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Abstract
We consider the problem of reconstructing a rank-k n×n matrix M from a sampling of its entries.
Under a certain incoherence assumption onM and for the case when both the rank and the condition
number of M are bounded, it was shown in (Candès and Recht, 2009; Candès and Tao, 2010;
Keshavan et al., 2010; Recht, 2011; Jain et al., 2012; Hardt, 2014) that M can be recovered exactly
or approximately (depending on some trade-off between accuracy and computational complexity)
using O(n poly(log n)) samples in super-linear time O(na poly(log n)) for some constant a ≥ 1.

In this paper, we propose a new matrix completion algorithm using a novel sampling scheme
based on a union of independent sparse random regular bipartite graphs. We show that under the
same conditions w.h.p. our algorithm recovers an ε-approximation of M in terms of the Frobe-
nius norm using O(n log2(1/ε)) samples and in linear time O(n log2(1/ε)). This provides the best
known bounds both on the sample complexity and computational cost for reconstructing (approxi-
mately) an unknown low-rank matrix.

The novelty of our algorithm is two new steps of thresholding singular values and rescaling sin-
gular vectors in the application of the “vanilla” alternating minimization algorithm. The structure
of sparse random regular graphs is used heavily for controlling the impact of these regularization
steps.
Keywords: matrix completion; alternating minimization; singular value thresholding; sparse ran-
dom graphs.

1. Introduction

We consider the problem of reconstructing a hidden rank-k matrix from a sampling of its entries.
Specifically, consider an n× n matrix M . The goal is to design a sampling index set Ω ⊆ [n]× [n]
such that M can be reconstructed efficiently from the entries in M associated with Ω, that is, from
the entriesMij , (i, j) ∈ Ω, with the cardinality |Ω| as small as possible. The problem has wide range
of applications in recommendation systems, system identification, global positioning, computer
vision , etc. (Candes and Plan, 2010).

For the convenience of discussing various matrix completion results and comparing them to our
results, we will assume in the discussion below that the rank, condition number and the incoherence
parameter of M (appropriately defined) are bounded in n. The problem of reconstructing M under
uniform sampling received considerable attention in recent years. One research direction of matrix
completion under this sampling scheme focuses on the exact recovery of M . Recht (2011) and
Gross (2011) showed that M can be reconstructed exactly from O(n log2 n) samples using trace-
norm based optimization. Keshavan et al. (2010) showed that M can be reconstructed exactly from
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O(n log n) samples using singular value decomposition (SVD) followed by gradient descent on
Grassmanian manifold. Another research direction of matrix completion under uniform sampling
pays more attention to the efficiency of the algorithm, and only requires approximate matrix comple-
tion. Jain et al. (2012) showed that an ε-approximation of M in the Frobenius norm can be recon-
structed from O(n log n log(1/ε)) samples using alternating minimization in O(n log n log(1/ε))
time. Then Hardt (2014) refined the analysis of alternating minimization and improved the sample
complexity to O(n log(n/ε)). It was shown by Candès and Tao (2010) that O(n log n) is the infor-
mation theoretic limit of the number of samples for exact matrix completion of M . With extensive
research on this subject, it is tempting to believe that the sample complexity obtained by Jain et al.
(2012) or Hardt (2014) are optimal (up to a constant factor) for approximate matrix completion as
well. Perhaps surprisingly, we establish that this is not the case and propose a new algorithm, which
constructs an ε-approximation ofM in Frobenius norm usingO(n log2(1/ε)) samples in linear time
O(n log2(1/ε)).

Our proposed algorithm adds two new steps: a thresholding of singular values and a rescal-
ing of singular vectors upon the “vanilla” alternating minimization algorithm. The idea behind
the singular value thresholding is regularization of the least square estimation for avoiding the ill-
conditioning problem of certain matrices (i.e. the Gramian matrices inverted in (7) and (9)). We call
this algorithm Thresholded Alternating Minimization (T AM), referring to the extra singular value
thresholding steps added to alternating minimization. A rescaling of the entries of singular vectors
is also implemented in the T AM algorithm in order to maintain the proximity to incoherence. A
more specific discussion of the intuition behind these two new steps appears after the introduction
of the T AM algorithm (in Pages 6 and 7).

