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ABSTRACT

New formulations are presented for the Travelling Salesman problem, and

their relationship to previous formulations is investigated. The new formula-

tions are extended to include a variety of transportation scheduling problems,

such as the Multi-Travelling Salesman problem, the Delivery problem, the

School Bus problem and the Dial-a-Bus problem.

A Benders decomposition procedure is applied on the new formulations and

the resulting computational rocedure is seen to be identical to previous

methods for solving the Travelling Salesman problem.

Based on the Lagrangean Relaxation method, a new procedure is suggested

for generating lagrange multipliers for a subgradient optimization procedure.

The effectiveness of the bounds obtained is demonstrated by computational test

results.



THE TRAVELLING SALESMAN PROBLEM
AND RELATED PROBLEMS

Bezalel Gavish and Stephen Graves

1. Introduction

The most compact methematical formulation to the Travelling Salesman

problem known so far is the formulation given by Miller, et. al. [203 in 1960

as:

Problem - IP:*

Find variables X and Ui i,j=l1,2,...,n that minimize

n n

z= y c..x. (1)
i=l j=l

subject to:

n

i X.i = 1 j=l,2,...,n, (2)
i=l1

n

X. = 1 i=l2,.,n, (3)
j=l 1

U. - U. + n X n - 1 i,j=2, ... ,n i(j (4)
1 3 13

X.. = 0,1 Y i,j (5)

This is a mxed integer programming formulation with n2 zero-one variables and

n-l continuous variables. In spite of the compactness of this formulation, no

algorithms or computational test results have appeared in the open literature

which have used this formulation as a basis for solving the Travelling Salesman

problem. One of the major drawbacks of this formulation is the fact that it is

*We assume throughout that C = a, i=1,2,...,n.
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limited to the Travelling Salesman problem only and cannot be easily extended

to other transportation scheduling problems which are related to the Travelling

Salesman problems such as the Multi-Travelling Salesman problem, the Delivery

problem, the School Bus problem, the Multi-Terminal Delivery problem, or the

Static Dial-a-Bus problem. Mathematical formulations to some of those problems

were given in Gavish and Shlifer [11].

In this paper, we shall investigate the Miller, et. al. 201 formulation

and investigate its relationship to the highly successful Lagrangean Relaxation

method developed by Held and Karp [15,16] for solving the Travelling Salesman

Problem. In addition, alternative formulations of the Travelling Salesman

Problem are developed which have the advantage of leading to relatively simple

mathematical formulations to the above mentioned problems. These new formula-

tions have the potential of leading to new algorithms based on Bender's decom-

position or the combination of Lagrangean Relaxation and subgradient optimiza-

tion. The remainder of the paper is organized as follows: In the next section,

two new formulations of the Travelling Salesman problem are given. The third

section extends this formulation to a general class of transportation scheduling

problems. In Section 4, we show how to apply Bender's decomposition to the

new formulations of the Travelling Salesman problem. The relationship between

the Miller, et. al. [20] formulation and the Lagrangean Relaxation are investi-

gated and an effective method for generating the initial Lagrange multipliers

for a subgradient optimization procedure is developed and demonstrated in

Section 5.
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2. New Formulations for the Travelling Salesman Problem

In this section, we present and prove two new formulations for the

Travelling Salesman problem. Those formulations are later used for formulating

other transportation scheduling problems which are related to the Travelling

Salesman problem. Both formulations use the same number of variables; however,

they differ in their constraint set and lead to different decompositions.

Problem P1:

Find variables Xij,Yij i,j=1,2,...,n that minimize

z§ : 1jl xiji. (6)

subject to:

n
X.. 1 j=l,2,..,,n (7)

i=l 13

n

X. = 1 i=,2,. . .,n (8)
j=l 1

n n

jYl ij- j2 Yji = i (9)

jsi jsi

Yij < SXij i=2,...,n (10)

Xij = 0,1 , Yij > 0 (1i)

where S > n-l

For fixed values of X, the constraints given in (9) and (10) form a network

flow problem, and therefore the Yij values will be integer.
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Lemma: Problem P1 solves the Travelling Salesman problem.

Proof: The problem given by the constraints (6-8) is an assignment problem;

it is well known that the positive variables in the extreme points of the assign-

ment polytope form distinct loops of arcs in a graph that contains arc (i,j) iff

Xij = 1, and each node appears in only one of those loops. Therefore City 1 is

contained in only one of those loops.

