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Recently Levi, Pál, Roundy and Shmoys introduced a novel, Dual-Balancing policy for the classical single-
item, single-location inventory model with backlogged demands and dynamic forecasts of future demands
that evolve as time advances. These models are usually computationally intractable due to the enormous
size of the state space. The expected cost of the dual-balancing policy is guaranteed to be at most twice
the optimal expected cost, but until now, no computational testing of the policy has been done. We propose
two extended families of policies, based on cost-balancing techniques and myopic-like policies that generate
lower and upper bounds on the optimal base-stock levels. We show that cost-balancing techniques combined
together with these lower and upper bounds lead to improved policies. The expected cost of the new policies
is also guaranteed to be at most twice the optimal expected cost. Nevertheless, empirically their performance
is significantly better. Moreover, all of the new policies can be implemented efficiently in an on-line manner.

We have conducted extensive testing of these policies, with demand forecasts that evolve according to the
multiplicative MMFE model. The best of the new generation of policies are very robust. They are consistently
better than the classical myopic policy over a broad set of important scenarios, and the improvement can get
to up to 30 percent. The computational results demonstrate the effectiveness and computational practicality
of the new policies in realistic scenarios.
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1. Introduction

The design of effective inventory control policies for models with stochastic demands and forecast
updates that evolve dynamically over time is a fundamental problem in supply chain management.
In particular, this has been a very challenging theoretical and practical problem, even for models
with a very simple forecast update mechanism. We describe new algorithms that were initially
motivated by a theoretical analysis in terms of worst-case performance, and present extensive com-
putational results that demonstrate their superior empirical performance compared to previously
known policies.

Most of the existing literature has focused on characterizing the structure of optimal policies.
For many of these inventory models, it is well known that there exists an optimal state-dependent
base-stock policy (Zipkin 2000). In contrast, there has been relatively little progress on how to
compute good inventory policies for models with complex demand structures. In particular, finding
an optimal base-stock policy is usually computationally intractable. As a result, in most practical
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situations the default policy has been to use a Myopic policy, which computes its decision at the
beginning of each period by minimizing the expected cost for the current period, and ignores all
future costs. The Myopic policy is attractive since it can be computed efficiently even in complex
environments with forecast updates. There are certain settings in which the Myopic policy is even
optimal (Veinott 1963, 1965a, Ignall and Veinott 1969, Iida and Zipkin 2001, Lu et al. 2006).
However, as was pointed in Levi et al. (2007), it performs very poorly in many important scenarios,
such as in settings in which the demand is highly variable.

In recent work, Levi et al. (2007) have introduced Dual-Balancing policies for periodic-review,
single-item, single-location models with backlogged demands. These policies incorporate several
nontraditional ideas. First, they are based on marginal cost accounting schemes. Traditional cost
accounting schemes associate with a decision in a certain period only those costs that are incurred
in that period (or more generally, a lead time ahead); in contrast, a marginal cost accounting
scheme associates with each decision all costs that are incurred as a result in this and subsequent
periods, and are unaffected by any future decision. Secondly, these policies use cost-balancing
techniques, which balance the following two opposing costs in each period: the conditional expected
marginal holding cost incurred by maintaining excess inventory due to over-ordering; and the
conditional expected backlogging cost incurred by not satisfying demand on time due to under-
ordering. These policies can be easily implemented and efficiently computed under very general
assumptions, including models with dynamic forecast updates. Moreover, it can be shown that
Dual-Balancing policies have a worst-case performance guarantee of two. That is, the expected
cost of the Dual-Balancing policy is guaranteed to be at most twice the optimal expected cost. In
several subsequent papers (Levi et al. 2004, 2005b,a), the Dual-Balancing policy and its worst-case
analysis have been extended to more general stochastic inventory models.

This paper focuses on the classical uncapacitated periodic-review stochastic inventory control
problem with nonstationary, correlated and evolving demands; it builds on the results of Levi et al.
(2007) and extends them in several important directions. While we do not claim to have done an
exhaustive empirical study of all possibilities, we have set up a rigorous set of tests under which
we consider two classes of policies. Specifically, we consider balancing policies that are based on
cost-balancing techniques and myopic-like base-stock policies. The reason that we focus attention
on these classes of policies is that they can be computed in an on-line manner, that is, the decision
in each certain period does not depend on the decisions in future periods. This seems to be an
essential property for a policy to be computationally applicable in the presence of dynamic forecast
updates. Motivated by our preliminary computational results, we derive new policies based on
these two approaches, and we demonstrate them to be superior to previously known approaches
across a wide spectrum of demand scenarios in which forecasts evolve over time.

The new algorithmic ideas are based on exploiting computationally tractable upper and lower
bounds on the optimal base-stock levels in each period, in order to refine the costs being balanced,
as well as to correct the resulting cost-balancing-driven ordering decision. The first idea is that
we start by computing the ordering quantity based on the Dual-Balancing policy; however, if
the resulting inventory level is lower than the lower bound or greater than the upper bound, we
appropriately correct the balancing order quantity to be within the range provided by the upper
and lower bounds; we call this the Interval-Constrained-Balancing policy. Of course, this idea can
also be applied to improve other policies, not just the Dual-Balancing one.

However, we can also use the bounding information in a more subtle way. We can instead
balance only the conditional expected marginal holding cost of units ordered beyond the lower
bound against the conditional surplus marginal backlogging costs incurred by not ordering up to
the upper bound. Observe that the optimal policy orders more units than the respective lower
bound. Thus, any holding cost incurred by units ordered up to the lower bound is also incurred
by the optimal policy. Similarly, the optimal policy does not order above the respective upper
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bound, thus, it incurs at least as much backlogging cost as a policy that orders up to that upper
bound. This modified balancing procedure ignores certain costs provided it is guaranteed that the
optimal policy incurs them as well. These two algorithmic ideas are combined to create the Surplus-
Balancing policies. The lower and upper bounds that we use are based on myopic-like base-stock
polices that can be efficiently computed. All of the new balancing policies can be shown to have a
worst-case performance guarantee of two. More importantly, the computational experiments that
we conduct indicate that combining cost-balancing techniques and myopic-like base-stock policies
leads to significantly more effective policies than using either of the two approaches separately.

Finally, the policies that we consider can be easily extended by introducing parameterized vari-
ants; for example, one might not compute an exact balance of the holding and backlogging costs,
but instead compute a different set proportion that each should attain. Furthermore, we construct
policies that dynamically compute these parameters over time.

As we have already mentioned, the focus of this paper is to investigate the empirical and theo-
retical performance of different policies in environments with dynamic forecast updates. We chose
to perform most of the computational experiments using the martingale model of forecast evolution
(MMFE) with multiplicative updates as introduced independently by Heath and Jackson (1994)
and Graves et al. (1986). This model is very flexible and can capture many different scenarios of
evolving forecasts and many other relevant aspects such as auto-correlation and variability. The
MMFE maintains a vector of forecasts of future demands in each period. This vector can be viewed
as the estimated means of the future demands as seen from the current period. Then we observe a
random vector of updates. We generate a new forecast vector for the next period by computing the
component-wise product of the initial forecast vector and the vector of updates. We note that the
MMFE model has also a variant in which the updates are additive. The additive model is easier
mathematically, but is less realistic, since it can lead to negative demand.

The additive variant has been studied by Iida and Zipkin (2001) and by Lu et al. (2006). They
have obtained necessary and sufficient conditions for the optimality of the Myopic policy, and pro-
posed several heuristics (see also the work of Dong and Lee (2003)). Several optimization algorithms
and heuristics have been proposed for other demand structures such as exogenous Markov modu-
lated demand (Song and Zipkin 1993, Chen and Song 2001, Gavireni and Tayur 2001) and advance
demand information (Özer and Gallego 2001). However, to the best of our knowledge none of these
heuristics is implementable in the multiplicative MMFE model. Moreover, even computing good
lower bounds on the optimal cost seems to be computationally challenging in the multiplicative
MMFE model.

This work is the first extensive computational study of inventory control policies within this
important model. The results of our computational experiments provide a strong indication that
the typical performance of the new policies is significantly better than the worst-case performance
guarantee of two. Moreover, these policies appear to be robust and perform relatively well across
a broad set of important scenarios. In particular, they out perform the Myopic policy in almost
all scenarios, and the improvement can be as high as 30 percent. The computational results also
demonstrate the computational practicality of the new policies in realistic scenarios.

As already mentioned it is prohibitively hard to compute optimal policies or even good lower
bounds on the optimal cost for the multiplicative MMFE models. Thus, it is hard to get an accurate
empirical estimate of how the new policies perform compared to an optimal policy. To get another
indication of the empirical performance of the new policies, we also tested them in a simpler model
in which the optimal policy and cost can be computed (see Section 8). The results validate again
the robustness of the new balancing policies in a variety of relevant scenarios.

The rest of the paper is organized as follows. In Section 2, we define the general inventory
model that is discussed in this paper. In Section 3, we briefly describe the previous work on Dual-
Balancing and myopic-like base-stock policies. Then in Section 4, we describe the new policies
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that we construct and establish several important properties of their performance. In Section 5,
we provide the details of the multiplicative MMFE model. Section 6, describes the computational
experiments that we conducted in the MMFE model. This is followed by Section 7, in which we
present a summary of the computational results and related conclusions. Finally, in Section 8 we
discuss the computational comparison of the new policies with an optimal policy in a much simpler
demand model that we call the customer retention demand model.

2. Model Definition

In this section, we provide the mathematical formulation of the periodic-review stochastic inventory
problem and introduce some of the notation used throughout the paper. As a general convention,
we distinguish between a random variable and its realization using capital letters and lower case
letters, respectively. Script font is used to denote sets. We consider a finite planning horizon of
T periods numbered t = 1, . . . , T (note that t and T are both deterministic unlike the convention
above). The demands over these periods are random variables, denoted by D1, . . . ,DT .

As part of the model, we assume that at the beginning of each period s, we are given what we
call an information set that is denoted by fs. The information set fs contains all of the information
that is available at the beginning of time period s. More specifically, the information set fs consists
of the realized demands (d1, . . . , ds−1) over the interval [1, s), and possibly some more (external)
information denoted by (w1, . . . ,ws). The information set fs in period s is one specific realization
in the set of all possible realizations of the random vector Fs = (D1, . . . ,Ds−1,W1, . . . ,Ws). This set
is denoted by Fs. In addition, we assume that in each period s, there is a known conditional joint
distribution of the future demands (Ds, . . . ,DT ), denoted by Is := Is(fs), which is determined by
fs (i.e., knowing fs, we also know Is(fs)). For ease of notation, Dt will always denote the random
demand in period t conditioning on some information set fs ∈ Fs for some s≤ t, where it will be
clear from the context to which period s we refer. We will use t as the general index for time, and
s will always refer to the current period.

The only assumption on the demands is that for each s = 1, . . . , T , and each fs ∈Fs, the condi-
tional expectation E[Dt|fs] is well defined and finite for each period t≥ s. In particular, we allow
non-stationarity and correlation between the demands in different periods. We note again that by
allowing correlation we let Is be dependent on the realization of the demands over the periods
1, . . . , s− 1 and possibly on some other information that becomes available by time s (i.e., Is is a
function of fs). However, the information set fs as well as the conditional joint distribution Is are
assumed to be independent of the specific inventory control policy being considered.

All the costs are linear consisting of time-dependent per-unit ordering cost ct, per-unit holding
cost ht and per-unit backlogging penalty cost pt. Unsatisfied demand is fully backlogged. Each
order placed in period t arrives and becomes available only after a lead time of L periods. We
also assume that the cost parameters are non-speculative. This is a typical assumption that can be
captured through the conditions ct ≤ ct−1 + ht+L−1 and ct ≤ ct+1 + pt+L, for each t = 2, . . . , T −L.
It is well known (see for example Levi et al. (2007)) that under these conditions, we can assume
that, for each t = 1, . . . , T , we have ct = 0, ht ≥ 0 and pt ≥ 0, without loss of generality. (Note that
since the cost parameters are time-dependent we can also incorporate a discount factor 0 < α < 1
and salvage cost at the end of the planning horizon.) The goal is to find an ordering policy that
minimizes the overall expected ordering cost, holding cost and backlogging cost. We consider only
policies that are non-anticipatory, i.e., at time s, the information that a feasible policy can use
consists only of fs and the current inventory level.

We use D[s,t] to denote the accumulated demand over the interval [s, t], i.e., D[s,t] :=
∑t

j=s Dj.
Superscripts P and OPT are used to refer to a given policy P and the optimal policy, respectively.
We also use NIt to denote the net inventory at the end of period t, and Xt, Yt to denote the
inventory position at the beginning of period t before and after ordering, respectively. In particular,
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Xt := NIt−1 +
∑t−1

j=t−L Qj (for t = 1, . . . , T ) and Yt = Xt +Qt, where Qj denotes the number of units
ordered in period j. (We sometimes denote

∑t−1

j=t−L Qj by Q[t−L,t−1].) Note that once we know the
policy P and the information set fs ∈Fs, the quantities niPs−1, xP

s and yP
s are deterministic. (These

are the realizations of NIP
s−1,X

P
s and Y P

s , respectively.)

3. Base-Stock and Dual-Balancing Policies

As already mentioned, our new policies are based both on traditional base-stock policies and on
the new algorithmic approach of Dual-Balancing policies introduced by Levi et al. (2007). We next
describe the main underlying ideas of these approaches to provide the necessary background for
the next section, in which we describe and analyze several new policies that extend the traditional
and the balancing ideas in rather significant ways.