For the convenience of analysis, T AM employs a sampling generated from a union of indepen-
dent random bipartite regular graphs. Although our results of T AM are established on this special
sampling, T AM can be generalized to uniform sampling in the obvious manner and similar results
of T AM under uniform sampling can be established accordingly. In fact, by considering Poisson
cloning model (Kim, 2006) for Erdös-Rényi graphs, (which we intend to research in future), we con-
jecture that the same sample complexity of T AM might hold for constructing an ε-approximation
of M in Frobenius norm under uniform sampling. There is no contradiction between the informa-
tion theoretic lower bound O(n log n) for exact matrix completion and this conjecture, due to its
approximate nature. Other sampling schemes for matrix completion are also studied in Meka et al.
(2009); Király et al. (2015); Pimentel-Alarcón et al. (2016).
T AM maintains the computational complexity of alternating minimization, which is O(|Ω|)

for bounded k. T AM only requires O(n log2(1/ε)), or O(n log(1/ε)) samples, under the standard
incoherence Assumption 1 or under both Assumptions 1 and 2, given in Section 2. Hence, T AM is
a linear algorithm of computational complexity O(n log2(1/ε)) or O(n log(1/ε)). Like alternating
minimization, T AM has computational efficiency advantage over trace-norm based optimization,
which requires time O(n2 log n/

√
ε) using the singular value thresholding algorithm (Cai et al.,

2010) or O(n5 log(1/ε)) using interior point methods. More specific computational complexity
comparison between trace-norm based optimization and alternating minimization is given in (Jain
et al., 2012).
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2. Problem Formulation and Assumptions

Let M ∈ Rn×m be a rank-k matrix and M = U∗Σ∗(V ∗)T be its SVD where the singular values are
σ∗1 ≥ σ∗2 . . . ≥ σ∗k in decreasing order. The entries inM associated with the index set Ω ⊆ [n]× [m]
are observed, that is, the entries Mij , ∀(i, j) ∈ Ω, are known. Define the sampling operator PΩ :
Rn×m → Rn×m by

PΩ(M) =

{
Mij if (i, j) ∈ Ω,
0 if (i, j) /∈ Ω.

Let VR and VC be the sets of rows and columns of matrix M , respectively, indexed by the sets
{1, 2, . . . , n} and {1, 2, . . . ,m}. Also, let G = (V, E) be a bipartite undirected graph on the vertex
set V = VR ∪ VC with edge set E 3 (i, j) if and only if (i, j) ∈ Ω. Our goal is to obtain an
ε-approximation of the matrix M from the observed PΩ(M).

For the rest of the paper, we will assume for simplicity that m = n. Our results can be easily
extended to the more general case m = Θ(n), using the generalization as in the appendix D of
(Hardt, 2014). We say a graph is a random bipartite d-regular graph Gd(n, n) if it is chosen uni-
formly at random from all bipartite d-regular graphs with n vertices {1, 2, . . . , n} on the left and
another n vertices {1, 2, . . . , n} on the right. For our proposed algorithm, we choose G to be a union
of several independent random bipartite d-regular graphs Gd(n, n). Bayati et al. (2010) proposed
an algorithm for generating a random bipartite d-regular graph Gd(n, n) in expected running time
O(nd2).

Let u∗,Ti , i ∈ [n], be the i-th row of U∗ and v∗,Tj , j ∈ [n], be the jth row of V ∗. Now we present
the incoherence assumptions on M .