In order for the solution to Problem P1 to be the solution to the

Travelling Salesman problem it must contain exactly one loop. Assume that

the solution contains more than one loop, all of them distinct. Consider a

loop which does not contain node 1. This loop is composed of {ili2,...,i ,il}.

Now let yii2 =f; from (9) it follows that yi i3=f+l and Yi =f+r-l. Therefore,

we have

n n

Yi j * - Yj .. f - (f+r-l) = 1 - r
j=l 1 j=l l

which contradicts with (9). Thus, no loops-can exist that'dd-not contain

node 1; since node 1 is contained in exactly one loop, then at most one loop

is generated.

To show that a feasible solution exists to Problem P1, assume that

T = {1,i,i2,...,in ,1} is the optimal tour; by assigning Yiijlj for

j=1,2,...,n-2, and yi 1 = n-l we satisfy the network flow constraints.

In the next formulation, we eliminate the assignment constraints (8) and

replace them by extra constraints on the network flow problem.

Problem P2:

Find variables Xij,yij i,j=1,2,...,n that minimize

[n n n n C
Z I -I C..X. + C1jylj + . 2 yil (12)

2 j2 3 ij j=2 i=2 ii
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subject to:

n
X.. = 1 j=l,2,..,n (13)

n

I Ylj =1 (14)
j=2

n n
L Yij Yji 1 i=2,3,...,n (15)

j=1 j=1
jai j i

y. < (n-l)X .... i=1,2,...,n, (16)
j=2,3, ...,n, ifj

Yil = n Xil .. -i=2,3,...,n (17)

Xij = 0,1 ij > v i,j (18)

Lemma: The optimal solution to problem P2 solves the Travelling Salesman problem.

Proof: From (13) it follows that exactly one arc leads into each node; from (14)

and (15) it follows that at least one arc leads out from each one of the nodes

(2,3,...,n), and that all loops must include node 1.

Since from (13) and (17) there can be only one arc with flow of n units

leading into node 1, there is only one loop and that loop must contain all of

the nodes. Hence, any feasible solution to the constraint set (13)-(18) is a

feasible tour for the Travelling Salesman problem; furthermore it is easy to

see that any feasible tour for the Travelling Salesman problem will satisfy

(13)-(18).

We have presented two new formulations for the Travelling Salesman problem.

Now, we will show a strong relationship between problem P1 and the original

Miller, et. al. [20] formulation.
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Without loss in generality, we may rewrite (1-5) as:

Min I CiX. + Min I2 (19)
i =1 j=l 1 ij l 

subject to:

n
. Xij 1 j=l,2,...,n C20)
i=l

n
X.. = i=1,2,...,n C21)

j=l

Ui - Uj + nX.. < n - 1 i=,...,n22)
1i U3 1) j=2, ...,n,ioj

Xij =0,1 U. 0 V i,j (23)

The optimal value for the inner-minimization problem is obtained for

Ui = k, k=0,1,2,...,n-l where {io 1,}il,i2...,nl} is the optimal Travelling

Salesman tour. Thus, the optimal objective function value is equal to a constant

n(n-l)/2 and therefore will not have any effect on the optimization over the

assignment values.

The dual problem to the inner-minimization problem is given by:

Max j I2 Yij nXij-n+l3 (24)

jZi

subject to:

n n
I Yji I yij 1 V i=2,...,n (25)

j=l j=2
ji ji

n
I ylj 1 . (25a)

j=2 '
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~~Yi 2~~ 0 ~i=l,. . .,n
j=2,...,n jsi (26)

Due to (27) the constraint (25a) is redundant and therefore is eliminated from

further consideration. Consider any feasible extreme point for the assignment

constraints (20), (21); it is easy to show that (24)-(26) is unbounded unless

the extreme point is a feasible Travelling Salesman tour. Hence, we can re-

strict our attention to those extreme points which denote a feasible tour.

