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Abstract

We consider a sparse linear regression model Y = X 3* + W where X is n X p matrix Gaussian
i.i.d. entries, W is n x 1 noise vector with i.i.d. mean zero Gaussian entries and standard deviation
o, and $* is p x 1 binary vector with support size (sparsity) k. Using a novel conditional second
moment method we obtain a tight up to a multiplicative constant approximation of the optimal
squared error ming ||Y" — X /3|2, where the minimization is over all k-sparse binary vectors 3. The
approximation reveals interesting structural properties of the underlying regression problem. In
particular,

(a) We establish that n* = 2k log p/log(2k/o? + 1) is a phase transition point with the following “all-or-
nothing” property. When n exceeds n*, (2k)~1|| 32— 8*||o & 0, and when n is below n*, (2k)~1|| 32 —
B*|lo = 1, where (5 is the optimal solution achieving the smallest squared error. As a corollary n* is
the asymptotic threshold for recovering 8* information theoretically. Note that n* is asymptotically
below the threshold nyassoics = (2k + 02) log p, above which the LASSO and Compressive Sensing
methods are able to recover 5*.

(b) We compute the squared error for an intermediate problem ming ||Y” — X ||, where the minimization
is restricted to vectors 8 with || — 8*||o = 2k(, for some fixed ratio ¢ € [0,1]. We show that a
lower bound part I"(¢) of the estimate, which essentially corresponds to the estimate based on the first
moment method, undergoes a phase transition at three different thresholds, namely nj,;; = o2 log p,
which is information theoretic bound for recovering 5* when &k = 1 and o is large, then at n* and
finally at npassorcs-

(c) We establish a certain Overlap Gap Property (OGP) on the space of all k-sparse binary vectors (3
when n < cklogp for sufficiently small constant c. By drawing a connection with a similar OGP
exhibited by many randomly generated constraint satisfaction problems and statistical physics models,
we conjecture that OGP is the source of algorithmic hardness of solving the minimization problem
ming |Y — X 3|2 in the regime n < npassoscs- |

Keywords: Linear regression, High-dimensional inference, Second moment method, Phase transi-
tions.

1. Introduction

We consider a high-dimensional linear regression model of the form Y = X3* + W where X is
n X p matrix, W is n x 1 noise vector, and 5* is p x 1 vector of regression coefficients to be recovered
from observing X and Y. A great body of literature is devoted to the problem of identifying the
underlying regression vector 8*, assuming its support size (the number of coordinates with non-zero
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coefficients) k is sufficiently small. The support recovery problem has attracted a lot of attention
in recent years, because it naturally arises in many contexts including signal denoising Chen et al.
(2001) and compressive sensing Candes and Tao (2005),Donoho (2006). In this paper we assume
that X has i.i.d. standard normal entries, W has i.i.d normal entries with standard deviations o,
and £* is a binary vector (all entries are either zero or one). The results in the existing literature
discussed below are adopted to this setting.

A lot of work has been devoted in particular to finding computationally efficient ways for recov-
ering the support of 8*. Many algorithms have been proven to succeed w.h.p. when both X, W are
Gaussian, but all of them require the sample size to satisfy n > (2k + ¢2) log p, Meinshausen and
Bhlmann (2006), Wainwright (2009b), Zhao and Yu (2006). See also the recent book Foucart and
Rauhut (2013). In particular, Wainwright (2009b) showed that if n > (1 + €)(2k + o2) log p, for
some € > 0 then the optimal solutions of LASSO minger»{||Y — X 3|3 + Ap||8]|1}, for appropri-
ately chosen A\, > 0, recovers the support of 3* exactly w.h.p. Furthermore, orthogonal matching
pursuit, a simple and popural greedy algorithm, has also been proven to work given again that o
satisfies % — 0andn > (1 + €) (2k+0?) log p, Fletcher and Rangan (2009). We note that the im-
pact of o2 on this threshold value is asymptotically negligible when o2 /k — 0. It will be convenient
for us to maintain it though. Thus we denote (2k + 02) log p by npassoics. At the present time no
tractable (polynomial time) algorithms are known for the support recovery when n < npasso/cs-

