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Abstract: We study the experimental play of the repeated prisoner‘s dilemma when intended 

actions are implemented with noise. In treatments where cooperation is an equilibrium, subjects 

cooperate substantially more than in treatments without cooperative equilibria. In all settings 

there was considerable strategic diversity, indicating that subjects had not fully learned the 

distribution of play. Furthermore, cooperative strategies yielded higher payoffs than 

uncooperative strategies in the treatments with cooperative equilibria. In these treatments 

successful strategies were ―lenient‖ in not retaliating for the first defection, and many were 

―forgiving‖ in trying to return to cooperation after inflicting a punishment.  

 

Repeated games with observed actions have a great many equilibrium outcomes when 

players are patient, as shown by various folk theorems.
1
 These theorems show that cooperative 

play is possible when players are concerned about future rewards and punishments, but since 

repeated play of a static equilibrium is always an equilibrium of the repeated game, the folk 

theorems do no predict that cooperation will in fact occur. Intuition and evidence (e.g. Robert 

Axelrod 1984; Pedro Dal Bó 2005; Anna Dreber et al. 2008; Dal Bó and Guillaume Frechette 

2009; John Duffy and Jack Ochs 2009) suggest that in repeated games with observed actions 
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players do indeed tend to cooperate when there is a cooperative equilibrium, at least if the gains 

to cooperation are sufficiently large.
2
  

Outside of the laboratory, actions are often observed with noise: someone who claims 

they worked hard, or that they were too busy or sick to help, may or may not be telling the truth, 

and an awkward or inconvenient action may have been well-intentioned; similarly, a self-

interested action may wind up accidentally benefiting another. In this setting too, there can be 

equilibria in which players do better than in the one-shot play of the game, as seen for example in 

the trigger-strategy equilibria constructed by Edward J. Green and Robert H. Porter (1984), and 

indeed a version of the folk theorem applies to repeated games with imperfect public monitoring 

provided, as shown by Fudenberg, David K. Levine and Maskin (1994).
3
 Moreover, while there 

are evolutionary arguments for cooperation in repeated games with perfectly observed actions, 

the evolutionary arguments for cooperative equilibria are even stronger with imperfect 

observations, as the possibility that punishment may be triggered by ―mistake‖ decreases the 

viability of unrelenting or grim strategies that respond to a single bad observation by never 

cooperating again.
4
 

This paper studies experimental play of the repeated prisoner‘s dilemma when intended 

actions are implemented with noise. Our main goals are to understand whether and when subjects 

play cooperatively, and also to get a sense of the sorts of strategies that they use. We present 

evidence from four different payoff specifications for a repeated prisoner‘s dilemma, with stage 

game actions ―Cooperate‖ (―C‖) and ―Defect‖ (―D‖) (neutral language was used in the 

experiment itself); the difference in specifications was the benefit that playing ―C‖ gives to the 

other player. We consider these four payoff specifications with a continuation probability of 7/8 

                                                 
2
 Dal Bó (2005) and Dal Bó and Frechette (2011) find that there need not be cooperation when the gain from 

cooperation is small. Earlier papers had found less cooperative play than these studies, but as Dal Bó (2005) 

discusses these papers had various methodological flaws, such as subjects playing vs. an experimenter instead of 

each other, or extremely low payments.  
3
 Public monitoring means that all players observe a public signal whose distribution depends on the actions played, 

as in the work of Dilip Abreu, David Pearce and Ennio Stachetti (1990). The noisy games we study have public 

monitoring, and satisfy the ―identifiability‖ conditions that are needed for the folk theorem.  
4
 Axelrod and William D. Hamilton (1981) applied the ESS solution concept to a small subset of the repeated game 

strategies. Fudenberg and Maskin (1990, 1994) and Ken Binmore and Larry Samuelson (1992) and show that ESS 

predicts cooperation in the prisoner's dilemma with noisy observations even when all finite-complexity strategies are 

allowed. Robert Boyd (1989) notes that noise permits cooperative strategies to be evolutionarily stable, but in his 

framework non-cooperative strategies are stable as well. A parallel literature considers explicit evolutionary 

dynamics on a restricted strategy space; this includes Marcus W. Feldman and Ewart A.C. Thomas (1987), Martin A. 

Nowak and Karl Sigmund (1990), and Nowak et al. (2004) for the case of observed actions, and Nowak and 

Sigmund (1993) and Lorens A. Imhof, Fudenberg and Nowak (2007) for repeated games with noise. 
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and an error rate of 1/8. As controls we also consider error rates of 1/16 and 0 (no exogenously 

imposed error at all) under the ―most cooperative‖ payoff specification, i.e. that with highest 

benefit to cost ratio. We find that there is much more cooperation in specifications where there is 

a ―cooperative equilibrium‖ (an equilibrium in which players initially cooperate, and continue to 

do so at least until a D is observed): players cooperate 49-61% of the time in treatments with 

cooperative equilibria, compared to 32% in the specification without cooperative equilibria. In 

these specifications, we also find that cooperative strategies yielded higher payoffs than 

uncooperative ones. Conversely, in the one treatment where ―Always Defect‖ is the only 

equilibrium, this strategy was the most prevalent and had the highest payoff.  

As compared to experiments on the prisoner‘s dilemma without noise, which we review 

in Section II, subjects were markedly more lenient (slower to resort to punishment). For example, 

in the payoff treatments that support cooperation, we find that subjects played C in 63-77% of the 

rounds immediately following their partner‘s first defection, compared to only 13-42% in the 

cooperative treatments of Dal Bó and Frechette (2011), Dreber et al. (2008) and our no-error 

control, which are the no-error games we will be using for comparison throughout.
5
 Subjects also 

showed a considerable level of forgiveness (willingness to give cooperation a second chance): in 

the noisy specifications with cooperative equilibria, our subjects returned to playing C in 18-33% 

of rounds immediately following the breakdown of cooperation, as compared to 6-28% in the 

games without error.
6
 Consistent with these findings, subjects are more likely to condition on 

play more than one round ago in the noisy treatments than in the no-error games; 65% use 

strategies with longer memories in presence of error, compared to 28% in the games without 

error.  

In addition to such descriptive statistics, we more explicitly explore which strategies our 

subjects used, using the techniques of Dal Bó and Frechette (2011).
7
 Relatively few subjects used 

                                                 
5
 These statistics describe cooperation after one‘s partner defects for the first time, rather than overall cooperation. 

We find similar levels of overall cooperation without noise (78%) and with low noise of 1/16 (82%), but 

substantially less overall cooperation with high noise 1/18 (59%). 
6
 This describes histories in which (i) at least one subject chose C in the first round, (ii) in at least one previous 

round, the initially cooperative subject chose C while the other subject chose D and (iii) in the immediately previous 

round the formerly cooperative subject played D. 
7
 In section III we summarize the findings of Claus Wedekind and Manfred Milinski (1996) and Masaki Aoyagi and 

Frechette (2009), who also analyzed the strategies used in a repeated prisoner‘s dilemma, and of Jim Engle-Warnick 

and Robert L. Slonim (2006), who examined the strategies used in a trust game. With the exception of Aoyagi and 

Frechette, these experiments considered environments without noise; the introduction of noise leads more 

information sets to be reached and so makes it easier to distinguish between strategies.  
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the strategy ―Tit-for-Tat‖ (TFT) which was prevalent in the Dal Bó and Frechette (2011) 

experiment, or the strategy ―Perfect Tit-for-Tat‖ (PTFT, also called ―Win-Stay, Lose-Shift‖) 

which is favored by evolutionary game theory in treatments where it is an equilibrium if players 

are restricted to strategies that depend only on the previous round‘s outcome, as is commonly 

assumed in that literature.
8
 Instead, the most prevalent cooperative strategies were ―Tit-for-2-

Tats‖ (TF2T, punish once after two defections), ―2-Tits-for-2-Tats‖ (2TF2T, punish two times 

after two defections), both of which are forgiving, and modified, lenient versions of the Grim 

strategy, which wait for two or three defections before abandoning cooperation. These results, 

and other descriptive measures of subjects‘ play, show that subjects can and do use strategies that 

look back more than one round, at least in games with noise.  

We find considerable strategic diversity in all settings: No strategy has probability of 

greater than 30% in any treatment, and typically three or four strategies seem prevalent. 

Moreover, in every treatment a substantial number of players seem to use ALLD (―Always 

Defect‖). That strategy does quite poorly in treatments where most of the subjects are playing 

strategies that are conditionally cooperative, but it is a best response to the belief that most other 

subjects play ALLD. Similarly, a substantial fraction of agents cooperate in the treatment where 

ALLD earns the highest payoff. We take this as evidence that learning was incomplete, and that it 

is difficult to learn the optimal response to the prevailing distribution of play.
9
 

An alternative explanation for the diversity of play is that it reflects a distribution of 

social preferences, with some subjects preferring to cooperate even if it does not maximize their 

own payoffs, and others playing to maximize the difference between their partner‘s payoff and 

their own. To test this alternative hypothesis, we had subjects play a dictator game at the end of 

the session, with payoffs going to recipients recruited at a later experimental session, and we also 

asked subjects to fill out a post-experiment survey on attitudes and motivations. In another paper 

(Dreber, Fudenberg and David G. Rand 2010) we explore this possibility; our main conclusion is 

that when the selfish payoffs strongly support cooperation, social preferences do not seem to be a 

                                                 
8
 The explicit analysis of evolutionary dynamics becomes quite difficult when longer memories are possible. 

9
 We used a continuation probability of 7/8, instead of the ½ and ¾ in Dal Bó and Frechette (2011), to investigate the 

extent to which players condition on observations before the previous round. When the continuation probability is ½, 

many interactions will last three or fewer rounds, which makes it hard to study how far back players look in choosing 

their actions. 
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key factor in explaining who cooperates and what strategies they use. Leniency and forgiveness 

seem to be motivated by strategic concerns rather than social preferences. 

 

I. Experimental Design 

The purpose of the experimental design is to test what happens when subjects play an 

infinitely repeated prisoner‘s dilemma with error. The infinitely repeated game is induced by 

having a known constant probability that the interaction will continue between two players 

following each round. We let the continuation probability be δ=7/8. With probability 1-δ, the 

interaction ends and subjects are informed that they have been re-matched with a new partner. 

There is also a known constant error probability that an intended move is changed to the opposite 

move. Our main conditions use E=1/8; we also ran control conditions with E=1/16 and E=0. 

Subjects were informed when their own move has been changed (i.e. when they make an error), 

but not when the other player‘s move has been changed; they were only notified of the other 

player‘s actual move, not the other‘s intended move. Subjects were informed of all of the above 

in the experimental instructions, which are included in the online appendix. 

The stage game is the prisoner‘s dilemma in Figure 1 where the payoffs are denoted in 

points. Cooperation and defection take the ―benefit/cost‖ (b/c) form, where cooperation means 

paying a cost c to give a benefit b to the other player, while defection gives 0 to each party; b/c 

took the values 1.5, 2, 2.5, and 4 in our four different treatments.
10

 Subjects were presented with 

both the b/c representation and the resulting pre-error payoff matrix, in neutral language (the 

choices were labeled A and B as opposed to the ―C vs. D‖ choice that is standard in the prisoner‘s 

dilemma). We used the exchange rate of 30 units = $1. Subjects were given a show-up fee of $10 

plus their winnings from the repeated prisoner‘s dilemma and an end-of session dictator game. 

To allow for negative stage-game payoffs, subjects began the session with an ―endowment‖ of 50 

                                                 
10

 This payoff specification gives us a simple one-parameter ordering of the treatments; we do not think it is essential 

for our results. Note that the specification implies that the short-run gain to playing D instead of C is independent of 

the other player‘s action. The prisoner‘s dilemma is more general than this; its defining characteristics are that D is a 

dominant strategy and that both playing C yields the highest payoff - in particular both playing C should be more 

efficient than alternating between (C,D) and (D,C).  
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units (in addition to the show–up fee).
11

 On average subjects made $22 per session, with a range 

from $14 to $36. Sessions lasted approximately 90 minutes.
12

 

A total of 384 subjects voluntarily participated at the Harvard Decision Science 

Laboratory in Cambridge, MA. In each session, 12-32 subjects interacted anonymously via 

computer using the software Z-Tree (Urs Fischbacher 2007) in a sequence of infinitely repeated 

prisoner‘s dilemmas (see Table 1 for summary statistics on the different treatments). We 

conducted a total of 18 sessions between September 2009 and October 2010.
13

 We only 

implemented one treatment during a given session, so each subject participated in only one 

treatment. To rematch subjects after the end of each repeated game, we used the turnpike protocol 

as in Dal Bó (2005). Subjects were divided into two equally-sized groups, A and B. A-subjects 

only interacted with B-subjects and vice versa, so that no subject ever played twice with another 

subject, or with a subject who has played with a subject they have played with, so that subjects 

could not influence the play of subjects they interacted with  in the future. 
14

 Subjects were 

informed about this setup. To implement random game lengths we pre-generated a sequence of 

integers 1 2, ,..t t according to the specified geometric distribution to use in all sessions, such that in 

each session every first interaction lasted 1t  rounds, every second interaction lasted 2t  etc.
15

  

 

 

 

                                                 
11

 No subject ever had fewer than 19 units, and only 4 out of 278 subjects ever dropped below 40 units. 
12

 Subjects were given at most 30 seconds to make their decision, and informed that after 30 seconds a random 

choice would be made. The average decision time was 1.3 seconds, much less than the 30 second limit, and the 

frequency of random decisions was very low, 0.0055. 
13

 All sessions were conducted during the academic year, and all subjects were recruited through the CLER lab at 

Harvard Business School using the same recruitment procedure. Subject demographics varied relatively little across 

sessions and treatments. See online appendix for demographic summary statistics by session. 
14

 Thus the maximum number of interactions in a session with N subjects was N/2, and in each session we ran the 

maximum number of interactions. This explains why the average number of interactions differs between the different 

treatments. The average numbers of interactions per subject in Table 1 are not integers because there were multiple 

sessions per treatment. 
15

 The starting place in the sequence of random game lengths that was used in the experiment was picked by the 

programmer, and the sequence following the chosen starting place had an unusually low number of short games. As 

a result the overall distribution of game lengths differed from what would be expected from a geometric distribution, 

which raises the concern that the subjects could have noticed this and adjusted their play. However, analysis of the 

data shows that subjects did not become less likely to cooperate in later rounds over the course of the session; see the 

online appendix for details.  
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Figure 1. Payoff matrices for each specification. Payoffs are denoted in points. 

Realized payoffs  Expected payoffs 

       

b/c = 1.5   b/c = 1.5, E = 1/8  

 C D   C D 

C 1,1 -2,3  C 0.875, 0.875 -1.375, 2.375 

D 3,-2 0,0  D 2.375, -1.375 0.125, 0.125 

       

b/c = 2   b/c = 2, E = 1/8  

 C D   C D 

C 2,2 -2,4  C 1.75, 1.75 -1.25, 3.25 

D 4,-2 0,0  D 3.25, -1.25 0.25, 0.25 

       

b/c = 2.5   b/c = 2.5, E = 1/8  

 C D   C D 

C 3,3 -2,5  C 2.625, 2.625 -1.125, 4.125 

D 5,-2 0,0  D 4.125, -1.125 0.375, 0.375 

       

b/c = 4   b/c = 4, E = 1/8  

 C D   C D 

C 6,6 -2,8  C 5.25, 5.25 -0.75, 6.75 

D 8,-2 0,0  D 6.75, -0.75 0.75, 0.75 

       

    b/c = 4, E = 1/16  

     C D 

    C 5.625, 5.625 -1.375, 7.375 

    D 7.375, -1.375 0.375, 0.375 

 

Table 1. Summary statistics for each treatment. 

 b/c=1.5 

E=1/8 

b/c=2 

E=1/8 

b/c=2.5 

E=1/8 

b/c=4 

E=1/8 

b/c=4 

E=1/16 

b/c=4 

E=0 

Sessions per treatment 3 2 3 4 3 3 

Subjects per treatment 72 52 64 90 58 48 

Average number of 

interactions 
11 11.5 10.7 11.3 9.9 7.8 

Average number of 

rounds per interaction 
8.4 8.3 8.3 8.1 8.0 8.2 
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Following the end of the series of repeated prisoner‘s dilemmas, subjects played a dictator 

game and answered survey questions related to prosocial behavior, motivation, strategies and 

demographics (see Dreber, Fudenberg and Rand (2010) for more information).  

 

II. Theoretical and Experimental Background  

 We begin by analyzing the set of equilibria of the various specifications. In all of the 

treatments, the only static equilibrium is to defect. In the treatment with b/c=1.5, the only Nash 

equilibrium is ALLD, while the other treatments all allow cooperative equilibria.
16

 As there are 

no explicit characterization theorems for the entire set of equilibrium outcomes for noisy repeated 

games with fixed discount factors, our initial analysis focused on a few repeated game strategies 

that have previously received attention.  

In particular, we chose the payoffs so that when b/c=4, the memory-1 strategy PTFT- 

―Play C if yesterday‘s outcome was (C,C) or (D,D) and otherwise play D‖ -is an equilibrium. 

This strategy has received a great deal of attention in the literature on evolutionary game theory, 

where it is called Win-Stay Loose-Shift (Nowak and Sigmund 1993; Wedekind and Milinski 

1996; Martin Posch 1999; Imhof, Fudenberg and Nowak 2007). When both players use PTFT, 

one play of D (either intentionally or by mistake) leads to one round of (D,D) followed by a 

return to the equilibrium path; the strategy is called "perfect" because this error-correcting 

property allows it to be subgame-perfect, in contrast to TFT which typically is not.
17

 PTFT has 

theoretical appeal because it is error-correcting and has only memory 1, but we conjecture that 

most subjects will view it as counterintuitive to cooperate after mutual defection, which raises the 

question of how widely the strategy is actually used.
 