For any feasible Travelling Salesman tour, the optimal values yij for (24)-(26)

satisfy the following relations:

~I y for X.. = 1

Yij (nXij - n+l) for Xi27for X.. = 0

and

0 < Yij < n - 1 (28)

Therefore, the objective function (24) can be replaced by a new objective

function and an extra set of constraints:

Max i= j=2 iii]3 (29)

jiS i=l,...,nj=2,

Yij ' SXij ...n, (30)
and ij

S n-l

Replacing the inner minimization problem in (19)-(23) with the equivalent

problem given by (25,26,29,30) yields a problem nearly identical to P1. The

only difference is that in problem P1 the Yij flows are strictly increasing

while here they are strictly decreasing. In order to get from the original

formulation a dual which resembles our problem P1, (4) has to be replaced by
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U. - U. + n X.. < n - 1
3 1 13

i=1,2,... ,n,j=2,. ..,n, (31)
ij

which has the same effect as (4) in preventing subtours.
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3. Formulations of Transportation Scheduling Problems

The formulations which were given in Section 2 can be used as a basis for

formulating a variety of transportation scheduling problems. In this section,

we present these problems and their formulations.

3.1 The Multi-Travelling Salesman Problem

The Travelling Salesman problem as formulated by Miller, et. al. [20] was

extended by Gavish 9J to the ulti-Travelling Salesman problem. For this

problem, we have to find M tours (one for each salesman) such that each tour

originates and ends at the depot at node 0. Each node (1,2,...,n) is visited

exactly once, and total travel costs are minimized. Based on the formulation

given in Problem P1, the formulation to the Multi-Travelling Salesman problem is:

Find variables Xij, Yij i,j=0,1,2,...,n that minimizes:

n n
Z = [ C..X.. (32)

i=o j=o0 1J

subject to:

n
X. = 1 j=1,2,. .. ,n (33)

i=o

n
i Xi. = 1 i=l,2 . ,n (34)

j=o

n
X. = M (35)

1=0i=o

n

Xioj M (36)j-o
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n n
1 yi- 1 Yji ,n (37)

i o yji 1j =o 

y j < (n-M+l)Xij i,j=0,1,2,...,n (38)

Xij = 0,1 , Yij > 0 V i,j (39)

By adding the equality Xoj = Yoj Vj = 1,2,...,n, we assure that the Yij values

will also determine the arcs location within its tour. The formulation given

above assumes that all the salesmen are identical; however, in reality they

may have different qualifications and we would prefer to assign different

numbers of cities to different salesmen. Moreover, in certain cases we would

like to have a certain load balancing; i.e., that the variation in the number

of cities assigned to the different salesmen will be within given limits. To

model this, we need only replace the corresponding constraints in (38) with

X. L < Yi. < X. U i=1,2,...,n (40)
10 10 10

where L and U are the lower and upper bounds on the number of cities visited by

a salesman.

3.2 The Delivery Problem

This problem is described (see references 5,7,8) as follows: Given an n

by n matrix (C..} of travelling costs between n nodes, M trucks and a non-

negative load di,i=l,2,...,n associated with each node i, find M tours of

minimum total cost that leave a depot 0, visit each node only once, and return

to the depot. In each stop j the truck is loaded (or unloaded) by the extra

load dj. There is a limit Q on truck capacity such that the amount collected

in each tour cannot exceed this limit.
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Given that the loads d are integer for every i, the Delivery problem is

formulated as:

Problem D:

Find variables Xij, Yij i,j=0,1,2,...,n which minimize

n n

Z = I Cij.Xi (41)

subject to (33-36), and

n n
.- Yij Yji d. i=1,2, ...,n (42)

jE° j=o

Yij < Q Xij i,j=,1,2,...,n (43)

Xij 0,1 , yij 0 V i,j (44)

The constraints (33-36) ensure that the Xij values will form tours, while the

constraints in (42.) ensure that all tours will contain the depot (node 0);

the constraints in (43) assure that the total load collected in a single tour

will not exceed the truck capacity.

Another extension of the Delivery problem is the case in which the number

of trucks is not given beforehand, and there is an extra fixed cost P asso-

ciated with each additional truck used for delivery. This case may be formula-

ted as:

Cn n n
Min [ I C. .X. + I (Coj + P)X (45)

:j=o 3 13. j 03o 3{0 n =
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subject to (33), (34), (42), (43), (44), and

n n
x x. (46)

o j o

3.3 The Multi-Terminal Delivery Problem

The Multi-Terminal Delivery problem is an extension of the Delivery problem

in which we have K depots which may be used as starting points for tours. There

exists an extra restriction that a tour will always return to the same depot

from which it started. Different types of trucks may be used for performing

the deliveries. Truck type h has a capacity Qh' and a fixed cost Pkh for

using truck type h from the k-th depot; there exist a limit Mkh on the number

of trucks type h which may originate from the k-th depot; Cijh is the travelling

cost from node i to node j using truck type h. We assume that a node is

serviced by just one truck.