It is a well-known fact that, for the model discussed in this paper, there is a state-dependent
base-stock policy which is optimal (see Zipkin (2000), Levi et al. (2007) for a detailed discussion).
A state-dependent base-stock policy can be described by a set of target inventory levels {Rt(ft) :
t = 1, . . . , T, ft ∈Ft}, where Rt(ft) is the target inventory level in period t given that the observed
information set is ft. (It is important to note that Rt(ft) does not depend on the control policy
up to time t.) An optimal base-stock policy can be computed recursively by solving a dynamic
program. Unfortunately, in many important scenarios, it is computationally intractable to solve
the corresponding dynamic program since its state space explodes. (We refer the reader to Levi
et al. (2007) for a detailed discussion.) Due to the apparent difficulty of computing an optimal
base-stock policy, researchers have proposed suboptimal policies that can be computed efficiently.

3.1. Myopic Policy

One specific class of suboptimal policies that has attracted a lot of attention is the class of myopic
policies. In a myopic policy, in each period, we attempt to minimize the expected cost in a single
period, a lead time ahead, ignoring the potential effect on the cost in future periods. This gives rise
to a Myopic base-stock policy. For each period t, given the observed information set ft, let RMY

t (ft)
be corresponding myopic base-stock level. That is,

RMY
t (ft) = argmin

y≥0
E

[
ht+L(y− (D[t,t+L])+ + pt+L(D[t,t+L]− y)+|ft

]
,

where (x)+ = x if x≥ 0 and equals 0 otherwise.
The Myopic policy is attractive since it yields a base-stock policy that is easy to compute on-line,

that is, it does not require information on the control policy in the future periods. Specifically,
in each period, we need to solve a relatively simple single-variable convex minimization problem.
Because of its simplicity, the Myopic policy is commonly used in practice.

In many cases, the Myopic policy seems to perform well and even be optimal (for details see
Veinott (1965b), Ignall and Veinott (1969), Iida and Zipkin (2001), Lu et al. (2006)). However, in
many other cases, especially when the demand can drop significantly from period to period, the
Myopic policy performs poorly. In particular, Levi et al. (2007) have shown that the Myopic policy
can be arbitrarily more expensive than the optimal policy, even if the demands in different periods
are independent of each other.

It is a well-known fact (see, for example, Zipkin (2000), Levi et al. (2007)) that the myopic base-
stock levels are always higher than the optimal base-stock levels. That is, for each period t and
information set ft ∈Ft, we have ROPT

t (ft)≤RMY
t (ft), where ROPT

t (ft) denotes the corresponding
optimal base-stock level. (We note that Lu et al. (2006) have used myopic base-stock levels to
develop additional upper and lower bounds on the optimal base-stock levels.)
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3.2. Dual-Balancing Policies

Levi et al. (2007) have proposed a new algorithmic approach for uncapacitated single-item, single-
location stochastic inventory control models that is very different from the traditional dynamic-
programming-based approach. In particular, they have proposed a new class of policies that are
called Dual-Balancing policies.

Their approach is based on two main ideas. First, they propose a new way to account for the
cost in uncapacitated stochastic inventory models, which is called marginal cost accounting. The
main idea underlying this approach is to account for all the expected costs associated with the
decision of how many units to order in period t when this decision is made. More specifically, the
decision in period t is associated with all the expected costs that, after that decision is made,
become independent of any future decision, and are only dependent on future demands. In Levi
et al. (2007) it has been shown that in uncapacitated models, these costs are relatively easy to
compute already in period t, even though they include costs that are going to be incurred in future
periods.

For each feasible policy P , let HP
t be the holding cost incurred over the interval [t, T ] by the QP

t

units ordered in period t (for t = 1, . . . , T ), and let ΠP
t be the backlogging cost incurred a lead time

ahead in period t+L (t = 1−L, . . . , T −L). That is, HP
t =

∑T

j=t+L hj(QP
t − (D[t,j]−XP

t )+)+ and
ΠP

t := pt+L(D[t,t+L]− (XP
t+L +QP

t ))+ (where Dj := dj with probability 1 and QP
j = qj is given as an

input for each j ≤ 0). Let the C(P ) be the effective cost of the policy P . Levi et al. (2007) have
shown that the effective cost of policy P can be expressed as

C(P ) :=
T−L∑
t=1

(HP
t +ΠP

t ). (1)

The second idea is the use of cost balancing techniques. In the Dual-Balancing policy, which is
denoted by superscript B, in each period s, conditioned on the the observed information set fs,
the following two opposing costs are balanced

lBs (qB
s ) = E[HB

s (qB
s )|fs] (2)

and

πB
s (qB

s ) = E[ΠB
s (qB

s )|fs]. (3)

That is, we order qB
s = q′s to make lBs (q′s) = E[HB

s (q′s)|fs] = πB
s (q′s) = E[ΠB

s (q′s)|fs].
Note that the Dual-Balancing policy can also be computed in an on-line manner, i.e., the ordering

decision in period s does not depend on any future decision. Moreover, in most of the common
scenarios, there exist efficient procedures for evaluating the functions lBs and πB

s defined above.
Since lBs is a monotone increasing function of qB

s and πB
s is a monotone decreasing function of qB

s ,
the balancer q′s above is relatively easy to compute. As a result the Dual-Balancing policy is easy
to implement both conceptually and computationally (see Levi et al. (2007) for a more detailed
discussion of the computational aspects).

Levi et al. (2007) have shown that the Dual-Balancing policy has a worst-case performance
guarantee of 2. That is, for each instance of the problem, the expected cost of the Dual-Balancing
policy is guaranteed to be at most twice the expected cost of an optimal policy. However, this
is merely a worst-case analysis, and their paper does not explore the typical performance of the
policy.

Finally, unlike base-stock policies, the order up to level of the Dual-Balancing policy does depend
on the inventory position at the beginning of the period, i.e., it depends on xB

s .
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3.3. Minimizing Policy

Based on their marginal cost accounting approach, Levi et al. (2007) have also described a new
base-stock policy that is called a Minimizing policy and is denoted by the superscript M .

In each period s, conditioned on the observed information set fs, we again consider the functions
lMs (qs) and πM

s (qs) defined above. However, instead of ordering to balance these two quantities,
the Minimizing policy orders qM

s to minimize the sum of these two functions. Specifically, qM
s =

argminqs≥0[lMs (qs)+πM
s (qt)].

Levi et al. (2007) have shown that the Minimizing policy is in fact a base-stock policy, and
that the minimizing base-stock levels always provide a lower bound on the corresponding optimal
base-stock levels. That is, for each t and ft ∈Ft, RM

t (ft)≤ROPT
t (ft). It is readily verified that the

Minimizing policy can be easily computed in an on-line manner. Thus, the minimizing and the
myopic policies provide respective lower and upper bounds on the optimal base-stock levels that
can be computed efficiently.

4. New Policies: Description and Performance Analysis

In this section, we present several new policies for the periodic-review stochastic inventory control
model, and establish several important and interesting theoretical results about their performance.
All of the new policies described in this section are based on intuitive and conceptually simple
ideas. Moreover, they can be computed efficiently in an on-line manner; thus, they can be imple-
mented in rather straightforward ways. In Section 7, we shall also present extensive computational
results which indicate that these new policies have significantly better typical performance in many
important scenarios. The new policies are based on several new ideas. First, we show how to incor-
porate cost-balancing techniques together with lower and upper bounds on the optimal base-stock
levels. Secondly, we use parametrization to enrich and refine the class of policies being used.

4.1. Bounded Cost-Balancing Techniques

We have already seen that, for each period t and information set ft ∈ Ft, the optimal base-stock
level is bounded between the respective minimizing and myopic base-stock levels. That is, RM

t (ft)≤
ROPT

t (ft)≤RMY
t (ft). Next we shall discuss two approaches that use these lower and upper bounds

to modify and improve the cost-balancing techniques.
Interval-Constrained Bounding. First we show how to use the bounds of the Myopic and Mini-

mizing policies to construct an interval-constrained bounding procedure that can be applied to any
feasible policy. Each feasible policy P can be described by specifying its order up-to level, for each
possible state (t, ft, xt), where again t = 1, . . . , T is the period, ft ∈Ft is some observed information
set and xt is the inventory position at the beginning of the period. In each time period in which
the inventory position of P after ordering falls outside the respective interval specified by the min-
imizing and the myopic base-stock levels, the interval-constrained bounding procedure modifies
the policy P . Specifically, if for some (t, ft, xt) the resulting inventory position after ordering is
smaller than the minimizing base-stock level RM

t (ft), then the inventory position is augmented
up toRM

t (ft) (i.e., yt = RM
t (ft)) by appropriately increasing the order quantity; if on the other

hand the resulting inventory position is higher than the myopic base-stock level RMY
t (ft), then the

inventory position is truncated by decreasing the ordering quantity until yt = RMY
t (ft) or qt = 0

(i.e., yt = xt). In Appendix D, we discuss the effect of the interval-bounding procedure on various
policies.

Applying this procedure to the Dual-Balancing policy leads to what we call the Interval-
Constrained-Balancing policy and denote by superscript ICB. It turns out that the Interval-
Constrained-Balancing policy also has a worst-case guarantee of two; moreover, our computational
experiments indicate that its typical performance is better than the Dual-Balancing policy. Since
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the performance of this policy is outperformed by other (new) policies (see below), we discuss its
worst-case analysis in Appendix A, and its typical performance in Appendix C.

Theorem 1. The Interval-Constrained-Balancing policy has a worst-case guarantee of two.

Surplus-Balancing. Next we describe a different and more subtle approach to combine cost-
balancing techniques with lower and upper bounds on the optimal base-stock levels. We call this
approach surplus-balancing. This approach gives rise to a general class of policies, and present a
general worst-case analysis. We denote this class by superscript SB.

We begin by introducing several conventions and techniques similar to the ones used by Muhar-
remoglu and Tsitsiklis (2001) (see also Levi et al. (2007) for more details). The main idea is that,
without loss of generality, we can assume that units of supply are consumed by the demand on a
first-ordered-first-consumed basis, and that we can match each unit of supply to the specific unit
of demand it will be used to satisfy. More rigorously, for each positive k, we identify the k − th
supply unit as the k− th unit that will be purchased; we also identify the k− th unit of demand
as the k− th unit that will be demanded. Without loss of generality, we assume that supply units
are used on a first-ordered-first-used basis. Thus, the k− th unit of supply is used to satisfy the
k− th unit of demand. If the inventory is measured by discrete quantities, then k is an integer. If
fractional orders are allowed, then k is a real number, and the corresponding supply and demand
units are infinitesimal. Moreover, we can then describe each policy P in terms of the periods in
which it orders each supply unit, where all unordered units are “ordered” in period T + 1. Since
the demand is independent from the inventory policy, we can compare any two feasible policies
by comparing the respective periods in which each supply unit was ordered. Our exposition of the
Surplus-Balancing policies and the worst-case analysis are based on this idea.

Assume that we are given a set of lower bounds {Lt(ft) : t = 1, . . . , T, ft ∈ Ft} and a set of
upper bounds {Ut(ft) : t = 1, . . . , T, ft ∈ Ft}, such that for each ft, we have Lt(ft)≤ROPT

t (ft)≤
Ut(ft). (Lt(ft) should not be confused with the lead time L. We will sometimes use Lt(Ft) and
Ut(Ft) as random objects depending on the random information set in period t.) For each t =
1, . . . , T −L, let QL

t = (Lt(Ft)−XSB
s )+ be difference between the corresponding lower bound Lt(Ft)

and the inventory position of the Surplus-Balancing policy at the beginning of period t, or zero
if it exceeds the lower bound. Similarly, let QU

t = (Ut(Ft)−XSB
s )+ be the difference between the

corresponding upper bound Ut(Ft) and the inventory position of the Surplus-Balancing policy, or
zero if it exceeds and the upper bound. Note that conditioned on ft the quantities OL

t and QU
t are

known deterministically.
For each period s and information set fs ∈ Fs, recall the functions lSB

s (qSB
s ) = E[HSB

s (qSB
s )|fs],

the conditional marginal expected holding costs of the qSB
s units ordered in period s, and

πSB
s (qSB

s ) = E[ΠSB
s (qSB

s )|fs], the conditional expected backlogging cost in period s + L given
that we order qSB

s additional units in period s. (See (2) and (3) above.) Instead of balancing
lSB
s against πSB

s like the Dual-Balancing policy, we now balance (lSB
s (qSB

s )− lSB
s (qL

s ))+ against
(πSB

s (qSB
s )−πSB

s (qU
s ))+. The quantity (lSB

s (qSB
s )− lSB

s (qL
s ))+ is equal to the conditional expected

marginal holding costs incurred by all the units ordered in period s, expect the qL
s units that

were required to raise the inventory position of the Surplus-Balancing policy up to the lower
bound Ls(fs). This implies that in the cost-balancing, we ignore the holding costs associated with
these qL

s units. Intuitively, we ignore these costs because we know these qL
s units were ordered by

OPT in period s or even earlier. (Observe that if xSB
s ≥ Ls(fs), i.e., the inventory position of the

Surplus-Balancing policy at the beginning of period s exceeds the lower bound, then qL
s = 0 and

lSB
s (qL

s ) = 0.) The quantity (πSB
s (qSB

s )−πSB
s (qU

s ))+ is equal to the conditional expected additional
backlogging cost incurred by the Surplus-Balancing policy in period s + L due to not ordering up
to the upper bound Us(fs). The intuitive reason why we consider only this part of the backlogging
costs is that the optimal policy’s order up to level is lower than Us(fs). Thus, if OPT can reach
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the optimal base-stock level ROPT
s (fs), the backlogging cost it incurs in period s+L is at least as

high as the respective backlogging cost incurred by a policy, which orders up to the upper bound
Us(fs).

