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Abstract

The human willingness to pay costs to benefit anonymous others is often explained by social preferences:
rather than only valuing their own material payoff, people also care in some fashion about the outcomes
of others. But how successful is this concept of outcome-based social preferences for actually predicting
out-of-sample behavior? We investigate this question by having 1067 human subjects each make 20
cooperation decisions, and using machine learning to predict their last 5 choices based on their first
15. We find that decisions can be predicted with high accuracy by models that include outcome-based
features and allow for heterogeneity across individuals in baseline cooperativeness and the weights placed
on the outcome-based features (AUC=0.89). It is not necessary, however, to have a fully heterogeneous
model – excellent predictive power (AUC=0.88) is achieved by a model that allows three different sets of
baseline cooperativeness and feature weights (i.e. three behavioral types), defined based on the participant’s
cooperation frequency in the 15 training trials: those who cooperated at least half the time, those who
cooperated less than half the time, and those who never cooperated. Finally, we provide evidence that
this inclination to cooperate cannot be well proxied by other personality/morality survey measures or
demographics, and thus is a natural kind (or “cooperative phenotype”).

I. Introduction

The willingness to pay costs to help others is a key feature of human behavior, and is essential
for the success of human societies. Understanding why, when, and to what extent people engage
in this “cooperative” behavior is thus a major focus of research across the social and biological
sciences. Numerous mechanisms have been proposed which demonstrate how cooperation can
actually be in one’s long-run self-interest: for example, forces such as repetition [1], reputation [2],
and dynamic social networks [3] can compensate the cost of cooperating today with benefits
received tomorrow (for a review, see [4]).

While much of human cooperation can be explained by these mechanisms, there is no question
that people sometimes cooperate even when it is clearly not in their long-run self-interest to do so
(e.g. in anonymous interactions with strangers). Given the absence of strategic reasons to cooperate,
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efforts to explain this latter “altruistic” form of cooperation have focused on psychological
motivations.1

Attempts to formalize non-strategic motivations for cooperation, and to assess the predictive
power of these motivations, often take the form of incorporating “social preferences” (also called
“other-regarding” preferences) in economic models of decision-making. The psychological benefits
of increasing efficiency [7, 8] or decreasing inequity [9, 10] may outweigh the material costs of
cooperating in 1-shot anonymous settings; and so, social preference models can successfully
predict cooperation when a model based on self-interest alone would predict none.

Here, we use machine learning to shed new light on social preferences. In recent years, machine
learning has emerged as a powerful tool for generating accurate predictions. Machine learning
has been widely embraced outside the academy by businesses, organizations, and governments
interested in predicting a wide range of phenomena from advertisement click-thrus to purchasing
decisions to violent crime, as well as by academic geneticists and neuroscientists. This approach,
however, has gained little traction among behavioral scientists, who often see machine learning
as a black-box tool that does not generate meaningful insights, just accurate predictions. In this
paper, we show how machine learning can be useful for basic social science research.

We do so by generating a large dataset of 21,340 incentivized cooperation decisions made by
1,067 human participants, and using machine learning to answer the following questions regarding
social preferences. First, we ask how well, quantitatively, an extremely general model of outcome-
dependent social preferences (i.e. preferences that take into account the other person’s payoff) can
predict decisions. Critically, characterizing cooperative behavior using social preference models is
only useful insomuch as it allows one to quantitatively predict future behavior. Otherwise, these
models are just a restatement of one’s data – if every dataset generates a new social preference
model, the model is not shedding light on the underlying psychology of altruism, but instead
is just adding extra degrees of freedom for fitting data. Thus we in particular ask the question
of how well outcome-based preferences can do at out-of-sample prediction, which is essential
for evaluating the usefulness of the social preference approach. Furthermore, we consider the
accuracy of predicting individual cooperation decisions, rather than just ability to recreate general
patterns across experiments. (Importantly, we explore social preferences that drive unilateral
behavior in the absence of strategic motives for giving, unlike the work of Wright & Leyton-Brown
2012,2014 who use machine learning to investigate strategic reasoning about the behavior of others
in multilateral games.)