Let H be the index set of truck types (i.e., hcH), and use the following

indexing scheme the depots are indexed as i=l1,2,...,K, while the nodes are

indexed as i=K+l,...,K+n.

The Multi-Terminal Delivery Problem is formulated as:

K+n K+n K K+n
Z= Min I I h Cijh ijh + I (Cijh+Pih)Xij

Z -Min j=l hEH i=l j=K+l hEH

subject to:

K+n

[ i j h . j=K+l, ... ,K+n (47)
i=l hEH ijh

K+n K+n
I Xji h = 0 V hH, i=1,2,...,K+n (48)
j=h j=l
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K+n
I ijh Mi h V hH, i=1,2,.. .,K (49)

j=K+I

K+n K+n
Yij I+ Yi d. i=K+1,... ,K+n (50)

jl j=K+

Yi* hH Qh xijh i=K+l,...,K+n (51)
hEH j=l,2,...,K+n

X.j = 0,1 yij 0 v i,j,h (52)

This formulation is more complicated than that for the delivery problem due to

the constraints on the X variables. Here, we need standard network flow con-

straints (48), rather than the assignment constraints, to ensure that if a

truck of a given type enters a city, the same truck will also leave the city.

(49) limits the number of trucks type h that may originate at the i-th depot.

3.4 The Deterministic Dial-a-Bus Problem

The Dial-a-Bus problem arises in the following situation. A bus driver

who is initially located in location 0, is given a set of n deliveries to

perform. Each delivery i consists of two locations, ai and b.i. Location b.

can be visited only after location a. has been visited. We have to find

a tour in which all deliveries will be performed while minimizing the

travelling cost. The set of feasible tours for a problem with two deliveries

(al,bl), (a2,b 2) is therefore

{O, al, a2 ,bl,b2, 0}

{0O,al,a2,b 2,bl 
0 }

{0,a 2 ,albl,b2 , 0

{0,a 2 ,alb 2 ,bl,0}

{O,al,bla 2 b 2,0}

{ 0,a2,b 2 , al ,b2, 
0 }
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revealing that an unloading point is allowed to be visited only after the

appropriate loading point has been visited earlier in the tour.

This problem arises in a Dial-a-Bus system; it may also characterize an

delivery air-service or cargo ship service which has to schedule airport

landings or port visits in order to satisfy all deliveries without violating

the delivery loading/unloading constraints.

Using the indexing scheme such that all loading points are numbered

from {1,2,...,n}, and all unloading points from {n+l,...,2n}, where unloading

point n+i corresponds to loading point i, then the Deterministic Dial-a-Bus

problem is formulated as:

2n 2n
Z = Min§I I CijX

i=o j=o

subject to:

2n
X.. = 1 j=0,1,... ,2n (53)

i=o

2n
X. = 1 i=0,1,...,2n (54)

j=o

2n 2n
Yij- ji = 1 i=1,2,...,2n (55)

J=o j=o

Yij < 2(n+l)Xij v i,j (56)

2n 2n

j o j y.. + 1i=l,2, ..,n (57)Yn+i j Z I Yij + (57)joo j=o

Xij = 0,1 , ij > 0 V i,j (58)1J~~~~~~~~~~~~~~(8
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The constraints in (57) are needed to assure that node n+i will be visited

only after node i has been visited.

This simplified formulation of the Dial-a-Bus problem has been extended by

Gavish and Srikanth [12] to handle due dates/times that are specified by the

passengers and multiple buses.

3.5 The School Bus Problem

School buses which are initially located at school (node 0), have to

collect students waiting at n pick-up points (nodes 1,2,...,n), and deliver

them to school. The capacity of each bus is limited to Q students. The number

of students waiting at the i-th pick-up point is equal to di 0 < di Q

i=l,2,...,n. tij is the travel time from pick-up point i to point j. Security

and operational considerations limit the time that students at pick-up point i

are allowed to spend on the bus to Ti time units, tio c Ti V i. Only one bus

is allowed to stop at a pick-up point. To simplify the presentation, we assume

a negligible loading time in each station. The relaxation of this assumption

can be handled by minor modification to the following formulation.

Let P be the cost of using an extra bus for the schedule, C.. be the

operational cost of travelling from point i to j, X.. be a binary variable

denoting travel from point i to point j, yij be the number of students on the

bus between oints i and j, while zij is the travel time from point i to school

assuming that the next bus stoo is at point j.