The Surplus-Balancing policy orders q′s such that (lSB
s (q′s)− lSB

s (qL
s ))+ = (πSB

s (q′s)−πSB
s (qU

s ))+.
Now (lSB

s (qSB
s )− lSB

s (qL
s ))+ is zero for qSB

s ≤ qL
s and increasing to infinity as qSB

s grows to infinity,
and (πSB

s (qSB
s )−πSB

s (qU
s ))+ is non-negative, decreasing and equal to 0 for qSB

s ≥ qU
s . It follows that

q′s is well defined and that qL
s ≤ q′s ≤ qU

s . That is, in period s the Surplus-Balancing policy always
orders at least up to the corresponding lower bound Ls(fs), and never exceeds the corresponding
upper bound Us(fs), while placing a positive order. In the next theorem we show that the Surplus-
Balancing policy has a worst-case guarantee of two.

Theorem 2. The Surplus-Balancing policy has a worst-case performance guarantee of two. That
is, E[C(SB)]≤ 2E[C(OPT )].

W e shall prove the worst-case guarantee by comparing the cost of the Surplus-Balancing policy
to the cost of an infeasible policy denoted by OPT ′ that has expected cost lower than OPT . The
policy OPT ′ is a base-stock policy with the same base-stock levels as OPT . However, if for some
period s and information set fs the inventory position of OPT ′ at the beginning of the period is
higher than the corresponding upper bound Us(fs) and also higher than the inventory position
of the Surplus-Balancing policy xSB

s , it is allowed to scrap inventory with no cost to bring its
inventory position down to max{Us(fs), xSB

s }. (Observe that since the upper bounds are on the
optimal base-stock levels and not on the actual inventory position, it is indeed possible that the
inventory position of OPT at the beginning of a period is higher than the corresponding upper
bound. For example, this can happen if the upper bound Us(fs) is smaller than Us−1(fs−1).) It is
straightforward to verify that the expected cost of OPT ′ is lower than that of OPT . Note that
OPT ′ never scraps units that were already ordered by the Surplus-Balancing policy in the current
period or in previous periods. (The scrapping is bounded from below by max{Us(fs), xSB

s }.) This
follows from the fact that when it scraps inventory it can never go below the inventory position of
the Surplus-Balancing policy in that period.

In the first step of the analysis, we express the expected cost of the Surplus-Balancing policy
using (1) above. Let HSB

s be the marginal holding cost incurred by the Q′
s units ordered by the

Surplus-Balancing policy in period s over the entire horizon [s + L,T ]. Let HL
s be the holding

costs incurred by the QL
s = (Ls(Fs)−XSB

s )+ units required to raise the inventory position of the
Surplus-Balancing policy to Ls(Fs), over the entire horizon. We have already seen that QL

s ≤Q′
s,

which implies that HL
s ≤HSB

s since HL
s captures the holding cost of only some of the units ordered

in period s. (If XSB
s ≥Ls(Fs) then QL

s = 0 and HL
s = 0.) Similarly, let ΠSB

s be the backlogging cost
incurred by the Surplus-Balancing policy in period s + L. In addition, let ΠU

s be the backlogging
cost incurred in period s + L by a policy that orders up to max{Us(Fs),XSB

s }. Observe that if
XSB

s ≥Us(Fs) then the Surplus-Balancing policy does not order and ΠSB
s = ΠU

s . On the other hand
if XSB

s < Us(Fs), the Surplus-Balancing will order up to at most Us(Fs), and then ΠSB
s ≥ΠU

s . We
will call ΠU

s the minimal backlogging costs of period s. We can express the expected cost of the
Surplus-Balancing policy as

E[C(SB)] = E

[
T−L∑
s=1

(
HSB

s +ΠSB
s

)
]

(4)

= E

[
T−L∑
s=1

(
HL

s +(HSB
s −HL

s )+ΠU
s +(ΠSB

s −ΠU
s )

)
]

.

For each s = 1, . . . , T −L, let Zs = E[HSB
s −HL

s |Fs] = E[ΠSB
s −ΠU

s |Fs]. Note that second equality
follows from the construction of the Surplus-Balancing policy. Moreover, Zs is a random variable
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that is observed at the beginning of period s with the observed information set fs. Using (4) above,
this implies that

E[C(SB)] =
T−L∑
s=1

E[HL
s +ΠU

s ] +
T−L∑
s=1

E[E[(HSB
s −HL

s )+ (ΠSB
s −ΠU

s )|Fs]] (5)

=
T−L∑
s=1

E[HL
s +ΠU

s ] + 2
T−L∑
s=1

E[Zs].

In the second step of the analysis, we show how to amortize the cost of the Surplus-Balancing
policy against the cost of OPT ′. In particular, we shall show that in expectation at least half of
the cost of the Surplus-Balancing policy can be amortized against the cost of OPT ′.

Next we partition the periods based on a comparison between the inventory positions of OPT ′

and the Surplus-Balancing policy. Let TH be the set of periods in which the inventory position of
OPT ′ after ordering is no lower than the respective inventory position of the Surplus-Balancing
policy. That is TH = {s : Y SB

s ≤ Y OPT ′
s }. Let TΠ be the complement set of TH , i.e., TΠ = {t : Y SB

s >
Y OPT ′

s }.
In the remainder of the proof we shall show how to amortize the cost of the Surplus-Balancing

policy against the cost of OPT ′. In particular, we shall show that, in expectation, the cost of OPT ′

can be used to amortize at least half of the cost of the Surplus-Balancing policy. Specifically, we
shall show that E[C(OPT ′)]≥∑T−L

s=1 E[HL
s + ΠU

s ] +
∑T−L

s=1 E[Zs]. This and (5) above establish the
proof of the theorem.

Let HOPT ′ be the overall holding costs incurred by OPT ′. We claim that these holding costs are
higher than the holding costs incurred by units ordered by the Surplus-Balancing policy in periods
s ∈ TH and the units ordered in periods s ∈ TΠ to raise the inventory position of the Surplus-
Balancing policy to the corresponding lower bound Ls(fs). That is, for each complete information
set fT ∈FT (recall that f1 ⊂ f2 ⊂ · · · ⊂ fT ),

HOPT ′ ≥
∑
s∈TΠ

HL
s +

∑
s∈TH

HSB
s =

∑
s

HL
s +

∑
s∈TH

(HSB
s −HL

s ). (6)

Consider a realization of a complete information set fT and some period s ∈ TH . By definition
yOPT ′

s ≥ ySB
s . This implies that the q′s units ordered by the Surplus-Balancing in period s were

ordered by OPT ′ in period s or even earlier. It follows that the holding cost these units have
incurred under OPT ′ are higher than the respective holding cost they incurred under the Surplus-
Balancing policy. Similarly, in each period s∈ TΠ, we have yOPT ′

s ≥ROPT
s (fs)≥Ls(fs). We conclude

that the qL
s units ordered by the Surplus-Balancing policy in period s to raise its inventory position

up to Ls(fs) were ordered by OPT ′ in period s or even earlier. The proof of (6) is then complete.
Now let ΠOPT ′ be the overall backlogging costs incurred by OPT ′. We claim that these backlog-

ging costs are higher than the backlogging costs associated with periods s ∈ TΠ plus the minimal
backlogging costs of periods s∈ TH . That is, for each complete information set fT ∈FT ,

ΠOPT ′ ≥
∑

s∈TH

ΠU
s +

∑
s∈TΠ

ΠSB
s =

∑
s

ΠU
s +

∑
s∈TΠ

(ΠSB
s −ΠU

s ). (7)

Consider a realization of a complete information set fT and some period s ∈ TΠ. By definition
we know that ySB

s > yOPT ′
s . Hence, the backlogging cost incurred by OPT ′ in period s+L is higher

than the respective backlogging cost incurred by the Surplus-Balancing policy in that period. For
each period s ∈ TH , if yOPT ′

s ≤ Us(fs) then it is clear that the backlogging cost incurred by OPT ′

in period s+L are higher than ΠU
s . On the other hand, if yOPT ′

s > Us(fs), it must be the case that
yOPT ′

s = xSB
s = ySB

s . (The policy OPT ′ scraps units as long is it inventory position is above Us(fs)
and xSB

s .) We have already seen that in this case ΠU
s = 0 and the proof of (7) above follows.
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From (6) and (7) it follows that

HOPT ′ +ΠOPT ′ ≥
T−L∑
s=1

(HL
s +ΠU

s )+
∑

s∈TH

(HSB
s −HL

s )+
∑
s∈TΠ

(ΠSB
s −ΠU

s ). (8)

Taking expectations, we see that this implies that

E[C(OPT )] = E[HOPT ′ +ΠOPT ′ ] (9)

≥
T−L∑
s=1

E[HL
s +ΠU

s ] +
T−L∑
s=1

E
[
11(s∈ TH) · (HSB

s −HL
s )+ 11(s∈ TΠ) · (ΠSB

s −ΠU
s )

]

=
T−L∑
s=1

E[HL
s +ΠU

s ] +
T−L∑
s=1

E
[
E

[
11(s∈ TH) · (HSB

s −HL
s )+ 11(s∈ TΠ) · (ΠSB

s −ΠU
s )|Fs

]]

=
T−L∑
s=1

E[HL
s +ΠU

s ] +
T−L∑
s=1

E[Zs].

In the second in equality we use a standard conditional expectation argument. The third equality
follows from the fact that conditioning on the information set fs ∈ Fs, the indicator functions
11(s ∈ TH) and 11(s ∈ TΠ) are known deterministically, and from the definition of Zs. The proof of
the theorem then follows.

Theorem 2 above generalizes the Dual-Balancing policy proposed by Levi et al. (2007). In this
case we take the lower bounds Ls(fs) = 0 and upper bounds Us(fs) =∞. If one instead uses the
base-stock levels of the minimizing policy {RM

t (ft) : t = 1, . . . , T, ft ∈ Ft} as lower bounds with
upper bounds Us(fs) =∞, we get a Surplus-Balancing policy that has a worst-case performance
guarantee of two. By arguments similar to the proof of Theorem 1 it can shown that applying
the idea of interval-constrained-bounding described above to the latter Surplus-Balancing policy
using the myopic based-stock levels preserve the worst-case guarantee of two. We call this policy
the Truncated Surplus-Balancing Policy and denote it by TSB. We note that it is possible to use
the myopic base-stock levels {RMY

t (ft) : t = 1, . . . , T, ft ∈ Ft} as upper bounds in conjunction
with the lower bounds of the minimizing policy to get yet another Surplus-Balancing policy with a
worst-case guarantee of two. We call this policy the Pure Surplus-Balancing policy and denote it by
PSB. As we report in Sections 7 and 8 the typical performance of these Surplus-Balancing policies
outperform that of the Dual-Balancing policy, the Myopic policy and the Minimizing policy.

4.2. Extended Class of Myopic Policies

For each period t and observed information set ft, we again define lPt (qt) to be the conditional
expected holding costs incurred by the units ordered by policy P over the rest of the horizon
[t+L,T ]. That is, lPt (qt) = E[HP

t (qt)|ft]. We have used this function in constructing the minimizing
and balancing polices discussed above. Suppose that instead of looking to the end of the horizon,
in each period t, we consider the conditional expected holding cost over only the next k periods,
for 1≤ k ≤ T −L− t + 1. That is, we consider the conditional expected holding costs of the units
ordered in period t that are incurred over the interval [t+L, t+L− 1+ k].

More generally, the value of k needs not be restricted to be an integer. To count the marginal
holding cost over k periods into the future we define HP

tk

=

(
t+L+bkc−1∑

j=t+L

hj(Qt− (D[t,j]−Xt)+)+

)
+(k−bkc){

ht+L+dke(Qt− (D[t,t+L+dke]−Xt)+)+
}

,

where the floor function bkc is the greatest integer less than or equal to k and the ceiling function
dke is the smallest integer greater than or equal to k. This defines a continuum of random variables
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parameterized by k. Next define, for each information set ft, the function lPtk(qt) = E[HP
tk(qt)|ft].

Recall that the minimizing policy computes its ordering quantity, in each period t, by minimizing
the conditional expected backlogging costs in period t+L, denoted by πM

t (qt), plus the conditional
expected holding costs of the units ordered in period t over the entire horizon denoted by lMt (qt).
More generally, we let M(k) denote the following Minimizing-k policy: in each period t, it attempts
to minimize the conditional expected backlogging costs in period t+L plus the conditional expected
holding costs that the units ordered in period t incur over [t + L, t + L + k− 1]. (We assume that
no holding costs are incurred beyond period T , which allows t + L + k− 1 possibly be larger than
T .) That is, the order quantity of the policy M(k) in period t, denoted by q

M(k)
t is computed as

q
M(k)
t = argminqt≥0[l

M(k)
tk (qt)+π

M(k)
t (qt)]. By arguments similar to those used by Levi et al. (2007)

regarding the Minimizing policy, one can show that, for each 1≤ k≤ T − t−L+1, the policy M(k)
is in fact a state-dependent base-stock policy. The base-stock level R

M(k)
t (ft) of the Minimizing-k

policy M(k) in period t can be computed as the minimizer of l
M(k)
tk (qt)+πt(qt), assuming that the

inventory position at the beginning of the period is 0.
As the next lemma shows, these base-stock levels are decreasing in k (the proof can be found in

Appendix A).