• Assumption 1. There exists a constant µ0 ≥ 1 such that

‖u∗i ‖22 ≤
µ0k

n
,∀i ∈ [n] and ‖v∗j ‖22 ≤

µ0k

n
, ∀j ∈ [n]. (1)

• Assumption 2. Given the degree d of Gd(n, n), let Sn be a subset of [n] chosen uniformly at
random from all the subsets of [n] with cardinality d. There exists a constant δ ∈ (0, 1) such
that

P(‖
∑
i∈Sn

n

d
u∗i u

∗,T
i − I‖2 ≤ δ) = 1− o(1) and P(‖

∑
j∈Sn

n

d
v∗j v
∗,T
j − I‖2 ≤ δ) = 1− o(1). (2)

where Assumption 1 is the standard incoherence condition assumed by most of existing low-rank
matrix completion results (Candès and Recht, 2009; Keshavan et al., 2010; Jain et al., 2012; Hardt,
2014) etc. We call Assumption 2 the probabilistic generalized restricted isometry condition, which
is strictly weaker, for example, than the incoherence assumption A2 in (Bhojanapalli and Jain,
2014). The latter requires∥∥∥∥ ∑

i∈S1
n

n

d
u∗iu

∗,T
i − I

∥∥∥∥
2

≤ δ and
∥∥∥∥ ∑
j∈S2

n

n

d
v∗j v
∗,T
j − I

∥∥∥∥
2

≤ δ, (3)

for δ ≤ 1/6 and all S1
n, S

2
n ⊂ [n] of cardinality |S1

n| = |S2
n| = d while the probabilistic generalized

restricted isometry condition (2) requires the inequalities above hold for majority of the subsets
S1
n ⊂ [n] of cardinality |S1

n| = d and for majority of the subsets S2
n ⊂ [n] of cardinality |S2

n| = d.
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3. Main Results

We are about to present a new matrix completion algorithm and give recovery guarantees of the
proposed algorithm for two scenarios: matrix completion under Assumption 1, and matrix comple-
tion under both Assumption 1 and Assumption 2. Furthermore, we will assume that Assumption 1
always holds, and that the rank k, the condition number σ∗1/σ

∗
k, and the incoherence parameter µ0

of the matrix M are bounded from above by a constant, as n→∞.
Now we formally describe the matrix completion algorithm we propose in this paper and state

our main results. For the statement of our algorithm, we first introduce two operators acting on the
matrices. Define T1 : Rk×1 → R1×k by

T1(u) ,


√

µ0k
n

uT

‖u‖2 ‖u‖2 ≥ 2
√

µ0k
n ,

uT ‖u‖2 < 2
√

µ0k
n .

(4)

Specifically, the operator T1 normalizes the vector u of length at least 2
√
µ0k/n to the vector of

the same direction and of length
√
µ0k/n. For the convenience of notation we extend T1 to the one

acting on matrix U = (uTi , i ∈ [n]) ∈ Rn×k by

T1(U) ,

 T1(u1)
...

T1(un)

 .

Then it follows from the definition of T1(·) in (4) that any row vector of T1(U) has length at most
2
√
µ0k/n.
For A ∈ Rd×k, let the SVD of A be

A = UAΣA(VA)T .

We write ΣA in the form
√
d/n diag(σ1, · · · , σk) where the diagonal entries σ1, σ2 . . . , σk (σ1 ≥

σ2 . . . ≥ σk) are the singular values of A divided by
√
d/n. For a given a ∈ (0, 1) and ∀i ∈ [k], let

σi,a =


σi if σi ∈ [

√
a,
√

2− a],√
a if σi <

√
a,√

2− a if σi >
√

2− a.

Define T2(A, a) by

T2(A, a) , UAΣ̂A(VA)T (5)

where Σ̂A =
√
d/n diag(σ1,a, · · · , σk,a) and hence the entire σ1,a, · · · , σk,a satisfy

√
2− a ≥ σ1,a ≥ σ2,a . . . ≥ σk,a ≥

√
a.

Specifically, the operator T2 lifts the normalized singular values in ΣA less than
√
a to

√
a and

truncates the normalized singular values in ΣA more than
√

2− a to
√

2− a.
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Let Ωt ⊆ [n] × [n], t = 0, 1, . . . , 2N , be the index sets associated with 2N + 1 independent
random bipartite d-regular graphs Gd(n, n). Define RRG(d, n,N) as the random d-regular graph
model of Ω, that is,

RRG(d, n,N) , {Ω0,Ω1, · · · ,Ω2N}. (6)

Let D be a subset of [n] with d entries, namely, D = {i1, i2, . . . , id}. For a matrix U = (uTi , i ∈
[n]) ∈ Rn×k, let its submatrix with the row indices in D and the column indices the same as U be

UD =

 uTi1
...
uTid

 .