On the complimentary direction, an easy corollary of Theorem 2 in Wainwright (2009a), when
applied to our context below involving vectors 3* with binary values, shows thatif n < (1 — €) 0% log p
then for every support recovery algorithm, a binary vector 5* can be constructed in such a way that
the underlying algorithm fails to recover 3* exactly, with probability at least 5. We let njyr 1 =
o2 log p. The best known information theoretic bound at the moment follows from an improvement
of the previous argument in Wang et al. (2010) where it is established that the exact recovery of
[3* is information theoretically impossible when n is smaller than n* £ 2klogp/log(1 + 2k/0?),
where n* is the information theoretic limit of this Gaussian channel for general k, 0. Based on the
above discussion the regime 7 € [ninf,1, PLASSO /CS] remains largely unexplored from the algorith-
mic perspective, and the present paper is devoted to studying this regime. Towards this goal, for the
regression model Y = X * + W, we consider the corresponding maximum likelihood estimation
problem:

(©3) min n=2||Y — XA
s.t. B e {0,1}7,
HﬁHO = k?

where ||3]|o is the sparsity of 3. Namely, it is the cardinality of the set {i € [p]|3; # 0}. We denote
by ¢9 its optimal value and by 5 its unique optimal solution. As above, the matrix X is assumed
to have i.i.d. standard normal entries, the elements of the noise vector W are assumed to have i.i.d.
zero mean normal entries with variance o2, and the vector 3* is assumed to be binary k-sparse;
l8*|lo = k. In particular, we assume that the sparsity & is known to the optimizer.

We address two questions in this paper: (a) What is the value of the squared error estimator
mingeo.1yr,(8lo=k |Y — XBll2 = [[Y — XBal|2; and (b) how well does the optimal vector 3
approximate the ground truth vector 5*?

Besides providing a fairly complete answer to these two questions, we also reveal also a geo-
metric property, we call Overlap Gap Property (OGP), in the space of binary k-sparse vectors which
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holds when 7 € [ninf,1, cny,a330,/cg] for some small constant ¢ > 0 w.h.p. This and similar prop-
erties are known to be appearing in many random constraint satisfaction problems Achlioptas et al.
(2011), Achlioptas and Coja-Oghlan (2008), Montanari et al. (2011), Coja-Oghlan and Efthymiou
(2011), Gamarnik and Sudan (a), Rahman and Virag (2014), Gamarnik and Sudan (b),Gamarnik
and Li (2016). It was conjectured that when they appear, they provide fundamental algorithmic
barriers for the random constraint satisfaction problem under consideration Achlioptas and Coja-
Oghlan (2008). In particular such properties were used in Gamarnik and Sudan (a), Rahman and
Virag (2014), Gamarnik and Sudan (b) and Coja-Oghlan et al. (2016) to establish a fundamental
barrier on the power of so-called local algorithms for solving certain types of random constraint
satisfaction problems. Drawing a connection with these results, we propose the presence of OGP
as an evidence of the algorithmic hardness of the problem when n € [niuf,1, cny,ass0/cs] for some
c>0.

2. Model and the Main Results

In order to recover 5%, we consider the following constrained optimization problem (3 ), defined in
Introduction. We denote by ¢ = ¢ (X, W) its optimal value and by (35 its (unique almost surely)
optimal solution.

Consider the following restricted version of the problem ®;:

(D5 (£)) min n"z||Y — X4
s.t. g€ {0,1}?
1Bl = k. |18 — B*[|o = 2L,

where ¢ = 0,1,2,..,k. For every fixed ¢, denote by ¢ (¢) the optimal value of @5 (¢). Clearly
¢2 = ming ¢2 (£).

