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Psychologists, neuroscientists, and economists often conceptualize decisions as arising from
processes that lie along a continuum from automatic (i.e., “hardwired” or over-learned, but
relatively inflexible) to controlled (less efficient and effortful, but more flexible). Control is
central to human cognition, and plays a key role in our ability to modify the world to suit
our needs. Given its advantages, reliance on controlled processing may seem predestined to
increase within the population over time. Here, we examine whether this is so by introducing
an evolutionary game theoretic model of agents that vary in their use of automatic versus
controlled processes, and in which cognitive processing modifies the environment in which
the agents interact. We find that, under a wide range of parameters and model assumptions,
cycles emerge in which the prevalence of each type of processing in the population oscillates
between two extremes. Rather than inexorably increasing, the emergence of control often
creates conditions that lead to its own demise by allowing automaticity to also flourish,
thereby undermining the progress made by the initial emergence of controlled processing.
We speculate that this observation may have relevance for understanding similar cycles
across human history, and may lend insight into some of the circumstances and challenges
currently faced by our species.
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1. Introduction

Cognitive processes have long been conceptualized as lying along a continuum from automatic to
controlled (Allport, 1954; Cohen, Dunbar, & McClelland, 1990; Kahneman & Treisman, 1984;
Posner & Snyder, 1975; Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). More automatic
processes are more “hardwired” or over-learned, which leads to greater efficiency (e.g. greater
speed and less effort) at the cost of reduced flexibility and less ability to adjust to the details of the
current situation. More controlled processes, conversely, involve more deliberation and thought —
requiring greater investment of time and effort, but allowing a greater degree of flexibility and
sensitivity to specifics and/or circumstances of the particular decision. This distinction remains a
fundamental tenet of cognitive psychology that has continued to be a focus of intensive research
(Botvinick & Cohen, 2014; Evans & Stanovich, 2013), influencing thinking in the behavioral and
neurobiological sciences more generally (e.g. Cushman (2013); Fudenberg and Levine (2006);
Hare, Camerer, and Rangel (2009); (2003); Kahneman (2011); McClure, Laibson, Loewenstein,
and Cohen (2004); Miller and Cohen (2001); Rand, Greene, and Nowak (2012); Stanovich and
West (2000)).

The remarkable capacity for controlled processing is considered one of the distinguishing
characteristics of human cognition. Often termed "cognitive control”, it is critical to every faculty
that is considered to be distinctively human, including reasoning, problem solving, planning, and
symbolic language, and the role that these play in the formation and function of societies. Given
the virtues of controlled processing, and the externalities to which it gives rise (e.g. advanced
technologies in virtually in every domain of human function, including agriculture, housing,
transportation, communication and large-scale economics), one might imagine that the prevalence
of cognitive control among agents in a population would be directly (positively) associated with
the fitness of that population. If so, two corollaries would seem to follow: the spread of controlled
processing within a population should be inexorable, and that spread should be associated with the
inexorable success of the population. Here, we challenge these conclusions on theoretical grounds.

The work we present is inspired in part by observations of human history. Anthropological
evidence suggests that many cultures that have developed advanced technologies — presumably
evidence of the emergence of cognitive control within at least some proportion of the population
— have ultimately met with demise (e.g. Diamond (2005); Richerson, Boyd, and Bettinger (2009);
Schwindt et al. (2016); Turner and Sabloff (2012)). It is possible that this demise could have been
induced by fully exogenous factors beyond the influence of the population (e.g. environmental
shocks). It is also possible, however, that at least in some cases this demise could have arisen from
a failure of the population as a whole to act with foresight (i.e., in a manner that controlled
processing would seem to make possible) — for example, using new technologies to consume
resources in an unsustainable way, leading to exhaustion of the environment or increased
vulnerability to environmental shocks.

Although the empirical evidence is at best suggestive, we believe that this possibility of
controlled-based success within a population leading to lack-of-control-based failure is intriguing,
and warrants formal exploration. In part, this is because it raises a question that has potentially
profound consequences for the present circumstances of our species: why do populations
comprised of agents with the rational faculties necessary to produce sophisticated technologies
sometimes fail to act as rational stewards of such technologies? There are of course many possible
responses to this question. One is that modern circumstances themselves refute the assertion: we
have not met with, nor are we at risk of, such failure — the risks are either contrived, or are ones
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that new technological innovations will resolve. This is a possibility. However, the cost of at least
considering the risks of failure seems small, while the danger of failing to accurately identify and
respond to that risk seems infinitely greater.

It is in this spirit that we consider potentially fundamental dynamics that may occur as the
capacity for cognitive control emerges in a population, spreads, and affects the environment
— dynamics that we show can lead to cycles of growth followed by dramatic collapse as easily as
they can lead to stability. Describing these dynamics in formal terms may, at the least, lay the
foundation for exploring their relevance to the complex circumstances in which the human species
presently finds itself. At best, they may help identify factors that could be leveraged to mitigate
potential risks, and increase the likelihood of a stable and promising future.

Specifically, we explore the possibility that the increasing prevalence of controlled
processing in a population (within and/or across its individuals), and the impact this has on the
environment, can lead to initial improvements in the fitness of the population; but that, under a
range of circumstances, this growth can sow the seeds of its own demise. We examine several
scenarios that can produce this effect — and the reasons for it — using a formal theoretical approach
that applies mathematical methods from non-linear dynamical systems analysis and population
biology together with numerical methods and computational simulations.

The models we present here implement the distinction between controlled and automatic
processing in simple, but principled forms. While they certainly do not capture the full complexity
of cognitive processes of which humans are capable, nor the underlying continuity of the spectrum
from controlled to automatic processing (e.g., Cohen et al. (1990); Kahneman and Treisman
(1984)), the models we present do capture critical distinctions that underlie the dimension of
controlled vs. automatic processing. Furthermore, judicious simplification has allowed us to build
population models of agents that incorporate this critical dimension of processing. This, in turn,
has allowed us to pursue some of the first efforts to incorporate this fundamental construct of
automatic versus controlled processing from cognitive psychology into population models, and
use these to ask questions about the emergence, impact and evolution of psychological processes
at the population level.

2. Prior theoretical work

While formal models have provided insight into the mechanisms underlying automatic
and controlled processes and the impact of these processes on individual behavior (Cohen et al.,
1990; Miller & Cohen, 2001), these models have not addressed their interaction at the population
level over the course of evolutionary timescales (whether cultural or genetic). Conversely,
population models have largely ignored the dimension of controlled vs. automatic processing,
instead just focusing on the evolution of agents’ behaviors rather than the underlying cognitive
processes that drive that behavior.

Despite this overall lack of consideration of evolution along the dimension of automatic
versus controlled cognition, some work has begun to explore the population dynamics of factors
that have much in common with this dimension. For example, Wolf, Doorn, and Weissing (2008)
consider the population dynamics that arise from the competition between agents with
“unresponsive personalities” that are inflexible in the face of a fluctuating environment (akin to
reliance on automatic processing), and agents with “responsive personalities” that are able to
change flexibility but must pay a cost to do so (akin to reliance on controlled processing). Their
simulated agents face an environment that alternates between two possible states and each agent
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must choose between two actions at any given time, with each action optimally matched to one
of the two environmental states. Based on the assumption that the benefit of choosing the correct
action is decreasing in the number of other agents who also choose that action (i.e. that the
benefits of “responsiveness” are negatively frequency dependent), they show that stable
coexistence of responsive and unresponsive agents is a robust feature of the resulting population
dynamics. Notably, they do not observe any cyclical dynamics in the frequency of responsive
Versus unresponsive agents.

