Addition : Oct06-Tipped Feature/Month

Feature Release : Oct06-Tipped Feature/Month

Feature Demand

Features Under

Development

Feature Release

b)

System Performance

150 Feature

11 Feature/Month

90 Feature

5.5 Feature/Month

30 Feature

0 Feature/Month

0 5 10 15 20 25 30 35 40 45 50

Time (Month)

Features Under Development : Oct06-Base Feature

Feature Addition : Oct06-Base Feature/Month

Feature Release : Oct06-Base Feature/Month

Figure 6– The structure of the model with the addition of products in the field. The new structures are

highlighted through darker variable names and thick causal links.

Features Under

Development

Features in the

Current ReleaseDemand for New

Features
Feature

Release

Resource Demand

for Development

Resource

Ratio

Work Speed

Error Rate

Available

Resources

+

+
+

+

+

-

-

Defects in

Current ReleaseDefect

Introduction
+

Known Defects in

Current Release

Resource Demand for

Current Engineering

+

+
+

Discovery Delay

+

R

Current
Engineering

Figure 7– The curves for apparent (solid) and true

(dotted) Feature Release vs. Resource Ratio. In

the apparent curve, the demand for CE is kept at its

short term value despite adaptive increase in

feature demand. The sustainable path comes from

the same experience, where the CE resource

demand is given based on the long term level of

Error Rate and feature release.

F
e
a
tu

re
 R

e
le

a
s
e

Resource Ratio

Apparent

Max Demand

True

Max Demand

Apparent

Peak

True Peak

Apparent

System

True System