 

 Standard equilibrium analysis predicts no cooperation when b/c=1.5, but offers little 

guidance when b/c is large enough that there are cooperative equilibria. The evolutionary game 

theory models of Nowak and Sigmund (1993) and Imhof, Fudenberg and Nowak (2007) predict 

cooperation when b/c=4, and moreover predict that subjects will play PTFT. Since these analyses 

                                                 
16

 Because the error term is strictly positive regardless of the actions played, every information set is reached with 

positive probability, and Nash equilibrium implies sequential rationality. Thus in the games with errors every Nash 

equilibrium is a sequential equilibrium, and every pure-strategy Nash equilibrium is equivalent to a perfect public 

equilibrium. 
17

 In the game without errors, PTFT is a subgame-perfect equilibrium if ( )c b c  or 1/( / 1)b c  which is 
the case when b/c=2.5 or 4. Analysis of the game with errors shows that PTFT is not an equilibrium when b/c = 2 or 
2.5, essentially because the errors lower the expected value of cooperation, but PTFT is an equilibrium of the game 
with errors when b/c=4. See the online appendix for details. 
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restrict attention to strategies that base their decisions only on the last round's outcome, however, 

they predict defection when b/c=2 or 2.5. The Fudenberg and Maskin (1990, 1994) evolutionary 

analysis of repeated games with vanishingly rare errors predicts cooperation in all three 

treatments with cooperative equilibria, but does not provide a precise prediction of what 

strategies will be played.  

 Experimental work on repeated games without errors also suggests that cooperation is 

more likely when it is more beneficial, and in particular that the existence of an cooperative 

equilibrium is necessary but not sufficient for there to be a substantial amount of cooperation 

(e.g., Alvin E. Roth and J. Keith  Murnighan 1978; Murnighan and Roth 1983; Robert A. 

Feinberg and Thomas A. Husted 1993; Duffy and Ochs 2004; Dal Bó 2005; Dreber et al. 2008; 

Dal Bó and Frechette 2011; Matthias Blonski, Peter Ockenfels and Giancarlo Spagnolo 2011). 

Blonski and Spagnolo (2004) proposed that the key to whether cooperation occurs is whether 

TFT is a best response to a ½-½ probability distribution over TFT and ALLD, i.e. whether TFT 

risk-dominates ALLD in the game with only those two strategies.
18

 Dal Bó and Frechette (2011) 

and Blonski, Ockenfels and Spagnolo (2011) find empirical support for this risk-dominance 

criterion in games without noise; and in a re-analysis of the no-noise experiments of Dreber et al. 

(2008), we find that the same criterion successfully predicts when cooperation is stable.  

The success of the ―risk dominance by TFT‖ criterion in experiments without noise raises 

the question of whether a similar criterion will explain cooperation in games with noise.  One 

complication is that in our experiment, noise lowers the payoff of TFT against itself sufficiently 

that TFT is not an equilibrium of the overall game.
19

 It is however an equilibrium of the 2x2 

game where players are restricted to play either TFT or ALLD; in this 2x2 game TFT is only risk 

dominant if b/c=2.5 or 4. Thus to the extent that the risk-dominance criterion extends to games 

with noise, it predicts substantially more cooperation when b/c=2.5 than when b/c=2. 

This combination of observations about equilibria of the game and insights from past 

experiments leads to our first set of experimental questions: 

 

                                                 
18

 This is the case when the present value of cooperation is sufficiently high compared to the loss caused by one 

period of (C,D). Note that Blonski, Ockenfels and Spagnolo (2011) offer an alternative theoretical justification for 

this equilibrium selection criterion. 
19

 See the online appendix for TFT equilibrium calculations. 
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QUESTION 1: Is cooperation more frequent in treatments where there are cooperative equilibria? 

Is risk dominance of TFT over ALLD a good predictor of cooperation?  

  

QUESTION 2: Is there substantially more cooperation when cooperation is the outcome of an 

equilibrium in strategies which base their play on outcomes in the previous round? 

 

The answers to questions 1 and 2 provide some indirect evidence on the strategies that 

subjects use. To get a more precise understanding of the particular strategies being employed by 

subjects, we examine more direct evidence on their play. This leads to our four additional 

experimental questions: 

 

QUESTION 3: What strategies do subjects use in the noisy prisoner‘s dilemma? Do subjects use 

PTFT when it is an equilibrium strategy? 

 

QUESTION 4: How do the strategies used vary with the gains to cooperation? 

 

QUESTION 5: How do the strategies used vary with the level of noise? 

 

III. Methodology 

The general theory of repeated games, like that of extensive form games, views strategies 

as complete contingent plans, which specify how the player will act in every possible information 

state. In practice, cognitive constraints may lead subjects to use relatively simple strategies, 

corresponding to automata with a small number of internal states. However, it is unclear what a 

priori restrictions one should impose on subjects‘ strategies, and one of the goals of our 

experiment is to let the data reveal what sorts of strategies are actually used. For this reason we 

did not want to use the ―strategy method,‖ where subjects are asked to pick a strategy that is 

implemented for them: The full set of strategies is infinite, so forcing subjects to choose a 

strategy that depends only on the previous round‘s outcome (memory-1) is much too restrictive 

while allowing for all strategies that depend on the last two periods (memory-2) gives too large a 

strategy set to explicitly present. In addition, we would like to consider some simple strategies 

such as Grim, which can be viewed as a two-state automata but has arbitrarily long memory, as 
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its current play depends on whether "D" was played in any previous round. As the data cannot 

discriminate between all possible repeated game strategies, we used a combination of prior 

intuition, survey responses and data analysis to identify a small set of strategies that seem to best 

describe actual play.  

There has been comparatively little past work on identifying the strategies subjects use in 

repeated game experiments. In the repeated prisoner‘s dilemma, Wedekind and Milinski (1996) 

note that subjects rarely play C in the round after they played D and the opponent played C, and 

take this as evidence of PTFT, but since subjects rarely played C following (D,D), their data 

seems more consistent with some sort of grim strategy. Dal Bó and Frechette (2011) used 

maximum likelihood to estimate the proportions of subjects using one of six ex-ante relevant 

strategies. They find that ALLD and TFT account for the majority of their data. Aoyagi and 

Frechette (2009) study experimental play of a prisoner‘s dilemma where subjects do not observe 

their partner‘s actions but instead observe a noisy symmetric signal of it. The signal is a real 

number, and has the same distribution under (C,D) and (D,C), so that commonly discussed 

prisoner‘s dilemma strategies such as TFT are not implementable. They find that subjects play 

―trigger strategies‖ of memory 1, except in the limit no-noise case where signals from two rounds 

ago also have an impact. Engle-Warnick and Slonim (2006) study the strategies used in a 

repeated sequential-move trust game by counting how many observations of a subject‘s play in a 

given interaction is exactly described by a given strategy. They find that in most of the 

interactions, the investors choose actions which are consistent with a grim trigger strategy, while 

the play of the trustees is more diverse. Gabriele Camera, Marco Casari and Maria Bigoni (2010) 

on the other hand find little evidence of grim trigger strategies on the subject level when subjects 

are randomly put in groups of four to play an indefinitely repeated PD where in each round they 

are randomly matched with one subject in the group. Even though behavior at the aggregate looks 

like grim trigger, individual behavior is far more heterogeneous. 

An advantage of studying repeated games with errors is that we can more easily identify 

different strategies: In the absence of errors a number of repeated game strategies are 

observationally equivalent, for example if a pair of subjects cooperates with each other in every 

round, we see no data on how they would have responded to defections. Thus the introduction of 

errors has a methodological advantage as well as a substantive one, as the errors will lead more 

histories to occur and thus make it easier to distinguish between histories.  
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To have any hope of inferring the subjects‘ strategies from their play, we must focus our 

attention on a subset of the infinitely many repeated game strategies. We begin with strategies 

that have received particular attention in the theoretical literature: ALLD, ALLC, Grim
20

, TFT, 

and PTFT. Because one round of punishment is only enough to sustain cooperation in one of our 

four treatments (when b/c=4) we also include modifications of TFT and PTFT that react to D 

with two rounds of defection, we call these 2TFT and 2PTFT. We also include the strategy T2 

used by Dal Bó and Frechette (2011).
21

  

To inform our extension of this strategy set, we asked subjects to describe their strategies 

in a post-experimental survey. Several regularities emerged from these descriptions. Many 

subjects reported ‗giving the benefit of the doubt‘ to an opponent on the first defection, assuming 

that it was a result of noise rather than purposeful malfeasance; only after two or three defections 

by their partner would they switch to defection themselves.
22

 We refer to this slow-to-anger 

behavior as ‗leniency‘. None of the strategies mentioned above are lenient; note that leniency 

requires looking further into the past than permitted by memory-1 strategies. Subjects also varied 

in the extent to which they reported being willing to return to cooperation following a partner‘s 

defection. We refer to this strategic feature as ‗forgiveness‘, which is an often-discussed aspect of 

TFT (as opposed to Grim, for example); 2TFT also shows forgiveness, as do PTFT and 2PTFT, 

although only following mutual defection.  

In response to the subjects‘ strategy descriptions, we added several lenient strategies to 

our analysis. Because our games were on average only 8 rounds in length, we have limited power 

to explore intermediate levels of forgiveness between TFT and Grim, so we restrict strategies to 

either forgive after 1 to 3 rounds or to never forgive (as with Grim and its lenient variants).
23

 

                                                 
20

 As in Dal Bó & Frechette (2011), our specification of Grim begins by playing C and then switches permanently to 

D as soon as either player defects. 
21

 2TFT initially plays C, then afterwards plays C if opponent has never played D or if the opponent played C in both 

of the previous two rounds. A defection by the partner triggers two rounds of punishment defection in both 2TFT and 

T2. However, T2 automatically returns to C following the two Ds, regardless of the partner‘s play during this time, 

while 2TFT only returns to C if the partner played C in both of the ―punishment rounds.‖ Additionally, T2 begins its 

punishment if either player defects, whereas 2TFT responds only to the partner‘s defection. 
22

 Subjects‘ free-response descriptions of their strategies are reproduced in the online appendix. 
23

 More generally the average length of 8 interactions imposes restrictions on our ability to estimate the extent to 

which subjects condition on long histories. This constraint reflects a tradeoff between our interest in the way subjects 

use past history and our desire to limit sessions to 90 minutes (to avoid fatiguing the subjects) while allowing them to 

play enough interactions to have some chance to learn. Fortunately the average length of 8 was enough to provide 

convincing evidence that subjects can use forgiving strategies with memory greater than 1.  
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As strategies that are both lenient and forgiving, we include TFT variants that switch to 

defection only after the other player chooses D multiple times in a row, considering TF2T (plays 

D if the partner‘s last two moves were both D) and TF3T (plays D if the partner‘s last three 

moves were D). For strategies that are lenient but not forgiving, we include Grim variants that 

wait for multiple rounds of D (by either player) before switching permanently to defection, 

considering Grim2 (waits for two consecutive rounds in which either player played D) and Grim3 

(waits for three consecutive D rounds). We include three strategies that punish twice 

(intermediate to TFT‘s one round of punishment and Grim‘s unending punishment) but can be 

implemented by conditioning only on the last 3 rounds. These are T2 and 2TFT, which were 

discussed above, and 2TF2T (―2 Tits for 2 Tats‖), which waits for the partner to play D twice in a 

row, and then punishes by playing D twice in a row. Because we do not include strategies that 

punish for a finite number of rounds greater than two, our estimated share of ―Grim‖ strategies 

may include some subjects who use such strategies with more than two rounds of punishment.  

Other subjects indicated that they used strategies which tried to take advantage of the 

leniency of others by defecting initially and then switching to cooperation. Thus we consider 

‗exploitive‘ versions of our main cooperative strategies that defect on the first move and then 

return to the strategy as normally specified: D-TFT
24

, D-TF2T, D-TF3T, D-Grim2 and D-

Grim3.
25

 Because TF2T appears prevalent in many treatments, we also looked at whether 

subjects used the strategy that alternates between D and C (DC-Alt), as this strategy exploits the 

leniency and forgiveness of TF2T. Lastly, some subjects reported playing strategies which give 

the first impression of being cooperative and then switch to defection, hoping the partner will 

assume the subsequent Ds are due to error. Therefore we include a strategy which plays C in the 

first round and D thereafter (C-to-ALLD). Each strategy is described verbally in Table 2; 

complete descriptions are given in the online appendix.  

 

 

 

                                                 
24

 Boyd and Jeffrey P. Lorberbaum (1987) call this strategy ―Suspicious Tit for Tat.‖ 
25

 ALLD and D-Grim are identical except when the other player plays C in the first round, and you mistakenly also 

play C in the first round: here D-Grim cooperates while ALLD defects. Thus we do not include D-Grim in our 

analysis as we do not have sufficient number of observations per subject to differentiate between the two. 
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Table 2. Descriptions of the 20 strategies considered. 

Strategy Abbreviation Description 
Always Cooperate ALLC Always play C 
Tit-for-Tat TFT Play C unless partner played D last round 
Tit-for-2-Tats TF2T Play C unless partner played D in both of the 

last 2 rounds 
Tit-for-3-Tats TF3T Play C unless partner played D in all of the 

last 3 rounds 
2-Tits-for-1-Tat 2TFT Play C unless partner played D in either of 

the last 2 rounds (2 rounds of punishment if 

partner plays D) 
2-Tits-for-2-Tats 2TF2T Play C unless partner played 2 consecutive 

Ds in the last 3 rounds (2 rounds of 

punishment if partner plays D twice in a row) 
T2 T2 Play C until either player plays D, then play 

D twice and return to C (regardless of all 

actions during the punishment rounds) 
Grim Grim Play C until either player plays D, then play 

D forever 
Lenient Grim 2 Grim2 Play C until 2 consecutive rounds occur in 

which either player played D, then play D 

forever 
Lenient Grim 3 Grim3 Play C until 3 consecutive rounds occur in 

which either player played D, then play D 

forever 
Perfect Tit-for-Tat / Win-Stay-

Lose-Shift 
PTFT Play C if both players chose the same move 

last round, otherwise play D 
Perfect Tit-for-Tat with 2 

rounds of punishment 
2PTFT Play C if both players played C in the last 2 

rounds, both players played D in the last 2 

rounds, or both players played D 2 rounds 

ago and C last round. Otherwise play D 
Always Defect ALLD Always play D 
False cooperator C-to-ALLD Play C in the first round, then D forever 
Exploitive Tit-for-Tat D-TFT Play D in the first round, then play TFT 
Exploitive Tit-for-2-Tats D-TF2T Play D in the first round, then play TF2T 
Exploitive Tit-for-3-Tats D-TF3T Play D in the first round, then play TF3T 
Exploitive Grim2 D-Grim2 Play D in the first round, then play Grim2 
Exploitive Grim3 D-Grim3 Play D in the first round, then play Grim3 
Alternator DC-Alt Start with D, then alternate between C and D 

 

 To assess the prevalence of each strategy in our data, we follow Dal Bó and Frechette 

(2011) and suppose that each subject chooses a fixed strategy at the beginning of the session (or 
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alternatively for the last four interactions, when we restrict attention to those observations)
26

, and 

moreover that in addition to the extrinsically imposed execution error, subjects make mistakes 

when choosing their intended action, so every sequence of choices (e.g. of intended actions) has 

positive probability.
27

 More specifically, we suppose that if subject i uses strategy s, her chosen 

action in round r of interaction k is C if ( ) 0ikr ikrs s  , where ( ) 1ikrs s if strategy s says to 

play C in round r of interaction k given the history to that point, and ( ) 1ikrs s  if s says to play 

D. Here ikr  is an error term that is independent across subjects, rounds, interactions, and 

histories,   parameterizes the probability of mistakes, and the density of the error term is such 

that the overall likelihood that subject i uses strategy s is 

 

(1) 
 

1
1 1

( )
1 exp( ( ) / ) 1 exp( ( ) / )

ikr ikry y

i k r
ikr ikr

p s
s s s s

, 

where ikry  is 1 if the subject chose C and 0 if the subject chose D. 
28

 

To better understand the mechanics of the specification, suppose that an interaction lasts 

w rounds, that in the first round the subject chose C, the first round outcome was that the subject 

played C and her partner played D, and in the second round the subject chose D. Then for 

strategy s = TFT, which plays C in the first round, and plays D in the second round following 

(C,D), the likelihood of the subject‘s play is the probability of two ―no-error‖ draws. This is the 

same probability that we would assign to the overall sequence of the subject‘s play given the play 

of the opponent - it makes no difference whether we compute the likelihood round by round or 

for the whole interaction. 

For any given set of strategies S and proportions p¸ we then derive the likelihood for the 

entire sample, namely ln ( ) ( )iI s S
p s p s . Note that the specification assumes that all 

                                                 
26

 We found that conducting the MLE supposing that subjects pick a fixed strategy at the beginning of each 

interaction, as opposed to using the same strategy throughout the session, gave qualitatively similar results to those 

presented below. 
27

 Recall that we, unlike our subjects, observe the intended actions as well as the implemented ones. We use this 

more informative data in our estimates.  
28

 Thus the probability of an error in implementing one‘s strategy is 1/(1+exp(1/γ)). Note that this represents error in 

intention, rather than the experimentally imposed error in execution. This formulation assumes that all strategies 

have an equal rate of implementation error. In the online appendix we show that the MLE estimates of strategy 

shares are robust to allowing each strategy have a different value of γ. 