Another example is the work of Bear and Rand (2016) and Bear, Kagan, and Rand
(2017), who examine automatic and controlled processing in the context of the evolution of
cooperation. Their agents play Prisoner’s Dilemma games that sometimes are one-shot (such that
defection is always payoff-maximizing) and at other times involve future consequences (such
that cooperation is payoff-maximizing if the other player also cooperates). Thus, their agents
face a varying social environment. Agents can either use automatic processing, inflexibly
choosing to cooperate or defect without conditioning on game type, or they can pay a cost to use
controlled processing and base their action on game type. They find that evolution leads to a
population in which automatic and controlled processing stably coexist within each individual if
games with future consequences are sufficiently likely. That is, the equilibrium strategy is to (i)
cooperate when using automatic processing, but (ii) sometimes exercise control (in trials for
which the cost of control is sufficiently small) and switch to defection if it turns out the game is
1-shot. Like Wolf et al. (2008), they do not observe cyclical dynamics in the extent of automatic
versus controlled processing.

While these models have begun to address the population dynamics of automatic versus
controlled processing, they do not present a general framework for studying this issue. Rather,
each considers one specific application of the distinction between these types of processing.
More importantly, these models omit a key feature of the natural world suggested above: not
only can the environment (physical and/or social) determine the adaptive advantage of a
particular cognitive style, but the prevalence of that cognitive style within the population may, in
turn, impact the environment; that is, there can be feedback between environment and cognition
(Cohen, 2005).

The interaction between the behavior of agents in a population and the environment has
been explored previously in evolutionary models (e.g., niche construction; Bergmuller and
Taborsky (2010); Kendal, Tehrani, and Odling-Smee (2011); Laland, Odling-Smee, and Feldman
(1999)) — but not, to our knowledge, the interaction between agents’ cognition and the
environment. Our group has recently begun an examination of the influence that such cognition-
environment feedback has on the evolutionary dynamics of the balance between controlled and
automatic processing in the context of intertemporal choice (Tomlin, Rand, Ludvig, & Cohen,
2015; Toupo, Strogatz, Cohen, & Rand, 2015).

In this work, agents foraging for goods could engage in either automatic or controlled
processing as they chose how much of those goods to consume and competed with their fellow
agents for access to those goods. While automatic processing led to the immediate consumption
of goods (and maximal instantaneous individual fitness), control — and the associated capacity
for forethought and planning — allowed agents to make better use of the resources they acquired
by consuming them in an optimal way (leading to higher long-term fitness). However, because
control required time and effort, automatic processing led agents to be more likely to acquire
goods during competitions. Furthermore, the intensity of competition and the abundance of
resources (and therefore the importance of planning for the future) were allowed to vary based
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on the extent of controlled processing in the population. This feedback gave rise to cyclic
dynamics under a robust set of parameters using both agent-based simulations (Tomlin et al.,
2015) and differential equation modeling (Toupo et al., 2015), with populations alternating
between high and low prevalence of controlled processing. However, like previous work, these
models did not present a general analysis of the balance between automatic and controlled
processing, but instead made a number of domain-specific assumptions tailored to the details of
intertemporal decision-making in a particular context.

3. The present work

In this paper, we present a set of models that capture key features of automatic versus
controlled processing, and their interactions with the environment, in a way that is fully general
and not tied to any particular implementation. We begin with the simplest possible formulation
(Minimal Model, Section 4), in which controlled processing generates higher fitness than
automatic processing, but also carries a cost (which can vary based on the fraction of the
population engaging in automatic processing). The Minimal Model consists of two differential
equations respectively characterizing the population (fraction of agents engaging in controlled
vs. automatic processing) and the environment (extent to which controlling processing
outperforms automatic processing) that are coupled with some lag. We examine the dynamics of
this model in detail. We then demonstrate the robustness of the conclusions from this Minimal
Model by considering a series of additional models that add complexity in varying ways, and
show that all of these extensions also exhibit cyclical dynamics (Section 5).

4. Minimal model
4.1 Automatic versus controlled processing

The minimal model of automatic versus controlled processing focuses on the trade-off
between efficiency and flexibility of processing. Specifically, we assume that automatic processing
supports efficient and typically effective behavior, achieved by encoding “pre-compiled”
responses that are optimally adapted to a particular set of circumstances, but are slow to develop
or change. In contrast, we assume controlled processing supports a more flexible range of
responses that can adjust more quickly to changes in contingencies and thereby generate
advantageous responses under a wider range of conditions, but that this comes at a cost (as
discussed further below). This distinction bears a close relationship to the distinction between
compiled (efficient but rigid) and interpreted (slower, more demanding, but more flexible)
procedures in computer science. In an evolutionary context, the dimension aligns with different
time scales of adaptation — automatic processing over longer (developmental, and/or traditional
evolutionary) time scales, and controlled over much shorter (circumstance-by-circumstance).?

We capture the advantage of flexibility conferred by control by stipulating that controlled
processing results in a payoff from decision-making normalized to value 1, and automatic
processing results in a discounted payoff of 1 — p (with0 < p < 1). The flexibility of controlled

L We should emphasize that automatic and controlled processing are not necessarily always in conflict: both modes
of processing can arrive at the same response. In the work reported here, however, we focus on competition between
these two extremes of processing, as there is mounting evidence that they may indeed compete in determining
responses (e.g., Evans and Stanovich (2013); Greene, Nystrom, Engell, Darley, and Cohen (2004); McClure et al.
(2004)) and we seek to understand the influence that such a trade-off has at the population level.
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processing, however, comes at a cost (e.g., Daw, O'Doherty, Dayan, Seymour, & Dolan, 2006;
Gershman, Horvitz, & Tenenbaum, 2015; Griffiths, Lieder, & Goodman, 2015; Keramati,
Dezfouli, & Piray, 2011; Posner & Snyder, 1975; Shenhav, Botvinick, & Cohen, 2013): it requires
time and effort to attend to the relevant information and compute the optimal course of action that,
at the least, imposes an opportunity cost with regard to other potentially advantageous behaviors
(Kurzban, Duckworth, Kable, & Myers, 2013). To model this, we impose a fixed cost ¢ upon the
use of controlled processing.

For simplicity, in the Minimal Model we consider the evolutionary dynamics of a
population of agents that act exclusively in either a controlled or automatic manner. Specifically,
let x be the fraction of the population that is controlled (0 < x < 1), and therefore 1 — x be the
fraction that is automatic. In the absence of cognition-environment feedback, the fitness of
controlled agents is f. = 1 — c (the decision-making payoff of 1 minus the cost of control, c), and
the fitness of automatic agents is f, = 1 — p (the inferior decision-making payoff of 1 — p, but
with no additional cost).