Let St,Lj = {i ∈ [n] : (i, j) ∈ Ωt}, ∀j ∈ [n]. Then |St,Lj | = d. Namely, St,Lj consists of all the left
neighbors of vertex j on the right in the random bipartite d-regular graph associated with the index
set Ωt. Correspondingly given any a ∈ (0, 1) and any j ∈ [n], we denote Û

St,L
j

= T2(U
St,L
j
, a)

and the row in Û
St,L
j

associated with the index i ∈ St,Lj by ût,Ti . Similarly, let St,Ri = {j ∈ [n] :

(i, j) ∈ Ωt}, ∀i ∈ [n], that is, St,Ri consists of all the right neighbors of vertex i on the left in the
random bipartite d-regular graph associated with the index set Ωt. Also, we have |St,Ri | = d. For
a matrix V ∈ Rn×k and a given a ∈ (0, 1), denote similarly V̂

St,R
i

= T2(V
St,R
i
, a) and the row in

V̂
St,R
i

associated with the index j ∈ St,Ri by v̂t,Tj .
Now we introduce the algorithm T AM for matrix completion in the sparse regime. For the

algorithm below we fix arbitrary δ ∈ (0, 1) and we let β be any constant in (0, 1− δ).

Thresholded Alternating Minimization algorithm (T AM)

Input: Observed index setsRRG(d, n,N) and values P∪2Nt=0Ωt
(M).

Initialize: Ū0 = SVD(ndPΩ0(M), k), i.e. top-k left singular vectors of ndPΩ0(M).
Truncation step: first apply T1 on Ū0 then orthonormalize the columns of T1(Ū0). Denote the
resultant orthonormal matrix by U0 = (u0,T

i , 1 ≤ i ≤ n).
Loop: For t = 0 to N − 1

For each j ∈ [n]:
If ndσl(

∑
i∈[n]:(i,j)∈Ωt+1

utiu
t,T
i ) ∈ [β, 2− β] for all l ∈ [k], then set

ṽt+1
j =

 ∑
i∈[n]:(i,j)∈Ωt+1

utiu
t,T
i

−1 ∑
i∈[n]:(i,j)∈Ωt+1

utiMij . (7)

Otherwise let Û t
St+1,L
j

= T2(U t
St+1,L
j

, β) and

ṽt+1
j =

 ∑
i∈[n]:(i,j)∈Ωt+1

ûtiû
t,T
i

−1 ∑
i∈[n]:(i,j)∈Ωt+1

ûtiMij . (8)
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Let Ṽ t+1 = (ṽt+1,T
j , 1 ≤ j ≤ n) and Ṽ t+1 = V̄ t+1Rt+1 be the QR decomposition of

Ṽ t+1. Orthonormalize the columns of T1(V̄ t+1). Denote the resultant orthonormal matrix
by V t+1 = (vt+1,T

j , 1 ≤ j ≤ n).
For each i ∈ [n]:

If ndσl(
∑

j∈[n]:(i,j)∈ΩN+t+1
vt+1
j vt+1,T

j ) ∈ [β, 2− β] for all l ∈ [k], then set

ũt+1
i =

 ∑
j∈[n]:(i,j)∈ΩN+t+1

vt+1
j vt+1,T

j

−1 ∑
j∈[n]:(i,j)∈ΩN+t+1

vt+1
j Mij . (9)

Otherwise let V̂ t+1

SN+t+1,R
i

= T2(V t+1

SN+t+1,R
i

, β) and

ũt+1
i =

 ∑
j∈[n]:(i,j)∈ΩN+t+1

v̂t+1
j v̂t+1,T

j

−1 ∑
j∈[n]:(i,j)∈ΩN+t+1

v̂t+1
j Mij . (10)

Let Ũ t+1 = (ũt+1,T
j , 1 ≤ j ≤ n) and Ũ t+1 = Ū t+1RN+t+1 be the QR decomposition of

Ũ t+1. Orthonormalize the columns of T1(Ū t+1). Denote the resultant orthonormal matrix
by U t+1 = (ut+1,T

i , 1 ≤ i ≤ n).
Output: Set UN−1 = (uN−1,T

i , 1 ≤ i ≤ n), Ṽ N = (ṽN,Tj , 1 ≤ j ≤ n). Output MN =

UN−1Ṽ N,T .