16 

 

subjects are ex-ante identical with the same probability distribution over strategies and the same 

distribution over errors; one could relax this at the cost of adding more parameters. Because p 

describes a distribution over strategies, this likelihood function implies that in a very large 

sample we expect fraction p(s) of subjects to use strategy s, though for finite samples there will 

be a non-zero variance in the population shares. We use maximum likelihood estimation (MLE) 

to estimate the prevalence of the various strategies, and bootstrapping to associate standard errors 

with each of our frequency estimates. We construct 100 bootstrap samples for each treatment by 

randomly sampling the appropriate number of subjects with replacement. We then determine the 

standard deviation of the MLE estimates for each strategy frequency across the 100 bootstrap 

samples. 

To investigate the validity of this estimation procedure, we tested it on simulated data. For 

a given strategy frequency distribution, we assigned strategies to 3 groups of 20 computer agents. 

We then generated a simulated history of play across 4 interactions by randomly pairing members 

of each group to play games with representative lengths from the game length sequence used in 

the experiment (t1=5, t2=11, t3=8, t4=9). As in the main experimental treatments, we included a 

1/8 probability of error, and recorded both the intended and actual action of each agent. We 

generated simulated data in this way using strategy distributions similar to those estimated from 

the experimental data (see Table 3), and then used the MLE method described above to estimate 

the strategy frequencies. The MLE results were consistent with the actual strategy frequencies, 

giving us confidence in the estimation procedure.
29

 

 

IV. Results 

 We begin by examining behavior in the 4 treatments with E=1/8; we will then compare 

this to the behavior in the controls with E=0 and E=1/16 using b/c=4, which is the ratio most 

favorable to cooperation.  

Examining play in the first round of each interaction, as displayed in Figure 2, suggests 

that there was some learning, except perhaps  when b/c=1.5; this is confirmed by the statistical 

analysis reported in Appendix B. To reduce the potential effects of learning while striking a 

                                                 
29

 See Appendix A for MLE results using simulated data. 
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balance with the need for data, our analysis will focus on how subjects played in the last four 

interactions of the session, which is roughly the last third of each session.30
 

 

Figure 2. First round cooperation over the course of the session, by payoff specification. 

 

QUESTION 1: Is cooperation more frequent in treatments where there are cooperative equilibria? 

Is risk dominance of TFT over ALLD a good predictor of cooperation?  

 

Figure 3 reports both cooperation in the first round of the last 4 interactions and the 

average cooperation over the last 4 interactions as a whole, which can depend on the relationship 

between the two subjects‘ strategies and also on possible random errors.
31

 We see that there is 

markedly less cooperation when b/c=1.5, both in the first round (1.5 vs. 2, p=0.016; 1.5 vs. 2.5, 

p=0.003; 1.5 vs. 4, p=0.004) and overall (1.5 vs. 2, p=0.001; 1.5 vs. 2.5, p<0.001; 1.5 vs. 4, 

p<0.001). Conversely, we see little difference in first round cooperation between the three 

treatments with cooperative equilibria (2 vs. 2.5, p=0.71; 2 vs. 4, p=0.83; 2.5 vs. 4, p=0.87); and 

while there is an increase in overall cooperation going from b/c=2 to b/c=2.5, this increase is 

smaller than that between b/c=1.5 and b/c=2 and is only marginally significant (p=0.058). 

Moreover there is no significant difference in overall cooperation between b/c=2.5 and b/c=4 

(p=0.73). The reason there is about the same amount of initial cooperation in b/c=2 and 2.5 yet 

                                                 
30

 Our results are not sensitive to this particular cutoff. Using either the last 6 or last 2 interactions instead yields very 

similar results. See the online appendix for details. 
31

 For each pairwise b/c comparison, we report the results of a logistic regression over first-round/all individual 

decisions, with a b/c value dummy as the independent variable, clustered on both subject and interaction pair. 
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somewhat more overall cooperation in the latter case seems related to the fact that more subjects 

are more forgiving in the latter treatment, as seen in the discussion of Questions 3-4. Because the 

largest difference in cooperation occurs between b/c=1/5 and b/c=2, as opposed to between b/c=2 

and b/c=2.5, the data do not show the strong support for risk dominance of TFT as the key 

determinant of the level of cooperation in games with noise that was seen in studies of games 

without noise. 

 

 

Figure 3. First round and overall cooperation by payoff specification, averaged over the last 4 

interactions of each session. See Table 4 for a list of the cooperation frequencies displayed here. 

Error bars indicate standard error of the mean, clustered on subject and interaction pair. 

  

QUESTION 2: Is there substantially more cooperation when cooperation is the outcome of an 

equilibrium in strategies which base their play on outcomes in previous round? 

 

Indeed, we see a substantial amount of cooperation when b/c=2 and 2.5, even though 

cooperative equilibria in these treatments require memory 2 or more.
32

 To the extent that play 

resembles an equilibrium of the repeated game, these results are a first sign that the predictions of 

the memory-1 restriction are not consistent with the data. 

                                                 
32

 This theoretical result is robust to considering memory-1 strategies which forget the state with some non-zero 

probability. Regardless of the probability of forgetting, TFT and PTFT are not equilibria at E=1/8 and b/c=2 or 

b/c=2.5. See the online appendix for further discussion. 
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QUESTION 3: What strategies do subjects use in the noisy prisoner‘s dilemma? Do subjects use 

PTFT when it is an equilibrium strategy? 

 

We now report the results of the MLE analysis of strategy choice, examining the last 4 

interactions of each session.
33

 We consider 20 strategies in total (Table 2): the fully cooperative 

strategies ALLC, TFT, TF2T, TF3T, 2TFT, 2TF2T, Grim, Grim2, Grim3, PTFT, 2PTFT and T2, 

which always play C against themselves in the absence of errors; the fully non-cooperative 

strategies ALLD and D-TFT, which always play D against themselves in the absence of errors; 

and the partially cooperative strategies C-to-ALLD, D-TF2T, D-TF3T, D-Grim2, D-Grim3 and 

DC-Alt, which play a combination of C and D against themselves in the absence of error.
34

 Of 

these, only 11 are present at frequencies significantly greater than 0 in at least one payoff 

specification: the cooperative strategies ALLC, TFT, TF2T, TF3T, 2TFT, 2TF2T, Grim, Grim2 

and Grim3, and the non-cooperative strategies ALLD and D-TFT.
35

  

 Thus we restrict our attention to these 11 strategies (Table 3). We do not find any 

evidence of subjects using PTFT in any payoff specification - PTFT never received a positive 

weight in any of the bootstrapped samples. In the treatments with cooperative equilibria, the most 

common cooperative strategies TF2T, TF3T, Grim2 and Grim3 are all lenient. 

                                                 
33

 Analysis of simulated data suggests that MLE on 4 interactions lasting on average 8 rounds detects strategies 

whose frequencies are 5% or higher, but that lower-frequency strategies may not be detected.  
34

 Following Dal Bo and Frechette, we consider only pure strategies in the MLE estimation. The evolutionary game 

theory literature suggests the consideration of ―generous tit-for-tat‖ or GTFT (Nowak and Sigmund 1990), which 

cooperates with probability strictly between 0 and 1 if the partner defected last period, and otherwise cooperates. 

Simulations show that this strategy will be identified by our estimation as playing TF3T, but that expanding our 

MLE procedure to include stochastic strategies can differentiate GTFT from TF3T. Doing so suggests that the 

majority of leniency observed in our data is not in fact the result of stochastic memory-1 strategies, but is rather due 

to lenient strategies with longer memories. The online appendix reports these results, which should be viewed as a 

first step towards understanding how to test for mixed strategies; we hope to explore the issues posed by mixed 

strategies in greater detail in future work. 
35

 See Appendix C for the estimates and standard errors for the full set of 20 strategies. At the request of the referees, 

we also explored versions of TFT and PTFT which forget the state with some non-zero probability, versions of TFT 

and Grim which ignore a defection in the first round, and a family of strategies which cooperate until the fraction of 

D by their partner passes some threshold. None of these strategies were present at frequencies significantly greater 

than 0. See the online appendix for the details of these robustness checks. 
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Table 3. Maximum likelihood estimates using the last 4 interactions of each session. All payoff 

specifications use error rate E=1/8. Bootstrapped standard errors (shown in parentheses) used 

to calculate p-values.  

† Significant at p<0.1, * Significant at p<0.05, ** Significant at p<0.01.  

 

       

   b/c=1.5 b/c=2 b/c=2.5 b/c=4  

 ALLC 0 0.03 0 0.06†  

   (0) (0.03) (0.02) (0.03)  

 TFT 0.19** 0.06 0.09* 0.07*  

   (0.05) (0.04) (0.04) (0.03)  

 TF2T 0.05 0 0.17* 0.20**  

   (0.03) (0) (0.06) (0.07)  

 TF3T 0.01 0.03 0.05 0.09*  

   (0.01) (0.03) (0.05) (0.04)  

 2TFT 0.06 0.07† 0.02 0.03  

   (0.04) (0.04) (0.02) (0.02)  

 2TF2T 0 0.11* 0.11† 0.12*  

   (0.02) (0.05) (0.06) (0.05)  

 Grim 0.14** 0.07 0.11* 0.04†  

   (0.04) (0.05) (0.04) (0.02)  

 Grim2 0.06† 0.18** 0.02 0.05†  

   (0.03) (0.06) (0.03) (0.03)  

 Grim3 0.06 0.28** 0.24** 0.11**  

   (0.03) (0.08) (0.07) (0.04)  

 ALLD 0.29** 0.17** 0.14** 0.23**  

   (0.06) (0.06) (0.04) (0.04)  

 D-TFT 0.14** 0 0.05† 0  

   (0.05) (0) (0.03) (0)  

 Gamma 0.46** 0.5** 0.49** 0.43**  

   (0.02) (0.03) (0.03) (0.02)  

       

 

Note that in all treatments the MLE assigns a substantial share to strategies that depend on 

outcomes from more than one period ago. To provide additional evidence for this conclusion, we 

use a logistic regression to test whether subjects condition play on their partner's decision two 

rounds ago. Bias introduced by heterogeneity presents a potential challenge for this approach: the 

other's play two rounds ago interacts with own play two rounds ago to determine the history in 

the previous round, so other's play two rounds ago could have a spuriously significant coefficient 

in a heterogeneous population of subjects all of whom use memory 1 strategies. To control for 
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bias introduced by heterogeneity, we include controls for the type of the player making the 

decision, as in Aoyagi & Frechette (2009).
36

 We conduct a logistic regression with correlated 

random effects, regressing own decision in round t against own play in round t-1, other's play in 

t-1, own play in t-2 and other's play in t-2, and including controls for b/c ratio and own average 

frequency of first round cooperation and overall cooperation, both over the last 4 interactions.
37

 

Consistent with the use of longer memories, we find a significant effect of other's play two 

rounds ago (coeff=1.01, p<0.001). This result supports the conclusion that many subjects are 

conditioning on more than only the last round. 

 

QUESTION 4: How do the strategies used vary with the gains to cooperation? 

 

The strategies employed by subjects clearly vary according to the gains from cooperation. 

This can be seen from descriptive statistics analyzing aggregate behavior as well as from the 

MLE analysis, both of which are summarized in Table 4. Three trends are apparent. 

First, cooperation is significantly lower at b/c=1.5 than at the higher b/c ratios, as shown 

in Table 4 and visualized in Figure 3. Consistent with this observation, Table 4 also shows that 

the share of the non-cooperative strategies ALLD and D-TFT is 43% when b/c=1.5, which is 

substantially and significantly higher than in other b/c conditions (b/c=2, 17%, p<0.001; b/c=2.5, 

19%, p<0.001; b/c=4, 23%, p=0.001).
38

  

Second, leniency also increases when moving from b/c=1.5 to the higher b/c ratios. To get 

a measure of leniency distinct from the MLE estimates, we examine all histories in which both 

subjects played C in all but the previous round, while in the previous round one subject played 

D.
39

 We then ask how frequently the subject who had hitherto cooperated showed leniency by 

                                                 
36

 For a general treatment of the topic, see Gary Chamberlain (1980) and James J. Heckman (1981). 
37

 When we simulate data for various combinations of memory-1 strategies, we find that this regression returns a 

significant coefficient on partner‘s action in t-2 no more often than predicted by chance. We also find that when 

simulating only memory-1 strategies, the size of the estimated coefficient of play two rounds ago is at least an order 

of magnitude smaller than the coefficients for play last round, in contrast to the estimates on the experimental data; 

see the online appendix for a detailed discussion of these issues. Note that as the regression conditions on play two 

rounds ago, it necessarily omits decisions made in the first two rounds of each interaction.  
38

 For each pairwise comparison of aggregated MLE coefficients, we report the results of a two-sample t-test using 

bootstrapped standard errors of the aggregated coefficients.  
39

 We also include second round decisions in which the first round‘s outcome was CD. 
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continuing to cooperate despite the partner‘s defection.
40

 At b/c=1.5, 17% of histories show 

leniency, compared to the significantly higher values of 63% at b/c=2 (b/c=1.5 vs. b/c=2, 

p=0.001), 67% at b/c=2.5 (b/c=1.5 vs. b/c=2.5, p<0.001) and 66% at b/c=4 (b/c=1.5 vs. b/c=4, 

p<0.001). No significant difference in leniency exists among the higher b/c ratios (p>0.20 for all 

comparisons). Thus leniency increases across the transition from b/c=1.5 to b/c=2. Analyzing 

strategy frequencies paints a similar picture. The combined frequency of the lenient strategies 

ALLC, TF2T, TF3T, 2TF2T, Grim2 and Grim3 is 18% at b/c=1.5 which is significantly less than 

at b/c=2 (62%, p<0.001), b/c=2.5 (60%, p<0.001) or b/c=4 (63%, p<0.001). 

 

Table 4. Descriptive statistics of aggregate behavior, as well as aggregated MLE frequencies 

from Table 3. All specifications use E=1/8. The descriptive statistics for leniency and forgiveness 

are defined in the text. For MLE aggregation, all strategies other than ALLD and D-TFT are 

cooperative; lenient strategies are TF2T, TF3T, 2TF2T, Grim2 and Grim3; and forgiving 

strategies are TFT, TF2T, TF3T, 2TFT and 2TF2T. 
 
 

 
 

 

       

   b/c=1.5 b/c=2 b/c=2.5 b/c=4  

 Descriptive statistics  

 %C First Round 54% 75% 79% 76%  

 %C All Rounds 32% 49% 61% 59%  

 Leniency 29% 63% 67% 66%  

 Forgiveness 15% 18% 33% 32%  

 MLE aggregation  

 Cooperative strategies 57% 83% 81% 77%  

  Lenient strategies 18% 62% 60% 63%  

 Forgiving strategies 31% 29% 44% 57%  
       

 

The gains to cooperation also influence the frequency of forgiveness. Forgiveness is more 

complicated to define and measure, as it describes a more complex pattern of behavior: to us it 

means that the players were initially cooperating, that one of them then defects leading the other 

player to "punish" the initial defector, and finally that the punishing player relents and returns to 

cooperation. To develop an operational measure of histories where forgiveness occurs, we first 

identify all histories in which (i) at least one subject chose C in the first round, (ii) in at least one 

                                                 
40

 For each pairwise b/c comparison of aggregate descriptive statistics, we report the results of a logistic regression 

over all decisions in lenient/forgiving histories, with a b/c dummy as the independent variable, clustered on both 

subject and interaction pair. 
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previous round, the initially cooperative subject chose C while the other subject chose D and (iii) 

in the immediately previous round the formerly cooperative subject played D. We then ask how 

frequently this formerly cooperative subject showed forgiveness by returning to C.  For example, 

if the outcome in the first round is (C,D), and  the first player plays D in the second round, and C 

in the third, we would say that the first player had ―forgiven‖ the second player. We find 

significantly less forgiveness at b/c=1.5 (15%) and b/c=2 (18%) compared to b/c=2.5 (33%) and 

b/c=4 (32%) (1.5 vs. 2.5, p<0.001; 1.5 vs. 4, p<0.001; 2 vs. 2.5, p=0.008; 2 vs. 4, p=0.007). Thus 

forgiveness increases significantly when b/c increases from 2 to 2.5. This is again confirmed by 

examining strategy frequencies in the payoff specifications that support cooperation. The 

forgiving strategies ALLC, TFT, TF2T, TF3T, 2TFT and 2TF2T are less common at b/c=1.5 

(31%) and b/c=2 (29%) than at b/c=2.5 (44%) and b/c=4 (57%) (1.5 vs. 2.5, p=0.061; 1.5 vs. 4, 

p<0.001; 2 vs. 2.5, p=0.054; 2 vs. 4, p<0.001; 2.5 vs. 4, p=0.054).  

 

QUESTION 5: How do the strategies used vary with the level of noise? 

 

 To explore how play varies with the error rate, we now examine our two additional 

control treatments using b/c=4 with E=1/16 and E=0, and compare them to our results using 

b/c=4 at E=1/8. We begin by asking whether subjects condition on their partner‘s play two 

rounds ago in the last 4 interactions of each session, using a logistic regression with correlated 

random effects and regressing own decision in round t against other‘s play in round t-2, own play 

in t-2, other‘s play in t-1, own play in t-1, own first round cooperation frequency in the last 4 

interactions and own frequency of cooperation in all rounds of the last 4 interactions. As with the 

E=1/8 treatments, we find a highly significant and sizable dependence on other‘s play two rounds 

ago for E=1/16 (coeff=1.221, p<0.001); while in the no-error E=0 control, however, we find no 

significant dependence on other‘s play two rounds ago (coeff=0.387, p=0.247). This provides our 

first direct evidence that the presence of noise plays an important role in strategy selection, 

promoting more complicated strategies. 