Consider for example the extreme cases £ = 0 and ¢ = k. For £ = 0, the region that defines
®4 (0) consists only of the vector 5*. On the other hand, for ¢ = k, the region that defines @5 (k)
consists of all k-sparse binary vectors (3, whose common support with 3* is empty.

Our first main result is a structural result for the asymptotic behavor of ¢ (¢) for ¢ = 0,1,2, ..., k.

Theorem 1 Suppose klogk < Cn for some constant C for all k,n. Then

(a) W.h.p. as k increases

62 (0) > e 2V/21 + o2 exp <—“‘;Lgp) , (1)

forall0 < ¢ <k.

(b) Suppose further that 0> < 2k. Then for every sufficiently large constant Dy if it holds also
n < klogp/(3log Dy), then w.h.p. as k increases, the cardinality of the set

3 kl
{08 = 81w = 2h n 3 — Xl < Doy ey (-SE2) )

n

n
is at least D . In particular, this set is exponentially large in n.
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1
Now we will discuss some implications of Theorem 1. The expression (2€ + 02) 2 exp (—ek’# ,

appearing in the theorem above, motivates the following notation. Let the function I : [0,1] — R4
be defined by

T (¢) = (2Ck + 0%)? exp <—Ck1°gp> . 3)

n

Then the lower bound (1) can be rewritten as

A similar inequality applies to (2).
An easy monotonicity analysis for the function I" reveals the following interesting behavior with
respect to the thresholds ninf,1, 7", npasso,/cs, Which are defined in the introduction.

Proposition 2 The function I satisfies the following properties.

1. Whenn < o?logp, T is a strictly decreasing function of .
When o2 logp < n < n*, T is not monotonic and it attains its minimum at ( = 1.
When n = n*, I is not monotonic and it attains its minimum at ( = 0 and { = 1.

When n* < n < (2k + 02)logp, I is not monotonic and it attains its minimum at ¢ = 0.

YR N

When n > (2k + 02) log p, T is a strictly increasing function of (.

We use Theorem 1 and the intuition from Proposition 2 to obtain a tight characterization of the
performance of ®2. Specifically we reveal the following sharp phase transition behavior.

Theorem 3 Let € > 0 be arbitrary. Suppose max{k, 3—’; +1} <exp (\/Clog p),for some C' >0
for all k and n. Suppose furthermore that k — oo and 0?/k — 0 as k — oo. If n > (14 €)n*,
then w.h.p. as k increases

1 *
182 = 870 > 0.

On the other hand if %k: logk <n < (1—e€)n*, then w.h.p. as k increases

1 *
82— 87 > 1

As explained in the introduction, to get an insight into possible reason for the apparent algo-
rithmic hardness of the problem in the regime n € [ninf,1, nASS0 /Cg] we reveal a certain Overlap
Gap Property (OGP) on the space of k-sparse binary vectors. We establish in particular, that in this
regime the solutions 5 which are sufficiently “close” to optimality break into two separate clusters
— those which are close in || - ||p norm to the optimal solution /32, namely those which have a “large”
overlap with (32, and those which are far from it, namely those which have a “small” overlap with
B2. In the next theorem we establish that the OGP indeed takes place, when the sampling size is
bounded away by a constant from max{k log k, nin¢ 1 } and npassoscs. Given any r > 0, let

Sr=1{B€{0,1}?: |8llo = k,n"2||Y — Xp||> < r}.
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Theorem 4 (The Overlap Gap Property) Suppose the assumptions of Theorem I hold. Suppose
in addition 0> — 4-o0. For every sufficiently large constant Dy there exist sequences 0 < Cln <

Gk < 1 satisfying

lim & (CZ,k,n - Cl,k,n) = +00,
k—o0

as k — oo, and such that if r, = Do max (I'(0),T'(1)) and max{ klogk, (¢"D3 + 1) 0 log p} <
n < klogp/(3log Dy) then w.h.p. as k increases the following holds

(a) Forevery 3 € Sy,
(2k) 1B = Bllo < G or (2K) I8 = B*[lo > G-
(b) B* € Sy,. In particular the set

Sr N8 (2k) 718 = B7llo < Ckn}
is non-empty.

