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A NEW PERSPECTIVE ON BOOSTING IN LINEAR REGRESSION
VIA SUBGRADIENT OPTIMIZATION AND RELATIVES

BY ROBERT M. FREUND1,∗, PAUL GRIGAS2,† AND RAHUL MAZUMDER3,∗

Massachusetts Institute of Technology∗ and University of California, Berkeley†

We analyze boosting algorithms [Ann. Statist. 29 (2001) 1189–1232;
Ann. Statist. 28 (2000) 337–407; Ann. Statist. 32 (2004) 407–499] in lin-
ear regression from a new perspective: that of modern first-order methods in
convex optimization. We show that classic boosting algorithms in linear re-
gression, namely the incremental forward stagewise algorithm (FSε) and least
squares boosting [LS-BOOST(ε)], can be viewed as subgradient descent to
minimize the loss function defined as the maximum absolute correlation be-
tween the features and residuals. We also propose a minor modification of
FSε that yields an algorithm for the LASSO, and that may be easily extended
to an algorithm that computes the LASSO path for different values of the regu-
larization parameter. Furthermore, we show that these new algorithms for the
LASSO may also be interpreted as the same master algorithm (subgradient
descent), applied to a regularized version of the maximum absolute correla-
tion loss function. We derive novel, comprehensive computational guarantees
for several boosting algorithms in linear regression (including LS-BOOST(ε)

and FSε) by using techniques of first-order methods in convex optimization.
Our computational guarantees inform us about the statistical properties of
boosting algorithms. In particular, they provide, for the first time, a precise
theoretical description of the amount of data-fidelity and regularization im-
parted by running a boosting algorithm with a prespecified learning rate for a
fixed but arbitrary number of iterations, for any dataset.

1. Introduction. Boosting [17, 21, 31, 43, 44] is an extremely successful and
popular supervised learning method that combines multiple weak4 learners into a
powerful “committee.” AdaBoost [18, 31, 44], one of the earliest boosting algo-
rithms developed in the context of classification, may be viewed as an optimization
algorithm: a form of gradient descent in a certain function space [4, 5]. In an influ-
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ential paper, [21] nicely interpreted boosting methods used in classification prob-
lems as instances of stagewise additive modeling [32]. Friedman [23] provided
a unified view of stagewise additive modeling and steepest descent minimization
methods in function space to explain boosting methods. For related perspectives
from the machine learning community, we refer the reader to [35, 40] and the
references therein.

An important instantiation of boosting, and the topic of the present paper, is
its application in linear regression [6, 7, 23, 31]. We use the usual notation with
model matrix X = [X1, . . . ,Xp] ∈R

n×p , response vector y ∈ R
n×1, and regression

coefficients β ∈ R
p . We assume that the Xi’s have been centered to have zero

mean and unit �2 norm and y is also centered to have zero mean. For a regression
coefficient β , the predicted value of the response is Xβ and r = y − Xβ denotes
the residuals.

Boosting and implicit regularization. We begin our study with a popular al-
gorithm: Least Squares Boosting—also known as LS-BOOST(ε) [23]—which is
formally described herein in Section 2. LS-BOOST(ε) has been studied by several
authors [6–8, 22, 34]. Starting from the null model β̂0 = 0, at the kth iteration
LS-BOOST(ε) determines the covariate index jk with the best univariate fit to the
current residuals r̂k = y − Xβ̂k:

jk ∈ arg min
1≤m≤p

n∑
i=1

(
r̂k
i − ximũm

)2 where, ũm = arg min
u∈R

(
n∑

i=1

(
r̂k
i − ximu

)2

)
.

The algorithm then updates the jk th regression coefficient with a shrinkage fac-
tor ε > 0: β̂k+1

jk
← β̂k

jk
+ εũjk

, with all other regression coefficients unchanged.
A close cousin of the LS-BOOST(ε) algorithm is the Incremental Forward Stage-
wise algorithm [12, 31]—also known as FSε—which is formally described herein
in Section 3. FSε chooses the covariate most correlated (in absolute value) with
the residual r̂k and performs the update

β̂k+1
jk

← β̂k
jk

+ ε sgn
((

r̂k)T Xjk

)
,

β̂k+1
j ← β̂k

j , j �= jk, where jk ∈ arg max
j∈{1,...,p}

∣∣(r̂k)T Xj

∣∣.
[Since the covariates are standardized, both LS-BOOST(ε) and FSε lead to the
same variable selection for a given r̂k .] LS-BOOST(ε) and FSε have curious simi-
larities but subtle differences as we characterize in Section 3 (see also [7]). In both
algorithms, the shrinkage factor ε, also known as the learning rate, counterbalances
the greedy selection strategy of choosing the best covariate. Qualitatively speak-
ing, a greedy fitting procedure may overfit quickly—a small value of ε slows down
the learning rate as compared to a larger choice of ε (that is fine-tuned to minimize
the training error) and leads to slower overfitting. With a small ε it is possible to ex-
plore a larger class of models, with varying degrees of shrinkage—this often leads
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FIG. 1. Evolution of LS-BOOST(ε) and FSε versus iterations (in log-scale), for a synthetic dataset
with n = 50, p = 500: the covariates are Gaussian with pairwise correlations ρ, the true β has
ten nonzeros with βi = 1, i ≤ 10 and SNR = 1. Different ρ and ε values are considered. [Top Row]
Shows the training errors for different learning rates, [Bottom Row] shows the �1 norm of coefficients
produced by the algorithms for different learning rates (the y-axis values have been re-scaled to lie
in [0,1]).

to models with better predictive power [23]. Let M denote the number of boosting
iterations. Then both M and ε (the shrinkage factor) together control the training
error and the amount of shrinkage. We refer the reader to Figure 1, which illus-
trates the evolution of the algorithmic properties of the LS-BOOST(ε) algorithm
as a function of k and ε. Up until now, as pointed out by [31], the understanding
of the tradeoff between regularization and data-fidelity for these boosting meth-
ods has been rather qualitative. One of the contributions of this paper is a precise
quantification of this tradeoff. In Sections 2 and 3, we will derive comprehensive
computational guarantees for these algorithms which provide a formal description
of how M and ε control the amount of training error and regularization in FSε and
LS-BOOST(ε), as well as precise bounds on their tradeoffs between regularization
and data-fidelity. Furthermore, in Section 3.3 we will provide a unified treatment of
LS-BOOST(ε), FSε , and a generalization with adaptive step-sizes FSεk

—wherein
we will show that all of these methods can be viewed as special instances of (con-
vex) subgradient optimization.

Both LS-BOOST(ε) and FSε may be interpreted as “cautious” versions of the
classical Forward Selection or Forward Stepwise regression [36, 50]. This algo-
rithm identifies the variable most correlated (in absolute value) with the current
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residual, includes it in the model, and updates the joint least squares fit based on
the current set of predictors—this update strategy makes stepwise regression ag-
gressive, and hence different from FSε and LS-BOOST(ε).

LASSO and explicit regularization. All of the algorithms described above im-
part regularization in an implicit fashion through the choice of ε and M . In con-
trast, let us consider the constraint version of the LASSO [46]:

LASSO : L∗
n,δ := min

β

1

2n
‖y − Xβ‖2

2

(1.1)
s.t. ‖β‖1 ≤ δ,

with regularization parameter δ ≥ 0. The nature of regularization via the LASSO is
explicit—it is set up to find the best least squares solution subject to a constraint on
the �1 norm of the regression coefficients. We let {β̂δ} denote the path of solutions
of (1.1) for all δ ≥ 0, otherwise known as the “LASSO path.”

Boosting and LASSO: Path properties. Although LASSO and the above boost-
ing methods originate from different perspectives, there are curious similarities
between the two as is nicely explored in [12, 30, 31]. For certain datasets, the co-
efficient profiles5 of LASSO and FS0 (defined to be the limiting case of the FSε

algorithm as ε → 0+) are exactly the same (see Figure 2, top panel) [31]. How-
ever, they are different in general (Figure 2, bottom panel). Efforts to understand
the FSε algorithm paved the way for the Least Angle Regression algorithm—also
known as LAR [12] (see also [31]). The LAR is a unified framework: one instance
of LAR computes the LASSO path and another delivers a coefficient profile for FS0.

The similarities between the LASSO and boosting coefficient profiles motivate
us to develop a minor modification of boosting that generates the LASSO path,
which we will accomplish in Sections 4 and 5. In a different line of approach,
[51] describes BLASSO, a modification of the FSε algorithm with the inclusion
of additional “backward steps” so that the resultant coefficient profile mimics the
LASSO path.

Boosting and LASSO: Computation. While solving the LASSO is computa-
tionally very attractive for small to moderate-sized datasets, efficient implementa-
tions of boosting (e.g., FSε) are equally efficient6 [19]. With regard to LAR, for ex-
ample, computing the FS0 and LASSO profiles have comparable cost. In examples

5By a coefficient profile, we mean the map λ 
→ β̂λ where, λ ∈ � indexes a family of coeffi-

cients β̂λ. For example, the regression coefficients delivered by FS0 delivers a coefficient profile as
a function of their �1-norms.

6Friedman [19] shows that an optimized implementation of FSε leads to an entire solution path
for a problem with 10,000 features and 200 samples in 0.5 seconds, whereas solving the LASSO can
take up to 6–8 times longer to compute a path of solutions.
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FIG. 2. Coefficient Profiles of several algorithms as as function of the �1-norm of coefficients on
different datasets. [Top Panel] Prostate Cancer dataset described in Section 6 with n = 98 and p = 8.
All profiles look similar. [Bottom Panel] A subset of samples of the Prostate Cancer dataset with
n = 10; we also included all second order interactions to get p = 44. The coefficient profile of
LASSO is seen to be different from FSε and LS-BOOST(ε). Figure A.1 [14] shows training error
vis-à-vis the �1-shrinkage of the models for the same data.

where the number of possible features is extremely large or possibly infinite [41,
42] a boosting algorithm like FSε is computationally more attractive than solving
the LASSO.

Subgradient optimization as a unifying viewpoint of boosting and the LASSO.
In spite of the various nice perspectives on FSε and its connections to the LASSO

as described above, the present understanding about the relationships between the
LASSO path, FSε , and LS-BOOST(ε) for arbitrary datasets and ε > 0 has neverthe-
less been fairly limited. A chief goal of this paper is to contribute some substantial
further understanding of the relationship between these objects. Somewhat like the
LAR algorithm can be viewed as a master algorithm with special instances yield-
ing the LASSO path and FS0, we establish herein that FSε and LS-BOOST(ε) can
be viewed as special instances of one grand algorithm: the subgradient descent
method (of convex optimization) applied to the following parametric class of opti-
mization problems:

(1.2) Pδ : minimize
r

∥∥XT r
∥∥∞ + 1

2δ
‖r − y‖2

2 where r = y − Xβ for some β,
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where δ ∈ (0,∞] is a regularization parameter. Here, the first term is the maxi-
mum absolute inner-product between the features and residuals, and the second
term acts as a regularizer by penalizing residuals that are far from the response.
As we describe herein in Section 4, Problem (1.2) is intimately connected to the
LASSO problem (1.1) through duality. We then show that the subgradient descent
algorithm applied to Problem (1.2) leads to a new boosting algorithm—dubbed
R-FSε,δ (for Regularized incremental Forward Stagewise regression)—that solves
the LASSO, and that is almost identical to FSε except that it includes an additional
simple re-scaling of the coefficients. Section 4 develops a variety of properties of
the new algorithm R-FSε,δ related to regularization, data-fidelity, etc. And in Sec-
tion 5 we present an adaptive version PATH-R-FSε of R-FSε,δ which approximates
the LASSO path, with associated approximation guarantees as well. We also ob-
serve empirically that R-FSε,δ has statistical properties similar to LASSO and FSε ,
and it often leads to models that are more sparse than FSε .