Next we present the MLE results for each strategy
 
in Table 5, as well as aggregated MLE 

results and descriptive statistics in Table 6. As shown in Table 6,  overall cooperation is lower at 

E=1/8 (59%) than in the lower error conditions, and these differences are statistically significant  
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(E=1/16, 82%, p<0.001; E=0, 78%, p=0.002)
41

. Considering cooperation in the first round, there 

is somewhat less cooperation at E=1/8, but the differences are smaller and either not significant 

or just marginally so (E=1/8, 76%, E=1/16, 87%, E=0, 83%; 1/8 vs. 1/16, p=0.050, 1/8 vs. 0, 

p=0.346). We find no significant difference at E=0 compared to E=1/16 in either overall 

cooperation (p=0.486) or first round cooperation (p=0.338). Complementing this aggregate 

analysis, the share of the non-cooperative strategies ALLD and D-TFT is significantly larger at 

E=1/8 (23%) compared to E=1/16 (11%, p=0.001), and larger at E=1/8 than E=0 (16%, p=0.191) 

although the difference between E=0 and E=1/8 is not significant.
42

 There is also no significant 

difference between E=0 and E=1/16 (p=0.297). 

Turning to leniency, we examine cooperation frequency in the subset of histories in which 

leniency is possible, as described above in response to Question 5. At E=0, 42% of the eligible 

histories show leniency, compared to the significantly higher value of 77% at E=1/16 (p=0.001) 

and the marginally significantly higher value of 66% at E=1/8 (p=0.052). We also find that 

marginally significantly more eligible histories showed leniency at E=1/16 than at E=1/8 

(p=0.071). We see similar results when analyzing strategy frequencies. The combined frequency 

of lenient strategies ALLC, TF2T, TF3T, 2TF2T, Grim2 and Grim3 is significantly lower at E=0 

(40%) than at E=1/16 (82%, p<0.001) or E=1/8 (63%, p<0.001). As with the analysis of histories, 

we also see significantly more leniency at E=1/16 than at E=1/8 (p<0.001). 

Considering cooperation frequency in histories with the potential for forgiveness, as 

described above in the response to Question 5 we also see significantly less forgiveness at E=0 

(19%) compared to E=1/16 (47%, p<0.001) or E=1/8 (32%, p<0.001). We find no significant 

difference in forgiveness between E=1/16 than at E=1/8 (p=0.298). Examining the aggregated 

MLE frequencies, the forgiving strategies ALLC, TFT, TF2T, TF3T, 2TFT and 2TF2T are less 

common at E=0 (52%) compared to E=1/16 (78%, p=0.007) and at E=1/8 (57%) compared to 

E=1/16 (p=0.001). There is no significant difference between forgiving strategies at E=0 and 

E=1/8 (p=0.670).  

                                                 
41

 For each pairwise comparison of aggregate descriptive statistics, we report the results of a logistic regression over 

all decisions in lenient/forgiving histories, with an error rate dummy as the independent variable, clustered on both 

subject and interaction pair. 
42

 For each pairwise comparison of aggregated MLE coefficients, we report the results of a two-sample t-test using 

bootstrapped standard errors of the aggregated coefficients.  
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Table 5. Maximum likelihood estimates for our E=0, E=1/16 and E=1/8 conditions using the last 

4 interactions of each session. All specifications use b/c=4. Bootstrapped standard errors (shown 

in parentheses) used to calculate p-values.  

† Significant at p<0.1, * Significant at p<0.05, ** Significant at p<0.01. 

      

   E=0 E=1/16 E=1/8  

 ALLC 0.24* 0 0.06†  

   (0.10) (0.04) (0.03)  

 TFT 0.14† 0.04 0.07*  

   (0.08) (0.04) (0.03)  

 TF2T 0 0.24* 0.20**  

   (0.02) (0.10) (0.07)  

 TF3T 0 0.42** 0.09*  

   (0.04) (0.09) (0.04)  

 2TFT 0.15* 0 0.03  

   (0.07) (0) (0.02)  

 2TF2T 0 0.08 0.12*  

   (0) (0.06) (0.05)  

 Grim 0.15† 0.03 0.04†  

   (0.08) (0.02) (0.02)  

 Grim2 0.16† 0.09 0.05†  

   (0.09) (0.05) (0.03)  

 Grim3 0 0 0.11**  

   (0.06) (0) (0.04)  

 ALLD 0.07† 0.05 0.23**  

   (0.04) (0.03) (0.04)  

 D-TFT 0.09* 0.05 0  

   (0.04) (0.03) (0)  

 Gamma 0.35** 0.44** 0.43**  

   (0.03) (0.03) (0.02)  

      
 

 

In summary, we find that substantial levels of leniency and forgiveness are not unique to 

the high error rate of E=1/8, but are also present at the lower error rate of E=1/16. When the error 

rate is zero, leniency is much less frequent. The somewhat greater leniency and forgiveness at 

E=1/16 compared to E=1/8 is surprising; investigating this issue further is an interesting topic for 

future study. 

To further explore the difference in play between error and no-error games, we reanalyze 

data from Dal Bó & Frechette (2011) and Dreber et al. (2008) using our strategy set from Table 
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2. Doing so finds TFT to be the most common cooperative strategy in all but one payoff 

specification.
43

 Additionally, the aggregate frequency of strategies with memory at most 1 

(namely ALLC, TFT, D-TFT, and ALLD) is 76% in the games without noise (including our E=0 

control), compared to only 33% in our games with noise; this difference is largely driven by 

lenient strategies, most of which by definition look back more than one round, and have an 

aggregate frequency of 13% without noise compared to 57% with noise.
44

  

The importance of noise for promoting leniency is also reflected in the post-experimental 

questionnaire. Many subjects reported cooperating following their partner‘s first defection 

because they assumed it was due to error. 

 

Table 6. Descriptive statistics of aggregate behavior, as well as aggregated MLE frequencies. All 

specifications use b/c=4. The descriptive statistics for leniency and forgiveness are defined in the 

text. For MLE aggregation, all strategies other than are ALLD and D-TFT are cooperative; 

lenient strategies are TF2T, TF3T, 2TF2T, Grim2 and Grim3; forgiving strategies are TFT, 

TF2T, TF3T, 2TFT and 2TF2T. 

 
      

   E=0 E=1/16 E=1/8  

 Descriptive statistics  

 %C First Round 83% 87% 76%  

 %C All Rounds 78% 82% 59%  

 Leniency 42% 77% 66%  

 Forgiveness 19% 47% 32%  

 MLE aggregation  

 Cooperative strategies 84% 89% 77%  

 Lenient strategies 40% 82% 63%  

 Forgiving strategies 53% 78% 57%  

 

                                                 
43

 See Appendix D for MLE results. 
44

 Note that here we do find some evidence of longer-memory strategies, while our test based on adding only 

partner‘s play two periods ago found an insignificant effect. This may be in part due to the fact that the MLE 

includes strategies like ―Grim‖ that have a longer memory, and in part to the fact that the no-noise case provides less 

information about play at many histories. The results are qualitatively equivalent when restricting our attention to the 

no-noise payoff specifications where TFT risk-dominates ALLD, 62% of strategies use memory at most 1, and 

lenient strategies have weight 20%. 



27 

 

V. Discussion 

 To relate play in the experiment to theoretical predictions, we would like to understand 

the extent to which the observed distribution of play approximates an equilibrium, and to the 

extent that play is not an equilibrium, what sorts of alternative strategies would perform better. 

To that end, we used simulations to compute the expected payoff matrix for the strategies that 

had non-negligible shares in the MLE estimation, along with a few ―exploitive‖ strategies that 

struck us as good responses to the commonly used lenient strategies.
45

 The resulting payoff 

matrices are displayed in Appendix E. We will use this table to compute the expected payoff to 

each strategy given the estimated frequencies, but first we use it to make some observations about 

the equilibria of the game. In particular, any strategy that is not a Nash equilibrium in this payoff 

matrix cannot be a Nash equilibrium in the full game. The converse is of course false, but we will 

then check which of the strategies that are equilibria of the payoff matrix also are equilibria of the 

full game.  

Using that calculated payoff matrix we see that the lenient-and-forgiving strategy TF2T, 

which was common when b/c=2.5 or 4, is not an equilibrium in any treatment: it can be invaded 

by DC-Alt (the strategy that alternates between D and C) in all payoff specifications, as well as 

by ALLD when b/c=1.5 and by various ―exploitive‖ strategies that start with D in the other 

treatments.
46

 Note also that TFT is never an equilibrium, although it is fairly common when 

b/c=1.5: it is invaded by ALLD when b/c=1.5 and by ALLC (!) at other b/c values. This is a 

reflection of the fact that errors can move TFT into an inefficient 2-cycle. 

Of course ALLD is an equilibrium in every treatment, and as discussed in Section II, 

PTFT is an equilibrium at b/c=4. Perhaps surprisingly, it turns out that Grim2 is also an 

equilibrium when b/c=4, even though it is not an equilibrium in the game without errors.
47

 

                                                 
45

 Analytic computations of the payoff for two different strategies playing each other is complicated due to the 

combination of discounting and noise, especially if the strategies look back more than one round and/or have many 

implicit ―states.‖  
46

 This is because the one round of punishment provided by TF2T, multiplied by the increased probability of 

punishment associated with the first D, is too small to outweigh the short-run gain to deviation.  When b/c becomes 

sufficiently large, it does pay to conform to TF2T at histories where the strategy says to cooperate, but then it is also 

optimal to play C at histories where TF2T says to play D. Mathematica computations show that TF2T is not an 

equilibrium in any of our treatments.  
47

 Without errors it would be better to play D in the first round and subsequently play Grim2, as the continuation 

payoff after one D is the same as after no D‘s at all. However in the presence of errors, the expected continuation 

payoff to Grim2 is lower in the round following a D, and numerical calculations show that when b/c=4 and δ=7/8, 

Grim2 is an equilibrium provided that the error probability is between 0.0332 and 0.2778. Moreover, the exploitive 
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Moreover, the range of error probabilities for which Grim2 is an equilibrium increases with b/c. 

Intuitively, there is more reason to be lenient when the rewards to cooperation are greater, which 

is consistent with the way overall leniency in the data increases with b/c.  

Of course these equilibrium calculations do not tell us what strategies can persist in a 

mixed-strategy equilibrium, and they do not tell us which strategies have good payoffs given the 

actual distribution of play. Table 7 shows the expected payoff of each strategy given the 

prevailing strategy frequencies. In the b/c=1.5 treatment, where ALLD is most prevalent, ALLD 

is also the best response to the prevailing strategy frequencies. Furthermore, the average earnings 

per round of subjects for whom ALLD is the strategy with the greatest likelihood are 

significantly higher than other subjects‘ earnings (coeff=0.108, p=0.028). ALLD does about as 

well as the average subject in the b/c=2 treatment (coeff=-0.039, p=0.672), and is significantly 

worse at b/c=2.5 (coeff=-0.400, p<0.001) and b/c=4 (coeff=-0.914, p<0.001).
48

 We also see that 

subjects showed good judgment in avoiding PTFT, which performs very poorly in all treatments. 

In the treatments with cooperative equilibria, lenient strategies perform very well. Within 

each of these treatments, the highest payoff strategy that is played is lenient (b/c=2, Grim2; 

b/c=2.5, 2TF2T; b/c=4, TF2T). Furthermore, all common lenient strategies (frequency of 10% or 

higher) earn within 1% of the highest payoff earned by any strategy played in that treatment, 

except for 2TF2T at b/c=2, which earns 1.6% less than the highest payoff. Various start-with-D 

strategies would have been the highest earners (b/c=2, D-Grim3; b/c=2.5 and b/c=4, D-TF2T), 

but these strategies were not played. Perhaps this is because these exploitive strategies do not fit 

well with subjects‘ intuitions and heuristics about cooperative play, and only out-performed the 

cooperative strategies by a very small margin (best cooperative strategy earns 5.3% less than best 

exploitative strategy at b/c=2, 0.9% less at b/c=2.5 and 0.2% less at b/c=4). Given the incomplete 

learning we observe in all treatments, it may therefore not be such a surprise that subjects did not 

discover the benefit of these exploitive strategies. Furthermore, given the roughly equal payoffs, 

subjects might reasonably prefer lenient cooperative strategies to those that exploit. Exploring the 

lack of exploitative strategies is an important direct for future work. 

                                                                                                                                                              
but lenient strategy D-Grim2 is also an equilibrium when b/c=4 and δ=7/8, although it is not used. See the online 

appendix for the Grim2 and D-Grim2 equilibrium calculations. 
48

 We report the results of a linear regression over profit in all rounds of all interactions, with an ALLD dummy as 

the independent variable, clustered on both subject and interaction pair. 
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Table 7. Observed frequencies and resulting expected payoffs for each strategy. Highest payoff 

strategy among those that were used is shown in bold; highest payoff strategy among all 

strategies considered is underlined. 

           

   b/c=1.5 b/c=2 b/c=2.5 b/c=4  

   Frequency 

Expected 

payoff Frequency 

Expected 

payoff Frequency 

Expected 

payoff Frequency 

Expected 

payoff  

 ALLC   -1.25 0.03 6.92   13.27 0.06 28.13  

 TFT 0.19 2.40 0.06 8.71 0.09 14.64 0.07 29.01  

 TF2T 0.05 1.53   8.69 0.17 14.65 0.20 29.67  

 TF3T 0.01 0.90 0.03 8.44 0.05 14.53 0.09 29.56  

 2TFT 0.06 2.87 0.07 8.59 0.02 13.58 0.03 27.08  

 2TF2T   1.86 0.11 8.89 0.11 14.72 0.12 29.62  

 GRIM 0.14 3.02 0.07 8.40 0.11 12.33 0.04 23.99  

 GRIM2 0.06 2.37 0.18 9.03 0.02 13.98 0.05 27.90  

 GRIM3 0.06 1.79 0.28 9.02 0.24 14.67 0.11 29.23  

 ALLD 0.29 3.73 0.17 8.53 0.14 11.33 0.23 21.04  

 D-TFT 0.15 2.89   9.19 0.05 14.66   28.76  

 PTFT   0.72   6.34   12.05   25.36  

 D-TF2T   1.93   9.14   14.87   29.73  

 
D-Grim3  2.34  9.54  14.83  28.92 

 

       

  

Based on the expected payoffs in Table 7, perhaps the largest surprise is not the success 

of leniency and forgiveness, but rather the high proportion of subjects playing ALLD, 

particularly at b/c=4. The reason that low performing strategies such as ALLD can persist despite 

receiving low expected payoffs is probably that the complexity of the environment makes it 

difficult to learn the optimal response. Even though ALLD is not a best response to what people 

are really doing, ALLD is a best response to a belief that everyone else plays ALLD or any other 

history-independent strategy, and because of the noisy observation of intended play, subjects who 

have such false beliefs may not learn that more cooperative strategies yield a higher payoff. 

Consistent with this, 12% of subjects defected in more than 85% of all rounds in all interactions 

at b/c=2, 9% of subjects at b/c=2.5 and 16% of subjects at b/c=4. This accounts for a substantial 

fraction of the players classified as ALLD by the MLE, and suggests that these subjects almost 

never experimented with cooperation, preventing them from learning about its benefits. 

Furthermore, examining the play of these stubborn defectors, we find no positive correlation 
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between first round cooperation and the previous partner‘s cooperation in the first round of the 

previous interaction; in fact the relationship is negative, although not significant (coeff=-0.081, 

p=0.882).
49

 Thus meeting a first-round cooperator does not increase these subjects‘ probability of 

cooperating in future interactions. This is reminiscent of heterogeneous self-confirming 

equilibrium (Fudenberg and Levine 1993), and the diversity of strategies is consistent with 

heterogeneous self-confirming equilibrium in the absence of noise; in the presence of noise 

similar situations can persist for a while.
50

 A similar logic applies to Grim, which is a best 

response to the belief that a substantial fraction of the population plays Grim while the rest plays 

ALLD - a subject who always uses Grim may not learn about the benefits of being more lenient. 

We find no difference in first round cooperation between b/c=2 and b/c=2.5, and that the 

increase in overall cooperation as b/c increases from 1.5 to 2 is larger than the increase in moving 

from b/c=2 to b/c=2.5, even though ALLD risk-dominates TFT at b/c=2 but not b/c=2.5. Thus the 

risk dominance criterion has at best limited predictive power regarding cooperation in games with 

noise.  

To explore possible non-strategic motivations for leniency and forgiveness, we examined 

the subjects‘ social preferences using a post-experiment dictator game and a set of survey 

questions from social psychology. In Dreber, Fudenberg and Rand (2010), we show that dictator 

giving is not correlated with cooperation in histories where there is the possibility of leniency, 

and not consistently correlated with cooperation in histories with the possibility for forgiveness. 

Dictator giving is also uncorrelated with both first-round cooperation and overall cooperation in 

the specifications with cooperative equilibria (where leniency and forgiveness are common). 

Furthermore, while lenient and forgiving strategies earn high expected monetary payoffs, the 

Ernst Fehr and Klaus M. Schmidt (1999) model of inequity aversion gives little utility to these 

strategies. We use this, the survey data and additional analysis to argue that social preferences do 

not seem to be a key factor in explaining the leniency and forgiveness observed in our 

experiments.  