Second, we characterize the extent of heterogeneity in social preferences.2 There is clear evidence
of large and stable differences between individuals in their cooperativeness [11,12]. Yet when social
preference models are applied, it is often assumed that all people have identical preferences (the
“representative agent” assumption, e.g. [8]). Furthermore, when this assumption is relaxed, it is
typically done in an ad hoc way. For example, various papers have allowed 2 different types [13,14],
4 different types [10], or have estimated separate utility functions for every participant [15–17]. To
explore the role of heterogeneity across individuals, we first compare out-of-sample prediction
accuracy for the representative agent approach (which ignores individual variation and focuses on
game payoffs) and a person-focused model which ignores game payoffs and just characterizes
variance across individuals in cooperativeness. We then evaluate models that consider both,
allowing individual heterogeneity in responsiveness to payoffs (i.e. heterogeneous preferences),
and ask how accuracy varies as a function of the number of types allowed: Is it necessary to go
all the way to the extreme of unique preferences for every participant in order to achieve high
predictive power? Or can an intermediate number of types yield similar accuracy?

Finally, we ask how well cooperative type can be proxied by a wide range of survey measures
and demographics commonly used in economics and psychology (and interactions between

1It is important to differentiate between this proximate psychology, which is not based on long-run payoff-maximization,
and the ultimate evolutionary or strategic forces that may have given rise to this psychology [5, 6].

2Peysakhovich & Naecker (2015) take a similar approach to explore models of choice under risk and ambiguity.
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these items). Can a participant’s type be predicted with reasonable accuracy using these other
measures or is cooperativeness a “natural kind”, that is, a “separate” personality trait of cooper-
ativeness? Distinguishing between these possibilities has important implications for theorizing
about prosociality and its origins and cognitive implementation.

We also make a methodological contribution: [18] compare the predictive power of machine
learning to economic models of decision-making in the case of risk and ambiguity. They argue
that because machine learning is optimized heavily for prediction these models can be thought
of as the upper bound of ‘explainable variance’ in a task. We note that if this number is low it
suggests that the data set is not very useful (either because the task itself is too complicated, the
participants are noisy or we are not recording the relevant features). We find high ‘explainable
variance’ in our data set and this further demonstrates that cooperation games on Mechanical
Turk are a powerful tool for behavioral science researchers [19].

II. Methods

To create a dataset of cooperation decisions, we recruited 1067 U.S. residents (Mage= 35.6, 55.6%
female) from the online labor market Amazon Mechanical Turk (MTurk) [19].3 Consistent with
standard payment rates on MTurk, participants received a show-up fee of $0.75, and then had
the opportunity to earn additional money based on their decisions in the study. In particular,
each participant made a series of 20 randomly generated binary-choice decisions between money
allocations for themselves and another anonymous MTurk worker (the recipient).4 For each
decision, the participant chose between

(i) An option that was better for themselves, in which the participant received x cents and the
recipient received y cents (the “selfish” option); or

(ii) An option that was better for the recipient, in which the participant received x − c cents and
the recipient received y + c( f + 1) (the “cooperative” option).

Thus, choosing the cooperative option entailed paying a cost c to give a benefit of c( f + 1) to
the recipient. The selfish option payoffs x and y for each decision were integer values randomly
sampled from a uniform distribution over the interval [0, 50]; the cost was randomly sampled
from a uniform distribution over the interval [0, x]; and the efficiency factor of cooperation f was
randomly sampled from a uniform distribution over the interval [0, 4]. Participants were informed
at the outset that of their 20 decisions, one would be selected at random for actual payment. The
study took participants an average of 13 minutes, and they earned an average of 1.01 (including a
$0.75 show-up fee).

After making their cooperation decisions, participants completed a post-experiment question-
naire with a suite of survey measures and demographics that may be relevant to cooperative
behavior: gender, age, income level, education level, political party affiliation, fiscal and social
conservativism, belief in God, extent of prior experience with MTurk studies (as in [20]) and
skepticism about whether there actually was a real recipient; non-incentivized measures of risk
aversion, ambiguity aversion, competitiveness, and intertemporal choice; and a one item mea-
sure of generalized trust (as in [21]), one item measures from the faith in intuition and need
for cognition scales [22] (as used in [23]), the short form measure of the “Big Five” personality
domains [24], a 24-item measure of character strengths (adapted from [25]) classified into a 4-factor
structure of prosociality, self-determination, intellectualism, and self-control, and a set of two
“trolley problems” about the permissibility of harming one person to save multiple others [26].

3As per common practice on MTurk, we excluded additional participants who did not finish the study, failed any of a
series of attention check questions, or had duplicate MTurk IDs or IP addresses.

4Our procedure is similar to that of [8], but uses randomly generated (rather than pre-specified) payoffs for each choice,
and confronts each participant with a unique set of choices.
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To assess the ability of outcome-based preferences to predict cooperative behavior, we trained
logistic ridge regression models5 on the cooperative choice data, using participants’ first 15
decisions as the training set and the last 5 decisions as the hold-out set.6

We used the following feature set: x, y, c, f , an f > 0 indicator (indicating that cooperating is
non-zero-sum), the quantity [((x − c)− (y + c( f + 1)))− (x − y)] (the change in inequality caused
by cooperating), and an indicator for whether this change in inequality is positive; as well as
squared versions of each of these terms (except the indicators), and all two-way interactions. Note
that the set of two-way interactions includes the term c f , which is the efficiency gain created by
cooperation. Thus this feature set nests, among other things, the standard measures of inequity
and efficiency.