The School Bus problem can be formulated as:

Find variables Xij,Yij,zij, i,j=0,,2,...,n that minimizes:

n n n

Z I CijXij + I (Co+P) (9)
i= j j =o oi oj
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subject to:

n

i=o

n

j=o

n

J=O

X, .
1]

X..
13

yij1]

= 1

= 1

j=l,2,...,n

i=1,2,...,n

n
- y.j = d.

3 ]1
j=o

Yij Q X..
1] 13

i,j=0,1,2,...,n

n n n

ki- I Zij- tkiki
k=o j =o k=o

z.. < T.X..
1] 1 13

Xij = 0,1
'x3 zij' Yij > 013 1

i=1,2,...,n

i,j=0,1,2,...,n

V i,j

The constraints in (60-61) assure that each pick-up point will be visited by

exactly one bus, (62-63) prevent subtour formation and limit the number of

students in the bus to the bus capacity, while (64-65) assure that the routes

will meet the travel time constraints.

(60)

(61)

(62)

(63)

(64)

(65)

(66)
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4. Application of Benders Decomposition

This section applies Benders Decomposition [4] to the Travelling Salesman

formulations given by (P1) and (P2). The decomposition of (P1) is straight-

forward. Given values for the assignment variables Xij, the subproblem (SP1)

is as follows:

(SP1) min w (67)

s.t.

n n
Yij - Yji = 1

j=l j=2
ji j i

0 yij - < SX.ij
13 13

i=2,...,n (68)

(69)i=2,...,n
j=l,2,...,n
isj

The master problem for this decomposition is the standard assignment

problem given by (6)-(8) supplemented by the set of cuts generated by (SP1).

It will be shown that the generated constraints are just the subtour breaking

constraints identified by Dantzig, Fulkerson and Johnson 6].

The dual of SP1 is

n n n
(SPl') max v = - I SXijYij + i

i=2 jl i=2
jii

- Yij + i - Uj 0

- Yil + i S O

(70)

(71)

(72)

i=2,.. .,n
j=2, ...,n
i=j

i=2,. . .,n

Yij 0

s.t.

(73)
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The solution of the dual problem (and hence, the Benders cut) depends upon

the given assignment variables {X..}. Since {X..} must satisfy the assignment
1J 1)

constraints (7)-(8), the values must identify a set of disjoint subtours. The

set of nodes (cities) can be divided into two sets N1,N2 depending on whether

the node's subtour contains the depot (node 1). That is, iN 1 if node i is

contained in the subtour which includes node 1; otherwise, ieN2 and its subtour

does not contain the depot.

If N2 is empty, {Xij} defines a feasible tour, and an optimal solution

to (SP') is ij = i = j = 0 for all i,j. Provided that {Xij} solves the

current master problem, then it will be an optimal solution to the Travelling

Salesman problem.

If N2 is not empty, (SPl') is unbounded and will generate a constraint for

the master problem. An extreme ray for (SP1') is given by

ieN1 (74)

iEN2

Yij = [vi - PjI 2 i (75)j=2,...,n iij

Yil =i i=2, .,n (76)

The Benders cut generated by this ray is

n n n
- I- SXijYij + I . (77)
i=2 j=l j=2 

j i

Using (75)-(77), the constraint may be restated as

~I I X IN21 
(78)

iEN 2 jEN 1 ij S (78)
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where IN2 1 is the cardinality of set N2. Since IN2 1 < S, and Xij = 0,1,

we have

I I Xi. (79)

i~2 j13iEN2 J ¢N1 1

But this is just the subtour-breaking constraint proposed in [6], which re-

quires the use of at least one arc going from set N2 to N1. Hence, the applica-

tion of Benders Method to formulation (P1) is identical to starting with the

assignment constraints and sequentially generating subtour breaking constraints

as given in (79). Clearly, this application offers no new computational

breakthroughs.

The decomposition for the formulation (P2) is similar to that for (P1).