Lemma 1. The base-stock levels of the minimizing-k policies are decreasing in k. That is, for each
k1 ≥ k2, we have R

M(k1)
t ≤R

M(k2)
t .

Note that M(1) is the Myopic policy, i.e. MY = M(1). Also, if one chooses kt dynamically over
time, such that kt = T − t−L+1, we get the Minimizing policy M . Thus, for each t = 1, . . . , T and
ft ∈Ft, we have that

RM
t (ft) = R

M(T−t−L+1)
t (ft)≤R

M(T−L)
t (ft)≤ · · · ≤R

M(2)
t (ft)≤R

M(1)
t (ft) = RMY

t (ft), (10)

and this induces a parameterized family of myopic-like base-stock policies over the space
[RM

t (ft),RMY
t (ft)].

While using a static k (i.e., the same k) in all periods may give a good policy, it is natural to
try to think of dynamic methods of choosing k.

Run-Out Time The run-out time measures how long a unit stays in the system from the moment
it arrives (i.e., becomes available to us) until the moment it is consumed. Assume that the y-th
unit was ordered at the beginning of period t. Under the assumption that units are consumed on a
first-ordered-first-consumed basis, let Tt(y) be the number of periods from t until the first y units
are fully consumed. Then

Tt(y) =
T∑

j=t

11(y−D[t,j] > 0).

Conditioned on the observed information set ft, we define the conditional expected post lead-time
run-out time of the yth unit (where again y > 0) by rt(y) = E [(Tt(y)−L)+|ft]. (Note that rt(y) is
always defined with respect to some information set ft.)

Next we consider two different levels of inventory 0≤ y1 ≤ y2 and denote the difference between
their respective expected post-lead-time run-out times by rt([y1, y2]) = rt(y2)− rt(y1).

We considered and tested several methods for choosing k dynamically. In all of these methods,
in each period t, conditioning on the observed information set ft, we compute kt, the number of
periods we look ahead at time period t, and the resulting base-stock level R

M(kt)
t (ft). All of these

methods compute kt as a function of the post-lead-time run-out times of different units. Next we
describe the three methods:

(i) Final unit run-out, denoted by M(k-fin). We consider the run-out time of the final unit being
ordered in period t. Specifically, we compute kt that solves:

kt = rt(y
M(kt)
t (ft)),
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where y
M(kt)
t is the inventory position after ordering, following the M(kt) policy. This is a circular

computation because the last unit ordered in R
M(kt)
t (ft) depends on the policy M(kt) in use, which

is a function of kt. So at the start of period t we set k0
t = 1, (the Myopic policy). If rt(y

M(1)
t ) < 1,

then we follow the Myopic policy, and if rt(y
M(T−t)
t ) = rt(yM

t ) > T − t we follow the minimizing
policy. Otherwise, we iteratively compute ki+1

t = rt(R
M(ki

t)
t (ft)) for increasing iteration indices i.

The iterations stop when ki
t converges, and which time the last of the ki

t ’s becomes kt.
(ii) Average marginal units run-out, denoted by M(k-mar). Under this procedure, we look only

on the marginal average post-lead-time run-out time. That is, we consider the average marginal
increase in the run-out time caused by the units ordered in the period. Let xt be again the inventory
position at the beginning of period t, and q

M(k)
t = (RM(k)

t (ft)−xt)+ be the order quantity in period
t if the base-stock policy M(k) is followed. In particular, consider only values of k for which
q

M(k)
t > 0. (If q

M(1)
t = 0, i.e., the Myopic policy does not order, then order nothing.) Using an

iterative procedure similar to (i) above, compute the kt that solves

kt =
rt([xt +1, y

M(kt)
t ])

q
M(kt)
t

.

(iii) Average total units run-out, denoted by M(k-tot). Consider the average post-lead-time run-
out time of the total inventory position after ordering following an M(k) policy. That is, compute
the kt that solves

kt =
rt([0, y

M(kt)
t ])

y
M(kt)
t

In Lemma 2 in Appendix A we show that the three methods (i)-(iii) are well defined (i.e., that
the procedures described above do converge).

4.3. Parameterized Balancing Policies

In each period t, conditioned on the observed information set ft, the Dual-Balancing policy
described orders q′t to balance lt(q′t) = πt(q′t), i.e., to make E[HB(q′t)|ft] = E[ΠB

t (q′t)|ft]. However,
more generally, the order in period t can be chosen to balance the backlogging and holding costs
in a different ratio than 1. For each period t and given some information set ft, let q′t(β) be the
order quantity that makes

lt(q′t(β)) = E[HB
t (q′t(β))|ft] = βπt(q′t(β)) = βE[ΠB

t (q′t(β))|ft],

where β is some positive number that denotes the desired balancing ratio. Clearly, this leads to a
rich continuum of balancing policies B(β) parameterized by β. Specifically, for β = 1, we get the
original Dual-Balancing policy.

As with the M(k) family of policies, we consider policies based on both fixed balancing ratios
of β, and on a dynamic method that chooses different balancing ratios βt, in each period t. The
dynamic method that we consider chooses βt according to the Myopic policy. Specifically, we set
βt to be the ratio between the conditional expected holding costs and the conditional expected
backlogging costs E[ΠMY

t |ft] incurred by the Myopic policy in period t+L. We denote this policy
by B(β-myo).

4.4. Summary of Policies

We summarize the policies studied and their short-hand names in Table 1
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Table 1 Policies studied

Policy Name Description
MY or M(1) Myopic Policy
B Balancing Policy
ICB Interval-Constrained Balancing Policy
TSB & PSB Truncated/Pure Surplus-Balancing Policy
B(β) Balancing Policy that seeks q′t(β) such that lt(q′t(β)) = βπt(q′t(β))
B(β-myo) Chooses βt equal to the ratio of expected holding and backlogging costs of Myopic
M Minimizing Policy
M(k) Minimizing Policy with holding cost look-ahead of k, for fixed k
M(k-fin) M(k) with k = k-fin, the post lead-time run out of the final unit ordered
M(k-mar) M(k) with k = k-mar, the average post lead-time run out of marginal units ordered
M(k-tot) M(k) with k = k-tot, the average post lead-time run out of current inventory position

5. The Martingale Model of Forecast Evolution

In describing policies for the stochastic inventory problem, we have purposely kept the description
of the underlying stochastic process quite general. For computational evaluation, however, we select
a specific mechanism. In this section, we describe the model of demand and forecast evolution that
we use in the computational study. Specifically, we incorporate forecasting by using the martingale
model of forecast evolution (MMFE) as introduced independently by Heath and Jackson (1994)
and Graves et al. (1986). The multiplicative variant of the MMFE provides a rich simulation
environment for evaluating the performance of diverse policies. We begin by summarizing the
multiplicative MMFE model and interpreting its inputs. We then present an approximation method
for computing the distribution of the cumulative demand.

For s≤ t, let Dst be the forecast of the demand in period t, as made at the end of time period s.
Thus Dt = Dtt is the actual demand in period t. We let Dt−1 = (Dt−1,t,Dt−1,t+1, . . . ,Dt−1,T+L) be
the forecast vector available at the start of period t. (The vector Dt−1 corresponds to Ft in Section
2 above. If the current time is t or later we write dt−1 = (dt−1,t, dt−1,t+1, . . . , dt−1,T+L), to indicate
that the forecasts are now deterministic.)

The essential assumption of the MMFE is that the forecasts Dst evolve as a martingale, i.e., at
the end of period s conditioning on fs+1 = ds, we have dst = E [Dt|fs+1] . More generally, Dst =
E[Dt|Fs+1].

The two variants of the MMFE are the additive and the multiplicative MMFE. In both variants,
one of the inputs to the process is an initial forecast vector d0 = (d01, d02, . . . , d0,T+L). In this paper,
we shall use the multiplicative MMFE. Apart from a study done by Heath and Jackson (1994), to
the best of our knowledge all other computational studies have used the additive MMFE (see Iida
and Zipkin (2001), Lu et al. (2006) for details).

We choose the multiplicative MMFE over the additive version for two reasons. First, for realistic
choices of parameters, there is a significant probability that the additive MMFE will give negative
demand values; the multiplicative MMFE never does. Secondly, in our experience industry forecasts
tend to be updated in a relative sense (as done by the multiplicative MMFE) rather than an
absolute sense (as done by the additive MMFE).

Multiplicative MMFE. In the multiplicative MMFE, at the beginning of each period t, we
generate an update vector, γt = eεt , where εt is a multivariate normal random variable with
variance-covariance matrix Σt and mean −diag(ΣT )

2
, where diag(Σt) is the vector of diago-

nal elements of Σt. Thus, the random vector γt has multivariate lognormal distribution with
mean 1 = (1,1, . . . ,1).(Note that here we deviate from our convention and use lower-case let-
ters to denote random variables.) Writing it component-wise, we have γt = (γt,t, γt,t+1, γt,T+L) =
(eεt,t , eεt,t+1 , . . . , eεt,T+L)
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Then, at the start of period t we will have the forecast vector, Dt−1. For t = 1,2, . . . , T +L, the
time-t demand will be given by Dt = γt,tDt−1,t and the new forecast vector Dt will be given by
Dt = s(γt)s(Dt−1), where s(·) denotes the shift operator: s((x1, x2, x3, . . . , xn)) = (x2, x3, . . . , xn),
and where the multiplication is component-wise. The evolution of forecasts and demands is initiated
by D0 = d0 = (d01, d02, . . . , d0,T+L).

The covariance of εst with εs,t+1 is given by σt−s+1,t−s+2, an off-diagonal element of Σ. If this
element is positive, then before time s, the forecasts Dst and Ds,t+1 will be positively correlated, and
the demands Dt and Dt+1 will be positively correlated. Such correlations exist when, for example,
good news causes forecasts for demand in several periods to be revised upwards, or bad news causes
forecasts for demand in several periods to be revised downward. A negative correlation arises, for
example, when a large forecasted demand is shifted earlier or later in time.

Cumulative Demand Distribution. All of the policies considered, including the Myopic policy (for
non-zero leadtimes), need to compute expectations involving the cumulative demand over intervals.
In the multiplicative MMFE model the corresponding cumulative distributions consist of the sum
of correlated lognormal random variables. There is no closed form expression for the distribution of
a sum of lognormal random variables, let alone the sum of correlated lognormal random variables.
However, the problem arises in finance (Milevsky and Posner 1998)) and wireless technology (Abu-
Dayya and Beaulieu 1994, Beaulieu et al. 1995)). Abu-Dayya and Beaulieu (1994) consider three
approximations, and demonstrate that the Wilkinson’s method described by Schwartz and Yeh
(1982) is the best among the three. As described by Abu-Dayya and Beaulieu (1994), the key ideas
in Wilkinson’s method are firstly that the sum of lognormal random variables L = eY1 + eY2 + · · ·+
eYn is well approximated by a single lognormal random variable (L ≈ eZ , where Z is a normal
random variable), and secondly, that we can match the first and second moments of the sum to
obtain the appropriate parameters for eZ . In an appendix to this paper, we present the results of
various tests of this approximation conducted in the setting of demand forecasting. Our experiment
results indicate that these approximations are very good and the analytical expressions match the
simulation.

6. Experimental Design

The space of potential parameter settings for this study is very large. In addition to parameters
describing the inventory system, there are many parameters that describe the manner in which
forecasts of demand evolve over time. A fully comprehensive study is beyond the scope of this
paper. Our goal is to study a broad range of potential application settings, with emphasis on the
demand and forecasting processes. The experimental design is oriented around a Base Case and six
sets of scenarios, each of which expands the Base Case in an interesting dimension. In each set of
scenarios we vary specific input parameters. The first three of these scenario sets study first-order
effects; here, it is the initial forecast d0 that varies. The final three scenario sets study second order
effects by varying the variance-covariance matrix Σ in different ways.

We begin this section by discussing the parameters of the Base Case. After that we describe the
manner in which the parameters of the Base Case are varied, in each of the six scenario sets.

The Base Case. In all of the experiments, we let our holding and backorder costs per unit per
period be stationary and assume values ht = 1 and pt = 10 for all t. As noted in Section 4, we take
ct = 0 for all t without loss of generality.

We consider a horizon of length T = 40. All experiments are conducted for two different values
of the lead-time: L = 0 and L = 4. Therefore, to facilitate comparison between results, costs are not
counted during the first four time periods. Note that when L = 4, in the first four time periods the
costs incurred are determined by decisions made in the past, and are not influenced by our choice
of policy.
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The initial demand forecast is flat, with d0 = (400,400, . . . ,400). The horizon over which the user
generates forecasts is of length 12, as in monthly forecasts for a year. This implies that we learn
nothing about the period-t demand until we are within 12 months of period t, i.e., Dt−12,t = d0,t =
400 for t > 12. Algebraically, recall from Section 5 that the standard multiplicative model updates
forecasts using the formula Dst = γstDs−1,t. The assumption is that for t > s + 11 we have γst = 1.
This implies that at all times s, the first 13 elements of the forecast vector Ds will be different
from each other, but the 13-th element and every subsequent element will be equal to 400.