Thus, there are two environmental parameters that describe the nature of the world in which
the agents operate: p, capturing the factors that favor the value of flexible controlled processing
relative to inflexible automatic processing (e.g., how stable the environment is, how plentiful
resources are, etc), and c, capturing how costly it is to exert cognitive control.

4.2 Evolutionary dynamics

Within this simple framework, we allow the frequency of controlled agents x in the
population to evolve according to the replicator equation (Hofbauer & Sigmund, 1998). The
replicator equation implements a fairly general population dynamic, whereby the strategy with the
higher payoff becomes more common in the population over time. This dynamic can equally well
describe evolution that is genetic or cultural (e.g., in which social learning leads people to
propagate successful behaviors observed in others).

For our system, the replicator equation is specified by
x =x(fe — @),
where ¢ is the average fitness of the population,

¢ =xfc+ (1 —x)f,

Our subsequent analyses will use ¢ as a proxy for population size, since the replicator equation
does not directly describe the size of the population (only the fraction of the population that is
automatic versus controlled). Furthermore, in Section 5.5 we consider an agent based model in
which the population size does vary, and show equivalent results.

4.3 Cognition-environment feedback

To incorporate cognition-environment feedback, we allow the prevalence of automatic
versus controlled processing in the population x to influence both p and c; that is, both p and ¢
vary as a function of x.
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4.3.1 Feedback of x on p

Our characterization of the effect of x on p is used to capture the influence that externalities
of controlled processing can have on the environment (and therefore on the relative advantage of
the flexibility allowed by control). For example, technological advances are an external
consequence of the proliferation of controlled processing in the human population, and this has
had clear consequences on our environment: abundance of food and shelter, fluidity and scope of
social interaction, etc. Here, we begin by considering the simplest case in which such externalities
close the gap between automatic and controlled processing: by making resources more plentiful
and thus stabilizing the environment, the innovations created by controlled processing reduce the
importance of being able to flexibly adapt and plan for the future. Automatic processing,
conversely, can undermine many of these benefits (e.g., due to overconsumption, ill-advised, over-
use and/or inefficient use of resources, etc.).

To capture these influences, we link the value of p inversely to the fraction of controlled
agents in the population x: as control increases in the population, the advantage of being controlled
decreases. Because it takes time both for the externalities associated with controlled agents to
develop and for any deleterious effects of automatic processing to undermine the advantages of
these externalities, we incorporate lag into the feedback between p and x. Specifically, we
implement the additional differential equation

5 (A=0)-p)

Tp
such that p always moves in direct opposition to x (i.e. towards the current value of 1 — x), but
with some time lag parameterized by ,,.

4.3.2 Feedback of x on ¢

Feedback of x on ¢ is used to capture the influence that the prevalence of automatic
processing can have on the cost of cognitive control. We focus primarily on the case in which the
presence of more automatic agents reduces the relative advantage of controlled agents. For
example, automatic agents may respond more quickly or efficiently (outcompeting controlled
agents for access to resources) and/or consume resources without regard to future need, thereby
diminishing resources upon which controlled agents had planned to rely and, as a result, increasing
the relative cost of being controlled. At the same time, the costs of control might be decreased by
a greater preponderance of controlled agents in the population. For example, this may give
controlled agents a greater opportunity to form coalitions or design institutions that facilitate or
reward the use of control, or selectively sanction automatic agents (which reduces the relative cost
of being controlled).?

The prevalence of control in the population, x, is likely to impact the cost of control ¢ on
a much faster time scale than the rate at which the externalities of control impact p (the relative
advantage it has over automatic processing, as described above). This is because the former

2 Note that these effects all involve costs that weigh more heavily on controlled or automatic agents (i.e. affect the
relative fitness of control). Effects that reduce the fitness of both types of agents equally do not alter the model’s
dynamics, because the replicator equation is driven by how each strategy’s fitness compares to the average fitness
(and so adding or subtracting a constant from all payoffs has no effect).
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typically emerges from direct interactions between individuals, or potentially from influences on
the environment that occur relatively quickly (e.g., depletion through consumption) compared to
environmental influences that affect p (e.g., technological development and growth). Therefore,
for simplicity, and in keeping with these assumptions, we implement the feedback of x on c as
instantaneous (in the Two-lag Model we consider the more complex case where feedback of x on
c is lagged).

Specifically, we modify the fitness of controlled agents f. such that an additional cost
w(1 — x) is added, where w is the intensity of the impact of the population state on the cost of
control, yielding f, =1 — (¢ + w(1 — x)).

Although we focus on the case in which the presence of automatic agents increases the cost
of control, this formulation can equally well describe the opposite case in which the presence of
automatic agents decreases the cost of control. Such a situation might result from technologies or
behaviors that, when employed by controlled agents, leverage the short-sighted behavior of
automatic agents for the personal gain of the controlled agents (for example, in the domain of
intertemporal choice, the design and sale of products providing instant gratification, but long-term
costs — products that would primarily appeal to agents engaging in automatic processing). These
situations correspond to cases in which w < 0, which leads to the fitness of controls £ increasing
with the frequency of automatic agents 1 — x.

4.4 Results

The Minimal Model is specified by the following system of two ODEs:
x=x(f.—¢) = x((l —(c+w( —x))) - (x(l— (c+w(1—x))) +(1-x0 —p)))
. ((A=x)-p)
p=—r

Tp

withc >0andt, > 0.

Analyzing this system shows the existence of up to three fixed points.® There are always
fixed pointsat [x = 0,p = 1] (exclusively automatic agents in an inhospitable world) and
[x = 1,p = 0] (exclusively controlled agents in a hospitable world). When ¢ + w < 1, there is

a third (interior) fixed point at [x =W = 1—Cw] where automatic and controlled agents

Coexist.

These fixed points exhibit different stability characteristics. First, the fixed point [x =
1,p = 0] is never stable given that ¢ > 0. That is, in a maximally hospitable world, automatic
processing is just as successful as controlled processing because when p = 0 there is no
advantage of control. Thus, as long as there is any cost to control (¢ > 0), automatics will
outperform controls.

When ¢ + w > 1, the fixed point [x = 0,p = 1] is stable, and the interior fixed point is
not relevant (i.e. lies outside the interval [0,1]). In this case, the cost of control in an entirely

1-w

% Fixed points are [x, p] pairs at which x = p = 0, such that when at a fixed point the system will remain there. A
fixed point is stable if the system returns to the fixed point when perturbed away, and unstable if even a tiny
perturbation causes the system to leave the fixed point. Thus, it is the identification of stable fixed points that is our
goal for understanding potential evolutionary outcomes.
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automatic population, ¢ + w, is larger than the relative advantage of controlled over automatic
processing in a maximally inhospitable world, 1. Under these conditions, controlled agents are at
an insurmountable disadvantage and unable to proliferate.

When ¢ + w < 1 (that is, when the cost of control in an entirely automatic population is
less than control’s advantage in a maximally inhospitable world), the fixed pointat [x = 0,p =
1] becomes unstable and the interior fixed point becomes relevant (i.e. enters the interval [0,1]).
Everywhere in this region, we observe coexistence between automatic and controlled processing.
Thus, coexistence is a robust feature of this model, as it has been in other models that did not
involve feedback between agents’ cognition and the environment (Bear et al., 2017; Bear & Rand,
2016; Wolf et al., 2008). As long as the costs of control are not so large as to prevent controlled
processing from emerging in the first place (i.e. to prevent controlled agents from invading the
“state of nature” of automatic agents in an inhospitable world), both automatic and controlled
processing will persist.