Now we provide the intuition behind the proposed algorithm. This algorithm adds two new
steps: a thresholding of singular values and a rescaling of singular vectors upon the “vanilla” alter-
nating minimization algorithm. The key idea behind these steps is regularization of the least square
estimation in the form of the singular value thresholding. Due to the decreased sample complexity
by a logarithmic factor log n, certain matrices inverted in each step of the alternating minimiza-
tion algorithm may become ill-conditioned. For example, given j ∈ [n] and a constant d, it is not
guaranteed that at the t-th iteration of the alternating minimization algorithm

U t,T
St+1,L
j

U t
St+1,L
j

=
∑

i∈[n]:(i,j)∈Ωt+1

utiu
t,T
i

concentrates around its expectation

E[U t,T
St+1,L
j

U t
St+1,L
j

] =
1(
n
d

) ∑
D∈{S⊂[n]:|S|=d}

U t,TD U tD

=
1(
n
d

) (nd)d
n

∑
i∈[n]

utiu
t,T
i =

d

n
I.

Some U t,T
St+1,L
j

U t
St+1,L
j

might be ill-conditioned, namely, its least singular value is 0 or closed to zero.

If the matrix U t,T
St+1,L
j

U t
St+1,L
j

is ill-conditioned, the results from the iteration (7) in the “vanilla”

alternating minimization algorithm might blow up. To prevent this adversarial scenario, we use
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the operations T2 to lift the small singular values and truncate the large singular values of U t
St+1,L
j

,

∀j ∈ [n], before each row vector of Ṽ t+1 = (ṽt+1,T
j , 1 ≤ j ≤ n) is computed. This singular value

thresholding step enforces that all the singular values of the Gramian matrix inverted in (8) deviate
from their expected values by at most 1 − β after proper normalization, and as a result, guarantees
the nonsingularity of this (adjusted) Gramian matrix. The convergence of the algorithm relies on
the fact that w.h.p. the number of times the algorithm applies the operation T2 in each iteration is
a small fraction of n. Also, the operators T1 are applied at the end of each iteration to guarantee
the incoherence of the input V t+1 (or U t+1) for the next iteration while maintaining that V t+1 (or
U t+1) is still close enough to V ∗ (or U∗).

Our main result concerns the performance of the algorithm T AM under Assumption 1 and
under both Assumptions 1 and 2, respectively. We recall that T AM is parameterized by δ and β.

Theorem 1 SupposeM ∈ Rn×n is a rank-k matrix satisfying Assumption 1. Suppose the observed
index set Ω is sampled according to the model RRG(d, n,N) in (6). Given any δ ∈ (0, 1), β ∈
(0, 1− δ) and ε ∈ (0, 2/3), there exists a C(δ, β) > 0 such that for

d ≥ C(δ, β)k4µ2
0

(
σ∗1
σ∗k

)2

+
5µ0k(1 + δ/3)

δ2
log

(
1

ε

)
(11)

and N ≥ 1 + dlog(2
ε )/ log 4e, the T AM algorithm produces a matrix MN satisfying ‖M −

MN‖F ≤ ε‖M‖F w.h.p.
Furthermore, suppose M satisfies both Assumptions 1 and 2. Then for δ ∈ (0, 1) as defined in

Assumption 2 and β ∈ (0, 1− δ), the same result holds when

d ≥ C(δ, β)k4µ2
0

(
σ∗1
σ∗k

)2

, (12)

for the same constant C(δ, β) in (11).

Theorem 1 states that under Assumption 1 the T AM algorithm produces a rank-k ε-approximation
of matrixM usingO(dn log(1/ε)) samples for d satisfying (11). Furthermore, under both Assump-
tion 1 and Assumption 2 the T AM algorithm produces a rank-k ε-approximation of matrix M
using O(dn log(1/ε)) samples for d satisfying (12).
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