Recall from Section 5 that in the multiplicative MMFE, the period-t update vector is γt = eεt ,
where εt is a T − t+1 - dimensional random vector with variance-covariance matrix Σt and mean
− 1

2
diag(Σt). We obtain the (T − t + 1)× (T − t + 1) matrix Σt from Σt−1, by dropping the last

row and column. The previous paragraph implies that in our experiments, forecast evolution and
demand are driven by a 12× 12 covariance matrix Σ. We obtain the T × T matrix Σ1 from Σ
by appending T − 12 extra rows and columns to Σ, with 1’s on the diagonal and 0’s elsewhere.
Therefore, for t > 12, εt is a degenerate random variable with mean 0 and variance 0.

In the Base Case, we have constant learning, meaning that all of the entries on the diagonal of Σ
are equal. (This implies that the variability of the future demand is resolved at a constant pace.)
The diagonal elements are selected so that for t ≥ 12, the coefficient of variation of the demand
Dt, seen from the beginning of time period 1, is 0.75. A formula for the coefficient of variation is
provided in the description of the Coefficient of Variation Scenarios, below.

The off-diagonal entries of the covariance matrix Σ determine the degree of correlation between
the updates that are observed in a given time period, say, time period s. The Base Case assumes
that there is some correlation between these updates, modeled by having non-zero, positive values
in the first off-diagonal of Σ. Consequently, in the Base Case, if the forecast for the demand in
month t goes up in period s (i.e., if Dst > Ds−1,t), then the forecast for demand in month t + 1 is
likely to increase in period s as well (if t+1≤ s+11), but this does not tell us anything about the
forecast for demand in month t+2. The values of the non-zero off-diagonal elements are chosen to
give a correlation coefficient of 0.5 for each pair of adjacent forecast updates. That is, for each s
and each t, s≤ t≤ s + 10, the update factors γst and γs,t+1 observed in period s have correlation
coefficient 0.5, but γst and γs,t+2 are stochastically independent.

Product Launch Scenarios. In this set of scenarios we study the effect of rising demand, as
might be encountered at a product launch. Again, only the initial forecast vector d0 is varied. For
comparison with the base case, we ensure that the mean of the values in d0 is 400. We consider
upward demand trends of +5, +10 and +20 per period. In addition, we consider two examples in
which the demand rises in a steeper, non-linear manner, mid-way through the horizon; these are
generated using an appropriately scaled normal CDF curve.

End-of-Life Scenarios. Here, we study scenarios associated with products that are in an end
of life situation, namely those with decreasing initial forecast vectors. Essentially, these are the
reverse of the Product Launch scenarios; we have initial forecast vectors with forecasted demand
decreasing by 5,10 and 20 per period. We also consider two products whose demands have steeper
drop-off curves, generated using the normal complementary CDF curve. In addition, we study a
total demand crash, in which the demand is forecast to crash to 0 midway through the time horizon.

Seasonality Scenarios. In the seasonality study, we use the common base-values described above
for all parameters except for the initial forecast vector d0. We conduct experiments with two forms
of seasonality, one defined via a sinusoidal function and the other via a step function. In both cases,
the maximum value attained is 700 and the minimum is 100. This allows us to compare results
with the base case more easily, because the mean of the entries in the initial forecast vector is 400
in all cases.

By the cycle length, we mean the number of time periods between two consecutive high-points.
We consider cycle lengths with values 2, 4 and 8. For example, for the step-function with period
4, we have d0 = (700,700,100,100,700,700,100,100, . . . ).
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The above scenario sets test the effect of varying d0, the initial forecast vector. In the final three
scenario sets, we focus instead on varying Σ. In all of these, we take d0 = (400,400, . . . ,400).

Coefficient of Variation Scenarios. In this scenario set, we study the effect of varying the mag-
nitude of the variance in the demands and the forecasts. Note that for t≥ 12, at the end of time
period t − 12, we have Dt,t = Γt dt−12,t , where Γt is random and has the same distribution as
Γ = Π12

i=1γi = exp
(∑12

i=1 εi

)
. The εi’s are independent normal random variables, with mean such

that E[eεi ] = 1, and with variance σii, the i-th diagonal element of Σ, our forecast update matrix
(note that σii is a variance, not a standard deviation). Thus, the mean of Γ is one and the variance
is exp (

∑12

i=1 σii) − 1. The coefficient of variation of Γ is given by (exp (
∑12

i=1 σii) − 1)1/2, and is
equal to 0.75 in the Base Case. In the scenarios where we investigate the effect of variance, we
scale the entries of Σ such that the coefficient of variation of this series of twelve updates takes
specific values, namely 0.5, 0.7, 1, 2, 4, and 8. This corresponds to different levels of variability in
the demands.

Time of Learning Scenarios. Note that the ratio of the sum of the first j diagonal entries of Σ,
to the sum of all the diagonal entries, is the fraction of variability in the future demands that is
unresolved in period s = t− j. When all the entries in the diagonal are identical then the variance
of each update is the same. This corresponds to what we call constant learning. When the values in
diag(Σ) are weighted towards the end of the vector, then the unresolved uncertainty is low when j
is small (s is close to t). This corresponds to early learning. Conversely, when the values in diag(Σ)
are weighted towards the beginning of the vector, then this corresponds to late learning ; that is,
most of the uncertainty about the true value of Dt is only resolved in periods s that are close to
t. We also consider the setting in which there is more weight in the center of diag(Σ) than at the
endpoints. Here, we learn most in the middle of the forecast horizon.

We construct variance-covariance matrices Σ to correspond with these four cases: constant, early,
late and mid-horizon learning. In all cases, the values of Σ are scaled to ensure that the coefficient
of variation of Γ, and of Dt for t≥ 12, remains constant at 0.75.

Correlation Scenarios. In this scenario set we test the effect of different types of correlation
between the updates. We vary correlation in two ways. First, we set the number of non-zero off-
diagonals of our 12x12 matrix, Σ, to 0 (which corresponds to no correlation), 1, 4 and 8. Secondly,
the sign of the off-diagonal elements can be all positive, all negative, or entries alternating between
positive and negative. (The base case corresponds to 1 off-diagonal with non-zero elements which
are all positive.) As in the base case, the diagonal of Σ corresponds to the constant learning case,
and the coefficient of variation of Γ is 0.75.

Table 2 summarizes the scenarios we study. The number of scenarios for each set is given in
brackets after the set name; we see that there are 38 in total. We run each of these with L = 0,4
for an overall total of 76 scenario - lead time pairs. For each of the scenarios, we ran N = 1000
independent trials for a horizon of length T = 40. For the scenarios with a lead time of L = 4, our
decisions only influenced costs from periods 5 through 40. Therefore, in order to compare costs on
an even footing, we consistently computed the total holding and backlogging costs excluding the
first 4 periods.

Performance Measures Used. For a fixed policy π, we let Ci(π) denote the cost of the i-th run
(i = 1, . . . ,1000), excluding the first 4 periods. Note that since we consider a complex environment
and relatively long horizon (T = 40), it is not tractable to compute or even evaluate the optimal
expected cost. Instead, we use two performance measures of a policy’s effectiveness. Both measures
are computed relative to the performance of our benchmark, the Myopic policy, MY . The first is
the relative total cost, given by

AT (π) =

(
1−

( ∑N

i=1 Ci(π)∑N

i=1 Ci(MY )

))
∗ 100%
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Table 2 Scenario codes

Topic Code Description

Product Launch (5)
+I Increment by I per period, I ∈ {5,10,20}
Curve Increasing scaled normal CDF curve
S. Curve Steeper increasing scaled normal CDF curve

End-of-Life (6)

−I Decrement by I per period, I ∈ {5,10,20}
Curve Decreasing scaled normal CDF curve
S. Curve Steeper decreasing scaled normal CDF curve
Crash Demand crash

Seasonal (7)
Base Case Initial forecast vector is flat
Sin(n) Sinusoidal periodicity with cycle length n, n∈ {2,4,8}
Step(n) Step-function periodicity with cycle length n

Coeff. of Var. (6) CV = β Coefficient of variation equals β = 0.5,0.7,1,2,4,8

Learning Rate (4)

Const Constant learning
Late Late learning
Early Early learning
Mid Mid-horizon learning

Correlation (10)

None All off-diagonal elements of Σ are 0
Pos(n) First n off-diagonals of Σ have positive entries, n∈ {1,4,8}
Neg(n) First n off-diagonals of Σ have negative entries
Mix(n) First n off-diagonals of Σ have entries alternating positive and negative

whereas the second is the average relative cost per run, which is given by

AR(π) =

(
1−

(
1
N

N∑
i=1

Ci(π)
Ci(MY )

))
∗ 100%.

Note that both AT (π) and AR(π) can be positive or negative. If they are positive this implies that
they improve upon the myopic policy, and a higher value indicates higher improvement. Conversely,
if they are negative, this implies that myopic performs better. (Thus, in the tables given in Section 7
to come, positive numbers indicate better relative performance with respect to the Myopic policy.)

For each run, we also compute a lower bound on the costs to provide an additional reference.
Recall that the order-up-to level of the Minimizing policy is always below that of the optimal,
whereas that of the Myopic is always above the optimal. Thus, the sum of the holding cost of the
Minimizing Policy and the backorder cost of the Myopic Policy gives a lower bound on the cost of
the optimal policy. If we imagine that this is the cost of a policy π, we then compute AT (π) and
AR(π) in the manner shown above, but with respect to this lower bound ’policy’. This statistic is
denoted LB and is an upper bound on the potential relative improvements over the Myopic policy
that can be further achieved. For example, in Table 3 in Section 7 we can see that the TSB policy
improves upon the Myopic by 0.13%, and the lower bound LB improves by 4.01%. This implies
that the TSB policy is within less than 3.88% of optimal. We note that the lower bound that
we use is likely to be very loose in many scenarios, especially when the variability in the demand
is high. Thus, it might be hard to estimate accurately how far from optimal do the new policies
perform. However, to the best of our knowledge there are no other known lower bounds on the
optimal cost in the multiplicative MMFE model.

7. Experimental Results

In this section, we present the results of the computational investigation of the average performance
of the policies in the multiplicative MMFE model. We demonstrate that three policies in particular,
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the Truncated Surplus-Balancing policy (denoted TSB), the Balancing-2 policy B(2) which has
β = 2, and the Minimizing policy M(k-tot) which chooses k equal to the average run-out time of all
the units present in the system, exhibit superior performance. They achieve an average cost that
is up to 30% lower than that of the Myopic policy (our benchmark), they out-perform the Myopic
policy in almost every scenario, and they are never much worse than the best performing policy in
any scenario (see Table 11). (We note that the Pure Surplus-Balancing Policy was dominated by
the Truncated Surplus-Balancing, and this is the reason why we do not report on it in this section.)

The greatest improvements over the Myopic policy occur in contexts where steep demand drops
can occur. These contexts include end-of-life scenarios (Tables 4 and 5), seasonality (Table 6),
and systems with highly variable demands and forecasts (Table 7). Long lead times make the
improvements over Myopic more dramatic. Moreover, comparing to the lower bound, we learn that
the average performance of the new policies is significantly better than the worst-case guarantee
of two. (This is although the lower bound that we use, is sometimes very loose.)

We note that the standard Balancing and Minimizing policies are greatly improved by the various
refinements introduced in this paper. The most universally applicable of these refinements is the
Interval-Constrained-Bounding concept presented in Section 4. At the end of this section, we discuss
bounding and its effect; otherwise, all of results presented in this section reflect the improvements
due to bounding.

Near the end of Section 6, we defined two performance measures, the relative total cost AT (π)
(which places more weight on randomly generated problem instances in which the total costs are
higher), and the average relative cost per run AR(π). We prefer AR(π) because it weights all
problem instances equally. As our accompanying technical report Hurley et al. (2006) indicates, the
two measures usually tell similar stories. However AR(π) is usually 0-2% higher than AT (π). This
is because the randomly generated scenarios in which the total costs are highest, are usually ones in
which the demand grows unexpectedly, and in these scenarios the Myopic policy performs somewhat
better relative to other policies. The strongest exception to the 0-2% rule is the demand crash
scenario shown in Table 5 below, for which we report both measures; also see the robustness study
below (Table 11). In this scenario, the problem instances with the greatest costs are the ones in
which the Myopic policy dramatically over-stocks. These problem instances have a disproportionate
impact on AT (π), and favor policies that are not myopic.

In our accompanying technical report Hurley et al. (2006), we report the performance of all the
policies in Table 1 under each scenario in Table 2, measured by both AR(π) and AT (π). In this
section, we report a subset of those results for the three most successful policies highlighted above,
as well as the Balancing policy, B. For each table in this section, there is an accompanying table
in Appendix C with a larger set of policies.

This section is organized as follows. First, we present computational results for the scenario
sets defined in Section 6 in the following sequence: Product Launch, End of Life, Demand Crash,
Seasonality, Coefficient of Variation, Learning, Correlation. We also study the robustness of the
different heuristics over the 76 scenarios tested. Finally, we describe a model (the Customer Reten-
tion Model) under which we can compute precisely the expected cost of the optimal policy, as well
as the Myopic, Minimizing and Surplus Balancing policies. In Appendix D we examine the effect
of Interval Constrained-Bounding.