Summary of contributions. We view the contributions of this paper as falling
into two main streams as follows:

• Current Boosting Methods and the Subgradient Descent Method. We show that
both LS-BOOST(ε) and FSε are instances of the subgradient descent method
of convex optimization applied to the problem of minimizing the maximum ab-
solute correlation between features and residuals. This leads to the first-ever
computational guarantees for the behavior of these boosting methods as well
as precise bounds on the tradeoffs between regularization and data-fidelity for
these methods, which hold for any dataset. See Theorem 2.1, Proposition 3.2
and Theorem 3.1.

• New Boosting Method R-FSε,δ connecting FSε and the LASSO. We present a
new boosting algorithm named R-FSε,δ—for Regularized Forward Stagewise
regression—that is identical to FSε except for a simple rescaling of the coeffi-
cients at each iteration, and that specializes to FSε as well as to an algorithm
for solving the LASSO, depending on the choice of δ. We present computational
guarantees for convergence of R-FSε,δ to LASSO solutions, and we present a
path version of the algorithm that computes an approximation of the LASSO

path with associated approximation bounds. See Proposition 4.1, Theorem 4.1,
Theorem 5.1 and Corollary 5.1.

Organization of the paper. The paper is organized as follows. In Section 2, we
analyze the convergence behavior of the LS-BOOST(ε) algorithm. In Section 3,
we present a unifying algorithmic framework for FSε , FSεk

and LS-BOOST(ε) as
subgradient descent. In Section 4, we introduce R-FSε,δ as a boosting algorithm
naturally associated with Problem (1.2). In Section 5, we further expand R-FSε,δ

into a method for computing approximate solutions of the LASSO path. Section 6
contains computational experiments. To improve readability, most of the technical
details are placed in the supplementary section [14].
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1.1. Notation. For a vector x ∈ R
m, we use xi to denote the ith coordi-

nate of x. We use superscripts to index vectors in a sequence {xk}. Let ej de-
note the j th unit vector in R

m, and let e = (1, . . . ,1) denote the vector of ones.
Let ‖ · ‖q denote the �q norm for q ∈ [1,∞] with unit ball Bq , and let ‖v‖0
denote the number of nonzero coefficients of the vector v. For A ∈ R

m×n, let
‖A‖q1,q2 := maxx:‖x‖q1≤1 ‖Ax‖q2 be the operator norm. In particular, ‖A‖1,2 =
max(‖A1‖2, . . . ,‖An‖2) is the maximum �2 norm of the columns of A. For a
scalar α, sgn(α) denotes the sign of α. The notation “ṽ ← arg maxv∈S{f (v)}”
denotes assigning ṽ to be any optimal solution of the problem maxv∈S{f (v)}.
For a convex set P , let 
P (·) denote the Euclidean projection operator onto P ,
namely 
P (x̄) := arg minx∈P ‖x − x̄‖2. Let ∂f (·) denote the subdifferential oper-
ator of a convex function f (·). If Q �= 0 is a symmetric positive semidefinite ma-
trix, let λmax(Q), λmin(Q), and λpmin(Q) denote the largest, smallest and smallest
nonzero (and hence positive) eigenvalue of Q, respectively. We use the notation
Ln(β) := 1

2n
‖y − Xβ‖2

2 for the least squares loss function.

2. LS-BOOST(ε): Computational guarantees and statistical implications.

Roadmap. We begin our formal study by examining the LS-BOOST(ε) algo-
rithm. We study the rate at which the coefficients generated by LS-BOOST(ε)

converge to the set of unregularized least square solutions. This characterizes the
amount of data-fidelity as a function of the number of iterations and ε. In partic-
ular, we show (global) linear convergence of the regression coefficients to the set
of least squares coefficients, with similar convergence rates derived for the pre-
diction estimates and the boosting training errors delivered by LS-BOOST(ε). We
also present bounds on the shrinkage of the regression coefficients β̂k as a func-
tion of k and ε, thereby describing how the amount of shrinkage of the regression
coefficients changes as a function of the number of iterations k.

We present below a formal description of LS-BOOST(ε) following [23]:

Algorithm: Least Squares Boosting—LS-BOOST(ε)

Fix the learning rate ε > 0, the number of iterations M and initialize β̂0 = 0 and
r̂0 = y.

1. For 0 ≤ k ≤ M , do the following:
2. Select the covariate index jk and ũjk

as follows:

jk ∈ arg min
1≤m≤p

n∑
i=1

(
r̂k
i − ximũm

)2
, where, ũm = arg min

u∈R

(
n∑

i=1

(
r̂k
i − ximu

)2

)
,

for m = 1, . . . , p.
3. Update the regression coefficients and residuals as

β̂k+1
jk

← β̂k
jk

+ εũjk
, β̂k+1

j ← β̂k
j , j �= jk and

r̂k+1 ← r̂k − εXjk
ũjk

.
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A special instance of the LS-BOOST(ε) algorithm with ε = 1 is known as LS-
BOOST [23] or Forward Stagewise [31]—it is essentially a method of repeated
simple least squares fitting of the residuals [7]. In the signal processing literature,
LS-BOOST is known as Matching Pursuit [34], a scheme used to approximate a
signal (herein, response) as a sparse linear sum of dictionary elements (herein,
features). In words, the LS-BOOST algorithm at the kth iteration determines the
covariate index jk resulting in the maximal decrease in the univariate regression
fit to the current residuals. If Xjk

ũjk
denotes the best univariate fit for the cur-

rent residuals, LS-BOOST updates the residuals: r̂k+1 ← r̂k − Xjk
ũjk

and the jk th
regression coefficient: β̂k+1

jk
← β̂k

jk
+ ũjk

, in an attempt to minimize the training
error. LS-BOOST(ε) has old roots—as noted by [7], LS-BOOST with M = 2 is
known as “twicing,” a method proposed by Tukey [48]. The papers [6–8] present
very interesting perspectives on LS-BOOST(ε), where they refer to the algorithm
as L2-BOOST. Bühlmann and Hothorn [7] also obtains approximate expressions
for the effective degrees of freedom of the L2-BOOST algorithm. LS-BOOST(ε) is
also closely related to Friedman’s MART algorithm [22]. LS-BOOST(ε) is a slow-
learning variant of LS-BOOST, which diminishes the fast and greedy learning style
of LS-BOOST with an additional damping factor of ε, which consequently leads
to a richer family of models, as we study in this section.

2.1. Computational guarantees and intuition. We first review some useful
properties associated with the familiar least squares regression problem

LS : L∗
n := min

β
Ln(β) := 1

2n
‖y − Xβ‖2

2

(2.1)
s.t. β ∈ R

p,

where Ln(·) is the least squares loss, whose gradient is

(2.2) ∇Ln(β) = −1

n
XT (y − Xβ) = −1

n
XT r,

where r = y − Xβ is the vector of residuals corresponding to the regression co-
efficients β . It follows that β is a least-squares solution of LS if and only if
∇Ln(β) = 0, which leads to the well-known normal equations

(2.3) 0 = −XT (y − Xβ) = −XT r.

It also holds that

(2.4) n · ∥∥∇Ln(β)
∥∥∞ = ∥∥XT r

∥∥∞ = max
j∈{1,...,p}

{∣∣rT Xj

∣∣}.
The following theorem describes precise computational guarantees for LS-

BOOST(ε): linear convergence of LS-BOOST(ε) with respect to (2.1), and bounds
on the �1 shrinkage of the coefficients produced. Note that the theorem uses the
quantity λpmin(XT X) which denotes the smallest nonzero (and hence positive)
eigenvalue of XT X.



2336 R. M. FREUND, P. GRIGAS AND R. MAZUMDER

THEOREM 2.1 [Linear Convergence of LS-BOOST(ε) for Least Squares].
Consider the LS-BOOST(ε) algorithm with learning rate ε ∈ (0,1], and define
the linear convergence rate coefficient γ :

(2.5) γ :=
(

1 − ε(2 − ε)λpmin(XT X)

4p

)
< 1.

For all k ≥ 0, the following bounds hold (β̂LS denotes a least squares solution):

(i) (training error): Ln(β̂
k) − L∗

n ≤ 1
2n

‖Xβ̂LS‖2
2 · γ k ;

(ii) (regression coefficients): there exists a least squares solution β̂k
LS such that

∥∥β̂k − β̂k
LS

∥∥
2 ≤ ‖Xβ̂LS‖2√

λpmin(XT X)
· γ k/2;

(iii) (predictions): for every least-squares solution β̂LS it holds that∥∥Xβ̂k − Xβ̂LS
∥∥

2 ≤ ‖Xβ̂LS‖2 · γ k/2;
(iv) (gradient norm/correlation values): ‖∇Ln(β̂

k)‖∞ = 1
n
‖XT r̂k‖∞ ≤

1
n
‖Xβ̂LS‖2 · γ k/2;

(v) (�1-shrinkage of coefficients):

∥∥β̂k
∥∥

1 ≤ min
{√

k

√
ε

2 − ε

√
‖Xβ̂LS‖2

2 − ∥∥Xβ̂LS − Xβ̂k
∥∥2

2,
ε‖Xβ̂LS‖2

1 − √
γ

(
1 − γ k/2)};

(vi) (sparsity of coefficients): ‖β̂k‖0 ≤ k.

Before remarking on the various parts of Theorem 2.1, we first discuss the
quantity γ defined in (2.5), which is called the linear convergence rate coeffi-
cient. We can write γ = 1 − ε(2−ε)

4κ(XT X)
where κ(XT X) is defined to be the ratio

κ(XT X) := p

λpmin(XT X)
. Note that κ(XT X) ∈ [1,∞). To see this, let β̃ be an eigen-

vector associated with the largest eigenvalue of XT X, then

(2.6) 0 < λpmin
(
XT X

) ≤ λmax
(
XT X

) = ‖Xβ̃‖2
2

‖β̃‖2
2

≤ ‖X‖2
1,2‖β̃‖2

1

‖β̃‖2
2

≤ p,

where the last inequality uses our assumption that the columns of X have been
normalized (whereby ‖X‖1,2 = 1), and the fact that ‖β̃‖1 ≤ √

p‖β̃‖2. This then
implies that γ ∈ [0.75,1.0)—independent of any assumption on the dataset—and
most importantly it holds that γ < 1.