                                                 
49

 When considering only subjects whose realized actions (as opposed to intended actions) resulted in over 85% D, 

we also find no correlation between previous partner‘s first round cooperation and own cooperation in the first round 

of the present interaction (coeff=-0.350, p=0.828). 
50

 Evolutionary models such as the replicator dynamic, when applied to repeated games by restricting the strategy set 

can converge to steady states with multiple strategies present, as in Feldman and Thomas (1987). These polymorphic 

steady states, however, require that all of the active strategies obtain the same payoff, which is not a good 

approximation of the situation here. 
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VI. Conclusion 

We conclude that subjects do tend to cooperate in noisy repeated games when there is a 

cooperative equilibrium, that they cooperate even when there are no cooperative equilibria in 

memory-1 strategies, and that they cooperate even when TFT is risk-dominated by ALLD. This 

shows that conclusions based on evolutionary game theory models that incorporate the memory-1 

restriction need not apply to play in laboratory experiments, and that subjects can and do use 

strategies with more complexity. We also see that strategies such as TF2T that involve leniency 

and forgiveness are both common and rather successful in the sense of obtaining high payoffs 

given the actual distribution of play, even though it is not an equilibrium for all agents to play 

TF2T: In an uncertain world, it can be payoff-maximizing to be slow to anger and fast to forgive. 
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Appendix A – MLE strategy frequency estimates using simulated data 

Table A1. Maximum likelihood estimates for simulated histories. For each b/c ratio, the first 

column shows the actual frequency in the simulated data, and the second column shows the MLE 

estimate. Bootstrapped standard errors shown in parentheses. 

† Significant at p<0.1, * Significant at p<0.05, ** Significant at p<0.01 
          

   b/c=1.5 b/c=2 b/c=2.5 b/c=4 

   Actual Estimated Actual Estimated Actual Estimated Actual Estimated 

  ALLC 0 0 0.03 0.02 0 0 0.05 0.05* 

     (0)   (0.02)   (0)   (0.03) 

  TFT 0.18 0.18** 0.08 0.08** 0.08 0.08** 0.10 0.10** 

     (0.05)   (0.04)   (0.04)   (0.04) 

  TF2T 0.03 0.03† 0 0 0.17 0.19** 0.18 0.18** 

     (0.02)   (0)   (0.05)   (0.05) 

  TF3T 0 0 0.03 0.02 0.05 0.08* 0.08 0.04† 

     (0)   (0.03)   (0.05)   (0.03) 

  2TF2T 0 0 0.10 0.10** 0.13 0.09* 0.12 0.13** 

     (0)   (0.04)   (0.05)   (0.05) 

  Grim 0.22 0.22** 0.10 0.10** 0.12 0.12** 0.03 0.03† 

     (0.05)   (0.04)   (0.04)   (0.02) 

 Grim2 0.03 0.03† 0.20 0.19** 0.02 0.02 0.07 0.07* 

     (0.02)   (0.05)   (0.02)   (0.03) 

 Grim3 0.08 0.08** 0.28 0.31** 0.25 0.24** 0.12 0.14** 

     (0.03)   (0.06)   (0.06)   (0.04) 

 PTFT 0 0 0 0 0 0 0 0 

     (0)   (0)   (0)   (0) 

 2PTFT 0 0 0 0 0 0 0 0 

     (0)   (0)   (0)   (0) 

 2TFT 0 0 0 0 0 0 0 0 

     (0)   (0)   (0)   (0) 

 T2 0 0 0 0 0 0 0 0 

     (0)   (0)   (0)   (0) 

  ALLD 0.28 0.28** 0.17 0.17** 0.13 0.13** 0.25 0.25** 

     (0.06)   (0.06)   (0.05)   (0.06) 

 C-to-ALLD 0 0 0 0 0 0 0 0 

     (0)   (0)   (0)   (0) 

 D-TFT 0.17 0.17** 0 0 0.05 0.05† 0 0 

     (0.05)   (0)   (0.03)   (0) 

 D-TF2T 0 0 0 0 0 0 0 0 

     (0)   (0)   (0)   (0) 

 D-TF3T 0 0 0 0 0 0 0 0 

     (0)   (0)   (0)   (0) 

 D-Grim2 0 0 0 0 0 0 0 0 

     (0)   (0)   (0)   (0) 

 D-Grim3 0 0 0 0 0 0 0 0 

     (0)   (0)   (0)   (0) 

 DC-Alt 0 0 0 0 0 0 0 0 

     (0)   (0)   (0)   (0) 

 Gamma  0.02  0.02  0  0.05** 

     (0.01)   (0.01)   (0.01)   (0.01) 
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Appendix B – Evidence of learning 

First, we investigate the extent of learning over the session for each payoff specification using 

E=1/8.
51

 We do this by examining cooperation in the first round of each interaction (Figure 1), 

because this reflects each subject's strategy independent of the play of their current partner. There 

is no significant relationship between interaction number and first round cooperation when 

b/c=1.5 (coeff=0.006, p=0.788), a significant positive relationship when b/c=2 (coeff=0.089, 

p=0.001), and a non-significant relationship with a nonetheless rather sizable positive coefficient 

when b/c=2.5 (coeff=0.056 p=0.100) and b/c=4 (coeff=0.034, p=0.166). Examining learning at 

the individual level, we see a significant positive correlation between first round cooperation and 

the previous partner‘s cooperation in the first round of the previous interaction (coeff=0.335, 

p<0.001).
52

 Thus cooperative partners tends to make one more cooperative, although the effect 

size is moderate (first round cooperation after meeting a defector, 65%; after meeting a 

cooperator, 72%). In the E=1/16 control, we find a similar relationship between first round 

cooperation and the previous partner‘s first round decision (coeff=0.513, p=0.047; after 

defection, 81%; after cooperation 88%), although there is no change in first round cooperation 

across interactions (coeff=0.005, p=0.898). For E=0, the opposite is true: there is no significant 

relationship between first round cooperation and the previous partner‘s opening move (coeff=-

0.073, p=0.818), but there is a significant increase in cooperation across interactions 

(coeff=0.129, p=0.034). Thus there is also evidence of learning in both controls.  

 

 

 

 

 

 

                                                 
51

 We report the results from a logistic regression over all individual first round decisions, with the interaction 

number as the independent variable. To account for the non-independence of observations from a given subject, and 

from subjects within a given pairing, we clustered on both subject and interaction pair. 
52

 The positive correlation between first round cooperation and the previous partner‘s cooperation in the first round 

of the previous interaction remains significant (coeff=0.291, p=0.001) when controlling for interaction number and 

b/c ratio, and we find no significant interaction either interaction number (coeff=-0.016, p=0.484) or b/c ratio 

(coeff=0.0003, p=0.998). Furthermore, we continue to observe this positive relationship when restricting our analysis 

to the last 4 rounds of each interaction (coeff=0.342, p=0.001). Thus the effect of meeting cooperative partners does 

not appear to vary across interaction or payoff specification. 
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Appendix C – MLE strategy frequencies using full 20 strategy set 

Table A2. Maximum likelihood estimates for the last 4 interactions of each session, all 20 

strategies. Bootstrapped standard errors in parentheses.  

† Significant at p<0.1, * Significant at p<0.05, ** Significant at p<0.01 

   b/c=1.5 b/c=2 b/c=2.5 b/c=4 b/c=4 b/c=4  

   E = 1/8 E = 1/8 E = 1/8 E = 1/8 E = 1/16 E = 0  

 ALLC 0 0.03 0 0.05† 0 0.24*  

   (0) (0.03) (0.02) (0.03) (0.05) (0.10)  

 TFT 0.19** 0.07 0.09* 0.07* 0.04 0.15*  

   (0.05) (0.04) (0.04) (0.03) (0.03) (0.07)  

 TF2T 0.05† 0 0.16* 0.19** 0.22* 0  

   (0.03) (0) (0.07) (0.06) (0.09) (0.03)  

 TF3T 0.01 0.03 0.05 0.09* 0.40** 0  

   (0.01) (0.03) (0.04) (0.04) (0.11) (0.03)  

 2TFT 0.06 0.07† 0.02 0.03 0 0.16*  

   (0.04) (0.04) (0.02) (0.02) (0) (0.07)  

 2TF2T 0 0.11* 0.11† 0.12* 0.08 0  

   (0.02) (0.05) (0.06) (0.06) (0.07) (0)  

 Grim 0.14** 0.05 0.11* 0.02 0.02 0.12  

   (0.05) (0.05) (0.05) (0.02) (0.02) (0.08)  

 Grim2 0.05† 0.16* 0.02 0.05† 0.09† 0.16*  

   (0.03) (0.07) (0.03) (0.03) (0.05) (0.08)  

 Grim3 0.06† 0.27** 0.24** 0.11* 0 0  

   (0.03) (0.08) (0.08) (0.04) (0) (0.05)  

 PTFT 0 0 0 0 0.02 0  

   (0) (0) (0) (0) (0.02) (0)  

 2PTFT 0 0.03 0 0 0.01 0  

   (0) (0.03) (0) (0) (0.02) (0)  

 T2 0 0 0 0 0 0  

   (0) (0) (0) (0) (0) (0.01)  

 ALLD 0.27** 0.17** 0.14** 0.21** 0.05 0.06†  

   (0.05) (0.06) (0.05) (0.04) (0.03) (0.03)  

 C-to-ALLD 0 0.01 0 0.01 0.02 0.02  

   (0.01) (0.02) (0) (0.01) (0.02) (0.02)  

 D-TFT 0.10** 0 0.03 0 0.02 0  

   (0.04) (0) (0.03) (0) (0.02) (0.02)  

 D-TF2T 0 0 0.01 0 0.02 0  

   (0) (0) (0.02) (0) (0.01) (0.03)  

 D-TF3T 0.01 0 0 0 0 0.04  

   (0.01) (0) (0) (0) (0) (0.03)  

 D-Grim2 0.05† 0.01 0 0.01 0 0  

   (0.03) (0.01) (0.01) (0.01) (0.01) (0)  

 D-Grim3 0 0 0.01 0 0.03 0.04  

   (0) (0) (0.01) (0) (0.03) (0.03)  

 DC-Alt 0 0 0 0.01 0 0  

   (0) (0) (0) (0.01) (0) (0)  

 Gamma 0.46** 0.49** 0.49** 0.43** 0.43** 0.34**  

   (0.02) (0.03) (0.03) (0.02) (0.02) (0.02)  
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Appendix D – MLE strategy frequencies for previous experiments without noise 

 

Table A3. Maximum likelihood estimates for Dal Bó and Frechette (2011), the two-

option control games from Dreber et al. (2008) and a b/c=4 no-error control session. 

For δ=1/2, the last 16 interactions were analyzed, and for δ=3/4, the last 8 interactions. 

Bootstrapped standard errors in parentheses. Note that MLE results for our no-noise 

treatment is shown in the main text, Table 5. 

† Significant at p<0.1, * Significant at p<0.05, ** Significant at p<0.01. 

           

  Dal Bo and Frechette 2011 Dreber et al. 2008  

 Payoff R=32 R=40 R=48 R=32 R=40 R=48 b/c=1.5 b/c=2  

 δ 0.5 0.5 0.5 0.75 0.75 0.75 0.75 0.75  

 ALLC 0 0 0.01 0 0 0.02 0 0  

  (0) (0.01) (0.02) (0) (0.02) (0.04) (0) (0)  

 TFT 0.07† 0.06 0.24** 0.23** 0.21† 0.55** 0.15* 0.40**  

  (0.04) (0.04) (0.06) (0.07) (0.12) (0.15) (0.06) (0.15)  

 TF2T 0 0.02 0.16* 0.11 0.22** 0 0 0  

  (0) (0.02) (0.07) (0.07) (0.06) (0) (0) (0)  

 TF3T 0 0 0.01 0 0 0.06 0 0  

  (0) (0.01) (0.02) (0) (0.02) (0.04) (0) (0)  

 2TFT 0 0.06 0 0 0.35** 0.09 0 0  

  (0) (0.04) (0) (0.02) (0.13) (0.09) (0) (0)  

 2TF2T 0 0 0 0 0 0 0 0  

  (0) (0) (0.04) (0.04) (0.06) (0) (0) (0)  

 Grim 0 0 0 0 0.04 0.2 0.07 0.21  

  (0) (0.02) (0) (0.02) (0.06) (0.12) (0.04) (0.16)  

 Grim2 0 0.01 0.02 0 0 0.02 0 0  

  (0) (0.01) (0.02) (0) (0.01) (0.04) (0) (0)  

 Grim3 0 0.01 0.02 0 0 0.06† 0 0  

  (0) (0.01) (0.02) (0) (0.01) (0.04) (0) (0)  

 ALLD 0.91** 0.76** 0.49** 0.66** 0.11* 0 0.64** 0.3**  

  (0.04) (0.06) (0.07) (0.07) (0.05) (0) (0.1) (0.11)  

 D-TFT 0.02 0.08† 0.04 0 0.08† 0 0.14 0.09  

  (0.02) (0.04) (0.03) (0) (0.04) (0) (0.09) (0.07)  

 Gamma 0.34** 0.49** 0.4** 0.45** 0.32** 0.28** 0.36** 0.42**  

  (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03)  
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Appendix E – Calculated payoff matrices 

Figure A1. Row player’s payoff is shown, averaged over 10
5
 randomly simulated games 

using c=1, e=1/8 and δ=7/8. Best response in each column is shown in bold. 
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Online Appendix 

Slow to Anger and Fast to Forgive: 

Cooperation in an Uncertain World 

 

Appendix 0-A: Sample instructions 

Instructions: 
 

Thank you for participating in this experiment. 

 

Please read the following instructions carefully. If you have any questions, do not hesitate 

to ask us. Aside from this, no communication is allowed during the experiment. 

 

This experiment is about decision making. You will be randomly matched with other 

people in the room. None of you will ever know the identity of the others. Everyone will 

receive a fixed show-up amount of $10 for participating in the experiment. In addition, 

you will be able to earn more money based on the decisions you and others make in the 

experiment. Everything will be paid to you in cash immediately after the experiment.  

 

You will interact numerous times with different people. Based on the choices made by 

you and the other participants over the course of these interactions, you will receive 

between $0 and $30, in addition to the $10 show-up amount. 

 

You begin the session with 50 units in your account. Units are then added and/or 

subtracted to that amount over the course of the session as described below. At the end of 

the session, the total number of units in your account will be converted into cash at an 

exchange rate of 30 units = $1. 

 

The Session: 

 

The session is divided into a series of interactions between you and other participants in 

the room. 

  

In each interaction, you play a random number of rounds with another person. In each 

round you and the person you are interacting with can choose one of two options. Once 

the interaction ends, you get randomly re-matched with another person in the room to 

play another interaction. 

 

The setup will now be explained in more detail. 
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The round 

 

In each round of the experiment, the same two possible options are available to both you 

and the other person you interact with: A or B.  

 

The payoffs of the options (in units) 

 

Option   You  The other person  

 will get  will get 

 

A:   −2   +8  

 

B:   0   0 

 

If your move is A then you will get −2 units, and the other person will get +8 units. 

 

If you move is B then you will get 0 units, and the other person will get 0 units. 

 

Calculation of your income in each round:  

 

Your income in each round is the sum of two components: 

· the number of units you get from the move you played 

· the number of units you get from the move played by the other person. 

 

Your round-total income for each possible action by you and the other player is thus 

 

 Other person 

  A B 

You A +6 -2 

 B +8 0 

 

For example:  

If you play A and the other person plays A, you would both get +6 units. 

If you play A and the other person plays B, you would get -2 units, and they would get +8 units. 

If you play B and the other person plays A, you would get +8 units, and they would get -2 units. 

If you play B and the other person plays B, you would both get 0 units. 

 

Your income for each round will be calculated and presented to you on your computer screen. 

 

The total number of units you have at the end of the session will determine how much 

money you earn, at an exchange rate of 30 units = $1. 

 

Each round you must enter your choice within 30 seconds, or a random choice will be 

made. 
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A chance that the your choice is changed  
 

There is a 7/8 probability that the move you choose actually occurs. But with probability 

1/8, your move is changed to the opposite of what you picked. That is: 

 

When you choose A, there is a 7/8 chance that you will actually play A, and 1/8 

chance that instead you play B. The same is true for the other player. 

 

When you choose B, there is a 7/8 chance that you will actually play B, and 1/8 

chance that instead you play A. The same is true for the other player. 

 

Both players are informed of the moves which actually occur. Neither player is informed 

of the move chosen by the other. Thus with 1/8 probability, an error in execution occurs, 

and you never know whether the other person‘s action was what they chose, or an error. 

 

For example, if you choose A and the other player chooses B then: 

 

 With probability (7/8)*(7/8)=0.766, no changes occur. You will both be told that your 

move is A and the other person‘s move is B. You will get -2 units, and the other 

player will get +8 units. 

 

 With probability (7/8)*(1/8)=0.109, the other person‘s move is changed. You will 

both be told that your move is A and the other person‘s move is A. You both will get 

+6 units.  

 

 With probability (1/8)*(7/8)=0.109, your move is changed. You will both be told that 

your move is B and the other person‘s move is B. You will both get +0 units. 

 

 With probability (1/8)*(1/8)=0.016, both your move and the other person‘s moves are 

changed. You will both be told that your move is B and the other person‘s move is A. 

You will get +8 units and the other person will get -2 units. 

 

Random number of rounds in each interaction 

 

After each round, there is a 7/8 probability of another round, and 1/8 probability that the 

interaction will end. Successive rounds will occur with probability 7/8 each time, until 

the interaction ends (with probability 1/8 after each round). Once the interaction ends, 

you will be randomly re-matched with a different person in the room for another 

interaction. Each interaction has the same setup. You will play a number of such 

interactions with different people.  