7.1. First Order Effects

Product Launch. In the Product Launch scenarios, the demand is trending upwards strongly.
There is little risk of overstocking when this is the case, and hence, the performance of the Myopic
policy should be at its peak. The Myopic policy is close to the lower bound when the lead time
is short (see Table 3). There is at most a 4.01% improvement possible compared to the LB when
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Table 3 Product Launch: AR(π), for certain Product Launch scenarios
(AR(π) is the average percent improvement over Myopic, per run.)

L = 0 L = 4
Scenario Flat +20 Curve S. Curve Flat +20 Curve S. Curve

B 0.37% 0.34% 0.21% 0.47% -2.58% -3.05% -2.67% -2.26%
TSB 0.13% 0.11% 0.03% 0.10% 1.91% 1.24% 1.52% 1.79%
B(2) 0.46% 0.43% 0.31% 0.53% 1.52% 0.93% 1.25% 1.61%

M(k-tot) 0.29% 0.26% 0.22% 0.29% 1.90% 1.32% 1.57% 1.82%
LB 4.01% 3.71% 3.67% 3.79% 25.92% 22.91% 23.18% 23.75%

Table 4 End Of Life: AR(π), for certain End Of Life scenarios

L = 0 L = 4
Scenario Flat -20 Curve S. Curve Flat -20 Curve S. Curve

B 0.37% 0.53% 0.83% 0.66% -2.58% -1.65% 0.91% 6.12%
TSB 0.13% 0.16% 0.19% 0.35% 1.91% 3.14% 5.02% 9.93%
B(2) 0.46% 0.59% 0.75% 0.87% 1.52% 3.00% 5.25% 10.31%

M(k-tot) 0.29% 0.36% 0.40% 0.56% 1.90% 3.15% 5.17% 9.36%
LB 4.01% 4.63% 4.55% 5.19% 25.92% 31.49% 36.14% 44.12%

L = 0. Each of the new policies improves relative to the Myopic policy even in these scenarios, but
the improvement is slight: less than 0.5% for L = 0.

As the lead time increases, so does the gap between the Myopic policy and the lower bound.
Over half of the new policies, especially the recommended policies (TSB, B(2), and M(k-tot)),
show noticeable improvement (as high as 1.82%) over Myopic in these scenarios. A majority of
the policies are markedly worse compared to the Myopic policy with longer lead times. This is a
general pattern that is apparent in all scenarios. The most likely explanation for this pattern is that
increased lead times magnify errors. For example, in the Base Case (the columns labelled ”Flat”
in Table 3), all policies except M(2), B(β-myo) and the recommended policies, under-order on
average when L = 0, and do so more strongly when L = 4. These are the policies whose performance
deteriorates as L increases from 0 to 4. There are examples in other scenarios where over-ordering
becomes more prevalent as the lead time increases.

End of Life Scenarios. The End of Life scenarios are like the Product Launch scenarios, except
that the trend is for decreasing demand. In our experiments, the risk of overstocking when using
the Myopic policy is low as long as the lead time is short. Table 4 demonstrates that the Myopic
policy is close to the lower bound (within 5.5%) for all scenarios with L = 0.

The results for long lead times (L = 4) reveal a weakness in the Myopic policy. When the lead
time is long and the demand decline is steep, then the new policies perform as much as 10% better
than Myopic as can be seen in Table 4.

The Demand Crash Scenario. As could be expected, the new policies perform significantly better
than Myopic under the demand crash scenario. In this scenario, improvements over the Myopic
policy range between 10% and 20%. This improvement is due to the fact that the policies are much
better at avoiding overstocking in the periods after the crash, namely periods 21 through to 40.
We measure this by computing the total holding cost incurred by each policy in these periods over
all 1000 runs, expressed as a percentage of the same cost incurred by the Myopic policy. We denote
this measure of performance by HC. In Table 5 we report the values of AT (π) and AR(π) and
HC for all policies. The fact that the new policies outperform the Myopic policy by up to 80% in
periods after the crash is what makes them better overall.
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Table 5 Demand Crash: Policy performance in the Demand Crash scenario (Both AT and AR measures are
presented)

L = 0 L = 4
Policy AT (π) AR(π) HC AT (π) AR(π) HC

B 22.10% 13.12% 75.57% 18.31% 12.29% 64.37%
TSB 19.87% 12.39% 64.21% 20.93% 15.60% 65.32%
B(2) 20.19% 12.98% 65.27% 20.20% 16.43% 50.88%

M(k-tot) 13.33% 9.39% 40.95% 16.93% 15.37% 41.96%
LB 31.35% 23.94% - 55.33% 56.03% -

Table 6 Seasonality: AR(π), for certain Seasonality scenarios

L = 0 L = 4
Policy Flat Step(2) Step(4) Step(8) Flat Step(2) Step(4) Step(8)

B 0.37% 5.52% 4.83% 7.20% -2.58% -1.97% -2.52% 2.71%
TSB 0.13% 2.22% 3.39% 4.80% 1.91% 3.01% 3.50% 7.44%
B(2) 0.46% 5.89% 5.22% 6.69% 1.52% 2.39% 2.83% 6.99%

M(k-tot) 0.29% 4.19% 3.61% 4.02% 1.90% 3.08% 3.79% 7.14%
LB 4.01% 22.93% 20.29% 18.22% 25.92% 30.48% 34.38% 40.82%

Seasonality. Table 6 summarizes the results from the Seasonality scenarios. As the LB row of
the table indicates, there is opportunity for improvement over the Myopic policy, particularly as
the lead time increases.

On average, all of the new policies do better relative to the Myopic policy with longer cycle
lengths (because the effects of over-stocking last longer, thus hurting the Myopic policy). A closer
look reveals that for L = 4, all of the new policies do much better than Myopic with a cycle length
of 8 than they do with shorter cycle lengths. This is because the Myopic policy is less heavily
affected by seasonality when the lead time is long enough to include at least one full cycle.

With regard to lead times, the recommended policies (TSB,B(2) and M(k-tot)) exhibit a mixed,
but fairly stable performance as the lead time grows from L = 0 to 4. In marked contrast, the
policies that are not recommended all suffer as the lead time increases and sometimes perform
worse than Myopic. This is consistent with the general pattern discussed in the ”Product Launch”
scenarios above.

7.2. Second Order Effects

Finally, we consider briefly the remaining three sets of scenarios. The initial forecast vector in these
scenarios is flat because the focus is on the investigation of second order effects (that is, the form
of the variance-covariance matrix of the updates, Σ ).

Coefficient of Variation. In Table 7 we report the average value of AR(π) for all policies under
the Coefficient of Variation scenarios. They demonstrate clearly that the new policies’ performance
improvement increases as the coefficient of variation increases. For highly variable forecast change
(C.V.=8), the improvement over Myopic can be as high as 30%. This is caused by the fact that
for larger coefficients of variation, the demand can fall quickly, resulting in over-stocking by the
Myopic policy.

Learning Table 8 gives the average value of AR(π), averaged over all policies, for L = 0, under
the various learning scenarios. Since the forecast horizon (12 months) is much longer than the
lead time (0-4 months), we would expect that under early learning the Myopic policy would see
approximately deterministic demand. For the same reason, late learning should favor the new
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Table 7 Coefficient of Variation: AR(π), for certain Coefficient of Variation scenarios (L = 0)

C.V. 0.5 0.7 1 2 4 8
B 0.01% 0.23% 1.59% 9.74% 22.22% 26.84%

TSB 0.00% 0.06% 1.02% 9.65% 22.21% 29.15%
B(2) 0.01% 0.29% 1.94% 10.74% 22.26% 29.36%

M(k-tot) 0.01% 0.16% 1.48% 10.07% 22.43% 30.17%
LB 0.39% 2.99% 10.27% 35.60% 57.68% 72.40%

Table 8 Time of Learning: Average of AR(π) over all policies, for the Time of Learning scenarios (L = 0)

Scenario Early Mid Const Late
Average 0.00% 0.04% 0.36% 1.10%

Table 9 Correlation: AR(π) for the Correlation scenarios (L = 0)

Scenario None Pos(4) Neg(4) Mix(4) Pos(8) Neg(8) Mix(8)
B 1.00% 0.17% 0.93% 2.15% 0.07% 1.69% 2.17%

TSB 0.35% 0.02% 0.34% 0.49% 0.01% 0.54% 0.49%
B(2) 1.04% 0.21% 1.07% 2.05% 0.15% 1.61% 2.07%

M(k-tot) 0.68% 0.13% 0.78% 1.37% 0.11% 1.07% 1.39%
LB 6.06% 2.73% 7.27% 8.85% 2.72% 7.45% 8.90%

Table 10 Number of scenarios in which each policy performs best (under the AR(π) measure)

Policy B TSB B(0.5) B(2) B(β) M M(2) M(3) M(k-fin) M(k-mar) M(k-tot)
L = 0 4 - 1 13 - - 11 5 2 2 -
L = 4 - 5 - 8 1 - 1 2 - - 21

policies. This is born out by Table 8, but the gain is small. Otherwise, the patterns that we have
seen in other scenario sets with respect to the performance of different policies and the effect of
different lead times, hold here as well.

Correlation Table 9 shows the results for the Correlation scenarios. These show that under the
scenarios where updates are positively correlated, the new policies are less of an improvement over
the Myopic policy than in the Base Case (where there is no correlation). The improvement over
the Base Case is about the same or slightly greater when the off-diagonal elements of Σ are all
negative, and is greatest when the signs are mixed. None of the improvements is greater than about
2%. This is due to the fact that with positive correlation the demand is approximately constant.
However, in the negative and mixed scenarios the demands are more choppy, and when both large
and small demands are present the Myopic policy is more likely to overstock.

7.3. Other Aspects

Robustness It is useful to summarize the performance of the heuristics over the different scenar-
ios. We approached this in two different ways. First, for all of the 37 scenarios in the End of Life
and Seasonality categories, and for each of the lead time cases (L = 0 and L = 4), we compute the
number of times each policy is the best, and report this in Table 10. It is clear that no one policy
dominates, so we seek a policy that will be robust in many different settings.

For each of the 76 scenarios, we now compute the percentage by which the average relative cost
of each policy exceeds that of the best performing policy for that scenario. Then, for each policy,
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Table 11 Robustness statistics: % above the cost of the best heuristic, across the 76 scenarios
Results are for AR(π) unless otherwise noted

Policy Mean Median 65th of 76 70th of 76 75rd of 76 Highest
B 2.06% 0.79% 4.94% 5.00% 5.95% 6.55%

TSB 0.51% 0.32% 1.04% 1.54% 3.32% 4.03%
TSB, AT (π) 0.16% 0.10% 0.26% 0.48% 1.54% 1.54%

B(2) 0.44% 0.09% 0.65% 0.84% 7.62% 9.65%
B(2), AT (π) 1.10% 1.11% 1.49% 1.69% 1.72% 1.72%

M(k-tot) 0.35% 0.14% 0.81% 1.06% 3.95% 4.44%
M(k-tot), AT (π) 0.34% 0.05% 0.29% 2.31% 5.07% 5.07%

we compute the mean of these 76 values, along with the median, and the 65th, 70th, 75rd and
overall (76th) highest values. This information is reported in Table 11. Note that in this table all
the entries are positive and that small numbers indicate a better and more robust performance.

In this study it matters whether we use the average total cost AT (π) or our preferred measure,
AR(π). For the best policies, both measures are reported. Table 11 indicates that the Surplus-
Balancing policy TSB is the most robust of the policies studied. Specifically, it never exceeds the
cost of the best policy by more than 4.1 percent and, on average, is within 1 percent of the lowest
cost. The second robust policy is M(k-tot). The third policy we recommend, B(2), is often stellar,
but it is somewhat less robust than the other policies we recommend, as the last two columns
indicate. B(β-myo) is another strong performer.

Bounding. We have noted that the optimal order-up-to level is bounded below and above by the
Minimizing and Myopic order-up-to levels respectively. We consider briefly the gap between these
order-up-to levels, where the gap is defined as RMY −RM

RM . Over our 76 scenarios, the average value
of this statistic is 4.59%. The quartiles are {0%,0.72%,3.03%,8.55%,18.72%}. Both the minimum
and maximum values come from Learning scenarios; the minimum (0%) from Early Learning
with L = 0 and the maximum (18.72%) from Late Learning with L = 4. This can explain the
notable improvement we observed while applying the interval-constrained-bounding procedure to
the different policies. This is discussed further in Appendix D.

8. The Customer Retention Model

The worst-case analysis of the Surplus-Balancing policies was established under a very general
model of demand and forecast evolution. The computational experiments in Sections 6 and 7
provide evidence about the performance of the different heuristic policies in the multiplicative
MMFE model, which is a particular but still very general model. For such general models, it is not
practical to compute optimal policies for benchmarking purposes. The state space that must be
explored using dynamic programming is too large. In fact even tight lower bounds are very hard
to obtain. In this section, we consider a simple but nontrivial model of demand evolution. This
model admits practical computation of optimal policies and allows us to quantify more accurately
the optimality gap of the Surplus-Balancing policies. We call this demand structure the customer
retention model.

The details of the model are as follows. Let Nt denote the number of customers in period t
who place regular orders for our product. We assume that a customer places a unit-sized order
in each period. The demand in period t is, therefore, Nt. New customers are added at the rate
of λ per period, according to a Poisson probability distribution, and each existing customer is
retained with probability ρ. Given the number of customers in period t, the number of customers
in period t + 1, is seen to be given by the sum of two independent random variables: a binomial
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Table 12 Impact of Demand Rate on Average Optimality Gap of Three Policies

Demand Rate
Policy 0.01 0.04 0.07 0.1 Average
MY 105.99% 18.30% 4.10% 1.00% 32.35%
M 1.01% 36.93% 95.97% 92.77% 56.67%

PSB 5.52% 16.59% 30.41% 26.24% 19.69%

random variable with a Poisson random variable. That is, the distribution of Nt+1 is given by
Nt+1 ≡B(Nt, ρ)+Poisson(λ).