Interestingly, however, the dynamics of this coexistence depend on how quickly the
prevalence of control in the population x diminishes the relative advantage of controlled
processing p (as captured by the lag parameter 7,)). There is a critical value of 7,,,

., (@=-w)?
S aw(l—c—w)

Tp

around which the dynamics change.

When 1, < 7,” such that change occurs sufficiently quickly, the interior fixed point is
stable and the population settles there. At 7, = 7,,*, however, the interior fixed point becomes
unstable and a limit cycle is born (i.e. a Hopf bifurcation occurs). Thus, when 7, > 7,,* (i.e.,
feedback from x on p is sufficiently lagged, the proliferation of control occurs more quickly than
the rate at which this diminishes its advantage), and we observe persistent cycles in the relative
balance of automatic and controlled processing — unlike prior models lacking cognition-
environment feedback. A representative example of these cyclical dynamics is shown in Figure 1.
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Figure 1. Persistent cycles of automaticity and control emerge from the Minimal Model. Shown
are the values of x, 1 — x, p, and ¢ as a function of time. The results were generated using
numerical integration of the Minimal Model ODEs usingw = 0.15,¢ = 0.5,and 7, = 50, and
initial conditions x = 0.01,p = 0.9.
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The cycles shown in Figure 1 exhibit several distinct phases:

1. The population begins with dominance by automatic agents (i.e., x is small), in an
inhospitable environment (i.e., p is large). This population is small in size (i.e. has low
average fitness).

2. Controlled agents outperform automatic agents because of the advantage controlled
processing has over processing in inhospitable environments. Thus, x increases and
correspondingly, subject to some lag, p decreases. The population’s size increases as the
controlled agents outperform the automatic agents and average fitness increases.

3. With time, the externalities of control associated with the prevalence of controlled agents
in the population (i.e. large x) lead to a progressively more hospitable environment, and p
continues to decrease (with the associated increase in the fitness that would be achieved by
an automatic agent).

4. Once p becomes sufficiently small, automatic processing becomes successful enough that
the cost of control outweighs the relative benefit of controlled processing. Thus automatic
agents begin to outperform controlled agents and proliferate, and automatic agents come
to dominate the population (x decreases).

5. Soon, however, the decreasing level of control in the population (small x) causes p to
increase. This causes the fitness of the predominantly automatic population to fall, leading
to a population crash.

6. This returns the system to its initial point, with a small population of automatic agents in
an inhospitable world, and the cycle begins anew. 4

Figure 2 illustrates the conditions necessary for such limit cycles to occur — in particular, the
minimum amount of feedback lag required to induce a limit cycle, 7,,*. It is easiest to get limit
cycles (i.e. the least amount of lag is required) when the fixed cost of control, c, is small and the
population state’s influence over the cost of control, w, is large. Furthermore, the 7, > 7,,*
condition indicates that w, ¢ > 0 is required for limit cycles (whereas only ¢ > 0 is required for
stable coexistence). This shows that in the Minimal Model, the prevalence of automatic processing
in the population must negatively impact the cost of control (w > 0) in order to generate cycles —
no impact (w = 0) or a positive impact (w < 0) can lead to coexistence but not to cycles
(although as we will see below, this particular result is not totally general: it is possible for cycles
to arise with w < 0 using the Threshold Model’s alternative formulation of cognition-
environment feedback).

4 It is important to note that when using the replicator equation, the fraction of controlled agents x can become
arbitrarily small without actually reaching zero. Therefore, after the environment destabilizes and the population
crashes, control is always able to re-invade. In reality, however, populations are finite and thus actual extinction may
occur at the end of one of the downward spirals (although mutation and migration may also reintroduce control into
an entirely automatic finite population, seeding a new cycle).
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Figure 2. The extent to which there must be lag in the impact of the population composition x on
the advantage of control p, parameterized by 7,,, in order to observe limit cycles varies depending

on both the fixed cost of control ¢ and the cost imposed on control by automatic agents w. Cycles
always emerge with sufficient lag (i.e if 7, is sufficiently large), provided that c,w > 0. Shown is a

_ 2
contour plot ofcw((ll—w)w), the minimum z,, required for limit cycles, with log10-transformed values

indicated along contour lines (up to 10%). Recall that ¢ < (1 — w) is required for there to be an
interior fixed point, and therefore no data exist in the upper right half of the figure.

Why must there be sufficient lag in the influence of x on p for cycles to emerge? The
answer involves hysteresis: The lag creates inertia in p, which prevents the population from settling
on the interior equilibrium. When automatic agents are initially common and the environment is
inhospitable (and automatic processing consequently performs poorly), controlled agents begin to
proliferate. If the relative advantage of control p diminishes rapidly enough, the population reaches
equilibrium (i.e. reaches a state in which automatic and controlled processing have the same
fitness). But if there is sufficient lag, the relative advantage of controlled processing remains
relatively high as control proliferates, allowing the frequency of control to exceed the value it
would occupy in the interior equilibrium. Once the advantage of controlled processing finally falls
far enough, the system swings back in the opposite direction: automatics proliferate and enjoy a
period of success, allowing the level of control to drop below that of the interior fixed point, thus
reinitiating the cycle.

In sum, we find that not only is coexistence between automatic and controlled agents a
robust feature of this model, but so is cyclicity. As long as there is cognition-environment
feedback, with a sufficient lag in the impact of that effect on the relative advantage of controlled
processing, and the cost of control is not too large, persistent cycles emerge: the population
alternates between periods of dominance by automatic and controlled processing, and the
population fitness (and thus size) fluctuates accordingly. It seems reasonable to imagine that such
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lags may be characteristic of real-world systems; that is, the pace at which the negative secondary
consequence of newly developed technologies accrue (e.g., bacterial resistance, or environmental
damage from resource use) typically lags behind the initial positive impact of those technologies
(i.e., protection from infection, or energy availability).

5. Robustness across model specifications

It is reasonable to ask whether the results observed for the Minimal Model are specific to
the simplicity and/or specific assumptions of that model. To address this, we consider a series of
related but more complex models that modify the Minimal Model in a number of different ways,
and show that all of these produce results that are qualitatively equivalent to those of the Minimal
Model.

The first of these is the Two-lag Model (Section 5.1), which addresses the possibility that
lag exists not only in the effects of control on the environment, but also in the effects of
automaticity on the cost of control. Although the impact of automatic agents on the cost of control
is likely to occur relatively quickly, because it emerges from direct interactions between
individuals (e.g., competition) or short-term influences on the environment (e.g., consumption), it
cannot literally be instantaneous (as assumed in the Minimal Model). The Two-lag Model assesses
the impact of incorporating this extra lag by adding a third differential equation to the Minimal
Model characterizing the extent to which automatic agents directly impact the fitness of controlled
agents (also coupled to the population state with a lag).