 

You will not be paired twice with the same person during the session, or with a person 

that was previously paired with someone that was paired with you, or with someone that 

was paired with someone that was paired with someone that was paired with you, and so 

on. Thus, the pairing is done in such a way that the decisions you make in one interaction 

cannot affect the decisions of the people you will be paired with later in the session.  
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Summary 

 

To summarize, every interaction you have with another person in the experiment includes 

a random number of rounds. After every round, there is a 7/8 probability of another 

round. There will be a number of such interactions, and your behavior has no effect on 

the number of rounds or the number of interactions.  

 

There is a 1/8 probability that the option you choose will not happen and the opposite 

option occurs instead, and the same is true for the person you interact with. You will be 

told which moves actually occur, but you will not know what move the other person 

actually chose. 

  

At the beginning of the session, you have 50 units in your account. At the end of the 

session, you will receive $1 for every 30 units in your account. 

 

 

You will now take a very short quiz to make sure you understand the setup. 

 

The session will then begin with one practice round. This round will not count towards 

your final payoff. 
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Appendix O-B – Demographic statistics by session 

  
       

 b/c error Female Economics Age  

 1.5 1/8 52% 21% 20.9  

 1.5 1/8 48% 18% 21.0  

 1.5 1/8 50% 10% 19.6  

 Average 50% 17% 20.5  

 2 1/8 45% 14% 20.5  

 2 1/8 43% 10% 20.4  

 Average 44% 12% 20.5  

 2.5 1/8 38% 13% 21.3  

 2.5 1/8 64% 9% 19.5  

 2.5 1/8 52% 17% 20.7  

 Average 52% 13% 20.4  

 4 1/8 62% 17% 22.8  

 4 1/8 69% 6% 22.1  

 4 1/8 61% 13% 21.8  

 4 1/8 42% 30% 20.3  

 Average 59% 16% 21.7  

 4 1/16 35% 17% 22.7  

 4 1/16 44% 19% 21.0  

 4 1/16 69% 21% 21.2  

 Average 47% 19% 21.6  

 4 0 41% 6% 24.9  

 4 0 44% 6% 22.8  

 4 0 36% 8% 21.0  

 Average 41% 7% 23.2  
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Appendix O-C – Sequence of game lengths 

                    

 b/c e t0
†
 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15  

 1.5 1/8 3 8 7 10 7 8 9 5 11 9 8 7 8 16      

 1.5 1/8 3 8 7 10 7 8 9 5 11 9 8            

 1.5 1/8 3 8 7 10 7 8 9 5 11 9 8            

 2 1/8 3 8 7 10 7 8 9 5 11 9              

 2 1/8 3 8 7 10 7 8 9 5 11 9 8 7 8 16 4    

 2.5 1/8 3 8 7 10 7 9 10 5 11                

 2.5 1/8 3 8 7 10 7 9 10 5 11 9 8 7          

 2.5 1/8 3 8 7 10 7 8 9 5 11 9 8 7 8 11      

 4 1/8 3 8 7 10 1 8 9 5 11 9 8 7 8        

 4 1/8 3 8 7 10 8 9 6 11 7                

 4 1/8 3 8 7 10 7 8 9 5 11 9 8 7 8 16 4 9  

 4 1/8 3 8 7 10 7 8 9 5 11 9 8            

 4 1/16 3 8 7 10 7 8 9 5 11 9        

 4 1/16 3 8 7 10 7 8 9 5 11 9 8 7 8     

 4 1/16 3 8 7 10 7 8 9 5          

 4 0 3 8 7 10 7 8 9 5 11 9        

 4 0 3 8 7 10 7 8 9           

 4 0 3 8 7 10 7 8 9 5 11 9        

                    

  

† 
t0 was a practice round that did not count toward the players‘ earnings. 

 

The sequence of games in each session is shown in the preceding table. The 

starting place in the sequence of random game lengths that was used in the experiment 

was picked by the programmer, and the sequence following the chosen starting place had 

an unusually low number of short games. Although the average probability over all 

rounds of the game continuing was not significantly different from 7/8 (t-test: p>0.10 for 

all sessions), the overall distribution of game lengths differed significantly from what 

would be expected using a geometric distribution (Chi
2
 goodness of fit test, p<0.05 in all 

sessions).  
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This raises the concern that over the course of the session, subjects might have 

come to believe that the game was more likely to end in later rounds than in earlier ones, 

and adjusted their play accordingly. Particularly, we might expect that the tendency for 

cooperation to decrease over the course of an interaction would be greater in later 

interactions; or put differently, that the relationship between round number and 

cooperation will become more negative as interaction number increases.  

It is not clear why such an effect would alter our findings, but nonetheless we 

check for evidence of this occurring. To do so, we ran a logistic regression with robust 

standard errors clustered on subject and session, including controls for b/c ratio and error 

rate. In addition to round number and interaction number as independent variables, we 

also add a [round X interaction] term. A significant negative coefficient on the [round X 

interaction] term would indicate that in later interactions, subjects are less likely to 

cooperate in later rounds, suggesting that after subjects have had time to learn that games 

are more likely to end in later rounds, they become more likely to defect in those later 

rounds. However, we find no evidence of a such relationship between round number and 

interaction number, (the coefficient for the [round X interaction] term in the regression is 

not significantly different from 0), either when considering all histories (coeff=-0.003, 

p=0.330), only considering histories where in the previous round both players cooperated 

(coeff=-0.004, p=0.418), only considering histories with the possibility of leniency 

(coeff=-0.004, p=0.698) or only considering histories with the possibility of forgiveness 

(coeff=-0.001, p=0.832). This suggests that increasing experience with the game length 

distribution did not affect subjects‘ probability to cooperate in later rounds, and in 

particular did not affect their levels of leniency or forgiveness.  

A second complication with the game lengths is that due to technical difficulties 

with the computer software, the actual sequence of game lengths deviated somewhat 

from the pre-generated sequence in 4 out of the 18 sessions. We did not inform subjects 

of this error (which we were unaware of at the time) and they were most likely not aware 

of it either; no subject commented on the issue, and our experience is that subjects in our 

experiments do communicate with us when they are aware of software errors. 
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Appendix O-D – Equilibrium calculations 

 

O-D.1 Equilibrium calculation for TFT with error 

If both players use TFT then all histories fall into one of 4 phases defined by play in 

the previous round, while what happened 2 rounds ago doesn‘t matter either for current 

play or for continuation:  

 P1: CC yesterday. Here the strategy says to play C.  

 P2: CD yesterday. Here the strategy says to play D. 

 P3: DC yesterday. Here the strategy says to play C. 

 P4: DD yesterday. Here the strategy says to play D  

Regardless of the current phase, next round‘s phase is P1 if both play C; P2 if player 

1 plays C while player 2 plays D; P3 if player 1 plays D while player 2 plays C; and P4 if 

both play D. 

Let the payoffs from following TFT in these phases be 1 2 3 4
, , ,v v v v  

respectively, and let the error rate and discount factor be e and  respectively. Then 

2 2
1 1 2 3 4
(1 ) ( ) (1 )( ( ))v e b c v e e b c v v e v  

2 2
2 1 4 3 2
(1 )( ( )) (1 ) ( ) ( )v e e b c v v e b v e c v  

2 2
3 1 4 2 3
(1 )( ( )) (1 ) ( ) ( )v e e b c v v e c v e b v  

2 2
4 1 2 3 4

( ) (1 )( ( )) (1 )v e b c v e e b c v v e v . 

For example, consider v1. Here both players intend to play C. Thus with 

probability (1-e)
2
, no errors occur, both players play C and remain in phase 1 for the next 

round; and therefore player 1 earns (b-c) now plus the value of v1 discounted by δ. With 

probability e(1-e), player 1 (only) makes an error and accidentally plays D, shifting to 

phase 3 for the next round; therefore player 1 earns b today plus the value of v3 

discounted by δ. Also with probability e(1-e), player 2 (only) makes an error, exploiting 

player 1 and shifting to phase 2 for the next round; therefore player 1 earns -c today plus 

the value of v2. Together this results in the 2
nd

 term e(1-e)(b-c+δ(v2+v3)). Finally, with 

probability e
2
 both players error and play D, shifting to phase 4 in the next round; here 

both earn 0 today, plus the value of v4 discounted by δ. 
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It is enough to consider deviations in P1 and P2 to show that TFT is never an 

equilibrium in the presence of noise; for TFT to be an equilibrium, it is necessary (but not 

sufficient) to have 

2 2
1 1 3 2 4
(1 )( ) (1 ) ( ) ( ) (1 )v e e b c v e b v e c v e e v  

and 

2 2
2 1 3 2 4
(1 ) ( ) (1 )( ) (1 )( )v e b c v e e b v e e c v e v . 

However, these two conditions are mutually exclusive. Thus TFT is never an equilibrium. 

53
 

 

O-D.2 Equilibrium calculation for PTFT with error 

 

If both players use PTFT then all histories fall into one of 2 phases:  

 P1: CC or DD yesterday. Here the strategy says to play C, and what happened 2 

days ago doesn‘t matter either for current play or for continuation. Next round‘s 

phase is P1 if both play C or both play D, else P2. 

 P2: CD or DC yesterday. Here the strategy says to play D, and what happened 2 

days ago again doesn‘t matter either for current play or for continuation. Next 

round‘s phase is P1 if both play C or both play D, else P2. 

Let the payoffs from following PTFT in these phases be 1 2,v v  

respectively, and let the error rate and discount factor be e and  respectively. Then 

2 2 2
1 1 2(1 ) ( ) (1 )( ) ((1 ) ) 2 (1 ) )v e b c e e b c e e v e e v  

                                                 
53

 Moreover, a forgetful version of TFT that forgets the current state and picks a new state randomly with 

some non-zero probability is also never an equilibrium. For TFT, forgetting is equivalent to increasing the 

error rate e, as follows. From the point of view of an individual TFT player, there are two states: s1 (the 

other played C last round) and s2 (the other played D last round). In state s1, TFT plays C with probability 

1-e and play D with probability e; in state s2, TFT plays C with probability e and play D with probability 1-

e. Now imagine that players have a probability 2p of forgetting the state and randomly picking a new state, 

such that with probability p a player switches state. When the state is forgotten in s1 (with probability p), 

the player gets ‗confused‘ and switches to state s2, and therefore intends to defect. Thus a TFT player in 

state s1 plays C with probability (1-p)(1-e)+ep and plays D with probability p(1-e)+(1-p)e. This is 

equivalent to non-forgetful TFT with error rate e‘=e+p-2ep. The same is true when considering a player 

that forgets in state s2, who plays C with probability p(1-e)+(1-p)e and plays D with probability (1-p)(1-

e)+ep. As shown above, TFT is never an equilibrium regardless of the value of e. Therefore forgetful TFT 

is never an equilibrium. 
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2 2
2 1 1 2(1 ) ( ) (1 )(( ) 2 )v e v e b c v e e b c v . 

 

Following PTFT is clearly optimal in P2, so it is enough to check for a one-stage 

deviation in P1. Thus PTFT is an equilibrium if  

2 2
1 2 2 1(1 ) ( ) ( ) (1 )( 2 )v e b v e c v e e b c v  

 

For c=2 and δ=7/8, we evaluate this expression for relevant values of b/c and e.  

        

 e b/c v1 v2 

Phase 1 deviation 

payoff 

Is PTFT an 

equilibrium?  

 1/8 1.5 5.85 5.1 6.98 No  

 1/8 2 11.7 10.2 12.46 No  

 1/8 2.5 17.55 15.3 17.94 No  

 1/8 4 35.11 30.61 34.39 Yes  

 1/16 4 40.69 35.44 38.93 Yes  

 0 4 48 42 44.75 Yes  

        

 

To more fully explore that range of e values over which PTFT is an equilibrium, we plot 

the payoff advantage of deviating in P1 as a function of e, for δ = 7/8, c = 2 and various 

b. We see that the for payoff specifications where PTFT is not an equilibrium at e = 1/8, 

increasing e does not lead to PTFT becoming an equilibrium. 
54

 

 

                                                 
54

 A forgetful version of PTFT that forgets the current state and picks a new state randomly with some non-

zero probability is also not an equilibrium at b/c=1.5, 2 or 2.5, as forgetting for PTFT is equivalent to 

increasing the error rate e, for similar reasons as for TFT. As shown above, increasing the error rate e 

cannot make PTFT an equilibrium for b/c=1.5, b/c=2 or b/c=2.5 with δ=7/8, and therefore forgetful PTFT 

is not an equilibrium for those value. 

 



50 

 

0.1 0.2 0.3 0.4 0.5
0.0
0.2
0.4
0.6
0.8
1.0

Advantage of Phase 1 Deviation, b c 1.5

 

 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

Advantage of Phase 1 Deviation, b c 2

 

0.1 0.2 0.3 0.4 0.5
0.4
0.2
0.0
0.2
0.4
0.6

Advantage of Phase 1 Deviation, b c 2.5

 

 

0.1 0.2 0.3 0.4 0.5

3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.5

Advantage of Phase 1 Deviation, b c 4

 

 



51 

 

O-D.3 Payoffs of 2x2 game between TFT and ALLD and between Grim and ALLD with 

error probability e=1/8 and δ=7/8 

 

 TFT vs. ALLD  Grim vs. ALLD 

       

b/c = 1.5    b/c = 1.5   

 TFT ALLD   Grim ALLD 

TFT 5.09 -1.81  Grim 3.27 -0.66 

ALLD 5.23 1  ALLD 3.49 1 

       

b/c = 2    b/c = 2   

 TFT ALLD   Grim ALLD 

TFT 10.18 -0.81  Grim 6.54 0.34 

ALLD 7.625 2  ALLD 5.32 2 

       

b/c = 2.5    b/c = 2.5   

 TFT ALLD   Grim ALLD 

TFT 15.27 0.19  Grim 9.82 1.34 

ALLD 10.03 3  ALLD 7.15 3 

       

b/c = 4    b/c = 4   

 TFT ALLD   Grim ALLD 

TFT 30.55 3.19  Grim 19.63 4.34 

ALLD 17.25 6  ALLD 12.64 6 
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O-D.4 Payoffs of 2x2 game between TFT and ALLD and between Grim and ALLD with 

error probability e=1/16 and δ=7/8 

 

 TFT vs. ALLD  Grim vs. ALLD 

       

b/c = 1.5    b/c = 1.5   

 TFT ALLD   Grim ALLD 

TFT 5.87 -2.02   Grim 4.29 -1.34 

ALLD 4.27 0.50   ALLD 3.27 0.50 

       

b/c = 2    b/c = 2   

 TFT ALLD   Grim ALLD 

TFT 11.73 -1.52   Grim 8.58 -0.84 

ALLD 6.03 1.00   ALLD 4.69 1.00 

       

b/c = 2.5    b/c = 2.5   

 TFT ALLD   Grim ALLD 

TFT 17.60 -1.02   Grim 12.87 -0.34 

ALLD 7.79 1.50   ALLD 6.11 1.50 

       

b/c = 4    b/c = 4   

 TFT ALLD   Grim ALLD 

TFT 35.20 0.48   Grim 25.73 1.16 

ALLD 13.06 3.00   ALLD 10.38 3.00 
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O-D.5 Equilibrium calculation for Grim with error 

 

If both players use Grim then all histories fall into one of 2 phases:  

 P1: No D yesterday. Here the strategy says to play C, and what happened 2 days 

ago doesn‘t matter either for current play or for continuation. Next round‘s phase 

is P1 if both play C else P2 

 P2: at least one D in the last round: play D. This phase is absorbing.  

Let the payoffs from following Grim in these phases be 
1 2
,v v  respectively, and let the 

error rate and discount factor be e and  respectively. 

Then 2 2 2

1 1 2
(1 ) ( ) (1 )( ) [(1 ) (2 ) ]v e b c e e b c e v e e v , 

2

2 2
( ) (1 )( )v e b c e e b c v  → 2

2
( ( ) (1 )( ))/(1 )v e b c e e b c   

Following Grim is clearly optimal in P2, so it is enough to check for a one-stage 

deviation in P1. Thus Grim is an equilibrium if  

2 2
1 2 1 2 2(1 ) ( ) (1 )( ) (1 )( ) ( )v e b v e e b c v e e v e c v  

For c=2 and δ=7/8, we evaluate this expression for relevant values of b/c and e.  

        

 e b/c v1 v2 

Phase 1 deviation 

payoff 

Is Grim an 

equilibrium?  

 1/8 1.5 3.27 1 3.47 No  

 1/8 2 6.54 2 5.43 Yes  

 1/8 2.5 9.82 3 7.40 Yes  

 1/8 4 19.63 6 13.30 Yes  

 1/16 4 25.73 3 11.17 Yes  

 0 4 48 0 8 Yes  
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O-D.6 Equilibrium calculation for Grim2 with error 

 

If both players use Grim2 then all histories fall into one of 3 phases:  

 P1: No D yesterday. Here the strategy says to play C, and what happened 2 days 

ago doesn‘t matter either for current play or for continuation. Next round‘s phase 

is P1 if both play C else P2 

 P2: D yesterday but none the day before: play C. Next round‘s phase is P1 if both 

play C else P3. 

 P3: at least one D in each of the last two rounds: play D. This phase is absorbing.  

Let the payoffs from following Grim2 in these phases be 1 2 3, ,v v v  respectively, and let the 

error rate and discount factor be e and δ respectively. 