Let us now make the following immediate remarks on Theorem 2.1:
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• The bounds in parts (i)–(iv) state that the training errors, regression coeffi-
cients, predictions, and correlation values produced by LS-BOOST(ε) converge
linearly (also known as geometric or exponential convergence) to their least
squares counterparts: they decrease by at least the constant multiplicative factor
γ < 1 for part (i), and by

√
γ for parts (ii)–(iv), at every iteration. The bounds

go to zero at this linear rate as k → ∞.
• The computational guarantees in parts (i)–(vi) provide characterizations of the

data-fidelity and shrinkage of the LS-BOOST(ε) algorithm for any given specifi-
cations of the learning rate ε and the number of boosting iterations k. Moreover,
the quantities appearing in the bounds can be computed from simple character-
istics of the data that can be obtained a priori without even running the boost-
ing algorithm. (And indeed, one can even substitute ‖y‖2 in place of ‖Xβ̂LS‖2
throughout the bounds if desired since ‖Xβ̂LS‖2 ≤ ‖y‖2.)

Some intuition behind Theorem 2.1. Let us now study the LS-BOOST(ε) algo-
rithm and build intuition regarding its progress with respect to solving the uncon-
strained least squares problem (2.1), which will inform the results in Theorem 2.1.
Since the predictors are all standardized to have unit �2 norm, it follows that the
coefficient index jk and corresponding step-size ũjk

selected by LS-BOOST(ε)

satisfy

(2.7) jk ∈ arg max
j∈{1,...,p}

∣∣(r̂k)T Xj

∣∣ and ũjk
= (

r̂k)T Xjk
.

Combining (2.4) and (2.7), we see that

(2.8) |ũjk
| = ∣∣(r̂k)T Xjk

∣∣ = n · ∥∥∇Ln

(
β̂k)∥∥∞.

Using the formula for ũjk
in (2.7), we have the following convenient way to express

the change in residuals at each iteration of LS-BOOST(ε):

(2.9) r̂k+1 = r̂k − ε
((

r̂k)T Xjk

)
Xjk

.

Intuitively, since (2.9) expresses r̂k+1 as the difference of two correlated variables,
r̂k and sgn((r̂k)T Xjk

)Xjk
, we expect the squared �2 norm of r̂k+1 to be smaller

than that of r̂k . On the other hand, as we will see from (3.2), convergence of the
residuals is ensured by the dependence of the change in residuals on |(r̂k)T Xjk

|,
which goes to 0 as we approach a least squares solution. In the proof of Theo-
rem 2.1 in Section A.2.2 (in [14]), we make this intuition precise by using (2.9) to
quantify the amount of decrease in the least squares objective function at each iter-
ation of LS-BOOST(ε). The final ingredient of the proof uses properties of convex
quadratic functions (Section A.2.1 in [14]) to relate the exact amount of the de-
crease from iteration k to k + 1 to the current optimality gap Ln(β̂

k) − L∗
n, which

yields the following strong linear convergence property:

(2.10) Ln

(
β̂k+1) − L∗

n ≤ γ · (
Ln

(
β̂k) − L∗

n

)
.
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The above states that the training error gap decreases at each iteration by at least
the multiplicative factor of γ , and clearly implies item (i) of Theorem 2.1. The
bounds in Theorem 2.1 are indeed tight, as addressed in Section A.2.8 [14].

Comments on the global linear convergence rate in Theorem 2.1. The global
linear convergence of LS-BOOST(ε) proved in Theorem 2.1, while novel, is not
at odds with the present understanding of such convergence for optimization prob-
lems. One can view LS-BOOST(ε) as performing steepest descent optimization
steps with respect to the �1 norm unit ball (rather than the �2 norm unit ball which
is the canonical version of the steepest descent method; see [39]). It is known
[39] that canonical steepest decent exhibits global linear convergence for convex
quadratic optimization so long as the Hessian matrix Q of the quadratic objec-
tive function is positive definite, that is, λmin(Q) > 0. And for the least squares
loss function Q = 1

n
XT X, which yields the condition that λmin(XT X) > 0. As

discussed in [3], this result extends to other norms defining steepest descent as
well. Hence, what is modestly surprising herein is not the linear convergence per
se, but rather that LS-BOOST(ε) exhibits global linear convergence even when
λmin(XT X) = 0, that is, even when X does not have full column rank [essentially
replacing λmin(XT X) with λpmin(XT X) in our analysis]. This derives specifically
from the structure of the least squares loss function, whose function values (and
whose gradient) are invariant in the null space of X, that is, Ln(β + d) = Ln(β)

for all d satisfying Xd = 0, and is thus rendered “immune” to changes in β in the
null space of XT X.

2.2. Statistical insights from the computational guarantees. Note that in most
noisy problems, the limiting least squares solution is statistically less interesting
than an estimate obtained in the interior of the boosting profile, since the latter
typically corresponds to a model with better bias-variance tradeoff. We thus cau-
tion the reader that the bounds in Theorem 2.1 should not be merely interpreted
as statements about how rapidly the boosting iterations reach the least squares fit.
We rather intend for these bounds to inform us about the evolution of the training
errors and the amount of shrinkage of the coefficients as the LS-BOOST(ε) algo-
rithm progresses and when k is at most moderately large. When the training errors
are paired with the profile of the �1-shrinkage values of the regression coefficients,
they lead to the ordered pairs

(2.11)
(

1

2n

∥∥y − Xβ̂k
∥∥2

2,
∥∥β̂k

∥∥
1

)
, k ≥ 1,

which describes the data-fidelity and �1-shrinkage tradeoff as a function of k,
for the given learning rate ε > 0. This profile is described in Figure A.1 in Sec-
tion A.1.1 [14] for several data instances. The bounds in Theorem 2.1 provide esti-
mates for the two components of the ordered pair (2.11), and they can be computed
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FIG. 3. Figure showing profiles of �1 shrinkage of the regression coefficients versus training error
for the LS-BOOST(ε) algorithm, for different values of the learning rate ε (denoted by the moniker
“eps” in the legend). The profiles have been obtained from the computational bounds in Theorem 2.1.
The left and middle panels correspond to synthetic values of the ratio κ = p

λpmin
, and for the right

panel profiles the value of κ (here, κ = 270.05) is extracted from the Leukemia dataset, described in
Section 6. The vertical axes have been normalized so that the training error at k = 0 is one, and the
horizontal axes have been scaled to the unit interval.

prior to running the boosting algorithm. For simplicity, let us use the following
crude estimate:

�k := min
{
‖Xβ̂LS‖2

√
kε

2 − ε
,
ε‖Xβ̂LS‖2

1 − √
γ

(
1 − γ

k
2
)}

,

which is an upper bound of the bound in part (v) of the theorem, to provide an
upper approximation of ‖β̂k‖1. Combining the above estimate with the guarantee
in part (i) of Theorem 2.1 in (2.11), we obtain the following ordered pairs:

(2.12)
(

1

2n
‖Xβ̂LS‖2

2 · γ k + L∗
n, �k

)
, k ≥ 1,

which describe the entire profile of the training error bounds and the �1-shrinkage
bounds as a function of k as suggested by Theorem 2.1. These profiles, as described
above in (2.12), are illustrated in Figure 3.

It is interesting to consider the profiles of Figure 3 alongside the explicit reg-
ularization framework of the LASSO (1.1) which also traces out a profile of the
form (2.11), namely,

(2.13)
(

1

2n

∥∥y − Xβ̂∗
δ

∥∥2
2,

∥∥β̂∗
δ

∥∥
1

)
, δ ≥ 0,

as a function of δ, where, β̂∗
δ is a solution to the LASSO problem (1.1). For a

value of δ := �k the optimal objective value of the LASSO problem will serve as
a lower bound of the corresponding LS-BOOST(ε) loss function value at iteration
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k. Thus, the training error of β̂k delivered by the LS-BOOST(ε) algorithm will be
sandwiched between the following lower and upper bounds:

Li,k := 1

2n

∥∥y − Xβ̂∗
�k

∥∥2
2 ≤ 1

2n

∥∥y − Xβ̂k
∥∥2

2 ≤ 1

2n
‖Xβ̂LS‖2

2 · γ k + L∗
n =: Ui,k

for every k. Note that the difference between the upper and lower bounds above,
given by Ui,k − Li,k , converges to zero as k → ∞. Figure A.1, Section A.1.1
in [14] shows the training error versus shrinkage profiles for LS-BOOST(ε) and
LASSO solutions, for different datasets.

For the bounds in parts (i) and (iii) of Theorem 2.1, the asymptotic limits (as
k → ∞) are the unregularized least squares training error and predictions—which
are quantities that are uniquely defined even in the underdetermined case.

The bound in part (ii) of Theorem 2.1 is a statement concerning the regression
coefficients. In this case, the notion of convergence needs to be appropriately mod-
ified from parts (i) and (iii), since the natural limiting object β̂LS is not necessarily
unique. In this case, perhaps not surprisingly, the regression coefficients β̂k need
not converge. The result in part (ii) of the theorem states that β̂k converges at a lin-
ear rate to the set of least squares solutions. In other words, at every LS-BOOST(ε)

boosting iteration, there exists a least squares solution β̂k
LS for which the presented

bound holds. Here, β̂k
LS is in fact the closest least squares solution to β̂k in the �2

norm—and the particular candidate least squares solution β̂k
LS may be different for

each iteration.

Interpreting the parameters and algorithm dynamics. There are several deter-
minants of the quality of the bounds in the different parts of Theorem 2.1 which
can be grouped into:

• algorithmic parameters: this includes the learning rate ε and the number of iter-
ations k, and

• data dependent quantities: ‖Xβ̂LS‖2, λpmin(XT X) and p.

The coefficient of linear convergence is given by the quantity γ := 1 − ε(2−ε)

4κ(XT X)
,

where κ(XT X) := p

λpmin(XT X)
. Note that γ is monotone decreasing in ε for ε ∈

(0,1], and is minimized at ε = 1. This simple observation confirms the general in-
tuition about LS-BOOST(ε): ε = 1 corresponds to the most aggressive model fit-
ting behavior in the LS-BOOST(ε) family, with smaller values of ε corresponding
to a slower model fitting process. The ratio κ(XT X) is a close cousin of the con-
dition number associated with the data matrix X—and smaller values of κ(XT X)

imply a faster rate of convergence.
In the overdetermined case with n ≥ p and rank(X) = p, the condition number

κ̄(XT X) := λmax(XT X)

λmin(XT X)
plays a key role in determining the stability of the least-

squares solution β̂LS and in measuring the degree of multicollinearity present.
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Note that κ̄(XT X) ∈ [1,∞), and that the problem is better conditioned for smaller
values of this ratio. Furthermore, since rank(X) = p it holds that λpmin(XT X) =
λmin(XT X), and thus κ̄(XT X) ≤ κ(XT X) by (2.6). Thus, the condition number
κ(XT X) always upper bounds the classical condition number κ̄(XT X), and if
λmax(XT X) is close to p, then κ̄(XT X) ≈ κ(XT X) and the two measures essen-
tially coincide. Finally, since in this setup β̂LS is unique, part (ii) of Theorem 2.1
implies that the sequence {β̂k} converges linearly to the unique least squares solu-
tion β̂LS.

In the underdetermined case with p > n, λmin(XT X) = 0, and thus κ̄(XT X) =
∞. On the other hand, κ(XT X) < ∞ since λpmin(XT X) is the smallest nonzero
(hence positive) eigenvalue of XT X. Therefore, the condition number κ(XT X) is
similar to the classical condition number κ̄(·) restricted to the subspace S spanned
by the columns of X [whose dimension is rank(X)]. Interestingly, the linear rate
of convergence enjoyed by LS-BOOST(ε) is in a sense adaptive—the algorithm
automatically adjusts itself to the convergence rate dictated by the parameter γ “as
if” it knows that the null space of X is not relevant.