The second extension is the Consumption Model (Section 5.2), which considers the
possibility that automatic agents impact the cost of control via their consumption (rather than just
their presence): While some forms of impact on the cost of control — such as competition to acquire
resources — likely depend on the number of other agents (prevalence), other forms — such as the
shortsighted exploitation of resources by automatic agents that controlled agents had been
expecting to be available in the future — depends on the total amount consumed by automatic agents
(i.e. the product of the number of automatic agents and the amount each of those agents consume).
To examine such interactions, the Consumption Model alters the Minimal Model’s implementation
of how automatic agents influence the cost of control, such that this influence is weighted by the
fitness (as a proxy for consumption behavior) of the automatic agents.

The third is the Threshold Model (Section 5.3), which considers the robustness of the
findings of the earlier models to how, precisely, the cognitive-environment feedback is
implemented. While the Minimal Model considers gradual changes in the environment based on
the population makeup, it is also possible that feedback occurs via a non-linear “tipping point,”
such that the environment swings from improving to degrading once the level of control drops
below a critical level. To examine such a scenario, the Threshold Model changes the coupling
between population and environment, replacing the graduated dynamic of the previous models (in
which the environment tracked the population state in a continuous way) with a discrete threshold
dynamic.

Fourth is the Multiprocess Agent Model (Section 5.4), which allows for agents that are not
dedicated automatic or controlled processors, but instead can use both modes of processing.
Although some people may rely relatively more on automatic versus controlled processing
(Barrett, Tugade, & Engle, 2004; Hofmann, Gschwendner, Friese, Wiers, & Schmitt, 2008), it is
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clearly not the case that people rely wholly on one or the other type of process (as assumed for
simplicity by the previous models). Thus, the Multiprocess Agent Model asks whether the simpler
models’ findings are robust to the more realistic assumption that people engage in both automatic
and controlled processing. It does so by introducing an agent-based simulation implementation of
the Minimal Model in which agents probabilistically engage in either automatic or controlled
processing in any given interaction.

Finally, the Variable Population Size Model (Section 5.5) examines the robustness of our
findings to allowing changes in the absolute size of the population, rather than the prior models’
approach of examining changes in the relative frequency of automatic versus controlled agents.
Furthermore, this model considers another externality of control: in addition to stabilizing the
environment (and therefore reducing the relative advantage of control’s flexibility), controlled
processing and associated technological innovation increases the carrying capacity (i.e. maximum
population size the environment can support). To examine the effect of these factors, the Variable
Population Size Model modifies the agent-based simulations of the Multiprocess Agent Model to
allow the population a vary in size, constrained by the frequency of controlled processing,

5.1 Two-lag Model

In the Minimal Model, we assumed that the prevalence of automaticity in the population
(1 — x) impacted the cost of control instantaneously by specifying the cost of control in f- to be
¢ + w(1 — x). Here we show that extending the model to the case in which this feedback, like the
influence of x on the advantage of controlled processing p, is also lagged yields similar results. To
do so, we specify the cost of control in f to be ¢ + w, and add a differential equation for dw/dt
whereby w changes to follow (1 — x) with lag (in the same way that p follows (1 — x) in the
dp/dt equation of the Minimal Model). Furthermore, we specify dw/dt such that w need not vary
fully between 0 and 1, but rather varies between 0 and some maximum value wy,, (with 0 <
Wunax < 1). For maximal generality, we also modify the dp/dt equation to have a maximum value
Pmax (With 0 < prax < 1; the Minimal Model implicitly uses py, = 1).

This gives us the following three-dimensional system:

x=x(A=(c+w)— (A - (c+w)+1-x)(1-p))

. ((1 - x)pMax - p)
p= T

p

. ((1 B x)WMax B W)
w =
Tw

Analyzing this system, we find a potential interior fixed point analogous to that in the

Minimal Model at x = EMax""Max"¢ &, — __ “PMax__ ,,, — __“WMax _ \\hjch js relevant (i.e. on

) )
PMax—WMax PMax—WMax PMax—WMax

the interval [0,1]) when pyax > ¢ + Wyq, - The interpretation of this condition is straightforward:
the maximum possible advantage of control must be larger than the maximum possible total cost
of control (fixed cost + cost imposed by automatics).
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As in the Minimal Model, a stability analysis finds that this interior fixed point can become
unstable and give birth to a limit cycle via a Hopf bifurcation. Figure 3 shows a representative
example of the dynamics of the 3-dimensional system that exhibits a series of phases similar to
those in the simpler 2-dimensional Minimal Model.

™
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Figure 3. Persistent cycles of automaticity and control also emerge when both forms of feedback
are lagged in the Two-lag Model. Shown are the values of x, 1 — x, p, w, and ¢ as a function of
time. Results were generated using numerical integration of the Two-lag Model ODEs using ¢ =
5, Wyax = 3,Pmax = 1,7, = 50,7, = 10, and initial conditions x = 0.01,p = 0.9,w =
0.1.

Although we can analytically derive the exact condition required for the limit cycle to exist,
this condition is too complex to be readily interpretable. However, to give a sense of its
implications, Figure 4 shows where limit cycles occur in the [z, 7,,] plane for different values of
¢ and wyq, (fiXing pyax = 1, as in the Minimal Model). The most salient feature of Figure 4 is
that, in order for limit cycles to occur, 7, > t,, must be satisfied; that is, the prevalence of control
in the population x must influence the relative advantage of controlled processing p substantially
more slowly than the prevalence of automaticity in the population influences the cost of control
w. We also see that the minimum lag required for cycling, as measured by the slope of the line in
Figure 4, decreases as the maximum cost imposed by automatics w,,,, increases.
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Figure 4. For limit cycles to occur, as in the Minimal Model, the impact of the population on the
environment must be substantially more lagged than the population’s impact on the cost of control
(tp > Ty). Shown is the Hopf bifurcation curve in the [7,, 7, ] plane for different values of ¢ and
Wyax (fiXing pyax = 1). For agiven set of parameters, limit cycles occur for [z, 7,,] pairs below
the corresponding line.

In sum, the Two-lag Model demonstrates that the results of the Minimal Model are robust
to accounting for the fact that, in reality, the processes through which automatic agents increase
the cost of control need not involve instantaneous feedback. For example, if automatic agents
consume resources that controlled agents had planned to rely on in the future, the consequences of
the behavior of current automatic agents will not be felt by controlled agents until some time in
the future (i.e., when they attempt to use the already-consumed resources).