Then 2 2 2
1 1 2(1 ) ( ) (1 )( ) [(1 ) (2 ) ]v e b c e e b c e v e e v , 

2 2
2 1 3(1 ) (1 )( ) (2 ) ]v e b c v e e b c e e v  

2
3 3( ) (1 )( )v e b c e e b c v  → 2

3 ( ( ) (1 )( ))/(1 )v e b c e e b c   

Following Grim2 is clearly optimal in P3, so it is enough to check for one-stage 

deviations in P1 and P2. Thus Grim2 is an equilibrium if  

2 2
1 2 1 2 2(1 ) ( ) (1 )( ) (1 )( ) ( )v e b v e e b c v e e v e c v  and 

2 2
2 3 1 3 3(1 ) ( ) (1 )(( ) ) (1 )( ) ( )v e b v e e b c v e e v e c v  

For c=2 and δ=7/8, we evaluate this expression for relevant values of b/c and e.  

          

 e b/c v1 v2 v3 

Phase 1 

deviation  

payoff 

Phase 2 

deviation  

payoff 

Is Grim2 an 

equilibrium?  

 1/8 1.5 5.69 4.89 1 6.73 3.70 No  

 1/8 2 11.38 9.78 2 11.96 5.90 No  

 1/8 2.5 17.07 14.68 3 17.20 8.10 No  

 1/8 4 34.14 29.35 6 32.89 14.69 Yes  

 1/16 4 41.85 38.12 3 40.92 11.99 Yes  

 0 4 48 48 0 50 8 No  
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To more fully explore that range of e values over which Grim2 is an equilibrium when 

b=8, c=2 and δ=7/8, we plot the payoff advantage of deviating in each state as a function 

of e. Numerical calculation shows that Grim2 is an equilibrium when 0.033 0.278e  . 
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Appendix O-E – Strategy definitions 

 

Here we define each strategy included in our analysis. Each phase is represented 

by a circle, with the strategy‘s move in that phase shown in the center of the circle, and 

transitions out of the phase indicated with arrows.  

We begin with the strategies where transitions between phases depend only on the 

partner‘s move in the previous round: TFT, TF2T, TF3T, 2TFT, 2TF2T, D-TFT, D-TF2T 

and D-TF3T. For clarity we indicate only the partner‘s move with each transition arrow. 

All strategies begin in the leftmost phase. 
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Next we define the strategies where transitions depend on both players‘ actions in 

the previous round: Grim, Grim2, Grim3, D-Grim2, D-Grim3, PTFT, 2PTFT and T2. The 

last round histories associated with each transition are indicated by the pair XiXj where Xi 

is the strategy‘s move last round and Xj is the partner‘s move last round (i.e. CD 

represents histories where the strategy played C last round while the partner played D). 
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When only one transition out of a phase exists, irrespective of either player‘s action, the 

transition is labeled ―All‖. 
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Lastly, we define the strategies whose transitions do not depend on previous histories of 

play: ALLC, ALLD, C-to-ALLD and DC-Alt. 
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Appendix O-F Robustness of strategy analysis 

 

In the main text, we analyze the last 4 interactions of each session to minimize the 

effects of learning. Here we replicate our main analyses considering instead the last 2 or 

last 6 interactions, and find little difference, as shown in the table below. Regardless of 

the cutoff, we find that cooperation and leniency increase substantially going from 

b/c=1.5 to b/c=2, while forgiveness is changes little between b/c=1.5 and b/c=2, and then 

steadily increases from b/c=2 to b/c=4. 

       

 Last 2 Interactions b/c=1.5 b/c=2 b/c=2.5 b/c=4  

 Descriptive statistics  

 %C First Round 53% 79% 78% 77%  

 %C All Rounds 33% 45% 61% 64%  

 Leniency 30% 64% 67% 69%  

 Forgiveness 18% 16% 27% 45%  

 MLE aggregation  

 Cooperative strategies 59% 84% 83% 78%  

 Lenient strategies 21% 53% 62% 61%  

 Forgiving strategies 27% 24% 41% 58%  

       

 Last 4 Interactions b/c=1.5 b/c=2 b/c=2.5 b/c=4  

 Descriptive statistics  

 %C First Round 54% 75% 79% 76%  

 %C All Rounds 32% 49% 61% 59%  

 Leniency 29% 63% 67% 66%  

 Forgiveness 15% 18% 33% 32%  

 MLE aggregation  

 Cooperative strategies 57% 83% 81% 77%  

 Lenient strategies 18% 62% 60% 63%  

 Forgiving strategies 31% 31% 44% 57%  

       

 Last 6 Interactions b/c=1.5 b/c=2 b/c=2.5 b/c=4  

 Descriptive statistics  

 %C First Round 54% 75% 78% 75%  

 %C All Rounds 32% 49% 60% 58%  

 Leniency 30% 59% 68% 64%  

 Forgiveness 14% 19% 31% 32%  

 MLE aggregation  

 Cooperative strategies 59% 82% 83% 77%  

 Lenient strategies 23% 65% 63% 64%  

 Forgiving strategies 36% 37% 46% 57%  

       

 

Our MLE estimation procedure assumes that the probability of mental error in 

strategy implementation, parameterized by γ, is equal across strategies. It is possible, 
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however, that some strategies are more difficult to implement than others and therefore γ 

may vary across strategies. Here we replicate our MLE estimates from Table 3, now 

allowing each strategy to have a different γ. We find little difference.  

            

    b/c=1.5 b/c=2 b/c=2.5 b/c=4  

    E=1/8 E=1/8 E=1/8 E=1/8  

  ALLC 0 0.0195 0.0486 0.062  

  TFT 0.1894 0.0668 0.0864 0.0601  

  TF2T 0.0473 0.019 0.2109 0.2137  

  TF3T 0.0122 0.0186 0.0343 0.0616  

  2TFT 0.069 0.0558 0.0234 0.0381  

  2TF2T 0.0048 0.0903 0.0887 0.1195  

  Grim 0.1551 0.1324 0.1054 0.0297  

  Grim2 0.0567 0.1122 0.0362 0.0902  

  Grim3 0.0429 0.3147 0.1685 0.1188  

  ALLD 0.2362 0.1408 0.1396 0.1669  

  D-TFT 0.1865 0.0299 0.0579 0.0396  

  γ-ALLC 0.6517 0.3617 0.0438 0.2101  

  γ-TFT 0.4615 0.505 0.4034 0.3392  

  γ-TF2T 0.4329 3.8609 0.6046 0.4275  

  γ-TF3T 0.2886 0 0.4152 0.296  

  γ-2TFT 0.7757 0.4042 0.6942 0.5697  

  γ-2TF2T 0.4689 0.4188 0.419 0.3959  

  γ-Grim 0.4602 0.6609 0.6798 0.4077  

  γ-Grim2 0.4536 0.4062 0.6554 1.2917  

  γ-Grim3 0.4474 0.5662 0.408 0.4535  

  γ-ALLD 0.3165 0.2935 0.356 0.2086  

  γ-D-TFT 0.6247 1.4884 0.8278 10  

  Cooperative strategies 58% 83% 80% 79%  

  Lenient strategies 16% 57% 59% 67%  

  Forgiving strategies 32% 27% 49% 56%  
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We now show that our MLE estimates are robust to including two alterative 

classes of simple strategies. Firstly, we consider forgetful memory-1 strategies (we noted 

above that these strategies are not equilibria at b/c=2 or b/c=2.5, but subjects might be 

playing them anyway). To include F-TFT and F-PTFT in the MLE, we take advantage of 

the fact that forgetting is equivalent to experiencing a higher error rate. Thus we add an 

additional parameter γF to the MLE which represents the additional probability of mental 

error for forgetful players (relative to non-forgetful players). The MLE terms for F-TFT 

and F-PTFT are therefore 

 

1

1 1
( )

1 exp( ( ) / ( ) 1 exp( ( ) / )

ikr ikry y

i

k r ikr F ikr F

p s
s s s s   



   
    

       
  

  

where pi(s) is the likelihood of strategy s given the history of subject i, yikr is the actual 

decision of subject i in round r of interaction k (0=D, 1=C), sikr is the predicted move of 

strategy s (-1=D, 1=C) and γ parameterizes the mental error rate of non-forgetful 

strategies. A referee also suggested that subjects might be playing simple strategies which 

simply ignore their partner‘s first move before triggering (i.e. always cooperate in the 

first 2 interactions). To test for this, we also include the strategy C-TFT with always 

plays C for the first 2 periods then switches to TFT, and C-Grim with always plays C for 

the first 2 periods then switches to Grim. As in the main text, we estimate the frequency 

of each strategy using MLE and determine whether a strategy is present at frequency 

significantly greater than 0 using a t-test with bootstrapped standard errors. 

 

As can be seen in the following table, we find little of any of these strategies. 

Bootstrapping standard errors shows that none are present at levels significantly greater 

than 0 (p > 0.05 for all 4 strategies in all 4 payoff specifications). 
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   b/c=1.5 b/c=2 b/c=2.5 b/c=4  

 ALLC 0 0.02 0.01 0.06  

 TFT 0.15 0.04 0.08 0.06  

 TF2T 0.05 0 0.15 0.17  

 TF3T 0.01 0.01 0.05 0.08†  

 2TF2T 0 0.11 0.11 0.12  

 Grim 0.13 0.02 0.07 0.01  

 Grim2 0.05 0.15 0.02 0.01  

 Grim3 0.05 0.28 0.23 0.12  

 PTFT 0 0 0 0  

 2PTFT 0 0.03 0 0  

 2TFT 0.03 0.07 0.02 0.03  

 T2 0 0 0 0  

 ALLD 0.27 0.17 0.14 0.18  

 C-to-ALLD 0 0.02 0 0.01  

 D-TFT 0.09 0 0.02 0  

 D-TF2T 0 0 0.02 0  

 D-TF3T 0.01 0 0 0  

 D-Grim2 0.05 0 0 0  

 D-Grim3 0 0 0.01 0  

 DC-Alt 0 0 0 0  

 C-TFT 0.03 0.03 0 0.02  

 C-Grim 0.01 0.04 0.03 0.03  

 F-TFT 0.07 0.03 0.06 0.04  

 F-PTFT 0 0 0 0.05  

 Gamma 0.43 0.48 0.46 0.37  

 Gamma_F 0.6 2.17 1.09 1.92  
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 A referee also suggested the strategy that cooperates until the fraction of D moves by the 

partner passes some threshold, at which point it switches permanently to defection. To 

test for this possibility, we re-analyze the data including this family of strategies. We 

include 9 strategies which stop cooperating once the fraction of Ds by the partner is 

greater than 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%. We find that none of 

these strategies are present at a frequency significantly greater than 0 in any payoff 

specification (p>0.05 for all). The MLE results are shown in the following table: 

       

   b/c=1.5 b/c=2 b/c=2.5 b/c=4  

 ALLC 0 0.012 0 0.04  

 TFT 0.1648 0.065 0.088 0.064  

 TF2T 0.0459 0 0.1719 0.194  

 TF3T 0.0099 0.038 0.0383 0.083  

 2TFT 0.0033 0.097 0.1038 0.093  

 2TF2T 0.126 0.066 0.1147 0.028  

 Grim 0.0497 0.187 0.0093 0.023  

 Grim2 0.0321 0.245 0.1997 0.065  

 Grim3 0.054 0.07 0 0.013  

 ALLD 0.2848 0.173 0.1407 0.227  

 D-TFT 0.1321 0 0.0478 0  

 FracD-10% 0 0 0 0.029  

 FracD-20% 0 0 0 0  

 FracD-30% 0.0273 0 0 0.016  

 FracD-40% 0.0224 0 0 0  

 FracD-50% 0 0.029 0.0859 0  

 FracD-60% 0.0446 0 0 0.077  

 FracD-70% 0.0031 0 0 0.048  

 FracD-80% 0 0 0 0  

 FracD-90% 0 0.017 0 0  

 Gamma 0.453 0.497 0.49 0.423  
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Appendix O-G MLE estimates including stochastically forgiving strategies 

 

 

Our main analysis considers only deterministic strategies. Here we extend the 

MLE formulation to include mixed strategies. The original formulation is 

1

1 1
( )

1 exp( ( ) / ) 1 exp( ( ) / )

ikr ikry y

i

k r ikr ikr

p s
s s s s 



   
    

     
  

where pi(s) is the likelihood of strategy s given the history of subject i, yikr is the actual 

decision of subject i in round r of interaction k (0=D, 1=C), sikr is the predicted move of 

strategy s (-1=D, 1=C) and γ parameterizes the mental error rate. We replace this with a 

new formulation  

 

1

( )

1 1
(1 )

1 exp( 1/ ) 1 exp(1/ )

1 1
. (1 )

1 exp( 1/ ) 1 exp(1/ )

ikr

ikr

i

y
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k r
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ikr ikr

p s

s s

s s
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    
     

      

    
     

      


 

 

where sikr now represents the probability that strategy s cooperates given the history 

preceding round r of interaction k (0 to 1). 

We use this new formulation to consider stochastic conditional strategies. In 

particular we explore a family of ‗generous‘ TFT (GTFT) strategies which have received 

significant attention in the evolutionary game theory literature (e.g. Nowak and Sigmund 

1990). These strategies are stochastically forgiving. Like TFT, GTFT always responds to 

C with C. In response to an opponent‘s D, however, GTFT stochastically cooperates with 

probability q. 

First we analyze simulated data to see whether the MLE can differentiate between 

a GTFT that forgives defection 20% of the time and TF3T. We simulate a session with 10 

ALLD players, 10 TF3T players, and 10 GTFT-2 players. We simulate 4 interactions, 

each lasting 8 rounds, and find that the MLE correctly assigns 1/3 to ALLD, TF3T and 

GTFT-2. Thus the MLE is able to distinguish between memory-1 stochastic forgiveness 

and longer deterministic forgiveness. 
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We now reanalyze our data using the 11 strategies from the main text Table 3 plus 

9 GTFT variants- those which forgive defection with 10% probability (GTFT-1), 20% 

probability (GTFT-2), … 90% probability (GTFT-9). We find a somewhat sizable 

fraction of people playing stochastically forgiving memory 1 strategies (between 10 and 

19% in the treatments with cooperative equilibria). However, the inclusion of these 

strategies doesn't undermine the importance of lenient strategies with more than 1 period 

of memory – the longer memory lenient strategies are much more common: 

 

 b/c=1.5 b/c=2 b/c=2.5 b/c=4 

GTFT-X 11% 12% 10% 19% 

TF2T+TF3T+2TF2T+Grim2+Grim3 16% 57% 51% 43% 

 

Thus we conclude that exploring stochastic strategies is an interesting avenue for future 

research, but that our main findings related to leniency are robust to including stochastic 

forgiveness.  
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Appendix O-H Logistic regression analyzing dependence on play 2 rounds ago 

 

In the main text, we use a logistic regression to provide evidence that subjects‘ 

decisions are influenced by the partner‘s move two rounds ago as well as decisions in the 

previous round. A potential concern with this methodology lies in the possibility for such 

correlations to occur in heterogeneous populations of subjects with different strategies 

each of which conditions on at most play in the previous period. This is because the 

partner‘s decision two periods ago can give information about a subject‘s type even if it 

does not directly influence her decision.  For example, consider a population of ½ ALLD 

and ½ TFT, and imagine that in the previous round both subject splayed C. If Player A 

played C two rounds ago then Player A is much more likely to be a TFT player than an 

ALLD player. This is because last round Player A played C in response to her partner‘s C 

two rounds ago, and this is consistent with TFT but not ALLD. Therefore Player A is also 

likely to play C now.   If Player A‘s partner played D two rounds ago, however, then 

Player A is equally likely to be TFT or ALLD, because both strategies intend to play D in 

response to D. Therefore Player A is equally likely to play C or D in current round. And 

so if Player A‘s partner played C two rounds ago, she is more likely to play C now then if 

her partner played D last round, even though her strategy does not look back two periods.  

Including controls for player type can help address this issue. For example, in a 

population of ALLD and TFT players, first round cooperation can do a good job of 

cleanly differentiating types. First round cooperation does not differentiate between TFT 

and GTFT, however, but GTFT players will have higher overall cooperation. Thus we 

include controls for both first round cooperation and overall cooperation in our 

regression.  

To explore how pervasive of a problem bias stemming from heterogeneity might be 

for our analysis, and how effective our controls are for mitigating it, we conduct various 

simulations. We consider 5 different populations: 

 

i. 1/3 ALLD, 1/3 TFT, 1/3 GTFT-5 

ii. 1/3 ALLD, 1/3 TFT, 1/3 F-TFT (forgets the state with 10% probability) 

iii. 1/2 ALLD, 1/2 TFT 
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iv. 1/2 75%-TFT 25%-CoinFlip, 1/2 25%-TFT 75%-CoinFlip (on each decision, 

these strategies randomly choose to either play according to TFT or select a move 

at random (i.e. CoinFlip) – one half  the population plays TFT 75% of the time, 

the other half picks randomly 75% the time) 

v. 1/2 ALLD, 1/2 TF2T 

 

Agents in populations (i), (ii), (iii) and (iv) do not condition on play two periods ago, 

while 1/2 of the agents in population (v) do. For each population, we simulate 3 sessions 

of 30 players each, playing 4 interactions each last 8 periods (for maximum comparability 

to our data). For each population we conduct 25 simulation replicates, and for each 

replicate we perform the logistic regression with correlated random effects described in 

the main text (own decision as a function of partner‘s move 2 rounds ago, own move 2 

rounds ago, other‘s move last round, own move last round, own frequency of first round 

cooperation, and own frequency of overall cooperation). Across the 100 simulations 

using only memory 1 strategies, we find 4 instances in which other‘s play two rounds ago 

is significant at the p<0.05 level, consistent with what is expected due to chance. In 

contrast, we consistently find a highly significant effect of play two periods ago for every 

replicate of (v), where agents are in fact conditioning on play two rounds ago.  