We chose the regularization parameter by using a 5 fold cross-validation within the training set
with each fold of the cross-validation including 3 decisions of each participant. We implemented
all the analysis using the R package glmnet [28].

To explore heterogeneity in preferences, we compared the predictive power of a model using
just these features (such that the same set of coefficients was applied to all participants – the
representative agent assumption) to models in which these features interacted with varying
numbers of dummies indicating participant type (such that the coefficients could vary with type),
as described in more detail below. There is a simple Bayesian interpretation to this “add all
features + interactions” approach – we are training individual-level (ot type-level) models, but we
are pooling data from all individuals and regularizing each model towards the average.

To ask how well cooperative type can be proxied for by other measures, we predicted participant
type with logistic ridge regression using as features the responses to the survey measures and
demographics collected in the post-experiment questionnaire as well as their interactions.

All of these various analyses involve assessing how successfully a given model predicts choices.
When doing so, it is essential to account for skew in the dataset: if exactly 50% of the decisions
were cooperation and 50% selfishness, it would be sufficient to straightforwardly ask what fraction
of decisions were correctly predicted. However, this is not the case: only 17.8% of the decisions in
our dataset were cooperative. Therefore, we used the standard approach of calculating the AUC
(“area under the receiver operating characteristic (ROC) curve” [29]), which provides a balanced
measure of accuracy. AUC captures the likelihood that, when faced with a selfish choice and a
cooperation choice, the model correctly predicts which is which. Thus an AUC of 0.5 indicates no
predictive power, while an AUC of 1 indicates perfect prediction.

III. Results

We began by assessing the predictive power of a model making the representative agent assumption.
This ridge regression included all of the outcome-based features, but no participant-specific
dummies. This model therefore forces each feature to have the same coefficient for each participant.
We found that this representative agent model had non-negligible predictive power, generating an
AUC of 0.69.

Next we assessed a model at the other extreme, which ignored the payoffs for any given decision
and only considered individual heterogeneity in average giving rates. This ridge regression
included dummies for each participant, but no outcome-based features. Interestingly, this model
performed much better than the representative agent model, yielding an AUC of 0.83. We found

5A key concept in machine learning is the “bias-variance tradeoff.” Models which are more flexible fit data better (so
have lower bias) but they are more sensitive to the input data (have higher variance) and so can overfit in sample. One
way to make the bias variance tradeoff is to regularize - fit complex models to the input data but penalize the model for
its complexity. Ridge regression [27] performs this regularization by starting with a standard linear regression model,
allowing for complexity in the function mapping inputs to outcomes (either by adding more features or by adding basis
expansions such as polynomials) but penalizing the model for including larger coefficients.

6Using the first 5 decisions as the hold-out set does not qualitatively alter our results.
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Figure 1: Distribution of participant cooperativeness during the 15 training observations.

that a large fraction of this explanatory power comes from being able to discern extremely selfish
types (those who never cooperate) from those who cooperate at least sometimes - a model with
just a single “giver vs non-giver” dummy generated an AUC of 0.71.

Performance was improved even more by using a fully heterogeneous social preference model,
in which every participant was allowed to have their own unique set of social preferences (i.e.
coefficients for the outcome-based features). This ridge regression included the outcome-based
features, dummies for each participant, and interactions of these dummies with each of the
outcome-based features. This fully heterogeneous model yielded an AUC of 0.89. Thus, at least in
the context of our particular experimental design, both the payoff details of the decision and the
person making the decision mattered; within-person regularities matters substantially more than
the payoffs; and the interaction between the two provides the best predictive power.

But is it necessary to go to the extreme of full heterogeneity in preferences in order to capture
these individual differences? To explore this issue, we considered an additional set of models
with intermediate amounts of heterogeneity. In these models, we allowed either two, three, or
four behavioral types, where a participant’s type was defined by how many of their 15 training
observations involved them choosing the cooperative option.7 Figure 1 shows the extent of
variation in our dataset of cooperativeness during the training observations.