5.2 Consumption Model

In the Minimal Model and the Two-lag model, automatic agents influenced the cost of
control in direct proportion to their frequency in the population. Here we examine the consequence
of having automatic agents impact the cost of control via their consumption rather than simply
their prevalence. Specifically, we link the cost of control to the product of the proportion of the
population that is automatic 1 —x and the average fitness (capturing consumption) of the
automatic agents 1 — p. Thus we replace the Minimal Model’s cost of control term in f. of ¢ +
w(1 — x) with the alternative formulation ¢ + w(1 — p)(1 — x). This yields the following system
of two ODEs:

5c=x<(1—(c+w(1—p)(1—x)))—(x(l—(c+w(1—p)(1—x)))+(1—x)(1—p)))
. ((1=x)—p)
p=— 27

Tp
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Analyzing this system shows that although the analytic expressions are now even more
complex (and thus harder to directly interpret), we again observe regimes in which there is
coexistence between automatic and controlled agents, as well as ones in which there are limit
cycles. Both coexistence and limit cycles are more robust than in the Minimal Model.
Coexistence is more robust in that no homogeneous population make-up is ever stable in the
Consumption Model: we only find coexistence or limit cycles. As in the Minimal Model, if
automatic agents increase the cost of control (w > 0) then limit cycles can occur if cognition-
environment feedback is sufficiently lagged (i.e. t,, exceeds a specified threshold). Figure 5
illustrates the minimum amount of feedback lag required to induce a limit cycle. Because
coexistence is more robust in the Consumption Model than the Minimal Model, limit cycles are
also more robust: they can occur no matter how large the magnitude of w (unlike in the Minimal
Model, which requires w < 1 — ¢ for either coexistence or limit cycles). Nonetheless, as in the
Minimal Model, it is easiest to get limit cycles when the fixed cost of control ¢ is small but the
cost imposed by automaticity w is large.

Minimum lag s required for limit cycles
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Figure 5. Shown is a contour plot of the minimum ,, required for limit cycles in the Consumption
Model, with log10-transformed values indicated along contour lines (up to 103).

These observations show that the limit cycles observed in the Minimal Model when
cognition-environment feedback is sufficiently lagged are robust to the alternative implementation
of the cost of control, in the Consumption Model, in which the consumption of automatic agents,
rather than their prevalence per se, increases the cost of control.



POPULATION DYNAMICS OF AUTOMATICITY AND CONTROL 17

5.3 Threshold Model

In all of the models presented thus far, cognition-environment feedback was implemented
in a continuous form, such that the advantage of controlled processing always moved in
opposition to the fraction of the population that was controlled: p followed x, subject to lag.
Here, we change the form of this feedback (i.e. the specification of dp/dt) to instead operate via
a discrete threshold dynamic.

Specifically, the Threshold Model assumes that excess time/energy is required for
controls to invest in technological innovation, and therefore that p decreases if xf, (the product
of the fraction of controlled agents and the fitness of those controlled agents) is greater than a
threshold T, and increases if not. In order to keep p bounded on the interval [0,1], we also add a
factor of p(1 — p) to dp/dt. Combining this alternative formulation of dp/dt with the
Consumption Model® presented in the previous section yields the following set of two ODEs:

x=x(1-(c+wl-p)A-x) - 1= (c+wl-—p)L-x)))+ 1 -x)(1-p)))

T—x(1-(c+w(l-p)A—-x)))
T

p=p1—p)
14

Analyzing this model finds six possible fixed points. However, only three of these fixed
points are ever stable. The resulting dynamics depend critically on w, the impact that the
consumption of automatic agents has on the cost of control.

When the consumption of automatic agents increases the cost of control (w > 0), the
results are qualitatively similar to the Minimal Model and the Consumption Model. When T >
1 — ¢, it is very difficult for controlled agents to make the environment more hospitable for
automatics (and thereby reduce their own relative advantage p): Even when controls entirely
dominate the population, xf is not sufficiently large to exceed the threshold T and thereby
decrease p. As a result, the only stable fixed point involves the complete dominance of control,
x =1,p = 0. However, so longas T < 1 — c, there is an interior fixed point at

T 1 1-T . . 1-T
[x = Twry) o HW—()] which leads to coexistence when 7, < crw@-1)
Tw—-c+1 1+w

cycles (via a Hopf bifurcation) when ,, > ”#(:V_T) Thus, as in the other models, lag in the

cognition-environment feedback can lead to cycling.®

The foregoing analysis focused on the situation in which the consumption of automatic
agents increased the cost of control (0 < w < 1). However, the behavior of the model is more
complex and qualitatively distinct from the previous models when the consumption of automatic
agents decreases the cost of control (—1 < w < 0). For example, controlled agents might profit
from the consumption of automatic agents by selling the automatic agents products that exploit
their lack of control (e.g. unhealthy but delicious food). It remains the case that [x = 1,p = 1] is
stable when T > 1 — ¢ . There is also the possibility of another stable fixed point involving the
coexistence of automatic and controlled agents at [x = (w + ¢)/w,p = 0] when w < —c and

and limit

5> The threshold implementation of the Minimal Model yields much more complex conditions which are intractable,
so we focus on the Consumption Model when considering threshold updating of p.

& Numerical simulations indicate the existence of additional limit cycles when w > 0 not born out of a Hopf
bifurcation, but we do not characterize the details of those limit cycles here.
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T < (w+c)/w. Here, itis very easy for controlled agents to make life easier for automatics and
as a result the advantage of controlled processing disappears (p goes to 0). However, because the
consumption of automatic agents benefits controlled agents, some fraction of controls can still
survive in the population even in the absence of a decision-making based advantage. (Note that
these two fixed points can co-occur, such that there is bistability between them and the initial
conditions determine which fixed point evolution favors.)

Finally, when (w + ¢)/w < T < 1 — c, neither of these fixed points is stable and instead

we again see the interior fixed point at [x = TTMEM_’:)l p= V:Jr(‘i_ T)] as the only possibility.

Unlike the case when w > 0 (or the results from the previous models), this point is stable when
7, > 82D and leads to limit cycles when 7, < %(;/_T) In other words, when automatic

consumption benefits control, limit cycles emerge when cognition-environment feedback occurs
sufficiently quickly rather than sufficiently slowly. Figure 6 shows the critical lag required for
cycles, and Figure 7 shows sample cycles arising when w > 0 and w < 0.
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Figure 6. Shown is a contour plot of the critical z,, required for limit cycles in the Consumption
Model, with 7,, values indicated along contour lines. Above the w = 0 line (indicated in red), the
indicated value is the minimum 7, required for cycles. Below the w = 0 line, the indicated value
is the maximum z,, that allows cycles. Note that because of the modification of the dp/dt equation,
absolute magnitudes of 7,, cannot be meaningfully compared with those of the prior models.
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Figure 7. Cyclical dynamics arise from the replicator model with automatics decreasing the cost
of cognitive control, provided that p changes sufficiently quickly. Shown are the values of x, 1 —
x, p, ¢, and the bonus received by controlled agents from automatic agents p(1 — x) as a
function of time. Results generated using numerical integration of the two model ODEs using

c =.2,, = 0.05T = 0.5,and (a) w = 0.2 versus (b) w = —0.2.

In sum, the Threshold Model provides further evidence that the occurrence of limit cycles
IS robust when automaticity increases the cost of control, and cognition-environment feedback is
sufficiently lagged (although here it is easiest to get cycles when both the fixed and variable
costs of control are small). Furthermore, the Threshold Model extends the conditions under
which limit cycles can emerge, now including situations in which automaticity decreases the cost
of control (i.e. when controls benefit from the presence of automatics), albeit through a different
mechanism in which the cognition-environment feedback must occur quickly rather than slowly.
Such a situation might result from technologies or behaviors that, when employed by controlled
agents, leverage the short-sighted behavior of automatic agents (for example, in the domain of
intertemporal choice, the sale of products providing instant gratification, but long-term costs —
products that would primarily appeal to agents engaging in automatic processing).