As the dataset is varied, the value of γ can change substantially from one dataset
to another, thereby leading to differences in the convergence behavior bounds in
parts (i)–(v) of Theorem 2.1. To settle all of these ideas, we can derive some sim-
ple bounds on γ using tools from random matrix theory. Towards this end, let us
suppose that the entries of X are drawn from a standard Gaussian ensemble, which
are subsequently standardized such that every column of X has unit �2 norm. Then
it follows from random matrix theory [49] that λpmin(XT X)� 1

n
(
√

p − √
n)2 with

high probability. (See Section A.2.4 in [14] for a more detailed discussion of this
fact.) To gain better insights into the behavior of γ and how it depends on the
values of pairwise correlations of the features, we performed some computational
experiments, the results of which are shown in Figure 4. Figure 4 shows the be-
havior of γ as a function of p for a fixed n = 50 and ε = 1, for different datasets X
simulated as follows. We first generated a multivariate data matrix from a Gaussian
distribution with mean zero and covariance �p×p = (σij ), where, σij = ρ for all
i �= j ; and then all of the columns of the data matrix were standardized to have unit
�2 norm. The resulting matrix was taken as X. We considered different cases by
varying the magnitude of pairwise correlations of the features ρ—when ρ is small,
the rate of convergence is typically faster (smaller γ ) and the rate becomes slower
(higher γ ) for higher values of ρ. Figure 4 shows that the coefficient of linear con-
vergence γ is quite close to 1.0—which suggests a slowly converging algorithm
and confirms our intuition about the algorithmic behavior of LS-BOOST(ε). In-
deed, LS-BOOST(ε), like any other boosting algorithm, should indeed converge
slowly to the unregularized least squares solution. The slowly converging nature
of the LS-BOOST(ε) algorithm provides, for the first time, a precise theoretical
justification of the empirical observation made in [31] that stagewise regression
is widely considered ineffective as a tool to obtain the unregularized least squares
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FIG. 4. Figure showing the behavior of γ [left panel] and λpmin(XT X) [right panel] for different
values of ρ (denoted by the moniker “rho” in the legend) and p, with ε = 1. There are ten profiles
in each panel corresponding to different values of ρ for ρ = 0,0.1, . . . ,0.9. Each profile documents
the change in γ as a function of p, the smallest value of p appearing in the display is p = 73. Here,
the data matrix X is comprised of n = 50 samples from a p-dimensional multivariate Gaussian
distribution with mean zero, and all pairwise correlations equal to ρ, and the features are then
standardized to have unit �2 norm. The left panel shows that γ exhibits a phase of rapid decay (as
a function of p) after which it stabilizes into the regime of fastest convergence. Interestingly, the
behavior shows a monotone trend in ρ: the rate of progress of LS-BOOST(ε) becomes slower for
larger values of ρ and faster for smaller values of ρ.

fit, as compared to other stepwise model fitting procedures like Forward Stepwise
regression (discussed in Section 1).

The above discussion sheds some interesting insight into the behavior of the
LS-BOOST(ε) algorithm. For larger values of ρ, the observed covariates tend to
be even more highly correlated (since p � n). Whenever a pair of features are
highly correlated, the LS-BOOST(ε) algorithm finds it difficult to prefer one over
the other, and thus takes turns in updating both coefficients, thereby distributing
the effects of a covariate to all of its correlated cousins. Since a group of correlated
covariates are all competing to be updated by the LS-BOOST(ε) algorithm, the
progress made by the algorithm in decreasing the loss function is naturally slowed
down. In contrast, when ρ is small, the LS-BOOST(ε) algorithm brings in a covari-
ate and in a sense completes the process by doing the exact line-search on that fea-
ture. This heuristic explanation attempts to explain the slower rate of convergence
of the LS-BOOST(ε) algorithm for large values of ρ—a phenomenon that we ob-
serve in practice and which is also substantiated by the computational guarantees
in Theorem 2.1. We refer the reader to Figures 1 and 5 which further illustrate the
above justification. Statement (v) of Theorem 2.1 provides upper bounds on the �1

shrinkage of the coefficients. Figure 3 illustrates the evolution of the data-fidelity
versus �1-shrinkage as obtained from the computational bounds in Theorem 2.1.
Some additional discussion and properties of LS-BOOST(ε) are presented in the
Supplementary Material Section A.2.3 [14].
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FIG. 5. Showing the LS-BOOST(ε) algorithm run on the same synthetic dataset as was used in
Figure 1 with ε = 1, for three different values of the pairwise correlation ρ. A point is “on” if
the corresponding regression coefficient is updated at iteration k. Here, the vertical axes have been
reoriented so that the coefficients that are updated the maximum number of times appear lower on
the axes. For larger values of ρ, we see that the LS-BOOST(ε) algorithm aggressively updates the
coefficients for a large number of iterations, whereas the dynamics of the algorithm for smaller
values of ρ are less pronounced. For larger values of ρ the LS-BOOST(ε) algorithm takes longer
to reach the least squares fit and this is reflected in the above figure from the update patterns in the
regression coefficients. The dynamics of the algorithm evident in this figure nicely complements the
insights gained from Figure 1.

We briefly discuss computational guarantees for Forward Stepwise regression
(also known as Forward Selection) [12, 31, 50]. The Forward Stepwise algorithm,
at the kth iteration, selects a covariate Xjk

maximally correlated with the current
residual:7 jk ∈ arg maxj |(r̂k)T Xj |. If the set of active (i.e., nonzero) regression
coefficient indices at iteration k is denoted by Ik , then the algorithm appends jk to
this set, Ik+1 ← Ik ∪ {jk}, and updates the regression coefficients by performing
a joint least squares regression of y restricted to the covariates in Ik+1:

β̂k+1 ∈ arg min
β

‖y − Xβ‖2
2 s.t. βi = 0 ∀i /∈ Ik+1.

Notice that the least-squares loss function value for Forward Stepwise is bounded
by the corresponding value if one was instead using LS-BOOST, that is,
Ln(β̂

k+1) ≤ Ln(β̂
k + ũjk

ejk
). Thus, it is straightforward to show that parts (i)–(iv)

[and also part (vi)] of Theorem 2.1 (with ε = 1) hold in their current form for For-
ward Stepwise as well. Interestingly, part (v) does not hold for Forward Stepwise
nor should we expect Forward Stepwise—which is the most aggressive model fit-
ting procedure described herein—to have any such guarantees about the shrinkage
of coefficients. In the signal processing literature, Forward Stepwise is popularly
known as Orthogonal Matching Pursuit [38].

7Recall that we assume all the covariates to have unit �2 norm.
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3. Boosting algorithms as subgradient descent.

Roadmap. In this section, we present a new unifying framework for interpret-
ing the three boosting algorithms that were discussed in Section 1, namely FSε ,
its nonuniform learning rate extension FSεk

, and LS-BOOST(ε). We show herein
that all three algorithmic families can be interpreted as instances of the subgradi-
ent descent method of convex optimization, applied to the problem of minimizing
the largest correlation between residuals and predictors. Interestingly, this unify-
ing lens will also result in a natural generalization of FSε with very strong ties to
the LASSO problem and its solution, as we will present in Sections 4 and 5. The
framework presented in this section leads to convergence guarantees for FSε and
FSεk

. In Theorem 3.1 herein, we present a theoretical description of the evolution
of the FSε algorithm, in terms of its data-fidelity and shrinkage guarantees as a
function of the number of boosting iterations. These results are a consequence of
the computational guarantees for FSε that inform us about the rate at which the FSε

training error, regression coefficients, and predictions make their way to their least
squares counterparts. In order to develop these results, we motivate and briefly
review the subgradient descent method of convex optimization.

3.1. Boosting algorithms FSε , LS-BOOST(ε) and FSεk
. We present a formal

description of the FSε algorithm introduced in Section 1.

Algorithm: Incremental Forward Stagewise Regression—FSε

Fix the learning rate ε > 0, the number of iterations M , and initialize β̂0 = 0 and
r̂0 = y.

1. For 0 ≤ k ≤ M do the following:
2. Compute jk ∈ arg maxj∈{1,...,p} |(r̂k)T Xj |.
3. Update the regression coefficients and residuals as

β̂k+1
jk

← β̂k
jk

+ ε sgn
((

r̂k)T Xjk

)
, β̂k+1

j ← β̂k
j , j �= jk, and

(3.1)
r̂k+1 ← r̂k − ε sgn

((
r̂k)T Xjk

)
Xjk

.

The FSε algorithm in the kth iteration greedily chooses a covariate Xjk
that

is the most correlated (in absolute value) with the current residual and updates
the jk th regression coefficient, along with the residuals, with a shrinkage factor ε.
Firstly, since all of the covariates are standardized to have unit �2 norm, for the
same given residual value r̂k it is simple to derive that LS-BOOST(ε) and FSε lead
to the same choice of jk . Qualitatively speaking, as in the case of LS-BOOST(ε),
a smaller value of ε corresponds to a slower learning procedure. However, in con-
trast to LS-BOOST(ε), where ε lies naturally in (0,1], the choice of ε in FSε is
more sensitive to the scale of the problem. Indeed LS-BOOST(ε) and FSε in spite
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of their similarities contain subtle differences, for example, in their residual up-
dates:

LS-BOOST(ε) : ∥∥r̂k+1 − r̂k
∥∥

2 = ε
∣∣(r̂k)T Xjk

∣∣ = ε · n · ∥∥∇Ln

(
β̂k)∥∥∞

(3.2)
FSε : ∥∥r̂k+1 − r̂k

∥∥
2 = ε|sk| where sk = sgn

((
r̂k)T Xjk

)
,

where ∇Ln(·) is the gradient of Ln(β). Note that for both of the algorithms, the
quantity ‖r̂k+1 − r̂k‖2 involves the shrinkage factor ε. Their difference thus lies
in the multiplicative factor, which is n · ‖∇Ln(β̂

k)‖∞ for LS-BOOST(ε) and is
| sgn((r̂k)T Xjk

)| for FSε . The norm of the successive residual differences for LS-
BOOST(ε) is proportional to the �∞ norm of the gradient of the least squares loss
function [see herein equations (2.2) and (2.4)]. For FSε , the norm of the successive
residual differences depends on the absolute value of the sign of the jk th coordi-
nate of the gradient. Note that sk ∈ {−1,0,1} depending upon whether (r̂k)T Xjk

is
negative, zero or positive; and sk = 0 only when (r̂k)T Xjk

= 0, that is, only when
‖∇Ln(β̂

k)‖∞ = 0 and hence β̂k is a least squares solution. Thus, for FSε the �2
norm of the difference in residuals is almost always ε during the course of the algo-
rithm. For the LS-BOOST(ε) algorithm, progress is considerably more sensitive to
the norm of the gradient—as the algorithm makes its way to the unregularized least
squares fit, one should expect the norm of the gradient to also shrink to zero, as we
have established formally in Section 2. Qualitatively speaking, this means that the
updates of LS-BOOST(ε) are more well-behaved when compared to the updates
of FSε , which are more erratically behaved. Of course, the additional shrinkage
factor ε further dampens the progress for both algorithms.