Examining the size of the coefficient for partner‘s move 2 rounds ago, not just the p-

value, gives further insight into the relative importance of earlier play. We find that in all 

4 scenarios where agents are not actually conditioning on play 2 rounds ago, the 

coefficient for partner‘s move 2 rounds ago is at least an order of magnitude smaller than 

the coefficients for play 1 round ago (usually several orders of magnitude smaller). In the 

scenario where many agents are actually conditioning on play 2 rounds ago, conversely, 

all coefficients are of the same order of magnitude. In our analysis of the data from our 

experiments, we find the latter result rather than the former: a large coefficient on 

partner‘s move 2 rounds ago, on the same order of magnitude as the other coefficients.  

These results suggest that we are in fact picking up subjects explicitly conditioning on the 

outcome 2 periods ago, rather than only finding spurious correlations due to 

heterogeneity and stochastic strategies. Graphically displaying these relationships shows 
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a substantial and consistent effect of play two rounds ago, across all states in the previous 

round: 
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Appendix O-I Self-reported strategy descriptions 

 

 The post-experimental questionnaire included a free-response question in which 

subjects had the option of describing the strategy they used in the game. The responses of 

those subject who answered are reproduced here. 

 

b/c=1.5, E=1/8 

 I almost always started by choosing B and continued to play B for the subsequent 

rounds 

 I chose B almost all the time because you are guaranteed not to lose any points 

with B 

 I chose A to start with. If the other person also chose A, I switched to B the next 

round. If they too chose B, I stuck with it. If they chose A, I would make a 50/50 

decision between A and B 

 Once B was played by either player (including by me if my choice was switched) 

I played B for the rest of the interaction 

 I chose B. I continued to chose B unless I felt the daring to press A. I chose B 98 

 I'd start with B and continue if he played B. if he did A, I'd switch 

 I started out choosing B, but if someone chose A twice I'd play A (I think). If 

someone was playing straight Bs, I'd occasionally play an A in an effort to guilt 

them into playing an A (at which point I'd have switched back to straight Bs) 

 sometimes I started with B but rarely 

 i started by choosing B. if the other person played A in the next round, i started 

playing A until the other person picked B in a later round. If, after that round, they 

chose A again, i continued to play A 

 i chose B every time unless for two rounds in a row the other person played A 

 i chose B most (if not all my rounds) because i wanted to maximize my points and 

minimize my losses 

 random 

 i chose A once then chose B the rest of the time 

 i played A until they played B twice. Then i would switch to B. if they dont 

switch back to B, i would keep playing B or possibly do a one-off and switch to A 

(only if i have positive (or more than 2) points) 

 i played B every chance i had because i know that the conservative strategy can 

win. However, i think i played A twice over the entire experiment because i was 

bored of pressing B 

 always play A. switch to B if other player plays B more than 2 times in a row 

 i basically always chose B 

 always choose B. you cannot lose 

 if it became clear we were going tit for tat with each other I‘d try and break out of 

the cycle by playing A even if his or her last move were B 
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 i start by choosing B. if the other person plays A i will then choose A the next 

round. If the other person plays A twice in a row or every other time i then play A 

 

b/c=2, E=1/8 

 I chose B every time because it had the least risk 

 start with A. always chose A unless the person goes B twice in a row 

 you want to convey trustworthiness so when/if your response gets 

changed/changes you will remain with both As subsequently. I chose A until the 

other person played B 2x, unless it came in the middle of a string of As. I would 

return to A if my partner did 

 I started with A. if I got B back, I would usually keep playing B unless they 

switched to A. if I got A back, I would usually play A, but slip in a few B's. 

hoping they would appear accidental. 

 I played A until I thought the person was a B idiot, which was based on frequency 

not total amount of B's or A's chosen 

 basically, I start with A and assume A from my opponent until otherwise noted. If 

opponent played B. I would switch to B until /unless my opponent went back to A 

indicating the B was a random switch by the comp from A. 

 random plays: until the other player plays B. Then, play B afterwards. 

 usually, I started by choosing B, then switched to A if the person played A twice 

in a row 

 if the other person gave me 4 points and lost 2 points in the previous round I 

would try to do the same. if the other person consistently chose B I didn‘t want to 

chose A because I would only lose points and gain none. I would chose B after a 

round where I played A and the other played B, because in the previous round I 

gave up points to the other person so I expect them to do the same for me in this 

round 

 AAABAABABB. always 3 As in the beginning unless the person played all Bs, 

in which case I did all Bs 

 never played A 

 along with A, build trust/rapport that would lead to best outcome for both 

 wanted to avoid a B vs. B stalemate  

 if I felt the round was ending and there was no incentive to further build the 

relationship, I might pick B. the other person might have chosen A, but his choice 

switched by chance. So to reciprocate his intensions, I might choose A 

 I tried to use the tit for tat strategy to earn the most points in the long run. the first 

time the other player played B, I gave them the benefit of the doubt in that the 

computer had chosen for them. 

 A makes the most sense. Both have incentive to gain whereas B only one person 

has incentive or both get nothing. 

 lull them into thinking you were playing fairly (how barbaric) 

 when I saw a string of "A" I felt I could trust them. String of "B"s, I didn‘t 

 I would most likely play A for a few rounds as long as the other person was doing 

the same. Every now and then I would throw in a B to maximize my points. I 

would also play B if the other person had previously played B. I would never 
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choose B twice in a row because that would most likely lead to both persons 

choosing B for the remainder of the experiment. I would start each trial by 

choosing A. I would choose A until I decided to switch to gain extra points, or 

until the other person chose B. if that happened I would choose B the next round. 

If I chose B and the other person chose A, then I would always choose A the next 

round. rare exceptions: i would play B again only sometimes if the trial had been 

going for a while and i thought it would be the last round. if i ever chose B twice 

in a row, then i would choose B for the rest of the experiment unless it was really 

early and the other person played A twice 

 

b/c=2.5, E=1/8 

 my strategy was as follows: -start with A -after one B by other players, assume it 

was an error and continue with As -after two consecutive Bs by other player, 

assume he is a selfish jerk and stay with Bs for rest of interaction. Only when 

errors mixed up my responses and confused things did I have to become creative. 

 I want to build trust with the other person. I wanted to give the other person the 

benefit of the doubt that his or her answer was changed by the computer. 

 i didn‘t want to get taken advantage of. 

 i wouldn‘t choose B after AA. After AB, I figured it could have been the glitch 

that made them possibly choose B 7/8 of the time - i wouldn‘t choose B, I'd give 

the other person one more chance. I always chose A first, and if my action was B 

it was because the 7/8 glitch made me or the other person continually played B.  

 i never chose A, i always chose B. 

 benefit of the doubt: maybe he meant to do A so he doesn‘t yet deserve retaliation 

 i would play B after AA if i had a feeling the computer would change it to A.  

 there was a possibility that the other person was picked A but B was what the 

result. everybody wanted to make as much money as they could and if they all 

picked B every round, nobody would get anything so it would be important to 

start the first few rounds with A that way I could let the other person know that if 

we cooperate, we can go a long way 

 B could have been randomly thrown out and not their choice. to see if they 

randomly selected B and would throw more A choices and work cooperatively, I 

might choose A. 

 choose A initially to earn trust so that I can eventually use B to earn more later. 

 didn't really think about other person, but felt taking risk to gain money was better 

than getting $0 

 basically I took into consideration karma. I would click A again just to see if it 

wasn't the 1/8 probability that made the other person choose B, and knowing this 

determined the rest of my responses. 

 collusion in the long run in game theory can lead to a greater maximum of welfare 

instead of Nash equilibrium 

 I figured that if the other person had been choosing A, they would choose it again 

and I'd get 3 units or my 1/8th probability of my choice coming out the opposite 

had not yet occurred so I took my chances that it would w/ A. 
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 if there was no reason to believe the other person chose B on purpose/would 

continue to choose B, I would choose A.  

 I would cooperate as long as I thought the other person was. If I had done several 

(2-3) rounds of A I would then do B because it would look more like it was 

unintentional. 

 It depended a lot on the person I played. one person chose B every time so I had 

to do the same in order to not get taken advantage of. Other times I would mostly 

press A and throw in a few Bs if the person was cooperative. X . 

 I pretty much always played A and assumed if the person played B it was an 

error. If a person played B twice in a row I would sometimes play B in the next 

round. 

 Gain trust by starting with A for 4 rounds then change to B. 

 If they play B more than once, attribute it to intention not error and respond 

accordingly. 

 I would usually choose B during the first round, then A for a few rounds, and then 

B once or twice later on.  

 I would always start with A, and play A the second round. If the person played B 

both times, I switched to B. If the person played A at least 1 of those items, I 

would continue with A until the 6th or 7th round. then I'd play B. 

 I punished for multiple B choices, not when it was just one and could have been 

accidental. 

 I just wanted to make the most money per round possible. 

 sometimes I chose A to establish it as a pattern so deviations were more likely to 

be interpreted as error. 

 If they had more than 2 rounds with B, I went with B too, as little chance this was 

due to error. Or i went with B if their choice of B was greater than 1/8. 

 played A consistently until other person played B three times, then switched to B 

until end of round.  

 Played for a number of periods and realized that the average number of periods 

was between 7-10, so played B to maximize profit closer to the end. 

 i acted fully in self-interest. However this is a PD so my best interest goes 

alongside what of my "partner". the interpretation of a B depends on how many 

rounds of A-A have occurred. If only 1, i will think it is more probable that it was 

intentional. If we have gone through A-A 5 times or more, i feel it is very unlikely 

it was intentional. 

 i gave very little thought to the feelings of the other player at all. I played B every 

time to maximize my points and assumed they were doing the same so that any 

playing of A was unintentional. 

 I rarely chose A b/c it earned you least points and seemed most high-risk. risk 

averse: playing B nets me more points and rarely costs me. 

 I gave everyone the benefit of a doubt 1 round before during and after they played 

B. defensively if after 3 of their B rounds in a row I would [illeg] B as well. 

 by choosing A, both players were in a mutually beneficial state, but only as long 

as they both kept choosing. 

 I tried tit for 2 tat. 
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 some people played B all the time so I didn't want to fall into that perpetual cycle 

of losing. if the person had played B before, I probably didn't think it was chance. 

 mostly tit for tat strategy with the understanding that a defect might have been by 

error and also hoping the other would assume my defection was an error when the 

other was a cooperator. 

 

b/c=4, E=1/8 

 I appreciated their choosing A (I would always assume they chose it). hoped a B 

was a 1 time thing on their part and so didn‘t want to sour future relations. 

 I selected B at times because I doubted the trustworthiness of the other player. 

[if?] I decided to trust the other person would consistently select A 

 depends on how many times the player has picked B. 

 I thought their B may have been the 1/8 that the answer was switched. If so, they 

might come back to A in this round and we'd be even again. if they kept playing 

B, I'd play B so I wouldn‘t lose more points and so they wouldn‘t get more points 

 If I were continuously playing A then they played B out of nowhere I'd play B the 

next round out of revenge. No need to be greedy. if they were to continue to play 

B then I would to, that way no one wins or gains. 

 I would choose A unless the other person picked B. If the other person picked B, 

the next round I would also pick B. if the person then picked A I would think that 

it was an error and then continue to click A. if the person pressed B, i would 

continue to choose B. if I had accidentally picked B, i would pick A and make it 

up to the other person. then if they had chosen B i would assume they were 

checking me and continue to choose A. 

 I never chose B if the previous round was both As. B could have been the error so 

I was willing to give the other person benefit of the doubt. 

 if I chose A, and the other person chose B, the next time I chose B as a defense 

mechanism so I didn‘t lose anymore points 

 in most of the interactions, if the other person did not play A at first, they 

eventually played A consistently after seeing that I had played A for the start two 

or more times in a row. Therefore, a mutual strategy seemed to be derived where 

both players would play A every time in order to maximize the number of units 

gained in the whole interaction (mutual altruistic response). Additionally, 

whenever this strategy was employed and the screen showed one time that the 

other person chose B, i automatically attributed it to error and continued to play A 

for the following rounds. 

 trying to get equilibrium of all-As 

 it felt terrible being betrayed after a long "A" streak. assume at first that their B 

could be a mistake. . 

 if both played A, 12 total points earned. That‘s why I played it. 

 keep the other person honest. Compensate for errors. 

 when someone, myself or the other got B I stuck with B straight through. 

 after I got a B from someone I always gave them the benefit of the doubt that it 

was due to error. After that if I got another B I would usually give B as well. 
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 there was a chance it was the computer if they chose A & I chose A, then we 

could both get six points, which outweighs the risk of losing 2 point, which is 

something like 7 cents. If they were consistently choosing B (for 3 rounds) then I 

would switch to B as well. However. I did so knowing we could both be better off 

with As. I always started with A for at least the 1st 2 rounds to see how much the 

other person wanted to cooperate. In rounds that we both began choosing B I 

never made as much money. 

 I always played A unless they had played B. 

 as the number of rounds increased. I was more likely to play B in the later rounds 

(expected number of rounds per interaction=8). 

 B was the dominant strategy but gave better payoffs. I always chose B. 

 since this game was completely anonymous and there was a chance that my 

choice would be changed, I felt no incentive to be nice and choose A . 

 I started with A to demonstrate good faith and hoped that the other person would 

too so we could establish picking A. I had originally been skeptical and started 

with B, but then we both ended up choosing B for each round. 

 if you are perceived as trustworthy, the interaction benefits both parties. 

 

b/c=4, E=1/16 

 Random chance might have produced their Bs so I want to try to possibly salvage 

the relationship. I would simply ignore occasional B's in a long string of A's 

 The only way to earn money was to work together most of the time. I wasn't sure 

if B was the players intended decision. 

 It could have been an error that B was played. 

 Depends on if B was just one occurrence, or if they had played lots of Bs before 

 I started with B in several rounds and stuck with it. The last few rounds I started 

with A. 

 I would continue for a string of As, but if the other player played a B 2\3 times 

recently I would switch to Bs. 

 didn't choose B at all during all interactions 

 play A. If they go two Bs in a row play B (once or twice) then get back to A's 

 if we both chose A, we typically stuck with that for the remainder of tee 

interaction. 

 play A until other person chooses B X2, then play B and see what the outcome is. 

Play A next round etc. 

 I never chose B on purpose, and to avoid getting into a locked system of B's I 

never played B. 

 I chose A to begin with and then about every fourth time chose B to get more 

earnings. I then went back to A so as to blame the previous round on the1\16th 

chance of A change. If the other person played B twice in response, I chose B the 

rest of the time. 

 Always stat with B. If other player is B, stay B until other player chooses A. If 

other player is A, stay A. If switch to B, give benefit of doubt due to 1\16 switch. 

If repeats, go to B. 

 I always put A regardless of any choice given to me. 
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 I chose A for the whole interaction except for one B or if the other played B many 

times. 

 I chose A until a few rounds passed. I then would throw in a B to make it seem as 

though the computer randomly chose. 

 I played A as much as possible and then switched to B if they picked B twice in a 

row. Occasio.lly I'd try picking an A twice if we played for a long time at 0 to see 

if they wanted to actually switch to A. 

 I started by choosing A, and continued to do so. If the other player chose B, I 

would choose B the next round. Then I would go back to A. I never chose B 

unprovoked, and if the computer generated that response for me, I would choose 

A the next round. 

 I started by choosing A. Then I chose A always unless the other player chose B 

twice. If so, I chose B next round. If they chose B in that round, I chose B next. If 

they chose A in that round, I chose A next. 

 I started choosing A until the other person choose B two times. Then I switched to 

B until the other person chose A. I immediately returned to choosing A as soon as 

the other person chose A. (A merciful strategy) 

 I started play A 3 times to attempt to signal that I wanted to collaborate. If the 

other did not switch from B, I would change to B to attempt to change his/her 

play to A. 

 If we got on a spree of both A's I'd pick B to get the +8 and then switch back. It 

eventually didn't really affect my earnings considerably. 

 Started choosing B and then switched to choosing A or B once I ended up with 0 

continuously. 

 

b/c=4, E=0 

 If they were helping me, I was willing to help them, 1\16 of a dollar isn't a lot to 

lose. If they chose B first, I felt like they were being greedy and I wanted to show 

them that strategy wouldn't pay off in the long run 

 Always B. 

 I hate when things don't make sense. To choose B in after we both chose A would 

hurt me because the other player would stop choosing A and I'd earn no points. 

Whether my motives are self-serving or altruistic, A is the most logical. If they've 

previously chosen B many times, I don't like them, and I don't want them to earn 

any points 

 first I chose A. Then I started with B after seeing the first interaction, I would 

choose either A or B. 

 going for B was not helping with long term sustained benefit. 

 If the other person did A I would follow with A 

 Both players win if both pick A, no one likes negative points 

 If it were one of the middle rounds, I would definitely choose A. If one of the 

later rounds, most likely B. 

 Played A every time. Only had 1 person one time choose B. Played A next round 

to give them a chance. I think if they had chosen B again I might have considered 

switching to B but my plan was to always play A. 
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 I chose A to take more money, collectively, from the university I would prefer 

another student have it that the university.  

 Choosing anything other than A 100% of the time is just mean and vindictive. Its 

just a study why not help people get rich? 

 I played A 3 to 4 times after which I only played B 

 I started by choosing A and switched to B if the other player played B in the 

previous round, but would remain on B as long as the other player did too. 

 I started by choosing B. then if the other person chose A in the next round I would 

choose A. If the other person chose B too, then I would continue playing B. 
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