Hence, a single state variable, Nt, is sufficient to represent the information set, ft, at time t. If we
further assume a zero lead time, then the complete state of the system at the beginning of period t,
after receipt of the order placed in period t− 1, is given by (Nt, xt) , where xt is the net inventory
level. From this, it is straightforward to formulate a dynamic programming recursion to minimize
the expected (undiscounted) holding and backlogging costs over a finite time horizon with zero
salvage cost. Similarly, it is not difficult to recursively compute the expected cost of following any
of the heuristic policies considered in this paper. We omit the details of these recursions for the
sake of brevity.

In general, the Myopic policy performs quite well for this particular model of demand evolution.
However, it is dramatically sub-optimal in circumstances in which the risk of carrying inventory
for a long time is high. For example, if λ = 0.01, ρ = 0.1, h = 1, p = 10, T = 100 and x0 = 0, then
the optimal expected cost is 11.1 and the expected Myopic policy cost is 42.4. This represents an
optimality gap of 282%. One can see how this comes about. Over a horizon of 100 days, at least
one new customer is likely to arrive. The probability of retaining that customer is 10% and so the
expected shortage cost next period if no order is placed exceeds the expected one period holding
cost of ordering one unit. The Myopic policy will order up to one unit in such a situation. With
high probability, however, the customer will not be retained and the unit ordered by the Myopic
policy will remain in inventory for a long time, until a new customer appears. The long run holding
costs greatly outweigh the expected shortage costs. In such a parameter setting, the optimal policy
orders a unit only in rare circumstances. Not surprisingly, the Minimizing policy outperforms the
Myopic policy in this instance, achieving an optimality gap of just 1%. Of interest is how well
a policy with an analytically provable worst-case bound performs. We focused attention on the
Pure Surplus-Balancing policy (denoted by PSB, since in this model it performed better than all
the other heuristics. It achieved an optimality gap of 8.6%, which is much better than the 200%
theoretical performance guarantee.

Starting from the parameter setting in which the Myopic policy fared poorly, we considered
combinations of demand rate and unit backlogging cost up to a ten-fold increase in the demand
rate and a five-fold increase in the backlogging cost. Table 12 summarizes the results of increasing
the demand rate. Table 13 summarizes the results of increasing the unit backlogging cost. Table
21 in Appendix C presents the complete set of results. In each dimension, the Myopic policy and
the Minimizing policy reverse their positions of dominance. What is interesting is the robustness
of the Pure Surplus-Balancing policy. It consistently performs much better than its worst case
performance guarantee no matter what the parameter environment. Whereas the other two policies
experience optimality gaps in excess of 100%, the Pure Surplus-Balancing policy stays within 45%
of optimality for all of these parameter combinations.

Appendix A: Section 4 - Proofs

Proof of Theorem 1: The Interval-Constrained-Balancing policy has a worst-case guar-
antee of 2.
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Table 13 Impact of Unit Backorder Cost on Average Optimality Gap of Three Policies

Unit Backorder Cost
Policy 10 20 30 40 50 Average
MY 96.47% 31.45% 16.53% 10.44% 6.85% 32.35%
M 4.86% 39.52% 73.80% 99.07% 66.09% 56.67%

PSB 6.97% 17.02% 25.26% 28.90% 20.28% 19.69%

A s we already mentioned, there exists an optimal base-stock policy with the property that, for
each t and each ft ∈Ft, the optimal base-stock level is between the corresponding minimizing and
myopic base-stock levels, i.e., RM

t (ft)≤ROPT
t (ft)≤ RMY

t (ft). Instead of comparing the expected
cost of the Interval-Constrained-Balancing policy with the expected cost of OPT , we shall compare
it to an infeasible policy with a lower expected cost than OPT , denoted by OPT ′. Specifically, OPT ′

is a base-stock policy with the same base-stock levels as OPT . However, if for some period t and
information set ft, the resulting inventory position of OPT ′ at the beginning of period t happened
to be higher than the the corresponding myopic base-stock level RMY

t (ft) and the inventory position
of the Interval-Constrained-Balancing policy xICB

t , it is allowed scrap enough inventory with no
cost to bring its inventory level down to max{RMY

t (ft), xICB
t }. (If xICB

t > xOPT ′
t > RMY

t (ft), OPT ′

keeps its inventory at the same level.) Since ROPT
t (ft)≤RMY

t (ft) the modified inventory level of
OPT ′ is closer to the optimal base-stock level in that period. This implies that OPT ′ has lower
expected cost than OPT . Also observe that OPT ′ can not scrap units that were already ordered
by the Interval-Constrained-Balancing policy in either the current period or previous periods. (The
scrapping is bounded from below by max{RMY

s (fs), xICB
s }.)

For each s = 1, . . . , T − L, let q′s be the balancing order quantity defined above. That is,
E[HICB

s (q′s)|fs] = E[ΠICB
s (q′s)|fs]. Let q̄s be the actual order placed by the improved Dual-Balancing

policy after possibly augmenting or truncating the balancing order quantity as described above. In
particular, for each s and fs, if q′s < q̄s, we know that yICB

s = RM
s (fs), and if q′s > q̄s, we know that

yICB
s = min{RMY

s (fs), xICB
s }.

For each s = 1, . . . , T −L, let Zs be the following random variables:

Zs = max
{
E[HICB

s (Q̄s)|Fs],E[ΠICB
s (Q̄s)|Fs]

}
.

The random variable Zs is realized at the beginning of period s as the information set fs is observed.
It is readily verified that 2Zs ≥ E[HICB

s + ΠICB
s |Fs], with probability 1. Thus, using standard

arguments of conditional expectation, we get that

E[C(B)] =
T−L∑
t=1

E[HICB
t +ΠICB

t ] =
T−L∑
t=1

E[E[HICB
t +ΠICB

t |Ft]] (11)

≤ 2
T−L∑
t=1

E[Zt].

To conclude the proof of the theorem, we will show that

E[C(OPT ′)]≥
T−L∑
t=1

E[Zt],

from which the theorem follows.
Partition the periods 1, . . . , T − L into two (random) sets. Let TH be all the periods in which

either the inventory position of OPT ′ after ordering was higher than the corresponding inventory
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position of the Interval-Constrained-Balancing policy, or both inventory positions are equal to the
corresponding minimizing base-stock level. That is,

TH = {t : Y ICB
t < Y OPT ′

t or Y ICB
t = Y OPT ′

t = RM
t (Ft)}.

Let TΠ be the complement set, i.e.,

TΠ = {t : Y ICB
t ≥ Y OPT ′

t and Y ICB
t > RM

t (Ft)}.

Next we shall show how to amortize the cost incurred by the interval-constrained balancing
policy against the cost of OPT ′. In particular, we shall show that on expectation we can amortize∑T−L

t=1 E[Zs] of cost incurred by the interval-constrained balancing policy against costs incurred by
OPT ′. This and (11) imply the theorem.

Let HOPT ′ be the overall holding costs incurred by OPT ′. We claim that these holding costs are
higher than the holding costs incurred under the Interval-Constrained-Balancing policy by units
it orders in periods t ∈ TH , i.e., HOPT ′ ≥∑

t∈TH
HICB

t , with probability 1. To see why this claims
holds, recall the definition of TH above. It follows that, for each t ∈ TH , we have Y ICB

t ≤ Y OPT ′
t ,

which implies that the units ordered by the Interval-Constrained-Balancing policy in period t were
ordered by OPT ′ in period t or even earlier. Note that even when OPT ′ scraps unit from inventory,
it can never go below the inventory position of the Interval-Constrained-balancing policy. This
implies that the units ordered by the Interval-Constrained-balancing policy in period t, can not be
scrapped by OPT ′ in period t or later. Thus, it is clear that the holding costs these units incur
under OPT ′ are at least as high as the holding costs they incur under the improved Dual-Balancing
policy. The claim then follows.

Similarly, let ΠOPT ′ be the overall backlogging cost incurred by OPT ′. We claim that these costs
are higher than the backlogging costs incurred under the Interval-Constrained-Balancing policy
that are associated with periods t ∈ TΠ, i.e., ΠOPT ′ ≥∑

t∈TΠ
ΠICB

t , with probability 1. By similar
arguments we know that, for each t ∈ TΠ, we have Y ICB

t ≥ Y OPT ′
t , which implies that OPT ′ will

incur backlogging costs higher than the improved Dual-Balancing policy in period t+L. The claim
then follows.

From the above two claims it follows that

E[C(OPT ′)] ≥
T−L∑
t=1

E
[
11(t∈ TH) ·HICB

t +11(t∈ TΠ) ·ΠICB
t

]
(12)

=
T−L∑
t=1

E
[
E[11(t∈ TH) ·HICB

t |Ft] +E[11(t∈ TΠ) ·ΠICB
t |Ft]

]
.

To complete the proof of the theorem it is sufficient to show that, for each s = 1, . . . , T −L, the
inequalities

11(s∈ TH) ·E[HICB
s |Fs]≥ 11(s∈ TH) ·Zs

and
11(s∈ TΠ) ·E[ΠICB

s |Fs]≥ 11(s∈ TΠ) ·Zs

hold with probability 1.
Consider the first inequality and some observed information set fs. There is nothing to

prove unless the indicator 11(s ∈ TH) is equal 1. However, if q̄s < q′s this implies that yICB
s =

max{xICB
s ,RMY

s (fs)} ≥ yOPT ′
s , hence, s∈ TΠ. Thus, s∈ TH implies that q̄s ≥ q′s, which implies that

zs = E[HICB
s |fs].
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The second inequality follows by similar arguments. In particular, for each information set fs

such that s ∈ TΠ, we know that q̄ ≤ q′s. (If q̄ > q′s then yICB
s = RM

s (fs) and s ∈ TH .) However, this
implies that zs = E[ΠICB

s |fs]. It follows from (12) above that indeed E[C(OPT ′)] ≥∑T−L

t=1 E[Zt],
from which the theorem follows.

We note that if we replace RM
s (fs) and RMY

s (fs) with any sequence of lower and upper bounds
on the respective optimal base-stock levels ROPT

s (fs), then the proof still holds.

Proof of Lemma 1: The base-stock levels of the minimizing-k policies are decreasing
in k. That is, for each k1 ≥ k2, we have R

M(k1)
t ≤R

M(k2)
t .

D efine mk
t (qt) = l

M(k)
t (qt) + πt(qt) under the assumption that the inventory position at the

beginning of the period is 0. Note that this is a convex function. The minimizing-k policy M(k)
chooses qk

t to minimize this function. We assume that it always chooses the smallest minimizer, i.e.
q

M(k)
t = min{argminqt≥0[mk

t (qt)]}. We also note that q
M(k)
t = R

M(k)
t .

Note that πt(qt) is common for all values of k. Thus, from (10) above it follows that right-hand-
side derivative of mk

t (qt), denoted by (mk
t (qt))

′, is increasing in k (for a fix qt). Specifically,
(
mk1

t (qt)
)′
≥

(
mk2

t (qt)
)′

,

for each qt. Thus, we conclude that q
M(k1)
t ≤ q

M(k2)
t .

Methods to Dynamically Choose k

Next we show that the procedures (i)− (iii) for dynamically choosing k are well defined, i.e.,
then converge. We give the proof for procedure (i); the proofs for procedures (ii)− (iii) are similar.

Lemma 2. If rt(y
M(1)
t )≥ 1 and rt(y

M(T−t)
t ) = rt(yM

t )≤ T − t, then the equation

k = rt(y
M(k)
t )

has a solution. That is, procedure (i) above is well-defined.

F irst recall that if rt(y
M(1)
t ) < 1 we follow the Myopic policy. Now assume that rt(y

M(1)
t )≥ 1.

We would like to compute a zero of the function f(k) = rt(y
M(k)
t )− k. We have already seen (from

(10) above) that y
M(k)
t is decreasing in k; hence rt(y

M(k)
t ) is also decreasing in k and so is f(k).

By the assumption, for k = 1, we have rt(y
M(1)
t )≥ 1 and for k = T − t+1, we have rt(y

M(T−t)
t ) =

rt(yM
t )≤ T − t. If rt(y

M(1)
t ) = 1 or rt(y

M(T−t+1)
t ) = rt(yM

t ) = T − t, there is nothing to prove. Oth-
erwise f(1) > 0 and f(T − t) < 0. In addition, f(k) is continuous and hence there is a kt such that
f(kt) = 0. Moreover, kt can be computed by bi-section search.

The proofs for the other two cases are similar. However, we need the additional assumption that
E[Dt]≥ 1 for each t. This ensures that rt([0, y]) increases at a faster rate than y and hence that
the corresponding f(k) function is decreasing in k.