While Section 2 shows that the predicted values Xβ̂k obtained from LS-
BOOST(ε) converge (at a globally linear rate) to the least squares fit as k → ∞
(for any value of ε ∈ (0,1]); on the other hand, for FSε with ε > 0, the iterates
Xβ̂k need not necessarily converge to the least squares fit as k → ∞. Indeed, the
FSε algorithm, by its operational definition, has a uniform learning rate ε which
remains fixed for all iterations; this makes it impossible to always guarantee con-
vergence to a least squares solution with accuracy less than O(ε). We show in this
section that the predictions from the FSε algorithm converges to an approximate
least squares solution, albeit at a global sublinear rate.8

Since the main difference between FSε and LS-BOOST(ε) lies in the choice of
the step-size used to update the coefficients, let us therefore consider a noncon-
stant step-size/nonuniform learning rate version of FSε , which we call FSεk

. FSεk

replaces update (3.1) of FSε by

residual update: r̂k+1 ← r̂k − εk sgn
((

r̂k)T Xjk

)
Xjk

8For the purposes of this paper, linear convergence of a sequence {ai} will mean that ai → ā and
there exists a scalar γ < 1 for which (ai − ā)/(ai−1 − ā) ≤ γ for all i. Sublinear convergence will
mean that there is no such γ < 1 that satisfies the above property. For much more general versions
of linear and sublinear convergence, see [2] for example.
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coefficient update: β̂k+1
jk

← β̂k
jk

+ εk sgn
((

r̂k)T Xjk

)
and β̂k+1

j ← β̂k
j , j �= jk,

where {εk} is a sequence of learning-rates (or step-sizes) which depend upon the
iteration index k. LS-BOOST(ε) can thus be thought of as a version of FSεk

, where
the step-size εk is given by εk := εũjk

sgn((r̂k)T Xjk
).

In Section 3.3, we provide a unified treatment of LS-BOOST(ε), FSε and FSεk
,

wherein we show that all these methods can be viewed as special instances of
subgradient optimization.

3.2. Brief review of subgradient descent. We briefly motivate and review the
subgradient descent method for nondifferentiable convex optimization problems.
Consider the following optimization problem:

f ∗ := min
x

f (x)

(3.3)
s.t. x ∈ P,

where P ⊆ R
n is a closed convex set and f (·) : P → R is a convex function. If

f (·) is differentiable, then f (·) will satisfy the following gradient inequality:

f (y) ≥ f (x) + ∇f (x)T (y − x) for any x, y ∈ P,

which states that f (·) lies above its first-order (linear) approximation at x. One of
the most intuitive optimization schemes for solving (3.3) is the method of gradient
descent. This method is initiated at a given point x0 ∈ P . If xk is the current iterate,
then the next iterate is given by the update formula: xk+1 ← 
P (xk −αk∇f (xk)).
In this method, the potential new point is xk − αk∇f (xk), where αk > 0 is called
the step-size at iteration k, and the step is taken in the direction of the negative
of the gradient. If this potential new point lies outside of the feasible region P , it
is then projected back onto P . Here, recall that 
P (·) is the Euclidean projection
operator, namely 
P (x) := arg miny∈P ‖x − y‖2.

Now suppose that f (·) is not differentiable. By virtue of the fact that f (·) is
convex, f (·) will have a subgradient at each point x. Recall that g is a subgradient
of f (·) at x if the following subgradient inequality holds:

(3.4) f (y) ≥ f (x) + gT (y − x) for all y ∈ P,

which generalizes the gradient inequality above and states that f (·) lies above the
linear function on the right-hand side of (3.4). Because there may exist more than
one subgradient of f (·) at x, let ∂f (x) denote the set of subgradients of f (·) at x.
Then “g ∈ ∂f (x)” denotes that g is a subgradient of f (·) at the point x, and so
g satisfies (3.4) for all y. The subgradient descent method (see, e.g., [45]) is a
simple generalization of the method of gradient descent to the case when f (·) is
not differentiable. One simply replaces the gradient by the subgradient, yielding
the following update scheme:

Compute a subgradient of f (·) at xk : gk ∈ ∂f
(
xk),

(3.5)
Peform update at xk : xk+1 ← 
P

(
xk − αkg

k).
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The following proposition summarizes a well-known computational guarantee
associated with the subgradient descent method.

PROPOSITION 3.1 (Convergence bound for subgradient descent [37, 39]).
Consider the subgradient descent method (3.5), using a constant step-size αi = α

for all i. Let x∗ be an optimal solution of (3.3) and suppose that the subgradients
are uniformly bounded, namely ‖gi‖2 ≤ G for all i ≥ 0. Then for each k ≥ 0, the
following inequality holds:

(3.6) min
i∈{0,...,k}f

(
xi) ≤ f ∗ + ‖x0 − x∗‖2

2

2(k + 1)α
+ αG2

2
.

The left-hand side of (3.6) is simply the best objective function value obtained
among the first k iterations. The right-hand side of (3.6) bounds the best objective
function value from above, namely the optimal value f ∗ plus a nonnegative quan-
tity that is a function of the number of iterations k, the constant step-size α, the
bound G on the norms of subgradients and the distance from the initial point to an
optimal solution x∗ of (3.3). Note that for a fixed step-size α > 0, the right-hand

side of (3.6) goes to αG2

2 as k → ∞. In the interest of completeness, we include a
proof of Proposition 3.1 in the Supplementary Material Section A.2.5 [14].

3.3. A subgradient descent framework for boosting. We now show that the
boosting algorithms discussed in Section 1, namely FSε and its relatives FSεk

and
LS-BOOST(ε), can all be interpreted as instantiations of the subgradient descent
method to minimize the largest absolute correlation between the residuals and pre-
dictors.

Let Pres := {r ∈ R
n : r = y − Xβ for some β ∈ R

p} denote the affine space of
residuals and consider the following convex optimization problem:

Correlation Minimization (CM) : f ∗ := min
r

f (r) := ∥∥XT r
∥∥∞

(3.7)
s.t. r ∈ Pres,

which we dub the “Correlation Minimization” problem, or CM for short. Note an
important subtlety in the CM problem, namely that the optimization variable in
CM is the residual r and not the regression coefficient vector β .

Since the columns of X have unit �2 norm by assumption, f (r) is the largest
absolute correlation between the residual vector r and the predictors. Therefore,
(3.7) is the convex optimization problem of minimizing the largest correlation be-
tween the residuals and the predictors, over all possible values of the residuals.
From (2.3) with r = y − Xβ , we observe that XT r = 0 if and only if β is a least
squares solution, whereby f (r) = ‖XT r‖∞ = 0 for the least squares residual vec-
tor r = r̂LS = y − Xβ̂LS. Since the objective function in (3.7) is nonnegative, we
conclude that f ∗ = 0 and the least squares residual vector r̂LS is also the unique
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optimal solution of the CM problem (3.7). Thus, CM can be viewed as an opti-
mization problem which also produces the least squares solution.

The following proposition states that the three boosting algorithms FSε , FSεk

and LS-BOOST(ε) can all be viewed as instantiations of the subgradient descent
method to solve the CM problem (3.7).

PROPOSITION 3.2. Consider the subgradient descent method (3.5) with step-
size sequence {αk} to solve the correlation minimization (CM) problem (3.7), ini-
tialized at r̂0 = y. Then:

(i) the FSε algorithm is an instance of subgradient descent, with a constant
step-size αk := ε at each iteration,

(ii) the FSεk
algorithm is an instance of subgradient descent, with nonuniform

step-sizes αk := εk at iteration k, and
(iii) the LS-BOOST(ε) algorithm is an instance of subgradient descent, with

nonuniform step-sizes αk := ε|ũjk
| at iteration k, where ũjk

:= arg minu ‖r̂k −
Xjk

u‖2
2.

PROOF. We first prove (i). Recall the update of the residuals in FSε:

r̂k+1 = r̂k − ε · sgn
((

r̂k)T Xjk

)
Xjk

.

We first show that gk := sgn((r̂k)T Xjk
)Xjk

is a subgradient of the objective
function f (r) = ‖XT r‖∞ of the correlation minimization problem CM (3.7) at
r = r̂k . At iteration k, FSε chooses the coefficient to update by selecting jk ∈
arg maxj∈{1,...,p} |(r̂k)T Xj |, whereby sgn((r̂k)T Xjk

)((r̂k)T Xjk
) = ‖XT (r̂k)‖∞,

and, therefore, for any r it holds that

f (r) = ∥∥XT r
∥∥∞ ≥ sgn

((
r̂k)T Xjk

)(
(Xjk

)T r
)

= sgn
((

r̂k)T Xjk

)(
(Xjk

)T
(
r̂k + r − r̂k))

= ∥∥XT (
r̂k)∥∥∞ + sgn

((
r̂k)T Xjk

)(
(Xjk

)T
(
r − r̂k))

= f
(
r̂k) + sgn

((
r̂k)T Xjk

)(
(Xjk

)T
(
r − r̂k)).

Therefore, using the definition of a subgradient in (3.4), it follows that gk :=
sgn((r̂k)T Xjk

)Xjk
is a subgradient of f (r) = ‖XT r‖∞ at r = r̂k . Therefore, the

update r̂k+1 = r̂k − ε · sgn((r̂k)T Xjk
)Xjk

is of the form r̂k+1 = r̂k − εgk where
gk ∈ ∂f (r̂k). Last of all notice that the update can also be written as r̂k − εgk =
r̂k+1 = y−Xβ̂k+1 ∈ Pres, hence 
Pres(r̂

k − εgk) = r̂k − εgk , that is, the projection
step is superfluous here and, therefore, r̂k+1 = 
Pres(r̂

k − εgk), which is precisely
the update for the subgradient descent method with step-size αk := ε.

The proof of (ii) is the same as (i) with a step-size choice of αk = εk at iter-
ation k. Furthermore, as discussed earlier, LS-BOOST(ε) may be thought of as a
specific instance of FSεk

, whereby the proof of (iii) follows as a special case of (ii).
�
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Proposition 3.2 presents a new interpretation of the boosting algorithms FSε

and its cousins as subgradient descent. This is interesting especially since FSε and
LS-BOOST(ε) have been traditionally interpreted as greedy coordinate descent or
steepest descent type procedures [22, 31]. This has the following consequences of
note:

• We take recourse to existing tools and results about subgradient descent op-
timization to inform us about the computational guarantees of these methods.
When translated to the setting of linear regression, these results will shed light
on the data fidelity versus shrinkage characteristics of FSε and its cousins— all
using quantities that can be easily obtained prior to running the boosting algo-
rithm. We will show the details of this in Theorem 3.1 below.

• The subgradient optimization viewpoint provides a unifying algorithmic theme
which we will also apply to a regularized version of problem CM (3.7), and that
we will show is very strongly connected to the LASSO. This will be developed
in Section 4. Indeed, the regularized version of the CM problem that we will
develop in Section 4 will lead to a new family of boosting algorithms which
are a seemingly minor variant of the basic FSε algorithm but deliver [O(ε)-
approximate] solutions to the LASSO.

3.4. Deriving and interpreting computational guarantees for FSε . The fol-
lowing theorem presents the convergence properties of FSε , which are a con-
sequence of the interpretation of FSε as an instance of the subgradient descent
method.