5.4 Multiprocess Agent Model
In all of the models described so far, agents were binary: they were either exclusively

automatic or controlled. Here, following on previous work (Bear et al., 2017; Bear & Rand,
2016; Tomlin et al., 2015), we describe an agent-based model in which each agent exhibits a
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probabilistic mix of control and automatic processing. We conducted simulations of this model
to examine how the probability of control within agents evolves over the course of generations in
response to the same factors implemented in the ODEs described above.

In this model, each agent i implemented controlled processing with an agent-specific
probability x; (and correspondingly implemented automatic processing with an agent-specific
probability 1 — x;). Adapting the Minimal Model formulation, the fitness of an agent i that
exhibited control with probability x; in a population for which the mean probability of control
was (x) was given by the sum of the fitness of controlled processing and of automatic processing
in the current population and environment, weighted by that agent’s probability of engaging in
controlled and automatic processing, respectively:

fi=x(1=(c+wl—N)+ 1 =x)(1-pp)

where c is the fixed cost of control, w is the impact of automatic processing on the cost of
controlled processing, and p; is the relative advantage of controlled processing in generation t.

We examined the stochastic evolutionary dynamics of a population of N = 100 such
agents using the pairwise comparison process (Traulsen, Pacheco, & Nowak, 2007): In each
generation, one agent was picked at random to potentially update its strategy, and another agent
was picked at random to potentially reproduce. The updater was replaced by a copy of the

reproducer with probability ” where s is the intensity of selection, i is the fitness of

1
1+e—sr-mp)
the potential reproducer (teacher), and r;, is the fitness of the potential updater (learner);
otherwise, no change occurred in that generation. Alternatively, with probability u a mutation
occurred; in that case, instead of adopting the other agent’s strategy, the updater adopted a new
strategy sampled from a uniform distribution on the interval [0,1]. (Simulations using local
mutation produced equivalent results.)

In addition to this standard evolutionary dynamic, we also implemented cognition-
environment feedback by updating the advantage of controlled processing in each generation,
such that

(1-x)—pg—1
Tp )

Pt = Pt-1 t+

Figure 8 shows that this agent-based model, in which agents implemented a probabilistic
distribution of controlled versus automatic processing, displays qualitatively similar dynamics to
the analytic models described above, in which automatic versus controlled processing was a
binary, deterministic variable.
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Figure 8. Agent-based simulations of the Multiprocess Agent Model using N = 100,s = 10,c =
0.5,w = 0.15, and (A) 7, = 100, (B) 7, = 1000 or (C) 7, = 10000. Shown are the population
average value of x, the value of p, and the population average value of ¢ as a function of time.
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We see that when tp becomes sufficiently large, the dynamics of the system transition from
co-existence to oscillations. In this regime, once the agents (which were initialized to use
exclusively automatic processing) developed sufficient control and began to improve the
environment, environmental richness improved quickly and substantially. This improvement
lessened agents’ dependence on controlled processing for survival, and therefore automatic
processing became more prevalent. This increased prevalence of automatic processing exacerbated
the competitive disadvantage of using cognitive control, thus further eroding the frequency of
control. Eventually, the prevalence of control was not sufficient to maintain improvements to the
environment, thereby returning the environment to its original state and re-initiating the cycle.

In sum, the Multiprocess Agents Model demonstrates that cycles of automaticity and
control observed in the analytic models extend to a model in which agents engage
probabilistically in both types of processing.

5.5 Variable Population Size Model

In the service of tractability, the models described above did not consider changes in the
size of the population, instead examining changes in the relative frequency of automatic versus
controlled processing. Here, we examine the impact of allowing the size of the population to
grow and shrink.

To do so, we define strategies, payoffs, and updating of the environmental parameter p as
in the Multiprocess Agent Model, and modify reproduction as follows. At the beginning of each
simulation, the population is initialized at size NO. Each generation, an agent is selected
proportional to fitness to reproduce. When probability u, a mutation occurs and an agent with a
random strategy is added to the population; with probability 1 — u, a copy of the selected agent
is added to the population. If the new population size N exceeds the environment’s carrying
capacity K, agents are selected at random to die until N < K.

Rather than fixing K at some pre-determined level, we allow K to vary with the
population’s make-up. Controlled processing’s ability to flexibly plan for the future, and to
develop technological innovations, suggests that greater levels of control in the population
should be associated with a larger carrying capacity: in the same way that control can make the
environment more stable (as modeled by feedback on p), it can also make the environment richer
and able to support a larger population. To implement this logic, we set K = NO + Y~ x; , such
that the carrying capacity is increased above the baseline NO by the extent to which agents
engage in controlled processing.

Figure 9 shows that the Variable Population Size Model can generate similar cyclical
dynamics to those of the previous models. However, the current simulations have the important
added ability to directly demonstrate population booms and crashes associated with the rise and
fall of controlled processing. As agents becomes more likely to exercise control the
environment’s carrying capacity K increases, which in turn leads to an increase in population
size N. As in the other models, the increase in control eventually leads to enough of a decrease in
p that automaticity can reinvade. As automaticity increases (i.e. control decreases), carrying
capacity K decreases, driving the population size back towards its initial baseline level of NO.
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Figure 9. Agent-based simulations of the Variable Population Size Model using NO = 30,s =
10,c = 0.5,w = 0.15, and 7, = 10000. Shown are (A) the population average value of x and

the value of p, and (B) the population size, both as a function of time.

In sum, the Varying Population Size model shows that the cycles observed in the
previous models were not an artifact of considering only relative frequency of automatic versus
controlled processing, and provides a demonstration of the impact these oscillations can have on
population size.

6. Discussion

We have described a series of models that examine the evolutionary dynamics of mixed
populations of agents that implement different forms of cognitive processing along the dimension
from automatic to controlled. Our implementation of cognitive processing was designed to capture,
as simply as possible, the most fundamental and commonly assumed differences along this
dimension: automatic processing that is efficient but rigid, and controlled processing that is costly
but flexible (Kahneman, 2011; Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). We
implemented differences in efficiency by assigning a cost to the use of control, and differences in
flexibility by assuming that controlled processing led to a fitness advantage relative to automatic
processing in decision-making (e.g. because controls can plan for the future and adapt more
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quickly to the exigencies of the situations they encounter). We also implemented cognition-
environment feedback by allowing increases in the frequency of controlled processing to make the
environment more hospitable — and therefore to reduce the advantage of control.

We found that limit cycles arose in all of the models we considered, and across a wide
range of parameters: recurrent boom-and-bust dynamics in which control flourished and the
population grew, only to be undermined by an ensuing rise in automaticity, leading to a crash in
control and population size. Consistently across models, it was the case that such cycles could arise
when (i) the prevalence (or consumption) of automatic agents increased the cost of control, and
(ii) there was sufficient lag in the influence of controlled agents on the environment, relative to the
rate at which automatic processing imposed its costs on control. This relationship seems like a
reasonable approximation of real world relationships: the stabilizing influence of control-based
technologies on the environment takes longer to develop and have its impact than the direct costs
that automatic agents impose on controlled agents via competition and/or short-sighted
consumption. Moreover, we observed that these cyclical dynamics were typically most likely to
arise in situations in which controlled processing entailed a relatively small fixed cost, but incurred
a large loss of fitness from the presence of automatic agents, conditions that may also align well
with some real-world circumstances (for example, the over-use of antibiotics).