(c) The cardinality of the set
1S, NAB 18 = Bllo} = 2k},

is at least D¢} . In particular the set Sy, N {3 : ||8 — B8*|lo} = 2k} has exponentially many in
n elements.

Acknowledgments

The authors would like to thank Philippe Rigollet for helpful discussions during the preparation of
this paper.

References

D. Achlioptas, A. Coja-Oghlan, and F. Ricci-Tersenghi. On the solution space geometry of random
formulas. Random Structures and Algorithms, 38:251-268, 2011.

Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase transitions. In Foun-
dations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pages
793-802. IEEE, 2008.

Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions on
information theory, 51(12):4203-4215, 2005.

Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition by
basis pursuit. SIAM Rev., 43(1):129-159, January 2001. ISSN 0036-1445. doi: 10.1137/
S003614450037906X. URL http://dx.doi.org/10.1137/5003614450037906X.


http://dx.doi.org/10.1137/S003614450037906X

GAMARNIK ZADIK

A. Coja-Oghlan and C. Efthymiou. On independent sets in random graphs. In Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pages 136-144. SIAM,
2011.

Amin Coja-Oghlan, Amir Hagshenas, and Samuel Hetterich. Walksat stalls well below the satisfia-
bility threshold. arXiv preprint arXiv:1608.00346, 2016.

David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289—
1306, 2006.

Alyson K. Fletcher and Sundeep Rangan. Orthogonal matching pursuit from noisy measurements:
A new analysis. In Proceedings of the 22Nd International Conference on Neural Information
Processing Systems, NIPS’09, pages 540-548, USA, 2009. Curran Associates Inc. ISBN 978-1-
61567-911-9. URL http://dl.acm.org/citation.cfm?1d=2984093.2984154.

Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing. Springer,
2013.

David Gamarnik and Quan Li. Finding a large submatrix of a gaussian random matrix. arXiv
preprint arXiv:1602.08529, 2016.

David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse random graphs. Annals
of Probability. To appear, a.

David Gamarnik and Madhu Sudan. Performance of sequential local algorithms for the random
nae-k-sat problem. SIAM Journal on Computing. To appear, b.

Nicolai Meinshausen and Peter Bhlmann. High-dimensional graphs and variable selection with
the lasso. Ann. Statist., 34(3):1436-1462, 06 2006. doi: 10.1214/009053606000000281. URL
http://dx.doi.org/10.1214/009053606000000281.

Andrea Montanari, Ricardo Restrepo, and Prasad Tetali. Reconstruction and clustering in random
constraint satisfaction problems. SIAM Journal on Discrete Mathematics, 25(2):771-808, 2011.

Mustazee Rahman and Balint Virag. Local algorithms for independent sets are half-optimal. arXiv
preprint arXiv:1402.0485, 2014.

Martin J Wainwright. Information-theoretic limits on sparsity recovery in the high-dimensional and
noisy setting. Information Theory, IEEE Transactions on, 55(12):5728-5741, 2009a.

Martin J Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using
constrained quadratic programming (lasso). IEEE transactions on information theory, 55(5):
2183-2202, 2009b.

Wei Wang, Martin J Wainwright, and Kannan Ramchandran. Information-theoretic limits on sparse
signal recovery: Dense versus sparse measurement matrices. Information Theory, IEEE Trans-
actions on, 56(6):2967-2979, 2010.

Peng Zhao and Bin Yu. On model selection consistency of lasso. J. Mach. Learn. Res., 7:2541—
2563, December 2006. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?
1d=1248547.1248637.


http://dl.acm.org/citation.cfm?id=2984093.2984154
http://dx.doi.org/10.1214/009053606000000281
http://dl.acm.org/citation.cfm?id=1248547.1248637
http://dl.acm.org/citation.cfm?id=1248547.1248637

	Introduction
	Model and the Main Results