THEOREM 3.1 (Convergence Properties of FSε). Consider the FSε algorithm
with learning rate ε. Let k ≥ 0 be the total number of iterations. Then there exists
an index i ∈ {0, . . . , k} for which the following bounds hold:

(i) (training error): Ln(β̂
i) − L∗

n ≤ p

2nλpmin(XT X)

[
‖Xβ̂LS‖2

2
ε(k+1)

+ ε

]2
;

(ii) (regression coefficients): there exists a least squares solution β̂i
LS such that

∥∥β̂i − β̂i
LS

∥∥
2 ≤

√
p

λpmin(XT X)

[‖Xβ̂LS‖2
2

ε(k + 1)
+ ε

]
;

(iii) (predictions): for every least-squares solution β̂LS it holds that

∥∥Xβ̂i − Xβ̂LS
∥∥

2 ≤
√

p√
λpmin(XT X)

[‖Xβ̂LS‖2
2

ε(k + 1)
+ ε

]
;

(iv) (correlation values) ‖XT r̂ i‖∞ ≤ ‖Xβ̂LS‖2
2

2ε(k+1)
+ ε

2 ;

(v) (�1-shrinkage of coefficients): ‖β̂i‖1 ≤ kε;
(vi) (sparsity of coefficients): ‖β̂i‖0 ≤ k.

The proof of Theorem 3.1 is presented in Section A.2.6, in [14].
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Interpreting the computational guarantees. Theorem 3.1 accomplishes for
FSε what Theorem 2.1 did for LS-BOOST(ε)—parts (i)–(iv) of the theorem de-
scribe the rate in which the training error, regression coefficients and related quan-
tities make their way toward their [O(ε)-approximate] unregularized least squares
counterparts. Part (v) of the theorem also describes the rate at which the shrink-
age of the regression coefficients evolve as a function of the number of boosting
iterations. The rate of convergence of FSε is sublinear, unlike the linear rate of
convergence for LS-BOOST(ε). Note that this type of sublinear convergence im-
plies that the rate of decrease of the training error (for instance) is dramatically
faster in the very early iterations as compared to later iterations. Taken together,
Theorems 3.1 and 2.1 highlight an important difference between the behavior of
algorithms LS-BOOST(ε) and FSε:

• the limiting solution of the LS-BOOST(ε) algorithm (as k → ∞) corresponds
to the unregularized least squares solution, but

• the limiting solution of the FSε algorithm (as k → ∞) corresponds to an O(ε)

approximate least squares solution.

As demonstrated in Theorems 2.1 and 3.1, both LS-BOOST(ε) and FSε have nice
convergence properties with respect to the unconstrained least squares problem
(2.1). However, unlike the convergence results for LS-BOOST(ε) in Theorem 2.1,
FSε exhibits a sublinear rate of convergence towards a suboptimal least squares
solution. For example, part (i) of Theorem 3.1 implies in the limit as k → ∞ that
FSε identifies a model with training error at most

(3.8) L∗
n + pε2

2n(λpmin(XT X))
.

In addition, part (ii) of Theorem 3.1 implies that as k → ∞, FSε identifies a model
whose distance to the set of least squares solutions {β̂LS : XT Xβ̂LS = XT y} is at

most:
ε
√

p

λpmin(XT X)
.

Note that the computational guarantees in Theorem 3.1 involve the quantities
λpmin(XT X) and ‖Xβ̂LS‖2, assuming n and p are fixed. To settle ideas, let us con-
sider the synthetic datasets used in Figures 4 and 1, where the covariates were
generated from a multivariate Gaussian distribution with pairwise correlation ρ.
Figure 4 suggests that λpmin(XT X) decreases with increasing ρ values. Thus, con-
trolling for other factors appearing in the computational bounds9, it follows from
the statements of Theorem 3.1 that the training error decreases much more rapidly
for smaller ρ values, as a function of k. This is nicely validated by the computa-
tional results in Figure 1 (the three top panel figures), which show that the training
errors decay at a faster rate for smaller values of ρ.

9To control for other factors, for example, we may assume that p > n and for different values of ρ

we have ‖Xβ̂LS‖2 = ‖y‖2 = 1 with ε fixed across the different examples.
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FIG. 6. Figure showing profiles of �1 shrinkage bounds of the regression coefficients versus training
error bounds for the FSε algorithm, for different values of the learning rate ε. The profiles have
been obtained from the bounds in parts (i) and (v) of Theorem 3.1. The left panel corresponds to a
hypothetical dataset using κ = p

λpmin
= 1, and the middle and right panels use the parameters of the

Leukemia dataset.

Let us examine more carefully the properties of the sequence of models explored
by FSε and the corresponding tradeoffs between data fidelity and model complex-
ity. Let TBOUND and SBOUND denote the training error bound and shrinkage
bound in parts (i) and (v) of Theorem 3.1, respectively. Then simple manipulation
of the arithmetic in these two bounds yields the following tradeoff equation:

TBOUND = p

2nλpmin(XT X)

[ ‖Xβ̂LS‖2
2

SBOUND + ε
+ ε

]2
.

The above tradeoff between the training error bound and the shrinkage bound is
illustrated in Figure 6, which shows this tradeoff curve for four different values
of the learning rate ε. Except for very small shrinkage levels, lower values of ε

produce smaller training errors. But unlike the corresponding tradeoff curves for
LS-BOOST(ε), there is a range of values of the shrinkage for which smaller values
of ε actually produce larger training errors, though admittedly this range is for very
small shrinkage values. For more reasonable shrinkage values, smaller values of ε

will correspond to smaller values of the training error.
Part (v) of Theorems 2.1 and 3.1 presents shrinkage bounds for FSε and LS-

BOOST(ε), respectively. Let us briefly compare these bounds. Examining the
shrinkage bound for LS-BOOST(ε), we can bound the left term from above by√

k
√

ε‖Xβ̂LS‖2. We can also bound the right term from above by ε‖Xβ̂LS‖2/(1 −√
γ ) where recall from Section 2 that γ is the linear convergence rate coeffi-

cient γ := 1− ε(2−ε)λpmin(XT X)

4p
. We may therefore alternatively write the following

shrinkage bound for LS-BOOST(ε):

(3.9)
∥∥β̂k

∥∥
1 ≤ ‖Xβ̂LS‖2 min

{√
k
√

ε, ε/(1 − √
γ )

}
.
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The shrinkage bound for FSε is simply kε. Comparing these two bounds, we ob-
serve that not only does the shrinkage bound for FSε grow at a faster rate as a func-
tion of k for large enough k, but also the shrinkage bound for FSε grows unbounded
in k, unlike the right term above for the shrinkage bound of LS-BOOST(ε).

One can also compare FSε and LS-BOOST(ε) in terms of the efficiency with
which these two methods achieve a certain pre-specified data-fidelity. In Sec-
tion A.2.7 [14] we show, at least in theory, that LS-BOOST(ε) is much more ef-
ficient than FSε at achieving such data-fidelity and, furthermore, it does so with
much better shrinkage.

Generalizations of FSε . Here, we briefly mention some recent work that gen-
eralize the FSε algorithm: [24] study extensions to incorporate non-convex pe-
nalization schemes, and [47] propose a framework generalizing FSε to a flexible
family of convex loss functions and sparsity inducing convex regularizers.

4. Regularized correlation minimization, boosting and LASSO.

Roadmap. In this section, we introduce a new boosting algorithm, parameter-
ized by a scalar δ ≥ 0, which we denote by R-FSε,δ (for Regularized incremental
Forward Stagewise regression), that is obtained by incorporating a simple rescaling
step to the coefficient updates in FSε . We then introduce a regularized version of
the Correlation Minimization (CM) problem (3.7) which we refer to as RCM. We
show that the adaptation of the subgradient descent algorithmic framework to the
Regularized Correlation Minimization problem RCM exactly yields the algorithm
R-FSε,δ . The new algorithm R-FSε,δ may be interpreted as a natural extension of
popular boosting algorithms like FSε , and has the following notable properties:

• Whereas FSε updates the coefficients in an additive fashion by adding a small
amount ε to the coefficient most correlated with the current residuals, R-FSε,δ

first shrinks all of the coefficients by a scaling factor 1 − ε
δ

< 1 and then updates
the selected coefficient in the same additive fashion as FSε .

• R-FSε,δ delivers O(ε)-accurate solutions to the LASSO in the limit as k → ∞,
unlike FSε which delivers O(ε)-accurate solutions to the unregularized least
squares problem.

• R-FSε,δ has computational guarantees similar in spirit to the ones described in
the context of FSε—these quantities directly inform us about the data-fidelity
vis-à-vis shrinkage tradeoffs as a function of the number of boosting iterations
and the learning rate ε.

The notion of using additional regularization along with the implicit shrink-
age imparted by boosting is not new in the literature. Various interesting no-
tions have been proposed in [9, 11, 19, 25, 51]; see also the discussion in Sec-
tion A.3.4 [14]. However, the framework we present here is new. We present a
unified subgradient descent framework for a class of regularized CM problems
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that results in algorithms that have appealing structural similarities with forward
stagewise regression-type algorithms, while also being very strongly connected to
the LASSO.

Boosting with additional shrinkage—R-FSε,δ . Here, we give a formal descrip-
tion of the R-FSε,δ algorithm. R-FSε,δ is controlled by two parameters: the learning
rate ε, which plays the same role as the learning rate in FSε , and the “regulariza-
tion parameter” δ ≥ ε. Our reason for referring to δ as a regularization parameter is
due to the connection between R-FSε,δ and the LASSO, which will be made clear
later. The shrinkage factor, that is, the amount by which we shrink the coefficients
before updating the selected coefficient, is determined as 1 − ε

δ
. Supposing that we

choose to update the coefficient indexed by jk at iteration k, then the coefficient
update may be written as

β̂k+1 ←
(

1 − ε

δ

)
β̂k + ε · sgn

((
r̂k)T Xjk

)
ejk

.

Below we give a concise description of R-FSε,δ , including the update for the resid-
uals that corresponds to the update for the coefficients stated above.

Algorithm: R-FSε,δ

Fix a learning rate ε > 0, regularization parameter δ > 0 (with ε ≤ δ), number
of iterations M ; and initialize at β̂0 = 0.

For 0 ≤ k ≤ M , select jk ∈ arg maxj∈{1,...,p} |(r̂k)T Xj | and perform the update:

r̂k+1 ← r̂k − ε

[
sgn

((
r̂k)T Xjk

)
Xjk

+ 1

δ

(
r̂k − y

)]
(4.1)

β̂k+1
jk

←
(

1 − ε

δ

)
β̂k

jk
+ ε sgn

((
r̂k)T Xjk

)
and β̂k+1

j ←
(

1 − ε

δ

)
β̂k

j , j �= jk.

Note that R-FSε,δ and FSε are structurally very similar—and indeed when
δ = ∞ then R-FSε,δ is exactly FSε . Note also that R-FSε,δ shares the same up-
per bound on the sparsity of the regression coefficients as FSε , namely for all k

it holds that: ‖β̂k‖0 ≤ k. When δ < ∞ then, as previously mentioned, the main
structural difference between R-FSε,δ and FSε is the additional rescaling of the
coefficients by the factor 1 − ε

δ
. This rescaling better controls the growth of the co-

efficients and, as will be demonstrated next, plays a key role in connecting R-FSε,δ

to the LASSO.