There was some divergence across models, however, regarding situations in which
automaticity created a benefit for control (rather than imposing a cost). While in most of the models
cycles were not possible in this regime (only coexistence), the Threshold Model differed: in that
case, cycles were possible provided cognition-environment feedback was sufficiently fast.
Although this finding appears to be less general across the models we have considered’, it is
intriguing because it expands the space in which cycles can occur into a domain where controlled
agents exploit the weakness of automatic agents. More generally, our results are interesting from
a dynamical perspective: although cyclic behavior commonly emerges in evolutionary dynamics
of three or more strategies (Szolnoki et al., 2014), here we observe that environmental feedback
enables cycles with only two strategies.

It is important to note that the effects we report are independent of whether the underlying
mechanisms of evolution are genetic or cultural (Richerson & Boyd, 2005). Thus, they may help
explain observations of human societies in the past, and may have relevance to our own time.
Anthropologists and archeologists have written about a repeated pattern in human history: the
emergence of highly successful societies that expand greatly as a consequence of technological
innovation, only to eventually collapse (Diamond, 2005; Richerson et al., 2009; Schwindt et al.,
2016; Turner & Sabloff, 2012). Such collapses may have occurred for a number of reasons,
including environmental shocks or other factors external to the population, or the overuse of
technologies by those (presumably controlled) agents who created them. The models we introduce
here suggest another possible route to collapse: even if controlled agents exercise forethought and
use the technologies they generate wisely so as not — themselves — to over-exploit the
environment, the flourishing of control and its attendant technologies can invite the concomitant
flourishing of automaticity, which in turn can increase the likelihood of collapse due to the short-
sightedness and inability to adapt to changing environments (including those brought about by the
new technologies) that are defining features of automatic processing. These findings illustrate a

" We also found cyclical dynamics in a previously unreported agent-based inter-temporal choice model where
automatic agents benefited controlled agents (Tomlin et al, mimeo).
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mechanism that may be responsible — at least in part — for cyclical dynamics: the pace at which
controlled processing generates benefits, relative to the pace at which automatic “free-riders”
impose costs on controlled processing (also see Cohen (2005)). In the present work, we leveraged
formal models to demonstrate the plausibility of such cyclical dynamics, and to identify
quantitative relationships and boundary conditions for these effects.

The models we describe may also be relevant to modern issues and concerns, providing a
quantitative framework within which to consider and potentially address them. For example, the
pace at which new antibiotics can be developed is slow relative to the pace at which their overuse
can produce harm (particularly to those who exercise restraint). Similarly, the pace at which new
forms of energy (and the technologies based on them) can be developed is slow relative to the pace
at which their abuse can cause damage, and provide (short-term) relative advantage to those who
overconsume. The emergence of these technologies is, without a doubt, a reflection of the uniquely
human capacity for cognitive control. Similarly, the behaviors that afflict our society most (e.g.,
drug addiction and failures to save for retirement) are short-sighted forms of behaviors that are
thought to reflect the influence of automatic processing (Angeletos, Laibson, Repetto, Tobacman,
& Weinberg, 2001; O'Donoghue & Rabin, 1999; Wiers et al., 2007). It is likely that the same is
true for subtler, but potentially just as damaging, behaviors (such as overuse of antibiotics, or
overconsumption of nonrenewable resources). Considerable research has been devoted to
understanding the dynamics of technological developments and their impact from historical,
sociological, economic and environmental perspectives (e.g., Abernathy and Utterback (1978);
Mokyr (1992); Perez (2003); Rogers (1962)), but none of these studies appear to take account of
the fundamental psychological processes that drive these dynamics. Conversely, considerable
research in psychology and neuroscience has addressed the mechanisms underlying the
automaticity and control (Daw, Niv, & Dayan, 2005; Hare et al., 2009; McClure et al., 2004), but
have not examined how these interact at the population level. The models we have described
provide a first step toward bridging these levels of analysis, and suggest that doing so may reveal
fundamental principles that yield consistent effects, and factors that may influence these.

In the tradition of theoretical work within evolutionary and population biology, the models
we described here are as simple as possible. This simplicity naturally omits potentially important
aspects of cognitive function. For example, while it is generally recognized that there is a
continuum between automatic and controlled processing, and that the automaticity of many
processes is dependent on the context in which they are executed (e.g., Cohen et al. (1990);
Kahneman and Treisman (1984)), automatic vs. controlled processing was implemented in binary
form in our models. Implementing automatic vs. controlled processing in a more graded and
context-sensitive manner, and more nuanced and realistic forms of controlled processing in
population-scale models is an important direction for future work. Nonetheless, the robustness of
the effects we observed across a variety of model implementations considered here suggest the
possibility that these are general properties of the evolution of populations comprised of agents
with a heterogeneous mixture of proclivities for automatic vs. controlled processing.

Future work should also investigate the effects of environments with nonuniform spatial
structure, in which agents could flexibly adapt to localized distributions of resources to produce
“cultural topologies” that may vary in their expression of automatic vs. controlled processing, and
cases in which the bias toward automatic vs. controlled processing may anticipate (and attempt to
counteract) the risks associated with automatic processing. It will also be informative to develop
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models tailored to specific domains in which the dimension of automaticity has been suggested to
play an important role, such as we have begun to do for intertemporal choice (Tomlin et al., 2015;
Toupo et al., 2015); this might include dietary and other health-related behaviors, savings, and
behaviors that impact the environment. Cooperative social dilemmas are another important domain
to explore using the current framework, as the individually optimal behavior may not be optimal
at the population level and so controlled processing may itself lead to collapse (Rand, 2016) —
although socially optimal cooperation can also be individually optimal if, for example, the
interactions are stochastically repeated or institutions exist which sanction non-cooperation
(Jordan, Peysakhovich, & Rand, 2015), in which case control should support cooperation (Rand,
2016). Finally, an important direction for future work will be to examine domains of function in
which the distinction between controlled and automatic processing is not as stark as we have
treated it here. As noted in the introduction, it is widely recognized that processes lie along a
continuum of automaticity, and that the degree to which processing relies on control depends in
large measure on the context in which it occurs. Implementing this more realistic portrayal of
control will add considerable complexity to any model, though it may be important for addressing
some of the issues discussed above that may be sensitive to the context in which behavior occurs.

In sum, the models we described introduce a fundamental dimension of cognitive function
into population-level models, and examine the consequences this has for evolutionary dynamics.
Our findings suggest that a robust feature of these dynamics is a cyclic pattern, in which controlled
process initially flourishes, but then sets the stage for its own demise. This suggests that the advent
of controlled processing in a population sets in motion a “treadmill”, in which the very advances
that are afforded by controlled processing simultaneously set in motion regressive forces —
engendered by the presence of automatic processing in the population — that must be outweighed
and outpaced if the population as a whole is to progress in a steady and/or reach a stable state. It
is our fervent hope that further analyses of the sort we have presented here may lead to strategies
that will help promote such a positive outcome, and avert the fate that has befallen many previous,
advanced cultures.
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