To simplify the presentation of the method, it will be helpful to restate

the objective function (12) of (P2) as

On n
rain I. C iX (80)

1 jl 1 

Now, the master problem is given by (80) subject to the assignment constraint

(13), the zero-one restriction on Xij, plus the generated constraints from the

subproblem. Given values for {Xij } which satisfy the master problem, the

subproblem (SP2) is given by

(SP2) min {w} (81)

s.t.

n

Y = 1 (82)
j=2
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n n

Yij- Yji = 1
j=l j=l
jfi j~i

0 < Yij (n-l)Xij

Yil = n X.
ii ii

i=2,...,n

i=l,2,... ,n
j=2,...,n ij

i=2,...,n

The dual of (SP2) is as follows:

n n n n
(SP2') max{w}= - (n-l)Xijyij - nXilYil + I i

i=l j=2 i=2 i=1
j i

-Yij + i - Pj < 0
i=l,...,n
j=2,...,n ij

-Yil + i 0

yij 0 i=1,...,n
j=2,...,n ij

(87)

(88)

(89)

The dual problem is unbounded if the given assignment variables {Xij} do not

form a tour. For a given set of values {Xij} that solve the master problem,

the node set N can be divided into two sets N1,N2. The set N1 contains all

nodes for which in the given assignment there is a directed path from that node

to the depot; set N2 is just N-N1. If N2 is non-empty, the given assignment

is not a tour, and an extreme ray for (SP2') is given by

icN1 (90)

i eN2

(83)

(84)

(85)

s.t.

(86)

Pi 
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Yij [i - j] V ij (91)

The constraint generated by this extreme ray is, after simplification,

I Xi. 1, (92)
iEN 2 jN 1 (

which is identical in form to the constraints found for (P1). Now, however,

the constraint requires at least one arc connecting nodes on a directed path

to the depot with all other nodes. Hence, again the application of Benders

Method to (P2) results in nothing new; rather, the Benders Method applied to

the new formulations will result in the generation of the pure integer formu-

lation in [6].
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5. Initial Lagrange Multipliers for the Subgradient Optimization

The most successful algorithm for solving the Travelling Salesman problem

was originally developed by Held and Karp [15,16]. The algorithm uses a

Lagrangean Relaxation technique combined with a subgradient optimization proce-

dure for obtaining tight lower bounds on the objective function value, and a

branch and bound procedure for closing the integer gap in cases that such a

gap was detected. Later modifications to this basic procedure are due to

Held, Wolfe and Crowder [17], Hansen and Krarup [14], and Smith and Thompson

[21]. Empirical observations which are based on the computational experience

gained in those experiments reveal that the bounds obtained through this

relaxation procedure are tight, the depth and number of nodes generated

by this branch and bound procedure is quite limited (less than a thousand)

and most of the computer time was spent in finding the best multipliers

for the subgradient optimization procedure. A careful examination of the

Miller, Tucker, Zemlin formulation (MTZF) of the Travelling Salesman problem

reveals a strong relationship between this formulation and Held and Karp's

procedure.

First we will add to the problem given by (1-5) the redundent set of

constraints:

Xlj + Xjl < 1 V j=2,...,n (93)

Multiplying the constraints in (3) by a vector of Lagrange multipliers

i = {i', i=2,...,n) and adding them to the objective function we obtain the

following problem:

n n n n
Lip(*) = Min j C..X.. + i i (1l- Xi (94)

ipX =1 j=l ,,J 1j i=2i-2 j'l 1



-23-

s.t. n
I X. = 1 j=1,2, . ,n,

i=l 

n

Xlj= 1
j=1

Xlj + Xl 1 V j=2,...,n (95)

U.i - U + nXij < n-l i,j=2,,...,n, ij

Xij = 0,1 V i,j
L. 13

It is easy to see that for a fixed vector , the internal optimization problem

over X generates a 1-tree whose root is node 1, and the multipliers in the

Held and Karp's procedure correspond to the appropriate constraints in (3).

Letting ZIp be the optimal objective function value for the problem given by

(1-5,95) and ZLP for its linear programming relaxation, the following rela-

tions hold between ZIp, ZLP and L (i);

ZIP 2 L(i)

ZIP ZLP

L(W) could, therefore, be used as a lower bound on ZIp. Since it is desired

to get tight lower bounds on ZIP, we are looking for the multipliers * that

will satisfy

L(D* ) - Max{L( ) }

i.e., minimize the integer gap between ZIP and its Lagrangean Relaxation.

Geoffrion 13] has proved the following relation

-

I
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ZIP 2 L(>) a 7LP

In many computational tests, it was found that L(k*) is a tight bound. How-

ever, no efficient universal methods exist for computing the optimal multipliers.