Appendix B: Tests of LogNormal Sum Approximation

To test the validity of Wilkinson’s approximation we considered the demand model with D0 =
(400,400, . . . ,400) and the variance-covariance matrix, Σ, as described in the seasonal demand part
of Section 6. We first sampled 10,000 realizations of (D1,D2, . . . ,D8), computed D[1,8] and sorted
these. This gives the empirical quartiles of the distribution of D[1,8]. We then generated these same
quartiles from the approximation scheme.
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In Figure 1 we give a scatter plot (a p-p plot) of the quartiles of the approximating and empirical
distribution. The approximating distribution corresponds to readings on the X-axis, the empirical
distribution to those on the Y-axis. If the approximating distribution were perfectly accurate, this
plot would be a straight line.

In fact, there is a slight trend above the 45-degree line for higher value points. This indicates
that the approximating distribution underestimates the probability of very high demands. However
this behavior only occurs for the final 50 or so points (of 10,000) and so is not very significant.

Our standard implementation of the policies we tested uses the approximating distribution.
However, as a further test of that approximation’s validity, we also implemented the policies using
a Monte Carlo scheme to compute the distribution of cumulative demand, and then ran both of
these implementations on 1,000 demand paths. There was a difference of only 0.042% in expected
cost between the Monte Carlo and Wilkinson Approximation methods.
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Figure 1 p-p plot of Empirical versus Approximating Distribution of Cumulative Demand.

Appendix C: Section 7 - Full Tables

The tables in this section correspond to those in Section 7 but with more policies included.
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Table 14 Product Launch: AR(π), for certain Product Launch scenarios
(AR(π) is the average percent improvement over Myopic, per run.)

L = 0 L = 4
Scenario Flat +20 Curve S. Curve Flat +20 Curve S. Curve

B 0.37% 0.34% 0.21% 0.47% -2.58% -3.05% -2.67% -2.26%
SB 0.13% 0.11% 0.03% 0.10% 1.91% 1.24% 1.52% 1.79%

B(0.5) 0.36% 0.34% 0.21% 0.47% -4.15% -4.15% -3.75% -3.44%
B(2) 0.46% 0.43% 0.31% 0.53% 1.52% 0.93% 1.25% 1.61%

B(β-myo) 0.39% 0.37% 0.26% 0.41% 1.47% 0.98% 1.13% 1.32%
M 0.36% 0.34% 0.21% 0.47% -4.32% -4.24% -3.86% -3.54%

M(2) 0.46% 0.42% 0.33% 0.51% 0.82% 0.04% 0.36% 0.75%
M(3) 0.44% 0.41% 0.26% 0.51% -1.71% -2.39% -2.02% -1.57%

M(k-fin) 0.44% 0.40% 0.29% 0.51% -1.89% -2.36% -2.00% -1.60%
M(k-mar) 0.29% 0.26% 0.26% 0.29% -0.51% -1.03% -0.70% -0.33%
M(k-tot) 0.29% 0.26% 0.22% 0.29% 1.90% 1.32% 1.57% 1.82%

LB 4.01% 3.71% 3.67% 3.79% 25.92% 22.91% 23.18% 23.75%

Table 15 End Of Life: AR(π), for certain End Of Life scenarios

L = 0 L = 4
Scenario Flat -20 Curve S. Curve Flat -20 Curve S. Curve

B 0.37% 0.53% 0.83% 0.66% -2.58% -1.65% 0.91% 6.12%
SB 0.13% 0.16% 0.19% 0.35% 1.91% 3.14% 5.02% 9.93%

B(0.5) 0.36% 0.52% 0.82% 0.58% -4.15% -4.24% -2.59% 1.26%
B(2) 0.46% 0.59% 0.75% 0.87% 1.52% 3.00% 5.25% 10.31%

B(β-myo) 0.39% 0.48% 0.53% 0.68% 1.47% 2.50% 4.47% 8.59%
M 0.36% 0.52% 0.82% 0.58% -4.32% -4.58% -3.07% 0.36%

M(2) 0.46% 0.62% 0.76% 0.90% 0.82% 2.63% 4.99% 8.53%
M(3) 0.44% 0.62% 0.81% 0.91% -1.71% 0.05% 3.10% 8.65%

M(k-fin) 0.44% 0.60% 0.83% 0.83% -1.89% -0.93% 1.57% 7.28%
M(k-mar) 0.29% 0.37% 0.48% 0.60% -0.51% 0.70% 3.17% 8.85%
M(k-tot) 0.29% 0.36% 0.40% 0.56% 1.90% 3.15% 5.17% 9.36%

LB 4.01% 4.63% 4.55% 5.19% 25.92% 31.49% 36.14% 44.12%

Appendix D: The Effect of Bounding

We consider here the effect of the Interval-Constrained-Bounding improvement scheme that we
discussed in Section 4. Note that this applies only to the Balancing policies, as the Minimizing
policies fall within the bounds by definition. Also note that the Surplus-Balancing Policy SB might
exceed the upper bound, but it cannot order less than the lower bound. Table 22 lists the average
improvement in AR(π) generated by bounding for these policies, as well as the minimum and
maximum improvement. Note that the improvement is always positive, as we would expect from
Theorem 1.

The two policies B and B(0.5) are dramatically improved by bounding. The reason for this is
that more often than not they fall outside of the known limits on the optimal order-up-to levels,
provided by the Minimizing and Myopic policies. To demonstrate this, Table 22 also includes the
percentage of all order-up-to levels that fall either below the Minimizing level or above the Myopic
level. The policies B and B(0.5) fall outside this range 82.91% and 95.15% of the time, respectively.
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Table 16 Demand Crash: Policy performance in the Demand Crash scenario (Both AT and AR measures are
presented)

L = 0 L = 4
Policy AT (π) AR(π) HC AT (π) AR(π) HC

B 22.10% 13.12% 75.57% 18.31% 12.29% 64.37%
SB 19.87% 12.39% 64.21% 20.93% 15.60% 65.32%

B(0.5) 22.66% 12.66% 80.23% 14.93% 5.81% 74.85%
B(2) 20.19% 12.98% 65.27% 20.20% 16.43% 50.88%

B(β-myo) 19.08% 12.31% 61.14% 15.82% 13.90% 46.74%
M 22.66% 12.65% 80.33% 14.13% 3.92% 81.51%

M(2) 10.65% 8.36% 32.37% 11.18% 11.39% 26.20%
M(3) 15.31% 11.19% 47.80% 15.02% 14.10% 40.10%

M(k-fin) 21.44% 13.25% 71.14% 19.74% 13.59% 69.90%
M(k-mar) 14.53% 10.23% 44.92% 20.30% 15.15% 64.57%
M(k-tot) 13.33% 9.39% 40.95% 16.93% 15.37% 41.96%

LB 31.35% 23.94% - 55.33% 56.03% -

Table 17 Seasonality: AR(π), for certain Seasonality scenarios

L = 0 L = 4
Policy Flat Step(2) Step(4) Step(8) Flat Step(2) Step(4) Step(8)

B 0.37% 5.52% 4.83% 7.20% -2.58% -1.97% -2.52% 2.71%
SB 0.13% 2.22% 3.39% 4.80% 1.91% 3.01% 3.50% 7.44%

B(0.5) 0.36% 5.49% 4.82% 7.18% -4.15% -3.67% -5.16% -0.96%
B(2) 0.46% 5.89% 5.22% 6.69% 1.52% 2.39% 2.83% 6.99%

B(β-myo) 0.39% 5.20% 4.81% 5.89% 1.47% 2.21% 2.57% 5.12%
M 0.36% 5.50% 4.82% 7.18% -4.32% -3.85% -5.36% -1.18%

M(2) 0.46% 6.01% 5.15% 5.93% 0.82% 2.20% 3.19% 7.20%
M(4) 0.41% 5.65% 4.93% 7.33% -3.19% -2.24% -2.83% 3.26%
M(6) 0.38% 5.54% 4.86% 7.24% -4.14% -3.55% -4.64% -0.32%

M(k-fin) 0.44% 5.76% 5.14% 7.22% -1.89% -1.05% -2.03% 2.91%
M(k-mar) 0.29% 4.38% 3.98% 4.61% -0.51% 0.88% 0.41% 5.05%
M(k-tot) 0.29% 4.19% 3.61% 4.02% 1.90% 3.08% 3.79% 7.14%

LB 4.01% 22.93% 20.29% 18.22% 25.92% 30.48% 34.38% 40.82%

We demonstrate this graphically in Figure D, which plots the evolution of order-up-to level of
the Myopic, Minimizing, and three Balancing policies in a single run, for one of the Coefficient
of Variation scenarios. To highlight the difference, we subtract from each order-up-to level, the
order-up-to level of the Minimizing Policy (which corresponds to the heavy, horizontal line at 0).
The other heavy line corresponds to the Myopic policy. It is interesting to note that B(2) (the
dashed line) closely tracks the optimal range, while B(0.5) (dashed and dotted line) is always below
it. The Surplus-Balancing Policy (SB, the lighter solid line) is often above the range - Table 22
indicates that this occurs 65.24% of the time, on average.
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Table 18 Coefficient of Variation: AR(π), for certain Coefficient of Variation scenarios (L = 0)

C.V. 0.5 0.7 1 2 4 8
B 0.01% 0.23% 1.59% 9.74% 22.22% 26.84%

SB 0.00% 0.06% 1.02% 9.65% 22.21% 29.15%
B(0.5) 0.01% 0.23% 1.58% 8.63% 19.21% 20.46%
B(2) 0.01% 0.29% 1.94% 10.74% 22.26% 29.36%

B(β-myo) 0.01% 0.24% 1.78% 10.77% 22.87% 29.01%
M 0.01% 0.23% 1.58% 8.62% 18.98% 18.81%

M(2) 0.01% 0.28% 1.92% 10.09% 19.32% 24.54%
M(3) 0.01% 0.27% 1.86% 11.03% 22.96% 29.81%

M(k-fin) 0.01% 0.27% 1.87% 10.42% 22.74% 27.73%
M(k-mar) 0.01% 0.15% 1.68% 10.45% 22.98% 30.23%
M(k-tot) 0.01% 0.16% 1.48% 10.07% 22.43% 30.17%

LB 0.39% 2.99% 10.27% 35.60% 57.68% 72.40%

Table 19 Time of Learning: Average of AR(π) over all policies, for the Time of Learning scenarios (L = 0)

Scenario Early Mid Const Late
Average 0.00% 0.04% 0.36% 1.10%

Table 20 Correlation: AR(π) for the Correlation scenarios (L = 0)

Scenario None Pos(4) Neg(4) Mix(4) Pos(8) Neg(8) Mix(8)
B 1.00% 0.17% 0.93% 2.15% 0.07% 1.69% 2.17%

SB 0.35% 0.02% 0.34% 0.49% 0.01% 0.54% 0.49%
B(0.5) 1.00% 0.17% 0.94% 2.15% 0.07% 1.69% 2.17%
B(2) 1.04% 0.21% 1.07% 2.05% 0.15% 1.61% 2.07%

B(β-myo) 0.89% 0.15% 0.94% 1.69% 0.12% 1.33% 1.68%
M 1.00% 0.17% 0.93% 2.15% 0.07% 1.69% 2.17%

M(2) 0.99% 0.21% 1.00% 2.10% 0.16% 1.58% 2.15%
M(3) 1.02% 0.19% 0.97% 2.16% 0.12% 1.64% 2.20%

M(k-fin) 1.02% 0.20% 0.98% 2.15% 0.13% 1.68% 2.18%
M(k-mar) 0.71% 0.17% 0.83% 1.44% 0.14% 1.14% 1.46%
M(k-tot) 0.68% 0.13% 0.78% 1.37% 0.11% 1.07% 1.39%

LB 6.06% 2.73% 7.27% 8.85% 2.72% 7.45% 8.90%
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Table 21 Impact of Demand Rate and Unit Backorder Cost on Optimality Gap of Three Policies

Unit Backorder cost
Policy Demand Rate 10 20 30 40 50 Average
MY

0.01
281.96% 119.90% 65.96% 39.07% 23.05% 105.99%

M 0.98% 0.97% 0.98% 1.02% 1.08% 1.01%
SB 8.60% 6.85% 5.33% 4.00% 2.81% 5.52%
MY

0.04
85.69% 5.78% 0.02% 0.02% 0.02% 18.30%

M 0.95% 1.46% 29.64% 61.72% 90.87% 36.93%
SB 6.18% 1.06% 16.30% 26.35% 33.08% 16.59%
MY

0.07
18.25% 0.00% 0.05% 0.05% 2.14% 4.10%

M 1.05% 51.31% 106.83% 149.25% 171.41% 95.97%
SB 2.34% 23.83% 37.21% 43.64% 45.02% 30.41%
MY

0.1
0.00% 0.11% 0.09% 2.62% 2.19% 1.00%

M 16.47% 104.34% 157.76% 184.27% 1.00% 92.77%
SB 10.78% 36.36% 42.20% 41.64% 0.21% 26.24%
MY

Average
96.47% 31.45% 16.53% 10.44% 6.85% 32.35%

M 4.86% 39.52% 73.80% 99.07% 66.09% 56.67%
SB 6.97% 17.02% 25.26% 28.90% 20.28% 19.69%

Table 22 Improvement in AR(π) due to bounding

Policy Mean (Min, Max) [< Min, > Myo]
B 3.43% (0.04%, 11.54%) [70.21%, 10.76%]

SB 1.96% (0.03%, 5.00%) [0.00%, 62.60%]
B(0.5) 17.51% (0.39% 33.21%) [86.02% 7.05%]
B(2) 0.27% (0.00%, 5.26%) [38.75%, 19.12%]

B(β-myo) 1.95% (0.00%, 5.06%) [0.00%, 40.07%]
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