Regularized correlation minimization (RCM) and LASSO. The starting point
of our formal analysis of R-FSε,δ is the Correlation Minimization (CM) prob-
lem (3.7), which we now modify by introducing a regularization term that pe-
nalizes residuals that are far from the vector of observations y. This modifica-
tion leads to the following parametric family of optimization problems indexed by
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δ ∈ (0,∞]:
RCMδ : f ∗

δ := min
r

fδ(r) := ∥∥XT r
∥∥∞ + 1

2δ
‖r − y‖2

2
(4.2)

s.t. r ∈ Pres := {
r ∈ R

n : r = y − Xβ for some β ∈ R
p}

,

where “RCM” connotes Regularlized Correlation Minimization. Note that RCM
reduces to the correlation minimization problem CM (3.7) when δ = ∞. RCM
may be interpreted as the problem of minimizing, over the space of residuals, the
largest correlation between the residuals and the predictors plus a regularization
term that penalizes residuals that are far from the response y (which itself can be
interpreted as the residuals associated with the model β = 0).

Interestingly, as we show in [14] Section A.3.1, RCM (4.2) is equivalent to the
LASSO (1.1) via duality. This equivalence provides further insight about the reg-
ularization used to obtain RCMδ . Comparing the LASSO and RCM, notice that
the space of the variables of the LASSO is the space of regression coefficients β ,
namely R

p , whereas the space of the variables of RCM is the space of model
residuals, namely Pres ⊂R

n. The duality relationship shows that RCMδ (4.2) is an
equivalent characterization of the LASSO problem, just like the correlation mini-
mization (CM) problem (3.7) is an equivalent characterization of the (unregular-
ized) least squares problem. Recall that Proposition 3.2 showed that subgradient
descent applied to the CM problem (4.2) (which is RCMδ with δ = ∞) leads to the
well-known boosting algorithm FSε . We now extend this theme with the following
proposition, which states that R-FSε,δ is equivalent to subgradient descent applied
to RCMδ .

PROPOSITION 4.1. The R-FSε,δ algorithm is an instance of subgradient de-
scent to solve the regularized correlation minimization (RCMδ) problem (4.2), ini-
tialized at r̂0 = y, with a constant step-size αk := ε at each iteration.

The proof of Proposition 4.1 is presented in [14] Section A.3.2.

4.1. R-FSε,δ : Computational guarantees and their implications. In this sub-
section, we present computational guarantees and convergence properties of the
boosting algorithm R-FSε,δ . Due to the structural equivalence between R-FSε,δ

and subgradient descent applied to the RCMδ problem (4.2) (Proposition 4.1) and
the close connection between RCMδ and the LASSO (see [14], Section A.3.1), the
convergence properties of R-FSε,δ are naturally stated with respect to the LASSO

problem (1.1). Similar to Theorem 3.1 which described such properties for FSε

(with respect to the unregularized least squares problem), we have the following
properties for R-FSε,δ .

THEOREM 4.1 (Convergence Properties of R-FSε,δ for the LASSO). Con-
sider the R-FSε,δ algorithm with learning rate ε and regularization parameter
δ ∈ (0,∞), where ε ≤ δ. Then the regression coefficient β̂k is feasible for the
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LASSO problem (1.1) for all k ≥ 0. Let k ≥ 0 denote a specific iteration counter.
Then there exists an index i ∈ {0, . . . , k} for which the following bounds hold:

(i) (training error): Ln(β̂
i) − L∗

n,δ ≤ δ
n

[
‖Xβ̂LS‖2

2
2ε(k+1)

+ 2ε

]
;

(ii) (predictions): for every LASSO solution β̂∗
δ it holds that

∥∥Xβ̂i − Xβ̂∗
δ

∥∥
2 ≤

√√√√δ‖Xβ̂LS‖2
2

ε(k + 1)
+ 4δε;

(iii) (�1-shrinkage of coefficients): ‖β̂i‖1 ≤ δ

[
1 −

(
1 − ε

δ

)k]
≤ δ;

(iv) (sparsity of coefficients): ‖β̂i‖0 ≤ k.

The proof of Theorem 4.1 is presented in the Supplementary Material [14],
Section A.3.3.

Interpreting the computational guarantees. The statistical interpretations im-
plied by the computational guarantees presented in Theorem 4.1 are analogous
to those previously discussed for LS-BOOST(ε) (Theorem 2.1) and FSε (The-
orem 3.1). These guarantees inform us about the data-fidelity versus shrinkage
tradeoffs as a function of the number of boosting iterations, as nicely demonstrated
in Figure 7. There is, however, an important differentiation between the properties
of R-FSε,δ and the properties of LS-BOOST(ε) and FSε , namely:

FIG. 7. Figure showing the evolution of the R-FSε,δ algorithm (with ε = 10−4) for different val-
ues of δ, as a function of the number of boosting iterations for the Prostate cancer dataset, with
n = 10,p = 44 (see also Figure 8). [Left panel] shows the change of the �1-norm of the regres-
sion coefficients. [Middle panel] shows the evolution of the training errors, and [Right panel] is a
zoomed-in version of the middle panel. Here, we took different values of δ given by δ = frac × δmax,
where, δmax denotes the �1-norm of the minimum �1-norm least squares solution, for 7 different
values of frac.
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• For LS-BOOST(ε) and FSε , the computational guarantees (Theorems 2.1
and 3.1) describe how the estimates make their way to an unregularized [O(ε)-
approximate] least squares solution as a function of the number of boosting
iterations.

• For R-FSε,δ , our results (Theorem 4.1) characterize how the estimates approach
a [O(ε)-approximate] LASSO solution.

Notice that like FSε , R-FSε,δ traces out a profile of regression coefficients. This
is reflected in item (iii) of Theorem 4.1 which bounds the �1-shrinkage of the co-
efficients as a function of the number of boosting iterations k. Due to the rescaling
of the coefficients, the �1-shrinkage may be bounded by a geometric series that
approaches δ as k grows. Thus, there are two important aspects of the bound in
item (iii): (a) the dependence on the number of boosting iterations k which char-
acterizes model complexity during early iterations, and (b) the uniform bound of δ

which applies even in the limit as k → ∞ and implies that all regression coefficient
iterates β̂k are feasible for the LASSO problem (1.1).

On the other hand, item (i) characterizes the quality of the coefficients with re-
spect to the LASSO solution, as opposed to the unregularized least squares problem
as in FSε . In the limit as k → ∞, item (i) implies that R-FSε,δ identifies a model
with training error at most L∗

n,δ + 2δε
n

. This upper bound on the training error may
be set to any prescribed error level by appropriately tuning ε; in particular, for
ε ≈ 0 and fixed δ > 0 this limit is essentially L∗

n,δ . Thus, combined with the uni-
form bound of δ on the �1-shrinkage, we see that the R-FSε,δ algorithm delivers
the LASSO solution in the limit as k → ∞.

It is important to emphasize that R-FSε,δ should not just be interpreted as an
algorithm to solve the LASSO. Indeed, like FSε , the trajectory of the algorithm
is important and R-FSε,δ may identify a more statistically interesting model in the
interior of its profile. Thus, even if the LASSO solution for δ leads to overfitting, the
R-FSε,δ updates may visit a model with better predictive performance by trading
off bias and variance in a more desirable fashion suitable for the particular problem
at hand.

Figure 8 shows the profiles of R-FSε,δ for different values of δ ≤ δmax, where
δmax is the �1-norm of the minimum �1-norm least squares solution. Curiously
enough, Figure 8 shows that in some cases, the profile of R-FSε,δ bears a lot of
similarities with that of the LASSO (as presented in Figure 2). However, the profiles
are in general different. Indeed, R-FSε,δ imposes a uniform bound of δ on the
�1-shrinkage, and so for values larger than δmax we cannot possibly expect R-FSε,δ

to approximate the LASSO path. However, even if δ is taken to be sufficiently large
(but finite) the profiles may be different. In this connection, it is helpful to draw
the analogy between the curious similarities between the FSε (i.e., R-FSε,δ with
δ = ∞) and LASSO coefficient profiles, even though the profiles are different in
general.
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FIG. 8. Coefficient profiles for R-FSε,δ as a function of the �1-norm of the regression coefficients,
for the same datasets appearing in Figure 2. For each example, different values of δ have been
considered. The left panel corresponds to the choice δ = ∞, that is, FSε . In all the above cases,
the algorithms were run for a maximum of 100,000 boosting iterations with ε = 10−4. [Top Panel]
Corresponds to the Prostate cancer dataset with n = 98 and p = 8. All the coefficient profiles look
similar, and they all seem to coincide with the LASSO profile (see also Figure 2). [Bottom Panel]
Shows the Prostate cancer dataset with a subset of samples n = 10 with all interactions included
with p = 44. The coefficient profiles in this example are sensitive to the choice of δ and are seen to be
more constrained towards the end of the path, for decreasing δ values. The profiles are different than
the LASSO profiles, as seen in Figure 2. The regression coefficients at the end of the path correspond
to approximate LASSO solutions, for the respective values of δ.

Readers familiar with convex optimization methods will notice that R-FSε,δ

bears a striking resemblance to another notable optimization algorithm: the Frank–
Wolfe method [13, 15, 33]. Indeed, the update for the coefficients in R-FSε,δ is of
the form

(4.3) β̂k+1 ← (1 − ᾱ)β̂k + ᾱβ̃k where β̃k := δ sgn
((

r̂k)T Xjk

)
ejk

and ᾱ := ε
δ

∈ (0,1], where β̃k ∈ arg minβ:‖β‖1≤δ{∇Ln(β̂
k)T β}, which is exactly of

the form of the Frank–Wolfe method applied to the LASSO, with constant step-
sizes ᾱ := ε

δ
. The fact that R-FSε,δ is equivalent to both the subgradient descent

and Frank–Wolfe methods is no coincidence; indeed, this is a special case of a
more general primal-dual equivalence between certain subgradient algorithms and
the Frank–Wolfe method developed in [1]. It should be noted, however, that de-
spite this additional equivalence, the use of constant step-sizes in Frank–Wolfe is
typically not very sensible—yet turns out to be relevant in the boosting context.
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We refer the reader to the Supplementary Material [14] Section A.3.5 for further
discussion regarding this connection with the Frank–Wolfe method.

5. A modified forward stagewise algorithm for computing the LASSO path.
In Section 4, we introduced the boosting algorithm R-FSε,δ (which is a very close
cousin of FSε) that delivers solutions to the LASSO problem (1.1) for a fixed but
arbitrary δ, in the limit as k → ∞ with ε ≈ 0. Furthermore, our experiments in Sec-
tion 6 suggest that R-FSε,δ may lead to estimators with good statistical properties
for a wide range of values of δ, provided that the value of δ is not too small. While
R-FSε,δ by itself may be considered as a regularization scheme with excellent sta-
tistical properties, the boosting profile delivered by R-FSε,δ might in some cases
be different from the LASSO coefficient profile, as we saw in Figure 8. Therefore,
in this section we investigate the following question: is it possible to modify the
R-FSε,δ algorithm, while still retaining its basic algorithmic characteristics, so that
it delivers an approximate LASSO coefficient profile for any dataset? We answer
this question in the affirmative herein.