The precise definitions of each type were set in a principled way so as to maximize predictive

7A potential issue with this classification is that the extent to which a given person cooperated in the first 15 trials is
influenced not only by that person’s inclination to cooperate, but also by the particular set of randomly generated payoffs
that person faced - for example, people who faced choice sets with higher efficiency gains (i.e. larger f values) are likely to
have cooperated more. Importantly, however, this variation in the payoffs of games 1 thru 15 should, if anything, work
against us by degrading the model’s predictive power, as all participants faced the same distribution of choices over the
last 5 games.
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Figure 2: Predictive power of 2-type models that include a“more cooperative” dummy indicating whether participants
cooperated in k or more of their 15 trial observation (and interactions between this dummy and all outcome-
based features), as a function of k.

power, as follows. In models that allowed for two different types, we classified participants as
“less cooperative” if they cooperated in fewer than k of their 15 training observations and “more
cooperative” if they cooperated in k or more decisions. For each possible value of k (0 to 15), we
then ran a ridge regression in which a “cooperated at least k times” dummy was interacted with
each outcome-based feature (k = 0 classifies all participants the same way, and thus is equivalent
to the representative agent formulation). The resulting AUCs are shown in Figure 2, and can
be used to select the optimal 2-type definition (i.e. the definition that had the most predictive
power). The best-performing type definition was k = 2, and yielded an AUC of 0.83. This AUC
is much better than the representative agent model, but still substantially lower than the fully
heterogeneous model.

Next we considered 3-type models. In these models, we classified subjects as “least cooperative”
if they cooperated in fewer than j of their 15 training observations; as “intermediately cooperative”
if they cooperated at in at least j but fewer than k of their 15 training observations; and as “most
cooperative” if they cooperated in k or more of their 15 training decisions. As for the 2-type
models, we then iterated over all possible values of j and k to find the pair that maximized the
predictive power of the model in out of sample prediction. The resulting AUCs are shown in
Figure 3. The best-performing type definition was [j = 1, k = 6], and yielded an AUC of 0.88. This
AUC is quite close to AUC generated using the fully heterogeneous model.

We then considered 4-type models with an analogous procedure, with cooperation thresholds
i, j, and k. The best performing 4-type definition was [i = 1, j = 4, k = 9], and yielded an AUC of
0.88. As this performance is not better than the 3-type model, we concluded that three behavioral
types most effectively captures individual variation in outcome-based preferences. For ease of
comparison, the AUC of the best-performing model of each type is shown in Figure 4.

We complemented this analysis of AUCs produced by 2-, 3-, and 4-type models with a bottom
up approach to determining the number of types. To do this, we trained the fully heterogeneous
model above and took the implied regression coefficients for each individual. We then represented

6



Figure 3: Predictive power of 3−type models that include types that cooperate at least 0 − i times, i − j times or j − 15
times in the training set for various values of i and j.
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Figure 4: Predictive power of cooperative decision making for the representative agent model, the best-performing
2-type, 3-type and 4-type models, the fully heterogeneous model, and the model containing only participant
dummies (and no information about the payoffs).
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Figure 5: Variance explained by using different numbers of types to summarize utility functions.

each individual as their vector of coefficients. We then performed standard k-means clustering
on the vector of coefficients. Note that changing a coefficient by a single unit also changes the
predictions of the model for the same input by one unit. Thus, this analysis allows us to check
whether a small number of types (represented by centroids in their cluster) can meaningfully
summarize the heterogeneity in utility functions.

As shown in Figure 5, we found a large improvement in variance explained when increasing
from 2 clusters to 3 clusters, but substantially less improvement when increasing from 3 clusters
to 4 (or above). Thus the clustering analysis provides further support for a small number of types
being able to explain a large fraction of individual heterogeneity.

Finally, we asked how well cooperative type can be predicted using survey measures and
demographics. To do so, we classified participants’ type based on the best-performing 3-type
model:

1. least cooperative: those who cooperated in fewer than one training observations (N=414);

2. intermediately cooperative: those who cooperated in at least one but fewer than seven training
observations (N=492); and

3. most cooperative: those who cooperated in at least seven training observations (N=161).

We then performed several “one vs. all” classification tasks using logistic ridge regression with
all of the survey and demographic items (plus squared terms and all two-way interactions) as
features.8 Training a model to predict whether or not a given participant was “least cooperative”
(that is, giving a label of 1 when the participant was a “least cooperative” type and 0 otherwise)
yielded an AUC of 0.54; predicting “intermediately cooperative” yielded an AUC of 0.54; and
predicting “most cooperative” yielded an AUC of 0.53. Thus, the wide range of survey and

8The participants were randomly split into a training set (N=710) and test set (N=36), and this same test-train split was
used for all analyses.
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demographic factors we considered provided almost no ability to predict cooperative type.9 This
result suggests that cooperativeness is a “natural kind,” rather than being derivative of other
personality features.