A reasonable procedure for getting initial values for the lagrange multi-

pliers is to relax the integrality Constraints on the problem given by ZIP,

solve the linear program and use the values of the dual variables to the

appropriate constraints in (3) for starting the subgradient optimization pro-

cedure. Gavish [10] has successfully applied this procedure for solving

Interval Bounded Knapsack problems. Let LLp(*) be the relaxed version of

LIp( ) in which the integrality constraints have been relaxed and *iLP be

the dual variables of the appropriate constraints (3) in ZLP.

Lemma: The following relation holds

LIP(*LP) a ZLP

Proof: Since the problem associated with LLptO) is a relaxed version of

LIP(W) the following holds:

LIp ( ) > LLp ()

Since LLp(y) and ZLP are pure linear programs, they satisfy

LLp(*LP ' = Max{LLp(P) } = ZLP

thus

Lip( Lp) Ž LLP(*LP) = LP
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The lemma implies that using LP in the lagrangean relaxation results

in a bound on the optimal travelling salesman tour which is at least as

tight as the bound obtained from the linear programming relaxation. More-

over, a subgradient optimization procedure could be used to update the

multiplier values leading to tighter bounds.

In order to investigate the quality of the bounds, we have conducted

a set of computational tests in which four methods for generating bounds

to the travelling salesman problem have been examined. Two of the methods

are linear programming relaxations, while the other two are based on a

lagrangean relaxation in which the integrality constraints are conserved.

The first linear programming relaxation is the solution to the

assignment problem given by (1-3). The second linear programming relaxa-

tion is obtained by relaxing the integrality constraints in the Miller

et. al. [20] formulation with the additional constraints (95) on arcs

leading from and into city 1. The second relaxation methed is constrained

relative t the first and will produce tighter bounds.

The lagrangean relaxations are based on the 1-tree formulation and

its relaxation as given in (94). The two methods which were tested differ

in the initial lagrange multipliers which are applied in (94). Held and

Karp [15,16] have suggested to use the dual variables to (3) which are

obtained from solving the assignment problem as initial multipliers for a

subgradien% optimization procedure. The fourth method uses the dual vari-

ables to () in the second linear programming relaxation as multipliers

for the la-rangean relaxation. Since we were interested in the quality

of the initial "guess" for the multiplier values, no subgradient optimiza-

tion procedure was used and the multiplier values were not updated.
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The computational tests were performed on problems with known optimal

solutions that were used as reference points for testing the quality of

the bounds. The results are summarized in table 1. As can be seen from

those limited computational experiments the bounds obtained from a lagrangean

relaxation based on the 1-tree formulation are superior to those obtained

from relaxing the integrality constraints. In the computational tests the

dual variables from the linear programming relaxation of the 1-tree formu-

lation produce better multipliers and bounds then multipliers obtained from

the assignment problem. The bounds given in table 1 are based on the initial

multipliers which were provided from the linear programming relaxation, no

attempt was made to improve those bounds by using a subgradient optimization

procedure in which the multipliers are updated.

The computational tests were limited to 42 cities due to the excessive

computer time needed to solve the large linear programs. However, even those

limited experiments clearly demonstrate the effectiveness of this approach in

generating good initial multipliers for the subgradient optimization procedure.

Moreover, the bounds obtained by using a lagrangean relaxation approach in

which the integrality constraints are preserved, clearly dominate the bounds

obtained through relaxing the integrality constraints and solving the resulting

linear program. A nonefficient general purpose linear programming package

(MPS/360) was used during those experiments to solve the linear program. In

the future, we plan to develop a specialized linear programming code which

will use the special structure of the problem to reduce the computer time

required to solve it and enable the solution of larger problems.
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Summary

This paper has presented a new formulation for the Travelling Salesman

problem. The formulation differs from earlier formulations in that two

classes of variables are used: tour assignment variables and tour flow vari-

ables. This formulation has been shown to have a dual relationship with

Miller et.al. [20] formulation. By decomposing the problem using Benders

Method, the tour-breaking constraints given in Dantzig, Fulkerson and

Johnson [ 6 ] are rederived.

The new formulation was extended to include a variety of related trans-

portation scheduling problems. Finally, preliminary computational results

are reported on generating lower bounds from a Lagrangean relaxation of the

Travelling Salesman problem. These results suggest that tight bounds for

the Travelling Salesman problem may be obtained by using the dual variables

from the linear programming relaxation of the new formulation, as initial

Lagrange multipliers in a subgradient optimization procedure.

Future research will fully explore this and the bounding procedure for

developing optimization procedures and heuristics for solving the travelling

salesman problem.
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