To fix ideas, let us consider producing the (approximate) LASSO path by produc-
ing a sequence of (approximate) LASSO solutions on a predefined grid of regular-
ization parameter values δ in the interval (0, δ̄] given by 0 < δ̄0 < δ̄1 < · · · < δ̄K =
δ̄. [A standard method for generating the grid points is to use a geometric sequence
such as δ̄i = η−i · δ̄0 for i = 0, . . . ,K , for some η ∈ (0,1).] Motivated by the notion
of warm-starts popularly used in the statistical computing literature in the context
of computing a path of LASSO solutions via coordinate descent methods [20], we
propose here a slight modification of the R-FSε,δ algorithm that sequentially up-
dates the value of δ according to the predefined grid values δ̄0, δ̄1, . . . , δ̄K = δ̄, and
does so prior to each update of r̂ i and β̂i . We call this method PATH-R-FSε , whose
complete description is as follows:

Algorithm: PATH-R-FSε

Fix the learning rate ε > 0, choose values δ̄i , i = 0, . . . ,K , satisfying 0 < δ̄0 ≤
δ̄1 ≤ · · · ≤ δ̄K ≤ δ̄ such that ε ≤ δ̄0. Initialize at β̂0 = 0.

For 0 ≤ k ≤ K select coefficient index jk ∈ arg maxj∈{1,...,p} |(r̂k)T Xj | and per-
form the update

r̂k+1 ← r̂k − ε
[
sgn

((
r̂k)T Xjk

)
Xjk

+ (
r̂k − y

)
/δ̄k

]
,

β̂k+1
jk

← (1 − ε/δ̄k)β̂
k
jk

+ ε sgn
((

r̂k)T Xjk

)
and

β̂k+1
j ← (1 − ε/δ̄k)β̂

k
j , j �= jk.

Notice that PATH-R-FSε retains the identical structure of a forward stagewise
regression type of method, and uses the same essential update structure (3.1) of
R-FSε,δ . Indeed, the updates of r̂k+1 and β̂k+1 in PATH-R-FSε are identical to
those in (3.1) of R-FSε,δ except that they use the regularization value δ̄k at iteration
k instead of the constant value of δ as in R-FSε,δ .
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Theoretical guarantees for PATH-R-FSε . Analogous to Theorem 4.1 for
R-FSε,δ , the following theorem describes properties of the PATH-R-FSε algorithm.
In particular, the theorem provides rigorous guarantees about the distance between
the PATH-R-FSε algorithm and the LASSO coefficient profiles—which apply to
any general dataset.

THEOREM 5.1 (Computational Guarantees for PATH-R-FSε). Consider the
PATH-R-FSε algorithm with the given learning rate ε and regularization param-
eter sequence {δ̄k}. Let k ≥ 0 denote the total number of iterations. Then the fol-
lowing holds:

(i) (LASSO feasibility and average training error): for each i = 0, . . . , k, β̂i

provides an approximate solution to the LASSO problem for δ = δ̄i . More specifi-
cally, β̂i is feasible for the LASSO problem for δ = δ̄i , and satisfies the following
suboptimality bound with respect to the entire boosting profile:

1

k + 1

k∑
i=0

(
Ln

(
β̂i) − L∗

n,δ̄i

) ≤ δ̄‖Xβ̂LS‖2
2

2nε(k + 1)
+ 2δ̄ε

n
;

(ii) (�1-shrinkage of coefficients): ‖β̂i‖1 ≤ δ̄i for i = 0, . . . , k;
(iii) (sparsity of coefficients): ‖β̂i‖0 ≤ i for i = 0, . . . , k.

COROLLARY 5.1 (PATH-R-FSε approximates the LASSO path). For every
fixed ε > 0 and k → ∞, it holds that

lim sup
k→∞

1

k + 1

k∑
i=0

(
Ln

(
β̂i) − L∗

n,δ̄i

) ≤ 2δ̄ε

n

(and the quantity on the right-hand side of the above bound goes to zero as ε → 0).

The proof of Theorem 5.1 is presented in the Supplementary Material [14] Sec-
tion A.4.1.

Interpreting the computational guarantees. Let us now provide some inter-
pretation of the results stated in Theorem 5.1. Recall that Theorem 4.1 presented
bounds on the distance between the training errors achieved by the boosting algo-
rithm R-FSε,δ and LASSO training errors for a fixed but arbitrary δ that is specified
a priori. The message in Theorem 5.1 generalizes this notion to a family of LASSO

solutions corresponding to a grid of δ values. The theorem thus quantifies how the
boosting algorithm PATH-R-FSε simultaneously approximates a path of LASSO

solutions.
Part (i) of Theorem 5.1 first implies that the sequence of regression coefficient

vectors {β̂i} is feasible along the LASSO path, for the LASSO problem (1.1) for
the sequence of regularization parameter values {δ̄i}. In considering guarantees
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with respect to the training error, we would ideally like guarantees that hold across
the entire spectrum of {δ̄i} values. While part (i) does not provide such strong
guarantees, part (i) states that these quantities will be sufficiently small on average.
Indeed, for a fixed ε and as k → ∞, part (i) states that the average of the differences
between the training errors produced by the algorithm and the optimal training
errors is at most 2δ̄ε

n
. This nonvanishing bound (for ε > 0) is a consequence of the

fixed learning rate ε used in PATH-R-FSε—such bounds were also observed for
R-FSε,δ and FSε .

On average, the training error of the PATH-R-FSε solutions will be sufficiently
close (as controlled by the learning rate ε) to the LASSO training error for the
corresponding regularization parameter grid values {δ̄i}. And while PATH-R-FSε

provides the most amount of flexibility in terms of controlling for model com-
plexity since it allows for any (monotone) sequence of regularization parameter
values in the range (0, δ̄], this freedom comes at the cost of weaker training error
guarantees with respect to any particular δ̄i value (as opposed to R-FSε,δ which
provides strong guarantees with respect to the fixed value δ). Nevertheless, part
(i) of Theorem 5.1 guarantees that the training errors will be sufficiently small on
average across the entire path of regularization parameter values explored by the
algorithm.

It is interesting that PATH-R-FSε approximates the LASSO path training er-
rors, with associated shrinkage and sparsity bounds—all the while performing only
boosting steps. In a sense, the price it pays for being a boosting method is that the
approximation to the LASSO path is only on average over the chosen grid points
(as opposed to holding simultaneously over all grid points). In contrast, classic
algorithms that exactly track the piecewise-linear LASSO path require an exponen-
tial number of iterations in the worst case; see [26] for a very general result in this
regard. Tibshirani [47] proposes “shrunken stagewise” which is shown to deliver
LASSO solutions in a limiting sense as certain parameters go to zero and under
technical assumptions. On the other hand, there are several efficient LASSO path
algorithms with computational guarantees that hold approximately over the entire
LASSO path; such methods typically choose the {δ̄i} values adaptively; see [27]
and [28] for some general results in this regard, and in particular [29] for optimal
general complexity results in this context. Similar adaptive choices of {δ̄i} values
are also studied by [47] for computing an approximate LASSO path.

6. Some computational experiments. We consider an array of examples ex-
ploring statistical properties of the different boosting algorithms studied herein. We
consider different types of synthetic and real datasets, which are briefly described
here.

Synthetic datasets. We considered synthetically generated datasets of the fol-
lowing types:
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• Eg-A. Here, the data matrix X is generated from a multivariate normal distribu-
tion, that is, for each i = 1, . . . , n, xi ∼ MVN(0,�). Here, xi denotes the ith row
of X and � = (σij ) ∈ R

p×p has all off-diagonal entries equal to ρ and all diago-
nal entries equal to one. The response y ∈ R

n is generated as y = Xβpop + ε,

where εi
iid∼ N(0, σ 2). The underlying regression coefficient was taken to be

sparse with β
pop
i = 1 for all i ≤ 5 and β

pop
i = 0 otherwise. σ 2 is chosen so

as to control the signal to noise ratio SNR := Var(x′β)/σ 2.
Different values of SNR, n,p and ρ were taken and they have been specified

in our results when and where appropriate.
• Eg-B. Here, the datasets are generated similar to above, with β

pop
i = 1 for i ≤ 10

and β
pop
i = 0 otherwise. We took SNR = 1 in this example.

Real datasets. We considered four different publicly available microarray
datasets as described below.

• Leukemia dataset. This dataset, taken from [10], was processed to have n = 72
and p = 500. y was created as y = Xβpop + ε; with β

pop
i = 1 for all i ≤ 10 and

zero otherwise.
• Golub dataset. This dataset, taken from the R package mpm, was processed to

have n = 73 and p = 500, with artificial responses generated as above.
• Khan dataset. This dataset, taken from the website of [31], was processed to

have n = 73 and p = 500, with artificial responses generated as above.
• Prostate dataset. This dataset, analyzed in [12], was processed to create three

types of different datasets: (a) the original dataset with n = 97 and p = 8, (b) a
dataset with n = 97 and p = 44, formed by extending the covariate space to
include second-order interactions, and (c) a third dataset with n = 10 and p =
44, formed by subsampling the previous dataset.

For more detail on the above datasets, we refer the reader to the Supplementary
Material [14] Section A.5.

Note that in all the examples we standardized X such that the columns have unit
�2 norm, before running the different algorithms studied herein.

6.1. Statistical properties of boosting algorithms: An empirical study. We per-
formed some experiments to better understand the statistical behavior of the dif-
ferent boosting methods described in this paper. We summarize our findings here;
for details (including tables, figures and discussions), we refer the reader to the
Supplementary Material Section A.5 [14].

Sensitivity of the learning rate in LS-BOOST(ε) and FSε . We explored how
the training and test errors for LS-BOOST(ε) and FSε change as a function of the
number of boosting iterations and the learning rate. We observed that the best pre-
dictive models were sensitive to the choice of ε—the best models were obtained at
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values larger than zero and smaller than one. When compared to LASSO solutions,
stepwise regression [12] and FS0 [12]; FSε and LS-BOOST(ε) were found to be
as good as the others, and in some cases were better than the rest.

Statistical properties of R-FSε,δ , LASSO solutions, and FSε: An empirical study.
We performed some experiments to evaluate the performance of R-FSε,δ , in terms
of predictive accuracy and sparsity of the optimal model, versus the more widely
known methods FSε and (solving the) LASSO. We found that when δ was larger
than the best δ for the LASSO (in terms of obtaining a model with the best predic-
tive performance), R-FSε,δ delivered a model with excellent statistical properties—
R-FSε,δ led to sparse solutions and the predictive performance was as good as, and
in some cases better than, the LASSO solution. We observed that the choice of δ

does not play a very crucial role in the R-FSε,δ algorithm, once it is chosen to be
reasonably large; indeed the number of boosting iterations play a more important
role. The best models delivered by R-FSε,δ were more sparse than FSε .
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SUPPLEMENTARY MATERIAL

Supplement to “A new perspective on boosting in linear regression via sub-
gradient optimization and relatives” (DOI: 10.1214/16-AOS1505SUPP; .pdf).
Additional proofs, technical details, figures and tables are provided in the Supple-
mentary Section.
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