IV. Conclusion

Here we have used machine learning to investigate the predictive power of social preference
models when describing cooperative decision-making. Our results show that outcome-based social
preference models can successfully predict cooperative behavior with high accuracy. This indicates
that the game payoffs do have a considerable influence on game play: cooperation decisions are
not largely random, nor driven by transient sentiments (e.g. mood). Instead, they reflect stable
individual preferences over outcomes.

The fact that participant dummies alone have substantial predictive power highlights the
importance of individual differences in disposition to cooperate. This finding is consistent with
prior work finding strong correlations between an individual’s play in different cooperation
games [11, 12, 30, 31] and supports the notion of a “cooperative phenotype” introduced by [11].

However, the fact that including outcome-based features further increase predictive power
above and beyond participant dummies shows that the game payoffs also matter. Individuals do
not just differ in their general propensity to cooperate – rather, they differ in how they condition
on outcomes. This combination of strong predictive power without conditioning on outcomes,
but improved prediction when considering outcomes, suggests that simple decision heuristics
which are insensitive to details of the situation [5,20,32,33] are important for cooperation, but that
deliberative sensitivity to payoff details (be it via deliberation or more sensitive heuristics) also
plays an important role.

Furthermore, we show that this heterogeneity in social preferences can be well captured by
just three distinct types: the generous who usually give, the selfish who rarely give, and the
hyper-selfish who never give at all (i.e. homo economicus). Thus, while the representative agent
assumption is not suitable for considering social preferences, it is also not necessary to go to the
other extreme of specifying a unique set of preferences for every individual. At least within the
current dataset, three types are sufficient to well characterize participant choices.

These findings add to a body of literature on the classification of social preferences, including
work on “conditional cooperation” that examines how people respond to the behavior of others [34],
in contrast to our examination of unconditional play in 1-shot games; and work on “Social Value
Orientation” where participants make unilateral choices between options that maximize the
decision-maker’s absolute payoff, the decision-maker’s relative payoff, or the partner’s payoff, and
are classified accordingly as pro-self, competitive, or pro-social [30, 31].

Finally, we find initial evidence that this variation in cooperativeness we observe represents
a natural kind, rather than being derivative of other traits. We observe that the combination
of a variety of survey measures related to personality and morality, as well as a wide range of
demographics, do quite poorly at predicting participants’ cooperative type (although it is of course
possible that a different set of survey measures might have been more successful). This observation
adds further weight to the usefulness of the cooperative phenotype as a fundamental feature of
personality which is useful for explaining human prosociality.

In addition to generating insight regarding social preferences and cooperation, our results add
to the accumulating body of support for the validity of small-stakes MTurk experiments.10 In
particular, there are two common concerns raised regarding economic game studies run on MTurk
because the decisions involve very small amounts of money. The first concern is that because

9Critically, we are performing out-of-sample prediction, rather than just asking how various measures correlate with
cooperation within-sample as is typically done in social science research.

10Prior work has, for example, found very similar results when the same experiment was run on MTurk and in the
physical lab with higher stakes [19, 21, 35, 36], and shown that complicated learning paradigms work on MTurk [37].
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the decisions are not very monetarily consequential, participants will not take the experiments
seriously and their behavior will be more noisy/random. The fact that we can predict out-of-
sample play with high accuracy, however, shows that this is clearly not the case. The second
concern is that because the stakes are low, it makes it “easier” to be prosocial (or conform to social
expectations), such that cooperativeness will be over-estimated. Inconsistent with this suggestion,
however, we find extremely low giving rates: only 17.8% of the decisions in our dataset were
cooperative. Thus our results suggest that MTurk participants do take their low-stakes decisions
seriously.

While our results provide clear evidence for the power of heterogeneous outcome-based
social preferences for predicting behavior, there are several caveats that merit further study.
Most importantly, our design constrained participants to unilateral monetary interactions with
anonymous strangers. In multilateral settings, or settings where information about the recipient’s
past behavior is available, we would expect non-outcome-based preferences (such as reciprocity [38]
and conditional cooperation [34]) to play an important role in choice, as well as strategic reasoning.
Although the inputs to these other social preferences are much harder to observe (and therefore
to input as features), investigating how to harness machine learning to explore them is an
important direction for future work (as has been done for strategic reasoning [30, 31, 39, 40]). So
too is investigating the power of outcome-based preferences, and the importance of individual
differences, when predicting cooperation in naturalistic settings outside the lab [41]. We hope that
the approach we have introduced here will provide a framework for future investigations of the
nature of human prosociality.
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